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Abstract
Meeting today’s major scientific and societal challenges requires understanding
dynamics of prosociality in complex adaptive systems. Artificial intelligence (AI)
is intimately connectedwith these challenges, both as an application domain and
as a source of new computational techniques: On the one hand, AI suggests new
algorithmic recommendations and interaction paradigms, offering novel pos-
sibilities to engineer cooperation and alleviate conflict in multiagent (hybrid)
systems; on the other hand, new learning algorithms provide improved tech-
niques to simulate sophisticated agents and increasingly realistic environments.
In various settings, prosocial actions are socially desirable yet individually costly,
thereby introducing a social dilemma of cooperation. How can AI enable coop-
eration in such domains? How to understand long-term dynamics in adaptive
populations subject to such cooperation dilemmas? How to design cooperation
incentives in multiagent learning systems? These are questions that I have been
exploring and that I discussed during the New Faculty Highlights program at
AAAI 2023. This paper summarizes and extends that talk.

INTRODUCTION

Prosociality is puzzling (Gintis 2003): prosocial individuals
contribute to benefiting others, yet they must often incur
a cost to do so. Why do such altruistic behaviors exist and
are not outcompeted by selfish ones? (Pennisi 2005) And
how to harness artificial intelligence applications to sus-
tain prosocialitywithin systems of artificial learning agents
and humans? (Paiva, Santos, & Santos 2018). Solving the
puzzle of prosociality is an essential endeavor to tackle
some of themost pressing challenges that our society faces.
Understanding the roots of cooperation, and the insti-

tutions, social norms, and artifacts that might sustain it,
is fundamental in various domains—from climate change
(Bisaro & Hinkel 2016) and responsible use of natural
resources (Dietz, Ostrom, & Stern 2003) to pandemic
control (Traulsen, Levin, & Saad-Roy 2023). In interna-
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tional relations, cooperation is still fundamental to prevent
arms races, nuclear proliferation, and military escalation,
as noted already in the 80s (Axelrod 1984). The efforts
to comprehend human prosociality are long-standing yet
unsettled.
Beyond human groups, understanding prosocial behav-

ior is fundamental inmultiagent systems. In these systems,
multiple computational agents, with a varying degree
of autonomy, attempt to fulfill their goals while inter-
acting with other artificial agents (Wooldridge 2009). If
agents can learn and adapt over time, it is important to
understand how to design interaction rules and learn-
ing protocols that incentivize cooperation and guarantee
satisfactory long-term rewards—fulfilling the previously
named prescriptive agenda of noncooperative game the-
ory in multiagent learning (Shoham, Powers, & Grenager
2007). Prosociality can here bemeasured as the probability
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F IGURE 1 Humans and artificial intelligent applications form, nowadays, complex systems. Understanding dynamics of prosociality in
multiagent systems can benefit from the application of tools used in fields such as population dynamics and network science.

that agents learn to use a strategy leading to high collective
benefits, even if sacrificing individual payoffs. Although
systems of artificial agents can be directly designed to
cooperate with others, the problem of designing proso-
cial systems remains under decentralized control, where
each agent—eventually representing different humans or
organizations—aims at independently maximizing long-
term payoffs.
The problems of cooperation in multiagent systems and

human societies are no longer independent. Humans co-
exist with artificial agents, both in the physical world
and on online platforms. The challenge of understanding
human cooperation is today entangled with the challenge
of designing artificial agents and algorithms that facilitate
prosocial interactions both online and offline (Crandall
et al. 2018; Oliveira et al. 2021; Akata et al. 2020; Guo et al.
2023). Moreover, understanding human cooperation can
provide invaluable knowledge on how to design artificial
cooperation (and vice versa).
Understanding dynamics of prosociality in multiagent

systems can benefit from the application of tools typically
used in complex adaptive systems (see Figure 1). Such tools
can contribute to apprehend how simple interventions
(e.g., agents with a modified behavior, new interaction
rules, or new sources of information) can affect the long-
term macro dynamics in a system composed by many
learning agents. Apart from understanding which actions
agents are likely to take—and subsequent probabilities
of cooperation among agents—one can also grasp the
dynamics leading to such states, how long the process
will take, when to intervene, and whether behaviors can
ever become stable. This analysis can benefit from meth-
ods borrowed from theoretical ecology and population
dynamics.
In this paper, written in the context of the AAAI

2023 New Faculty Highlights program, I summarize five
decision-making domains where, I believe, a combina-
tion of tools at the interface of AI, multiagent systems,
and population dynamics can improve our abilities to

design increasingly prosocial systems. This paper focuses
on prosociality in the context of (1) reputation sys-
tems, (2) recommender systems, (3) hybrid systems,
(4) classification systems, and (5) multisector urban
systems—summarized in Figure 2. Although seemingly
unrelated, these five domains share commonalities: they
constitute areas where understanding the interrelated
dynamics of humans and agents’ behavior is essential; and
they constitute domainswhere achieving socially desirable
outcomes requires solving social dilemmas of cooperation
and prosociality.

Prosociality in reputation systems

Reputation systems are a fundamental mechanism to elicit
trust among strangers and a backbone of e-commerce,
crowdsourcing marketplaces, and sharing economic plat-
forms (Resnick et al. 2000). Reputation systems also play
a central role in multiagent system when artificial agents
must select trustworthy partners or adapt based on infor-
mation about opponents’ prior interactions (Pinyol &
Sabater-Mir 2013). In the realm of evolutionary biology,
reputations are a central mechanism to explain cooper-
ation through indirect reciprocity (Nowak & Sigmund
2005). In this regard, a fundamental challenge is under-
standing which rules to assign reputation are more likely
to elicit long-term stable cooperation (Ohtsuki & Iwasa
2004).
Indirect reciprocity has been identified as a key mech-

anism to explain the evolution of cooperation among
humans (Nowak & Sigmund 2005). Agents are assumed to
adopt strategies determining which action to employ (be
cooperative or not) when interacting with another agent.
Importantly, the decision of which action to select depends
on reputations; agents can restrict cooperation to those
that have a specific reputation. After each interaction, the
reputations of interacting agents are updated. This update
follows a social normdefiningwhich actions should lead to
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F IGURE 2 Five domains where understanding prosocial dynamics is beneficial to designing collective systems where humans co-exist
with artificial intelligence applications. Dashed arrows represent information transmission; full arrows represent interactions where agents
can decide to cooperate (i.e., act prosocially) or defect. (1) In reputation systems, humans decide to cooperate or defect with each other and,
after that, their reputation is updated and eventually spread on online platforms. (2) In recommender system, AI affects information
sources humans are exposed to, which in turn can affect their decision to cooperate. (3) In hybrid systems, humans and social artificial
agents directly decide to cooperate or defect with each other, based on information and signals exchanged. (4) In classification systems,
humans can use information provided by transparent algorithms or human peers to change their features and change the outcome of a
classification algorithm. (5) In urban systems, AI is used to plan and design city infrastructure, and to offer citizens new services and
recommendations; adopting new technologies and shifting to new paradigms depends on multisector decisions and the willingness of
stakeholders to act prosocially.

a good reputation. In this sense, indirect reciprocity norms
resemble injunctive norms studied in social psychology,
which postulate the behaviors one is expected to follow
(Bicchieri 2005).
Determining which social norms lead to higher levels

of cooperation under indirect reciprocity is computation-
ally challenging. The number of potential norms increases
exponentially with the number of bits needed to define
an interaction (Santos, Pacheco, & Santos 2021), and the
ultimate cooperative levels of norms depend on a dynam-
ical process where strategies co-evolve with reputations in
potentially large populations. The challenges of identify-
ing cooperative norms are augmented in group-structured
populations, a setting where assigning reputations can
depend on both prior actions and group identities (Smit
& Santos 2023; Romano, Balliet, & Wu 2017; Whitaker,
Colombo, & Rand 2018). Besides computational com-
plexity, the study of indirect reciprocity norms calls for
the formalization of cognitive complexity (Santos, San-
tos, & Pacheco 2018; Santos, Pacheco, & Santos 2021).
Even assuming the simple setting of binary actions and
binary reputations, norms considered can encode very
complex judgments, whose applicability in real settings
involving humans is questionable. Formalizing complex-
ity in indirect reciprocity—and, in general, reputation
systems—allows us to search for reputation assignment
rules and strategies that maximize prosociality while
keeping simplicity and interpretability.
Reputations can enable cooperation. Yet reputation sys-

tems can themselves require selfless information sharing,
relying on users’ prosociality. Sharing one’s experiences on
online platforms about interactions with others requires

time and effort. If sharing reputations is costly, cooper-
ation under indirect reciprocity involves a second-order
social dilemma, whereby sharing reputations itself needs
to be incentivized (Sasaki, Okada, & Nakai 2016; Santos,
Pacheco, & Santos 2018).

Prosociality in recommender systems

Recommender systems are, nowadays, one of the most
impactful and widespread applications of artificial intel-
ligence (Ricci, Rokach, & Shapira 2021). In their essence,
recommended systems suggest items that users are likely
to find relevant. Items can be objects to purchase, music,
videos, jobs, news, or even other users to connect with
on online social platforms. In a world where infor-
mation is shared at unprecedent rates, recommender
systems are an important tool to cope with informa-
tion overload. Recommender systems are advantageous
to producers and users alike: the first can improve the
outreach of items produced and ultimately add value
to their business; the latter can identify new products,
discover interesting items, and satisfy their needs more
expeditiously.
Recommender systems suggest yet another domain

where humans co-exist with artificial intelligence algo-
rithms and fully understand their co-evolving dynamics
can benefit from applying population dynamics methods
(Piao et al. 2023; Santos 2023). Grasping the impacts of
recommender systems on human societies also requires
capturing how these systems impact prosociality. This is
evident in applications such as news recommendation
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and link recommendation algorithms on online social net-
works, which can impact how information spreads and,
consequently, the perceived costs/benefits of cooperation
and collective action.
The challenges of incentivizing cooperation to solve

some of our most pressing societal problems can be cap-
tured by simple economic games such as nonlinear public
goods games. These are interactions where attaining col-
lective success requires that a critical mass of cooperators
exist. As cooperation involves a cost, reaching the mini-
mal number of cooperators required for cooperative efforts
to become consequential is not an easy task. This is the
challenge, for instance, when countries are called to coop-
erate by reducing CO2 emissions (Milinski et al. 2008;
Santos & Pacheco 2011) or when individuals are asked
to cooperate by wearing masks to prevent a virus from
spreading (Traulsen, Levin, & Saad-Roy 2023). In these
domains, underestimating the cooperative efforts of indi-
viduals around us might impact our own willingness to
cooperate—in fact, humans often reveal to be conditional
cooperators (Fischbacher, Gächter, & Fehr 2001). This
raises the question of how social perception biases can
affect cooperation in nonlinear public goods dilemmas. In
a previous work, we have shown that perception biases
leading to false uniqueness or false consensus effects can
hamper cooperation and collective action (Santos, Levin,&
Vasconcelos 2021). Recommender systems that filter infor-
mation one has access to—in particular, about opinions of
others—can exacerbate such effects; these recommender
systems should be evaluated not only in terms of creating
echo chambers, information cocoons, or filter bubbles, but
also regarding our willingness to behave prosocially.
Besides filtering information, recommendation algo-

rithms can directly affect the way social networks evolve
by directly recommending who should be connected with
whom (Su, Sharma, & Goel 2016). These link recommen-
dation algorithms can possibly exacerbate the community
structure of networks affecting levels of polarization and
radicalization (Santos, Lelkes, & Levin 2021). Networks
have, in turn, a direct connection with the evolution of
cooperative behavior (Rand, Arbesman, & Christakis 2011;
Santos, Pacheco, & Lenaerts 2006; Shirado & Christakis
2020), which suggest that social recommenders on social
media can also affect our prosocial dynamics.

Prosociality in hybrid systems

It is clear nowadays that humans co-exist with algorithms,
as previous examples also evidence in the domain of online
platforms. But humans are increasingly interacting with
social artificial agents, with varying degrees of autonomy.
These social agents can be simple social media bots (Fer-

rara et al. 2016) or embodied socially interactive agents
(Lugrin 2021). The latter are autonomous agents that can
perceive their environment, including people or other
agents, decide how to interact, and express attitudes, emo-
tions, engagement, or even empathy. Also in this domain,
it is fundamental to understand how to design agents that
behave prosocially and sustain human prosociality (Paiva
et al. 2021).
Prosociality in hybrid populations composed of humans

and artificial social agents depends on humans’ willing-
ness to adapt their behavior according to the behavior of
an artificial opponent (and vice versa). It is not, however,
clear that humans will choose artificial partners and recip-
rocate cooperative actions similarly to what they do when
interacting with other humans. Cooperation with artificial
agents depends on trust and transparency (Han, Perret, &
Powers 2021; Ishowo-Oloko et al. 2019). In the short term,
experiments in environments where humans interact with
robotic partners and virtual agents can reveal whether
humans’ reciprocal behaviors are such that we can expect
cooperation stability (Santos et al. 2020; Santos et al. 2019;
de Melo, Santos, & Terada 2023).
To infer how prosocial behaviors will develop in the

long run, one can resort to agent-based simulations and
population dynamics models. These models illustrate the
long-term effects of introducing, in a population of adap-
tive learning agents (like humans) a subset of agents with
a predetermined behavior. These behaviors can be engi-
neered in such a way that a small fraction of agents can
trigger long-lasting prosocial behaviors (Santos et al. 2019).

Prosociality in classification systems

Artificial Intelligence applications are, currently, used in
many consequential applications, especially when they
are used to classify humans. Classification algorithms are
used, for example, in loan applications, fraud detection,
college admission, or automated recruitment tools. In this
context, algorithms should be increasingly transparent,
allowing subjects to understand how and why algorith-
mic decisions were performed and eventually offering the
possibility of recourse. Humans’ adaptation after algorith-
mic decisions can be relevant to revert unfair decisions
and allow people to improve their condition. On the
other hand, individuals might adapt in malicious ways
by, for example, manipulating the information provided.
The challenge of designing classification algorithms that
are robust to strategic manipulation by rational agents is
studied in the field of strategic classification (Hardt et al.
2016).
The study of prosociality in large populations of adaptive

agents can also be informative in the context of strategic
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classification. When subject to the results of an algorith-
mic decision, individuals can choose to improve their
condition—thereby incurring high effort to improve their
chances of future success—or choose to game the system—
for example, by providing false information or strategically
adapt features in ways that do not cause future success
(Kleinberg & Raghavan 2020; Miller, Milli, & Hardt 2020;
Barsotti, Koçer, & Santos 2022). Improving means that
individuals are required to pay a high cost to adapt and
thereby concede classifiers the benefit of keeping high
accuracy. Gaming means that individuals will pay a low
individual cost, however reducing the accuracy level of the
classifier. As in the case of altruistic cooperation, strate-
gic classification suggests a social dilemma which, to be
solved, requires prosocial agents.
In another direction, the way individuals strategically

adapt to algorithms might depend on information col-
lected from peers and from online platforms (Ghalme et al.
2021; Bechavod et al. 2022; Barsotti, Koçer, & Santos 2022).
Disclosing truthful information for this purpose entails
a second-order social dilemma, just as the challenge of
costly reputation sharing previously discussed: individuals
are required to spend time and effort (i.e., spend a cost)
to offer others valuable information about their experi-
ences, which hopefully contribute to others’ possibility of
algorithmic recourse (Karimi et al. 2022).

Prosociality in urban systems

Planning more livable and inclusive cities also constitutes
a domain where we can benefit from a better understand-
ing prosocial dynamics in scenarios where citizens co-exist
with artificial intelligence applications (Stein & Yazdan-
panah 2023). Prosociality is relevant when people decide
to recycle, consume resources responsibly, take good care
of public urban spaces, or take an active role in their com-
munities (Santos & Bloembergen 2019; Hsu et al. 2020;
Arana-Catania et al. 2021; Hsu et al. 2022). The connec-
tion between prosociality, AI, and urban systems is also
evident in the case of route recommender systems, where
following AI recommendations might lead to detrimen-
tal outcomes such as higher pollution levels (Cornacchia
et al. 2022): will citizens be willing to accept algorithmic
recommendations that are not individually optimal, yet
contribute to the collective good?
At the planning level, understanding dynamics of

decision-making between different sectors in a city (citi-
zens, public sector, private sector) can shed light on the
challenges to implement new initiatives or to adopt new
technologies (Santos et al. 2016; Encarnação et al. 2016).
A key example is the adoption of green technologies such
as developing infrastructure for electric vehicles (Encar-

nação et al. 2018). Also here, understanding how to harness
incentives to trigger prosocial behaviors is fundamental.
Often, multiple sectors have competing goals, and unlock-
ing new projects that benefit citizens might require that a
particular stakeholder (e.g., public or private sector) incurs
a cost to initiate a transition to a more desirable state
(Encarnação et al. 2018). It is fundamental to understand
which sector has a more decisive role, and how to har-
ness the right incentives to guarantee sustained urban
transitions.
Artificial intelligence applications can also be used to

search the large space of possible options when deciding
how to improve public services such as public transporta-
tion. When designing new public transportation transit
schedules, routes, or lines, city planners might face fair-
ness dilemmas: adding a new line might unequally favor
different communities in a city (Michailidis, Ghebreab,
& Santos 2023). When expanding public transit offer in
an inclusive way, it might be necessary for a majority
group to accept a higher cost to improve urban mobility
to marginalized groups. The connection between proso-
ciality, AI, and mobility in urban systems also extends to
the domain of residential mobility (Bara, Santos, & Turrini
2023;Michailidis et al. 2023): preventing urban segregation
might imply that individuals behave prosocially and sup-
port interventions that facilitate interactions with diverse
communities.

CONCLUSION

This paper, written in the context of the AAAI-23 New Fac-
ulty Highlights program, features our previous research in
the domain of prosocial dynamics in multiagent systems.
Besides revisiting past work, this paper suggests a base
for a future research agenda on advancing our tools and
knowledge on how to design artificial intelligence appli-
cations that sustain prosociality across decision-making
domains. Artificial Intelligence relates to the challenge of
sustaining prosocial action. As presented in this paper, as
an application field and as source of computational tech-
niques. Second, AI suggests new interaction paradigms
that involve groups of artificial agents and humans, offer-
ing new possibilities to engineer cooperation inmultiagent
(hybrid) systems. On the other hand, new learning algo-
rithms provide improved techniques to simulate sophis-
ticated agents and analyze increasingly realistic systems
where cooperation is paramount.
The works showcased in this paper resort to a com-

bination of techniques at the interface of multiagent
systems and complex systems. In particular, the findings
presented result from applying (evolutionary) game the-
ory, multiagent reinforcement learning, network science,
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and, more broadly, agent-based simulations. New tech-
niques, inspired by the new paradigms of deep learning,
graph representation learning, and foundationmodels, are
promising in the domain of prosocial dynamics (Hughes
et al. 2018; Dafoe et al. 2021). Extending currentmethods to
cope with agents and human communities’ heterogeneity
can certainly offer fruitful new research lines (Merhej et al.
2022). Finally, understanding cooperation dynamics can be
relevant to the own process of governing and regulating AI
(Han et al. 2020; Han et al. 2022).
While this survey focuses on works applying tech-

niques commonly used in computer science, the topic of
cooperation and prosociality is naturallymultidisciplinary.
Advancing our knowledge of prosocial artificial systems
can benefit from the input of biology, anthropology, psy-
chology, philosophy, behavioral economics, to name some
examples. Evolutionary theory, economic experiments,
and anthropological case studies shed light on why and
howhumans cooperate, providing a basis to anticipate how
contemporary technology might impact human prosocial-
ity (Skyrms 2004; Henrich & Henrich 2007). Ultimately,
understanding cooperation in artificial systems can only
be accomplished through cooperation between multiple
fields.
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