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ABSTRACT: Coarse-grained (CG) molecular dynamics enables the study of
biological processes at temporal and spatial scales that would be intractable at an
atomistic resolution. However, accurately learning a CG force field remains a
challenge. In this work, we leverage connections between score-based generative
models, force fields, and molecular dynamics to learn a CG force field without
requiring any force inputs during training. Specifically, we train a diffusion
generative model on protein structures from molecular dynamics simulations,
and we show that its score function approximates a force field that can directly
be used to simulate CG molecular dynamics. While having a vastly simplified
training setup compared to previous work, we demonstrate that our approach
leads to improved performance across several protein simulations for systems up
to 56 amino acids, reproducing the CG equilibrium distribution and preserving
the dynamics of all-atom simulations such as protein folding events.

1. INTRODUCTION
Coarse-grained (CG) molecular dynamics (MD) promises to
scale simulations to larger spatial and time scales than are
currently accessible through atomistic MD simulations.1−4

Scaling up MD by orders of magnitude would enable new
studies on macromolecular dynamics over longer ranges of
time, such as large protein folding events and slow interactions
between large molecules.

To obtain a CG simulation model, one first maps the all-
atom, or fine-grained, representation to a CG representation,
e.g., by grouping certain atoms together to form so-called CG
beads. Second, a CG force field needs to be designed such that
CG MD simulations reproduce relevant features of molecular
systems.

In top-down approaches, a CG model is often defined to
reproduce specific macroscopic observables as experimentally
measured and/or simulated on fine-grained models.5−8 In
bottom-up approaches, one seeks to obtain a CG model
reproducing the microscopic behavior (e.g., thermodynamics
and kinetics) of a fine-grained model.9−11 In the latter case, a
common approach is to define a CG force field for the chosen
CG representation by enforcing thermodynamic consistency.2

This requires that simulations following the CG model have
the same equilibrium distribution as those obtained by
projecting equilibrated all-atom simulations onto the CG
resolution.

Traditional bottom-up coarse-graining techniques that rely
on the thermodynamic consistency principle have produced
significant results in the last decade,12−14 in particular when

used in combination with machine learning methods.15,16 Two
commonly used approaches are variational force matching and
relative entropy minimization.

Variational force matching minimizes the mean squared
error between the model’s CG forces and the atomistic forces
projected onto the CG space, which must be included in the
data.9 However, due to the stochastic nature of the projected
forces, this noisy force-matching estimator has a large variance,
leading to data-inefficient training. Alternatively, relative
entropy minimization approaches10 perform density estimation
in the CG space without accessing atomistic forces. The
majority of this class of methods are equivalent to energy-
based models.17 Since training these models requires iteratively
drawing samples from the model to estimate log-likelihood
gradients, such methods demand significantly higher computa-
tional costs.18

Flow-matching19 is a hybrid approach that does not require
atomistic forces for training (like relative entropy minimiza-
tion) while also retaining good sample efficiency. The method
has two training stages. First, a CG density is modeled with an
augmented normalizing flow.20−23 A second learning stage
with a force-matching-like objective is then required to extract
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a deterministic CG force field that can be used in CG MD
simulations. Köhler et al.19 demonstrated that flow-matching
improves performance on several fast-folding proteins.24

However, the learned CG models are not yet accurate enough
to reproduce the thermodynamics of the corresponding fine-
grained models, and scaling to larger proteins leads to
instability.

In this work, we leverage the recently popularized class of
denoising diffusion models,25,26 which have already shown
promising results for protein structure generation,27−31 con-
former generation,32 and docking.33 In particular, we train a
score-based generative model on CG structures sampled from
the CG equilibrium distribution. By highlighting connections
between score-based generative models,34 force fields, and
MD, we demonstrate that learning such a generative model
with a standard denoising loss and a conservative score yields a
single model that can be used to produce i.i.d. CG samples and
which can be used directly as a CG force field for CG MD
simulations. An overview is shown in Figure 1. In addition to

having a single-stage training setup, our method leads to
improved performance across several protein simulations for
systems up to 56 amino acids, reproducing the CG equilibrium
distribution, and preserving the dynamical mechanisms
observed in all-atom simulations such as protein folding
events. We also provide evidence that our diffusion CG model
allows for scaling to a larger protein than previously accessible
through flow-matching.

2. BACKGROUND
Coarse graining can be described by a dimensionality
reduction map : N n3 3 that transforms a high-dimen-
sional atomistic representation x N3 in 3D space to a
lower-dimensional CG representation z n3 , where n ≪ N.
For molecular systems, the CG map is usually linear,

×n N3 3 , and returns the Cartesian coordinates z of CG

“beads” as a linear combination of the Cartesian coordinates x
of a set of representative atoms.

The probability density of the atomistic system at a
particular temperature is described by the Boltzmann
distribution q U kx x( ) exp( ( )/ )B , where U(x) is the
system’s potential energy, and kB is the Boltzmann constant.
By identifying the ensemble of atomistic configurations x that
map into the same CG configuration z, we can explicitly
express the probability density of the CG configurations z as

=q
U k

U k
z

x x z x

x x
( )

exp( ( )/ ) ( ( ) )d

exp( ( )/ )d
B

B (1)

where δ(·) is the Dirac delta function. Up to an additive
constant, this distribution uniquely defines the thermodynami-
cally consistent effective CG potential of mean force V(z)9

= +

= +

V k q

k e

z z

x z x

( ) log ( ) cst

log ( ( ) )d cstU kx

B

B
( )/ B

Unfortunately, computing the integral is usually intractable.
Therefore, methods that approximate thermodynamically
consistent effective CG potentials have been proposed.
Below, we briefly summarize two commonly used approaches.

2.1. Variational Force Matching. Noid et al.9 showed
that under certain constraints of the coarse-graining mapping
Ξ, a more tractable consistency equation between the CG force
field −∇zV(z), and the atomistic force field −∇xU(x) can be
obtained. More specifically, if Ξ is a linear map and if each
bead has at least one atom with a nonzero coefficient only for
that specific bead, then the following relation holds:

= [ ]|V Uz x( ) ( ( ))qz x z x( ) f . Here, Ξf is a linear map
whose coefficients are related to the linear coefficients of the
CG map Ξ.35 Noid et al.9 showed that the above relation can
be used to approximate a thermodynamically consistent CG
potential Vθ(z) with parameters θ by minimizing the following
variational loss

[ ]V Uz x( ) ( ( ))q x z z x( , ) f 2
2

(2)

2.2. Relative Entropy Minimization. Another approach
to obtaining the CG forces is via relative entropy minimization,
where optimizing the density implicitly leads to optimized
mean potential functions. Concretely, we seek to estimate the
CG density by minimizing the relative entropy, or Kullback−
Leibler divergence, q pz zlog ( ) log ( )q z( )

Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ, which is

equivalent to optimizing the maximum likelihood when a
finite number of samples is drawn from q(z). The approximate
CG forces can be extracted from the optimized model density
pθ(z) through −∇zVθ(z) ∝ ∇z log pθ(z). Unlike variational
force matching, relative entropy minimization does not impose
any constraints on the CG map, and no atomistic forces are
required for training.

Traditionally, an unnormalized version of pθ is modeled by
directly parameterizing the CG potential Vθ, yielding
p V kz z( ) exp( ( )/ )B . To minimize the relative entropy,
one would need to either estimate the free energy (i.e., the
normalizing constant) of the model10 or draw i.i.d. samples
from the model for gradient estimation,18,36 which renders this
approach impractical for higher-dimensional problems.

Figure 1. Denoising diffusion model is trained with a standard loss on
atomistic (fine-grained) equilibrium samples projected onto the CG
space. By leveraging connections between score-based generative
modeling, force fields, and MD, we obtain a single model that can
generate i.i.d. equilibrium CG samples and whose neural network can
be used as a CG force field in CG MD simulations.
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An alternative is to use an explicit density model such as a
normalizing flow,20,37,38 which allows for straightforward
maximum-likelihood density estimation and force field
learning. However, learning expressive invertible functions is
challenging, so instead, Köhler et al.19 opted for augmented
normalizing flows.22,23 The introduction of auxiliary random
variables increases the expressivity of the flow at the cost of an
intractable marginal likelihood, yielding a minimization
objective that is a variational upper bound to the relative
entropy. Furthermore, one can only extract a stochastic
estimate for the CG force from the augmented normalizing
flow model. In order to distill a deterministic approximate CG
force to simulate the CG dynamics, Köhler et al.19 proposed a
teacher-student setup akin to variational force-matching. This
two-stage approach was dubbed flow-matching.

3. DIFFUSION MODELS FOR CG MD
Denoising diffusion probabilistic models (DDPMs)25,26 sample
from a probability distribution by approximating the inverse of
a diffusion process, i.e., a denoising process. The diffusion
(forward) process is defined as a Markov chain of L steps

| = |=q qz z z z( ) ( )L i
L

i i1: 0 1 1 , where z0 is a sample from the
unknown data distribution q(z0). The learned reverse process
is defined as a reverse-time Markov chain of L denoising steps

= |=p p pz z z z( ): ( ) ( )L L i
L

i i0: 1 1 that starts from the prior
p(zL). For real-valued random variables, the choice of
distribution for the forward process is typically Gaussian,

| =q z z z z I( ) ( ; 1 , )i i i i i i1 1 , with {βi} predetermined
variance parameters that increase as a function of i such that
the Markov chain has a standard normal stationary
distribution. The reverse process distributions are chosen to
have the same functional form: =p z 0 I( ) ( , )L and

| =p iz z z z I( ) ( ; ( , ), )i i i i i1 1
2 . Here, μθ(zi, i) is a

learnable function with parameters θ, and i
2 is a fixed variance

for noise level i that is determined by βi. By making use of
closed-form marginalization for Gaussian distributions and by
p a r a m e t e r i z i n g t h e m e a n s a s

= ( )i iz z z( , ) ( , )i i i
1

1i

i

i
, with ϵθ(zi, i) the noise

prediction neural network, training proceeds by minimizing the
loss25

+
=

K iz( 1 , )
i

L

i q i iz 0 I
1

( ) ( ; , ) 0
2

0

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

(3)

Here, αi = 1 − βi and = =i s
i

s1 . Up to a constant, eq 3 is a

negative evidence lower bound if =Ki 2 (1 )
i

i i i

2

2 . However,

Ho et al.25 found that a reweighted loss with Ki = 1 worked
best in practice.

In this study, the data consists of samples from the CG
Boltzmann distribution: q ez( ) V kz

0
( )/ B . Given a trained

diffusion model parameterized through a noise prediction
network εθ(zi, i), we can produce i.i.d. samples of the
approximate CG distribution through ancestral sampling
from the graphical model |=p pz z z( ) ( )L i

L
i i1 1 .

3.1. Extracting Force Fields from Diffusion Models.
Song et al.34 demonstrated that the DDPM loss in eq 3 with Ki

= 1 is equivalent to the following weighted sum of denoising
score matching objectives39

|
=

| s i qz z z(1 ) ( , ) log ( )
i

L

i q q i iz z z z
1

( ) ( ) 0
2

i i0 0

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

(4)

Here, | =q z z z z I( ) ( ; , (1 ) )i i i i0 0 , and sθ(zi, i) is the
score model. While this was not made explicit by Song et al.,34

the equivalence of these two losses is achieved by relating the
score model sθ(zi, i) to the noise prediction network εθ(zi, i)
through =s iz( , )i

iz( , )
1

i

i
, see Supporting Information

Section SA.1. Given a sufficiently expressive model and
sufficient amounts of data, the optimal score *s iz( , )i will
match the score, q zlog ( )izi

39 where q(zi) = ∫ dz0q(zi|z0)q(z0)
is the marginal distribution at level i of the forward diffusion
process. At sufficiently low noise levels, the marginal
distribution q(zi) will resemble the data distribution q(z0),
such that *s iz( , )i effectively approximates the score of the
unknown data distribution. When the latter is equal to the CG
Boltzmann distribution q ez( ) V kz

0
( )/ B , the optimal score

*s iz( , )i at level i = 1 will approximately match the CG forces

= =q zlog ( ) V
k kz

z F( )z z

B B
. Finally, by using the relation

between sθ(zi, i) and the noise prediction network εθ(zi, i),
we can extract the approximate CG forces from a denoising
diffusion model trained with the loss in eq 3

= *
k

iF z
1

( , )B

i
z
DFF

(5)

We will refer to such an approximate CG force field as a
denoising force field (DFF). While in principle the lowest level
(i = 1) should provide the best approximation to the CG
forces, in practice we treat i as a hyperparameter and pick the
best i by cross-validating the simulated dynamics.

Connections between force fields and denoising diffusion
models have been made in previous work. Zaidi et al.40 pre-
trained a property prediction graph neural network in a
denoising diffusion setup by denoising molecular structures
that locally maximize the Boltzmann distribution (or minimize
the energy). By approximating the data distribution as a
mixture of Gaussians centered around these local minima, they
demonstrate that the score matching objective is equivalent to
learning the force field of this approximate mixture of Gaussian
data distribution. Similarly, Xie et al.41 connected the learned
score in a denoising network for small noise levels to a
harmonic force field around energy local minima structures. A
key point is that these connections only provide approximate
force fields around the local minima structures, making them of
limited use in downstream tasks. In this work, we show that
training denoising diffusion models on samples from the
equilibrium Boltzmann distribution�rather than only the
locally maximizing structures�allows us to learn an approx-
imate force field in an unsupervised manner for the entire
equilibrium distribution. This is crucial for running stable and
reliable CG MD simulations with the extracted CG force field.

3.2. MD with the DFF. With the DFF from eq 5, we can
perform CG MD simulations by propagating the Langevin
equation
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= +M
t

V M
t

M k tz z z wd
d

( )
d
d

2 ( )z

2

2 B (6)

where we substitute =V z F( )z z
DFF. M represents the mass

of the CG beads, γ is a friction coefficient, and w(t) is a delta-
c o r r e l a t e d s t a t i o n a r y G a u s s i a n p r o c e s s

[ · ] =t t t tw w( ) ( ) ( )p x( ) with mean [ ] =tw( ) 0p x( ) . In
our experiments, we set γ and to the same values as those
used in the original atomistic simulations that produced the
data. Therefore, given a trained network εθ, the only
hyperparameter left to tune is the noise level i. Further
information regarding the trade-off of noise level i can be
found in Supporting Information Section SB.3.

A well-known limit of the Langevin equation (eq 6) is that
of a negligible mass and a large friction coefficient (with a finite
η = γM), called Brownian dynamics or overdamped Langevin
dynamics. Interestingly, in Supporting Information Section
SA.2, we show that iteratively diffusing and denoising at a low
noise level (e.g., i = 1) approximates Brownian dynamics with a
simulation timestep Δt implicitly defined through

= =t 1k
M 1 1
B .

3.3. DFF Architecture. The choice of the neural network
εθ is heavily influenced by the physical symmetries of the
system under study. For instance, the CG force field must be
conservative, i.e., it must equal the negative gradient of the CG
energy potential Vθ(z). Therefore, we parameterize εθ(zi, i) as
the gradient of an energy neural network with a scalar output,
i . e . , =i iz z( , ) nn ( , )i izi

, w i t h

× { }Lnn : 1, . . . ,n3 . Previous studies on image
generation by Salimans and Ho42 yielded no empirical
difference in sample quality when using an unconstrained
score network or a score that is parameterized as the gradient
of an energy function. However, in Supporting Information
Section SB.1, we demonstrate that using a conservative score in
a diffusion model is crucial for stable CG MD simulations with
the extracted DFF.

Furthermore, the force field must be translation-invariant
and rotation-equivariant. We ensure the model is translation-
invariant by using the coordinates of the CG beads only
through pairwise difference vectors z(i) − z(j) as input to the
network. While the forces must be equivariant to rotations, we
explicitly do not want reflection equivariance to avoid
generating mirrored proteins, as reported by Trippe et al.28

In other words, our goal is to achieve equivariance with respect
to SO(3) instead of O(3), as opposed to other works that use
relative distances as the input representation.43 A simple
strategy to approximate SO(3) equivariance without requiring
the more expensive spherical harmonics or angular representa-
tions is the use of data augmentation. Previous work by Gruver
et al.44 showed that learned equivariance with transformers can
be competitive with actual equivariant networks. In Supporting
Information Section SB.4, we show that our DFF learns to be
rotation-equivariant on a validation set with a relative squared
error introduced by rotations of <10−6.

In this work, we model the network nnθ as a graph
transformer adapted to the above symmetry constraints.
Further architecture details are given in Supporting Informa-
tion Section SC.1. Note that previous works on neural-
network-based CG force fields also often add a prior energy
term in the scalar energy neural network to enforce better
behavior of the CG force field further away from the training

dataset.15,16,19 In contrast, we did not find this to be necessary
to obtain stable CG MD simulations with our denoising CG
force field.

4. EXPERIMENTS
By training our diffusion model on samples from a CG
equilibrium distribution, we simultaneously obtain an i.i.d.
sample generator (denoted DFF i.i.d.) as well as a CG force
field for running CG MD simulations (DFF sim.). In this
section, we evaluate the performance and scalability of our
model for both use cases on (i) alanine dipeptide and (ii)
several fast-folding proteins.24 In particular, we investigate how
well the CG equilibrium distribution and the dynamics can be
reproduced.

We compare our model to three baselines: Flow i.i.d. and
Flow-CGNet sim. from Köhler et al.19 and CGNet sim.15

CGNet sim. is a pure force-matching neural network trained
on CG forces that were projected from the fine-grained
representation onto the CG representation. Flow i.i.d. is the
force-agnostic augmented normalizing flow model trained as a
density estimator in the first stage of the flow-matching
setup.19 This flow model can only be used to produce i.i.d.
samples. Flow-CGNet sim. performs CG simulations using the
deterministic CGNet force field distilled from the gradient of
the augmented normalizing flow model in the second teacher-
student distillation stage of flow-matching. Recall that for our
method, we do not require a teacher-student setup since the
same network can be used for i.i.d. sampling and for CG
simulations. We also provide reference data, which is the
original MD simulation projected onto the CG resolution.
Lastly, note that while we often show results for both i.i.d. and
simulation-based methods, the latter have the more challenging
task of modeling the dynamics in order to obtain correct
equilibrium distributions. We therefore expect the proposed
i.i.d. methods to perform better when analyzing equilibrium
distributions.

4.1. CG Simulation�Alanine Dipeptide. First, we
evaluate our method on a CG representation of the well-
studied alanine dipeptide system. We use the same CG
representation as those of Wang et al.,15 Husic et al.,16 and
Köhler et al.,19 which project all atoms onto the five central
backbone atoms of the molecule (see Supporting Information
Figure S4). The simulated data19 consists of four independent
runs of length 500 ns, with 250,000 samples saved per
simulation (2 ps intervals). We evaluate the model using four-
fold cross-validation, where three of the simulations are used
for training and validation and one is used for testing. We
consider different training dataset sizes, ranging from 10 to
500K training samples. For the Langevin dynamics simulation,
we follow the same settings as Köhler et al.,19 i.e., we run the
simulation at 300 kelvin for 1 M steps with a step size of 2 fs
and store the samples every 250 time steps. However, unlike
Köhler et al.,19 we do not use parallel tempering, which is
known to improve the mixing of the dynamics. Our denoising
network nnθ (Section 3.3) consists of two graph transformer
layers with 96 features in the hidden layers. Further
implementation details are in Supporting Information Section
SC.4.1.

4.1.1. Metrics. Following Wang et al.15 and Köhler et al.,19

we evaluate the quality of the generated samples by analyzing
statistics over the two dihedral angles (ϕ, ψ) computed along
the CG backbone of alanine dipeptide. Each angle describes a
four-body interaction, representing the main degrees of
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freedom of the system. We generate a Ramachandran plot by
computing the free energy as a function of these two angles,
binning values into a 2D histogram, and taking the negative
logarithm of the probability density. To provide a quantitative
analysis, we measure the empirical Jensen-Shannon (JS)
divergence between the dihedral distributions of samples
drawn from the model and the test set. A reference comparing
the training and test sets is provided as a lower bound.
4.1.2. Results. As shown in Figure 2 (left), DFF sim.

significantly outperforms previous CG simulation methods
(Flow-CGNet sim. and CGNet sim.), especially in the low-
data regime, and even performs comparably to the i.i.d.
sampling method Flow i.i.d. Moreover, DFF i.i.d. outperforms
its counterpart, Flow i.i.d., with a significant margin, almost
approaching the performance of the lower bound (reference).
The right side of Figure 2 shows the Ramachandran plots after
training on 500 K samples, further highlighting that our model
is able to generate realistic samples.

4.2. CG Simulation�Fast-Folding Proteins. Next, we
evaluate our model on a more challenging set of fast-folding
proteins.24 Such proteins exhibit folding and unfolding events,
which makes their simulated trajectories particularly interest-
ing. We pick the same proteins as in Köhler et al.,19 namely,
Chignolin, Trp-cage, Bba, and Villin. These were CG by slicing
out the Cα atom for every amino acid, yielding one bead per
residue (10, 20, 28, and 35 beads, respectively). For these
proteins, we produced the Flow i.i.d. and Flow-CGNet sim.
plots through samples that were made publicly available by the

authors. Since scaling to larger proteins was found to be
challenging for flow-matching,19 we additionally included the
larger “Protein G” (56 beads) to analyze the scalability of our
method. All-atom simulations vary in length, but for each
trajectory, the frames are shuffled and split 70−10−20% into a
training, validation, and test set. More dataset details are given
in Supporting Information Section SC.5.1.

4.2.1. Equilibrium Analysis. 4.2.1.1. Metrics. We use several
metrics to evaluate the quality of the generated equilibrium
distributions. First, we analyze the slowest changes in the
protein conformation, which are usually related to (un-)folding
events. For this, we calculate the time-lagged independent
component analysis45−47 using the Deeptime library48 and pick
the first two TIC coordinates, resulting in a 2D distribution
over the slowest processes. Basins in these 2D distributions are
associated with meta-stable states. Furthermore, we compute
the JS divergence of the obtained TIC distributions between
each model and the reference MD data (denoted by TIC JS).
As a qualitative analysis, we plot the log of the obtained TIC
distributions.

To assess the global structure of the proteins, we compare
pairwise distance distributions by calculating the JS divergence
relative to the test MD distribution for all distances within the
upper triangle of the pairwise distance matrix with a diagonal
offset larger than three (denoted by PWD JS). The offset is
chosen to avoid over-representing the local structure. More-
over, we plot the free energy as a function of the root mean
squared distance (RMSD) between the generated samples and

Figure 2. Experimental results for alanine dipeptide. Left: JS divergence between dihedral distributions produced by several CG methods for
different training set sizes and the test partition of all-atom simulation data projected onto the CG resolution. Results are averaged over four runs,
and error bars denote a 95% confidence interval. Right: Ramachandran plots showing the dihedral distributions for the different methods trained on
500K samples.

Table 1. Experimental Results for Fast Foldersa

Chignolin Trp-cage Bba Villin Protein G

TIC JS PWD JS TIC JS PWD JS TIC JS PWD JS TIC JS PWD JS TIC JS PWD JS

reference 0.0057 0.0002 0.0026 0.0002 0.0040 0.0002 0.0032 0.0004 0.0014 0.0002
flow i.i.d. 0.0106 0.0022 0.0078 0.0057 0.0229 0.0073 0.0109 0.0142 n/a n/a
DFF 0.0096 0.0005 0.0052 0.0007 0.0111 0.0017 0.0073 0.0009 0.0131 0.0009
flow-CGNet sim. 0.1875 0.1271 0.1009 0.0474 0.1469 0.0594 0.2153 0.0535 n/a n/a
DFF 0.0335 0.0067 0.0518 0.0403 0.1289 0.0408 0.0564 0.0244 0.2260 0.0691

aThe table displays the JS divergence for TIC distributions and pairwise distance (PWD) distributions, where in the latter case an average is taken
over all entries of the upper triangle of the PWD matrix with offset three. The JS divergences compare distributions from the atomistic MD
simulations that were projected on CG space with the distributions produced by the learned CG methods.
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Figure 3. Left: native structure visualization with α-helices in orange and β-sheets in blue. Middle: Cα-RMSD free energy with respect to the folded
native structure. Right: joint density plots for the two slowest TIC coordinates, where the color indicates the free energy value. The red cross
indicates the location of the native structure.

Figure 4. Contact probability maps for the Flow-CGNet sim., DFF sim., and the reference MD data for fast-folding proteins. The contact threshold
is set to 10 Å. The axes in the plot represent atom indices. The color indicates the normalized contact count (i.e., “contact probability”) for the
corresponding pairwise distance.
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the native, folded structure for all Cα atoms. Dips in the
resulting curve correspond to meta-stable ensembles with
lower free energy. Finally, we analyze the normalized count
over contact maps, which results in a 2D histogram that shows
the probability of two atoms being in contact, i.e., within a
threshold of 10 Å of one another.
4.2.1.2. Results. Table 1 shows that DFF i.i.d. and DFF sim.

consistently outperform their respective baselines across the
equilibrium metrics (TIC JS and PWD JS). As shown in Figure
3, the TIC 2D free energy landscapes for our model look more
similar to the reference MD distribution (as reflected in the
TIC JS metrics), especially for Chignolin and Villin. The
similarity is weaker for Bba, where local modes are more
dominant. We hypothesize that this is because β-sheets rely
strongly on non-local contacts compared to α-helices, making
them notoriously harder to model. This is particularly
challenging in the simulation setting, which is sensitive to
the bias-variance trade-off (as discussed in Supporting
Information Section SB.2). Furthermore, the free energy
curves as a function of the RMSD are always overlapping
with the reference curve for DFF i.i.d., and are close to the
reference MD curve in regions with low free energy for DFF
sim.

Figure 4 shows further qualitative results in the form of a
normalized count over contact maps, i.e., “contact proba-
bilities”, for DFF sim. and Flow-CGNet sim.; for i.i.d. models,
see Supporting Information Section SC.5.3. As can be seen, the
DFF models capture contact probabilities much better than the
flow-based models in all proteins, especially in the off-diagonal
regions that represent global structure. These results are closely
related to the JS divergences between pairwise off-diagonal
distances (Table 1). Taken together, these results indicate that
diffusion-based models capture global structures better than
their flow-based baselines. Moreover, the analysis in C.5.3
shows that the CG fast folder samples produced by DFF sim.
do not display chemical integrity violations such as bond
dissociations or backbone crossings; therefore, DFF sim. does
not require energy prior as used in Flow-CGNet sim. to run
stable simulations. Finally, Protein G is a larger and more

complex protein compared to the other fast-folders and is out
of reach for flow-matching models. Our results show that
diffusion-based models are scalable to this larger protein and
can capture the global structure.

As a limitation in our method, we found that while the DFF
i.i.d. model generally improves as we increase the number of
features/layers in our neural network, the performance of the
simulations obtained by DFF sim. is sensitive to the bias/
variance trade-off in the network, and it can actually decrease
for more flexible networks. See Supporting Information
Section SB.2 for an example in Chignolin.

4.2.2. Dynamics Analysis. 4.2.2.1. Metrics. We qualitatively
assess the simulated trajectories by tracking the first two TIC
coordinates over “CG time” and showing (part of) the
corresponding trajectory in 2D TIC space. We visualize (un-
)folding events with the corresponding structures along the
path. As a quantitative measure, we extract the transition
probabilities from one conformational state to the other as
follows: first, we use K-means clustering to divide the 2D TIC
space into K clusters for the full (unsplit) MD dataset, with K
determined by the elbow method. Next, all transitions are
counted and normalized to obtain a transition probability
matrix corresponding to the estimated Markov model,49 where
each row can be compared to MD data using the JS
divergence. Even though the relation between fine-grained
and CG time is non-trivial,11,50 leading to different time lags,
we can still evaluate how well a CG model reproduces the
kinetic model of the fine-grained reference distribution. We
show the average JS divergence over all starting states as well as
the average weighted by the overall state probability as
estimated from the reference data. Note that this metric can
only be calculated for simulation samples (i.e., Flow-CGNet
and DFF simulations). Since we compare transition proba-
bilities against the full, unshuffled dataset, there is no test set in
this experiment, and therefore, we cannot calculate a reference
value here.

4.2.2.2. Results. Figure 5 depicts the first two TIC
coordinates for a DFF sim. trajectory in “CG time”, clearly
showing transitions from the folded to unfolded conforma-

Figure 5. First two TIC coordinates tracked over “CG time” (the CG time step is 2 fs, but there is no direct mapping from coarse- to fine-grained
time) for Chignolin, with zoom-in on an unfolding and folding event, showing a 2D trajectory through TIC space and four structures along the
path.

Table 2. Average and State-Probability-Weighted JS Divergence between the Reference MD Data and Model Simulations for
Transition Probabilities of the Estimated Markov Model

Chignolin Trp-cage Bba Villin

average weighted average weighted average weighted average weighted

flow-CGNet 2.5 × 10−2 5.7 × 10−3 4.8 × 10−2 1.8 × 10−2 6.9 × 10−2 6.8 · 10−2 3.1 × 10−2 2.9 × 10−2

DFF 9.7 × 10−4 5.1 × 10−4 1.3 × 10−3 7.5 × 10−4 4.0 × 10−3 4.2 × 10−3 1.2 × 10−4 2.1 × 10−5
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tions. This is further highlighted by zooming in on part of the
trajectory, revealing how the trajectory moves in 2D TIC space
and what the conformations look like in different parts of the
landscape. The results of the transition probability analysis are
shown in Table 2 for all fast-folders except Protein G since no
Flow-CGNet sim. samples were available for this larger
protein. The DFF sim. model outperforms the Flow-CGNet
sim. model across all fast-folders, showing better preservation
of dynamics. More results on transition probability matrices
and the clustering of 2D TIC space are in Supporting
Information Section SC.5.3.

5. CONCLUSIONS
We have presented a new approach to CG MD modeling
based on denoising diffusion models, motivated by con-
nections between score-based generative models, force fields,
and MD. This results in a simple training setup as well as
improved performance and scalability compared to previous
work. Future directions to improve our work include scaling to
larger proteins and generalizing across different systems.
Another interesting direction would be to combine the current
force-agnostic training approach with an explicit force-
matching objective if such force information is available.
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