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Geometric Back-Propagation in Morphological Neural Networks
Rick Groenendijk , Leo Dorst , and Theo Gevers

Abstract—This paper provides a definition of back-propagation through
geometric correspondences for morphological neural networks. In addition,
dilation layers are shown to learn probe geometry by erosion of layer inputs
and outputs. A proof-of-principle is provided, in which predictions and con-
vergence of morphological networks significantly outperform convolutional
networks.

Index Terms—Mathematical morphology, morphological neural networ-
ks, back-propagation, probe geometry, depth infilling.

I. INTRODUCTION

There exists much image-like data that is produced by contact
probing: examples are depth by LiDAR or from time-of-flight sen-
sors, radar images, and scanning microscopy. Since Serra’s investi-
gations [1], [2], the underlying algebraic structure of such data has
been known as mathematical morphology. A coherent set of operations
forms a consistent alternative framework to the convolution way of
linear diffusion probing [3], [4], [5]. The latter forms the basis of
the convolutional neural network (CNN); and people have wondered
about developing analogous morphological neural networks (MNNs)
to process the morphological type of data [6], [7], [8]. Convolution
does not inherently respect the separation between pixels in 3D space,
treating them as equidistant neighbors at all times, and cannot process
occlusion naturally. On the other hand, morphological operations such
as dilation, allow data to be probed by structuring elements in space,
respecting separation and occlusion.

MNNs have recently seen a variety of successes in complex vision
tasks: [9], [10] show that MNNs have vastly higher parameter efficiency
in tasks such as digit recognition; [11] successfully removes artefacts
in images caused by rain droplets and their method is extended in [12]
introducing opening-closing networks; [13] shows that morphological
operations and convolutions can supplement each other and achieve
state-of-the-art performance in object boundary recognition; [14] uses
deep MNNs to solve classification and multi-class segmentation tasks.
The authors note that training becomes increasingly challenging as
networks are deepened with more complex topology; [15] extends the
work of [16] on equivariant scale networks by the use of morphological
scale spaces, though only the first module of their network is actually
morphological.

Even outside the scope of neural networks, morphology is used
to encode rich computational features that are useful in a variety of
contact-related tasks: [17] encodes surfaces of fractured archaeological
objects into a set of morphological features with the goal of automati-
cally fitting fragments; [18] develops a morphological variant of Deep
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Mode Composition that performs 1D image segmentation by the use
of a morphological-convolution hybrid.

Neural networks are trained using back-propagation to minimize
an objective function. Morphological operations are not fully differ-
entiable however; therefore MNNs cannot readily be trained using
linear back-propagation. As a consequence, three different approaches
to back-propagating errors over sequences of morphological filters
are established in the literature: (1) approximate (linearly) the min,
max-operations to make them differentiable [10], [19], [20]; (2) use a
sub-gradient definition in which the error is only propagated over min,
max-elements – similar to derivatives over pooling operations for spatial
sub-sampling in deep learning frameworks [21]; and (3) use depth- and
point-wise convolutions in conjunction with pooling operations [14],
[22]. Optimization-based updating schemes, e.g., the Convex-Concave
procedure in [8], are beyond the scope of this article. Most often (2)
is used because it is facilitated by modern deep learning frameworks –
see e.g., [9], [11], [13], [23]. For any of these methods, stable learning
and convergence is not guaranteed. It will be shown that all these
methods can be improved by employing a principled morphological
back-propagation. The theoretical aim of this paper is therefore to
derive a geometric interpretation of morphological back-propagation
and formulate an alternate updating rule for learning probe geometry
by Morphological Neural Networks.

The contributions of this paper are:
� A geometric definition of the back-propagation of morphological

operations that does not rely on linear approximation of morpho-
logical operations as previous works did, but rather on matching
slopes of (locally convex) functions.

� A morphological definition for probe geometry learning by error
bounding, especially suited to data acquired by an essentially
morphological process.

� Confirmation of the theory in practical use on probe geometry es-
timation in Scanning Probe Microscopy (SPM) and depth infilling
on NYUv2.

II. METHOD

The goal of this paper is the direct application of morphological
operations to neural networks and to back-propagate errors during
training. As a brief recap, neural networks use the back-propagation
algorithm [24] to update parameters and approximate a function for
which data samples are available. Consider a network built up of L
layers as a composite functionf(x) = fL ◦ fL−1 ◦ . . . f1(x). Consider
also a (sample, target) datasetD = {(xn, tn)}Nn=0 and let f(xn) =yn

be the output of the network. The network is trained through minimizing
a number of training objectivesE(tn,yn), where tn is the target output.
The advantage of the back-propagation algorithm is that updating the
parameters of a single layer can be agnostic of the network architecture,
as long as the local derivative of the error ∂E

∂f+(y)
is known at the

required point. For the remainder of this paper, a per-layer notation is
therefore used, with input f−, output f+, probe p, and corresponding
derivatives, as in Fig. 1. For MNNs, the terms ∂f+

∂f− ,
∂f+
∂p

have to be
redefined because they differ from those in CNNs.
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Fig. 1. Schematic overview of a single layer in a neural network. It shows
forward propagation of f− and p by some operation ⊗, and backward propa-
gation of the error ∂E

∂f+(x)
. From the chain rule, only the terms ∂E

∂f+(y)
are

required to obtain the derivatives of the error with respect to the input f− and
the parameterized probe p (or kernel) of ⊗.

Dilation for functions is defined on the semi-ring (R−∞,∨,+)where
∨ denotes the supremum operation and + is addition. This algebraic
system extends the set of realsRwith minus infinity: R−∞ ≡ R ∪ −∞.
In MNNs, the multiplication-addition scheme of convolution is replaced
by an addition-supremum scheme of dilation [6].

A layer input signal f− : RD → R−∞ indexed by indicator variable
x, and a structuring element (or probe) p : RD → R−∞ indexed by
indicator variable z are combined to produce the morphological dilation
as the layer output signal:

f+ (x) =
∨
z

f− (x− z) + p (z) . (1)

Morphological back-propagation is derived in Section II-C through
slope correspondences explained in Section II-A. As an intermediate
step, the morphological derivative is given in Section II-B. Finally,
in Section II-E, elements that do not contribute to any output in the
forward pass, are bounded by means of morphological erosion in the
backward pass of back-propagation. For brevity, a dilation layer is used
in all derivations, but by morphological duality [1], [2] all arguments
can be made for an erosion layer as well.

A. Slope Correspondences

Geometrically speaking, it is intuitive to regard morphological dila-
tion as probing a signal with a mirrored and flipped structuring element
pT (z) ≡ −p(−z) from above, lowering it until there is at least a single
point of contact. As the probe moves, the reference point of the probe
pT traces out the output signal f+. There may be several points of
contact or even entire ranges where f− and pT can be in touch. On the
other hand, it is never allowed that pT and f− intersect. A graphical
example is shown in Fig. 2.

Not all locations x− on the input signal f− lead to an output point
(x+, f+(x+)) since not all f−(x−) can be touched by pT . However, all
x+ can be traced back to at least one locationx−. For back-propagation
of the error –as required for network learning– the goal is to map an
error at x+ back to any x− that caused it.

Theorem 1 (Originally From [3]). There is a provenance relationship
between the slope of any point on the output signal f+(x+), and the
points that caused it through contact of the input signal f−(x−) and the
probe p(z−). The contact location points are related through:

x+ = x− + z− , (2)

and the slopes (gradients) obey

∇f+ (x+) = ∇f− (x−) = ∇p (z−) . (3)

Proof: For a point (x+, f+(x+)), there is always at least one
input location x− at the input signal f− for which the supremum

Fig. 2. Depiction of the forward propagation of a 1D signal f− using mor-
phological dilation as a single-layer of a larger network. The dilation of a signal
f with (convex) probe p is shown resulting in f+. Clearly here ∇f+(x+) =
∇f−(x−) = ∇p(z−) which is proven in the main text.

∨
z f−(x− z) + p(z) is attained. The contact location x− implies the

existence of a location z− on the probe p that satisfies z− = x+ − x−
where z− ∈ dom(p). Therefore, (1) can be rewritten in terms of the
locations on f+, f−, and p where the supremum occurs:

f+ (x+) = f− (x+ − z−) + p (z−) . (4)

More specifically, the supremum is attained when the first derivative of
f+ with respect toz− atx+ is zero (there is also a second order condition
to make it a supremum rather than an infimum). As a consequence:

∇z− (f− (x+ − z−) + p (z−)) = 0 . (5)

The f−-slope at x− now relates to the p-slope at z−:

∇x−f− (x−) = [∇x−z−] ∇z−f− (x+ − z−)

= [∇x− (x+ − x−)] (−∇z−p (z−)) ,

= ∇z−p (z−) . (6)

At contact, those slopes are also related to the slope of the output signal
f+, by differentiating (4) to x+:

∇x+
f+ (x+) = ∇x+

f− (x+ − z−) . (7)

Combining (6) and (7) with the provenance (4) completes the proof.

B. Morphological Derivatives

During back-propagation all (x+, f+(x+)) are known, but their cor-
respondingx− must be determined. These correspondences, henceforth
called the provenance of points, can be obtained by matching slopes
using probe p.

Theorem 2: The morphological derivative of a single-layer f+ with
respect to the input f− is

∂f+ (x+)

∂f−
(x−) =

{
1 ∀ [∇p (x+ − x−) = ∇f+ (x+)]
0 otherwise,

(8)

where ∀[. . . ] denotes the set of points (x+,x−) for which the equality

holds, and ∂f−(x+)

∂f− (x−) denotes the derivative of f+(x+) with respect

to f− evaluated at x−, so ∂f+(x+)

∂f−(x−)
as a function of x−.

Proof: The derivative of f+(x+) in (1) with respect to f− is 1 if
and only if f−(x−) caused f+(x+). In any other case, the derivative
is zero. Moreover, as a consequence of Theorem 1 each layer out-
put location x+ relates to a location x− on the input layer f− that
caused the corresponding f+(x+) given the current p by means of
∇p(x+ − x−) = ∇f+(x+) .



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023 14047

There are four subtleties captured in Theorem 2 that are not imme-
diately apparent. The first concerns undefined provenances; the latter
three concern the for all (i.e., ∀[. . . ]) statement.

Undefined Provenance: There may be locationsx− that have caused
not a single x+ in the forward pass, resulting in a derivative in the
backward pass that is zero for that x−. At those locations x− the
provenance (i.e., the correspondence betweenx− andx+) is undefined.
Therefore, (8) is called a sub-gradient [10], since it is not a local rate of
change with any x−, but rather a zero-valued derivative resulting from
an undefined provenance between x+ to x−.

Multiple x+, Single x−: Multiple x+ may have been caused by

a single x−. Equation (8) allows ∂f+(x+)

∂f− to be back-propagated to a
single x− even when it had caused multiple x+ in the forward pass;

the derivative ∂f+(x+)

∂f− (x−) is 1 when there exists at least one pair for
which the equality ∇p(x+ − x−) = ∇f+(x+) holds.

Single x+, Multiple x−: There may be an f+(x+) caused by
multiple x−, then f+ at x+ is not differentiable [25]. At these singular
points a one-sided derivative (e.g., left and right-sided derivatives
in 1D) needs to be used to obtain valid slopes matching an x+ to
each x−.

Invertible ∇p. For a strictly convex probe, the location x− can
directly be inferred from matching the slopes of the probe p and the
output signal f+ since then ∇p is invertible. Using (3), the invertibility
of p due to convexity, and isolating x−:

x− = x+ − (∇p)−1 (∇f+ (x+)) , (9)

which for a convex p implies

∂f+ (x+)

∂f−
(x−) =

{
1 if x+ − (∇p)−1 (∇f+ (x+)) = x−
0 otherwise.

(10)

C. Morphological Back-Propagation

With these subtleties noted, the goal is now to define ∂E
∂f− (x−). The

derivative of the error with respect to the input signal f− is more com-
plicated than the morphological derivatives because the derivative of E
with respect to the output layerf+ may be different at eachx+ caused by
a single x−. Since sets of distinct ∂E

∂f+
(x+) cannot be back-propagated

to a single x−, they have to be aggregated. Dilation acts as an absolute
effect on its input; a morphological error thus acts absolutely on the
terms, not relative to their magnitudes as in convolution. Therefore,
only the worst case error should back-propagate. To facilitate this,
let EV : RD

−∞ × R → R−∞ return the signed most extreme value of
a function f over a subset of the domain x ⊆ dom(f):

EV (f,x) =

⎧⎪⎨
⎪⎩
∨
x

f (x) if

∣∣∣∣∨
x

f(x)

∣∣∣∣ ≥
∣∣∣∣∧
x

f (x)

∣∣∣∣∧
x

f (x) otherwise ,
(11)

where
∧

denotes the infimum operation. Using the signed most extreme
value function EV and combining it with Theorem 2 provides:

∂E

∂f−
(x−) =

{
EV

(
∂E
∂f+

,x+

)
∀ [∇p (x+ − x−) = ∇f+ (x+)]

0 otherwise.
(12)

In summary, the back-propagated error ∂E
∂f− (x−) is the transfer of

the worst case positive or negative ∂E
∂f+

(x+) from the locations x+

to the location(s) x− that caused x+; these locations are found by
matching slopes of the output signal f+ and probe p, i.e., through their
provenance. Parameters of the probe are updated using gradient descent.

The derivative of the error in the input f+ due to the structuring
element p is obtained similarly, since the dilation of (1) is symmetric
in f− and p. Observe now that the back-propagated transfer of the error

is to the provenance vector z− = x+ − x−. Therefore the derivative of
the error with respect to p(z) can be written as

∂E

∂p
(z) =

{
EV

(
∂E
∂f+

,x+

)
∀ [∇p (z) = ∇f+ (x+)]

0 otherwise.
(13)

In practice, for discrete structures such as images, the (relative)
provenance z− has to be recorded for each x+. This bookkeeping can
be memory-intensive since an arbitrary number of x− may have caused
any one x+ due to the multi-valued nature of dilation, but it prevents
issues in approximating slopes from sampled data. Conversely, for data
that can reasonably be expected to be locally convex –like SPM– slope
matching can theoretically yield a much higher quality gradient with
sub-pixel accuracy.

D. Mean Back-Propagation

It is worth noting that auto-differentiation tools, such as Py-
Torch [26], use another aggregation of linear back-propagation over
multi-valued dilations (and similarly for max-pooling):

∂E

∂f−
(x−) =

{∑
x+

(
1

|x−|
∂E
∂f− (x+)

)
ifx+ − x− = z−

0 otherwise,
(14)

where |x−| is the number of locations x− for which the maximum
occurred.

The error term is averaged over multiple x− that caused a single x+

to deal with the multi-valued nature of dilation. Then, all ∂E
∂f− (x+) are

summed for all x+ that are caused by x− to yield a single scalar. In
the present context, averaging over the provenance, denoted by 1

|x−| in
(14), is considered to be a non-morphological operation and therefore
it is avoided.

It can be surmised, however, that there are practical advantages es-
pecially when networks are composed mainly of (linear) convolutions.

E. Probe Learning by Error Bounding

The main shortcoming of sub-gradient-based morphological back-
propagation is that it fails to propagate information about the elements
that did not cause the error, yielding undefined provenances at those
locations. In morphological back-propagation, undefined provenance
results in a zero-valued derivative, but there may be better approxi-
mations of the error by bounding: since there are points that did not
cause the supremum in the forward pass, it means that the error term
propagated to those points in (1) can be upper bounded by the points
that did cause the supremum.

To see how, consider a dilation with input f−, output f+, and
structuring element p as before. The objective of a single layer in the
network is to output a f ∗

+ such that the composite function ultimately
minimizes a difference function Q(x) = fL(x)− t(x), where t(x)
is the target function at x. Note here that where the morphological
back-propagation from Section II-C was agnostic to the form of the
error function E, the function Q is purely a difference function used to
infer f ∗

+ from t.
The input f− and the ideal output f ∗

+ for the layer considered are
related through an unknown optimal probe:

f+
∗(x) ≥

∨
z

f− (x− z) + p∗(z) , (15)

where p∗ is the (optimal) probe to achieve f ∗
+ from f−. This equation

is used to bound f ∗
+ from below by

∨
z f−(x− z) + p∗(z), even when

no probe p∗ exists to construct f ∗
+ from f− or when data is sparse. For

a particular x′ ∈ x, the upper bound output f+
∗ is given by:

f+
∗(x′) ≥ f− (x′ − z) + p∗(z) , (16)
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and this in turn implies a bound on p∗:

p∗(z) ≤ f+
∗(y′ + z)− f− (y′) , while y′ = x′ − z . (17)

Letting x′ and hence y′ take all possible values, (17) can be written as
an erosion:

p∗(z) ≤
∧
y

f+
∗(y+ z)− f− (y) =

(
f ∗
+ � f−

)
(z) . (18)

Therefore, the optimal probe p∗(z) is bounded by the erosion of the
desired output f+

∗ with the input f−.
Similarly to the update rule in gradient descent for convolutional

networks, the structuring element p is updated over iterations i. Let pi
denote the structuring element at a particular iteration. The update rule
for the parameters of p can be given as

pi+1 (z)=pi (z)−λΔpi (z) with Δpi (z)=pi ([z)−p∗i(z) , (19)

where λ is a gain parameter. This method of learning by bounding will
be referred to as Probe Learning.

III. PROOF-OF-PRINCIPLE

As a proof-of-principle, this paper shows that when the input data
to the MNN is suitable to morphological operations, networks trained
by the proposed Morphological Back-propagation and Probe Learning
outperform any convolutional network by a large margin. The modality
of choice is data resulting from the imaging process of scanning probe
microscopy (SPM). The working principle of SPM is positioning a
probing element above a surface sample and maintaining constant
force in the subclass atomic force microscopy (AFM) or constant
current in the subclass scanning tunneling microscopy (STM). These
surface-probe interactions are naturally expressed through mathemati-
cal morphology [27], [28], [29], [30], since that is the mathematics of
touch probing [4] rather than kernel-based diffusion.

Consider an atomic surface function S : R2 → R and manufactured
probe function p : R2 → R. The resulting image function I obtained
from SPM is the morphological dilation of the surface S with the probe
p:

I(x) = (S ⊕ p) (x) =
∨
z

S(x− z) + p(z) , (20)

where x, z index spatial locations on the sampling plane for the surface
and probe respectively, and

∨
is the supremum operation. If the

geometry of any two of I, S, or p is known, the third is related by
morphological dilation or erosion. Even when only the scanned image
I is known, blind reconstruction techniques [30], [31], [32] may be
used to recover an upper bound of the probe p and surface S. For a
graphical overview, see Fig. 3. In view of (20), data from SPM should
have excellent characteristics for testing morphological networks.

In this section, Morphological Back-propagation and Probe Learning
are evaluated on synthetic SPM data. The purpose is twofold: to validate
the theoretical insights and to show that for appropriate data it is
indeed advantageous to incorporate morphological operations in neural
networks.

A. Background

Deep learning is commonly applied in automated analysis of SPM
data [33], [34]. Even though it was established decades ago that
mathematical morphology can model probe-surface interactions lead-
ing to the scanned images (see e.g., [28], [30], [31]), the default
operation in automated analysis is still the convolution operator. One
argument for using CNNs is that the SPM imaging process is not
fully described using morphology: additional noise may be introduced

Fig. 3. Graphical depiction of SPM data in 1D. The line depicts an artificial
atomic surface S, the dotted line is the image I after dilating the true surface
with the probing element p. The dilation is the natural mathematical model
of the equipotential (in STM) movement of the probe across the surface. The
striped line depicts the least upperbound on the recoverable surface R. Notice
especially region (A) the image I and surface S have the same shape at the
maxima disregarding some offset in y; and (B) a blunt probe cannot fully recover
surfaces within crevices between atoms.

through variance in the tunneling gap in STM or slight cantilever
oscillation in AFM [27]. This can partially be modeled by additive
Gaussian noise [31], which is inherently difficult for morphology to
process.

Specifically for AFM, contact between probe and surface can bring
about wear of the material during data collection. As an example,
double apex forming [35] –i.e., loss of probe convexity– may happen
at any time. Consequently, the quality of the probe geometry has to
be monitored constantly. Estimating probe and surface abrasion is
ill-defined because it may happen to either or both structures [36]: the
image signal results from both the probe and the surface. Estimating
abrasion effects using MLPs and CNNs has previously been studied
in [35], [36], [37], [38], [39], [40]. While results are promising, directly
using the morphological nature of the problem in its solution is likely
to be beneficial.

For the proof-of-principle of the proposed method, SPM image-
surface pairs are required. These are not trivially generated and no
public dataset exists that provides them. For example, the authors of [41]
provide tools to generate data, but make use of an idealized spherical
probe implicit in their atomic representation. [40] provides a binary
classification task with negative samples due to a variety of reasons:
sample drift, no probe contact, scanning problems, etc. These artefacts
are not described using mathematical morphology.

B. Implementation

All proposed methods, notably Morphological Back-propagation
and Probe Learning, are implemented using PyTorch [26]. To create
the dataset, three primitives are chosen to replicate three distinct probe
shapes: a parabolic probe, a pyramid probe, and a parabolic probe
with double apex. Especially the third primitive is relevant for practical
applications since non-convex probes may negatively affect the quality
and validity of AFM measurements. For each primitive, 8 datasets
(Ntrain=1000, Ntest=1000) of synthetic 2D train are generated with
randomized probe geometry. Each sample consists of a scanned image
I , an artificial surface S, and a best reconstruction R which is the
erosion of the image I with known probe p. This theoretically best
reconstruction R is the least upper bound surface that can be recovered
from I taking into account the non-invertibility of the measurement. As
a result, all evaluations are done against the best reconstruction R since
it cannot reasonably be expected that a network predicts a surface better
than R. If it would, it could hallucinate erroneous details of the true
atomic surface S. Training is performed on both I → R and I → S.
See Fig. 4 for an example of the 2.5D data, along with a cross-section
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TABLE I
PERFORMANCE OF LINEAR AND MORPHOLOGICAL NETWORKS ON SYNTHETIC 2D SPM DATASETS

In the second column, the number of parameters is shown; e.g., ResNet-50 [42] has roughly 44m parameters, whereas the simple networks have only 289. In the third column, the 

average magnitude of iterations is shown until the model converged. In the fourth through ninth column RMSE is shown for predictions measured against the best reconstruction 

R. The networks were independently trained and tested 8 times on different datasets for each configuration. In all cases the morphological networks outperform linear networks. 

Probe learning performs best, shown in boldface.

Fig. 4. Data example. (left) 2D sample used for training and testing generated
by a parabolic probe. Vertical offset added for visualization; (right) cross-section
along a scanline to show image I , surface S, and reconstruction R. Either S or
R may be used as ground truth.

along an arbitrary scanline. The structuring elements of the MNNs
are initialized at zero. Initial experimentation shows no impact on
performance for random initialization, although convergence time may
be slightly affected. For further details, see the publicly available code
at github.com/rickgroen/probe-learning.

C. Learning Probe Geometry

Morphological Back-propagation and Probe Learning by error
bounding are evaluated against linear methods and mean back-
propagation in Table I. Qualitative examples are shown in Fig. 5. There
are four aspects to take note of: first, the single-layer morphological
networks outperform, by a large margin, the linear methods. Probe
Learning performs best in terms of prediction quality (Fig. 5(a)). For
linear methods, high frequency noise is hallucinated around object
edges. This effect is more pronounced for U-Net and ResNet (Fig.
5(d)) than for a single-layer CNN (Fig. 5(c)). Second, convolution can
be made to perform better by using more parameters and introducing
additional tricks such as residual connections. Even so, increasing the
amount of parameters in the network to 44 million (shown in the
second column in Table I) does not guarantee learning the data; by
contrast, the single-layer morphological networks can learn the task
by just 289 parameters from a 17×17 probe. Third, the third column
in Table I shows the average magnitude until learning converges. Early
stopping after RMSE convergence over 100 iterations on the training
set is applied. Probe Learning appears to converge always within 100
iterations of training. Fourth, morphological back-propagation fits the
data perfectly when trained on I → R, but provides wrong vertical
scaling when trained on I → S, though overall shape is predicted
correctly (Fig. 5(b)). A second MM layer could compensate for this

Fig. 5. (a) Predictions from a single-layer MNN that learned probe geometry
by means of the method in Section II-E. The blue prediction lines up with the
orange target S; predictions are draped around the true peaks since the network
estimates at most within a theoretical upper bound of reconstructability. (b)
Morphological back-propagation from Section II-C. (c) Single-layer CNN; (d)
ResNet-50. The two CNNs hallucinate erroneous high frequency details around
peaks which is more pronounced for (d).

vertical offset or a bias term could be used; alternatively, we could
change the error aggregation from (13) to averages (Section II-D)
making the method less sensitive to extremes.

D. Double Apex Detection

Probe or material abrasion is a challenging issue in obtaining high-
quality scans [35], [36], [37], [40], [44] in AFM. In Table I, in the sixth
and ninth column it is shown that Probe Learning by bounding recovers
the best reconstruction R. Besides surface predictions, the geometric
properties of the probe are learned by the morphological layer. See
Fig. 6. The proposed method of probe learning recovers the upper bound
of the shape of the probe, within some margin of uncertainty between
the two peaks. Numerical analysis of the probe could be integrated with
measuring software to determine double-apex forming without the need
for complex CNN architectures: a 300-parameter MNN suffices.

github.com/rickgroen/probe-learning
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Fig. 6. Qualitative example of double-apex forming in AFM. (left) Atomic
surface S in orange, resulting image I in green. Artefacts arise as false double
peaks around the structures in I . Measuring software could mistake these for
surface, whereas they actually arise from a low-quality probe. (right) The probe
used to create the synthetic data in orange, the predicted reconstruction of the
shape in blue. The reconstructed probe is an upper bound on the true geometry
of the probe. The network thus learns to predict (upper bound) probe geometry.

TABLE II
DEPTH INFILLING PERFORMANCE OF CNNS AND MNNS ON NYU

IV. OBSERVATIONS ON GENERALIZATION

Back-propagation naturally generalizes to networks with an arbitrary
number of layers. The simulated SPM experiments only address the
method on idealized noise-free haptic data; noise impacts network
learning. To demonstrate the proposed method, it is applied to depth
infilling, i.e., augmenting incomplete depth data. Though specialized
algorithms exist [45], infilling is fundamentally a morphological task
since it is one of separating shapes and overcoming occlusion.

The depth infilling experiment is performed on NYUv2 (Ntrain=795,
Ntest=654) [46]. All networks consist of six layers: the first three layers
down-sample to 1

8

th
resolution, the latter three layers up-sample to full

resolution. MNNs use dilation and erosion layers alternately, CNNs
use convolutions without non-linearities. Networks are trained for 40
epochs using an SGD optimizer and an L2 loss objective. Quantitative
results are shown in Table II, visual results are shown in Fig. 7. Since
the data are gathered from real-world indoor scenes, it can be expected
that sensor noise complicates learning. While morphological networks
may be suited to dealing with missing data, noisy data is challenging:
morphological operations deal with additive noise by estimating an
envelope. For a sequence of morphological layers, without aggregation,
the envelope is slightly vertically displaced with respect to the signal.
To compensate for this non-morphological type of noise, the morpho-
logical layers have to be extended by a vertical bias term; convolutional
layers use an identical term to deal with vertical off-set.

V. CONCLUSION

In this paper, a geometric definition of Morphological Back-
propagation is proposed that does not rely on linear approximation
of morphological operations but rather on the geometric provenance
of slope correspondences. Second, Morphological Probe Learning is
proposed based on the natural bounding properties of morphology.

Fig. 7. (left-upper) input raw depth; (right-upper) ground truth infilled depth;
(left-lower) CNN (ii) prediction; (right-lower) MNN (ii) prediction. MNNs can
deal with sparse data. The size of the structuring element determines how much
missing data is filled for each layer.

Two experiments (SPM surface reconstruction and NYU depth infill-
ing) confirm that problems of a morphological nature can be solved
accurately with much smaller MMNs than CNNs, and compete with
dedicated solutions. In both experiments, CNNs are not able to ap-
proximate the ground truth even when many more parameters were
introduced. In the case of SPM data, MNNs also converged orders of
magnitude faster than their linear counterparts.

As of now, only relatively simple single-channel networks were
examined. In future research, the proposed update rules (morphological
back-propagation and probe learning) or combinations of both could
feature more prominently in larger morphological networks. They
should then take into account the composition of the morphological
operations in subsequent layers. Moreover, the morphological update
rules should be adapted to be less sensitive to noise. In conclusion,
when data can reasonably be modelled to result from probing touch
(e.g., haptic data from SPM or LiDAR), morphological operations are
strongly recommended in the construction of network architectures.
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