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Imagine you find yourself on the side of a dark and foggy road. You need to cross to the 
other side, but visibility is poor. You have to make a decision: is a car approaching in the 
distance, or not? You look towards the lights, trying to discern whether they are coming 
from bright headlamps of a car or simply from street lights. In deciding whether to cross 
the road, you will ultimately rely on your feeling of confidence about your decision that 
the light originates from street lights rather than from a car, making it safe to cross. We 
cannot help having feelings of confidence about all sorts of decisions we make, and it 
is important that the confidence you feel about your decision aligns with the actual true 
state of the world. If you are too overconfident and step into the road when a car is 
actually approaching, the consequences could be fatal. However, if you keep hesitating 
when in fact the coast is clear, you will never get to the other side. This process of 
evaluating and reflecting on one’s decisions, judgments, ideas or other mental 
operations is known at metacognition, a remarkable and essential ability in our 
unpredictable and ever-changing world. In this thesis, I will explore the metacognitive 
construct of confidence judgments, its’ neurobiological basis, the biases that it is 
subject to, and how it is affected by psychiatric symptoms and disorders. 
 

Metacognition and Confidence 

Metacognition is defined as ‘thoughts about one’s own thinking’ (Flavell, 1979), and is 
a phenomenon that has been written about and studied since times of Ancient Greece 
(Spearman, 1923). We constantly monitor our own thinking; it is a process that unfolds 
whatever we do, whether consciously or unconsciously. Metacognition is an umbrella 
term for many processes that have been widely studied within various research fields. 
A seminal framework has described two separate but cooperative functions of 
metacognition: metacognitive monitoring and metacognitive control (Nelson, 1990). 
The former involves making judgments about your performance (e.g., not being 
confident that you will remember to water your plants), while the latter involves using 
that information to adjust or regulate one’s cognition and behavior (e.g., setting an 
alarm to remind you to water your plants). 

This thesis focuses on the metacognitive phenomenon of confidence from a 
neurocognitive perspective. Confidence can be defined as the subjective feeling about 
the probability of being correct about a decision, choice or statement (Pouget et al., 
2016). Confidence is a broad concept that exists on many levels of abstraction (Rouault 
et al., 2019; Seow et al., 2021). It is often assessed retrospectively, in the form of an 
explicit rating on a scale after a choice has been made. There are different measures to 
obtain from this rating, such as one’s average confidence, over- or under-confidence 
relative to performance, or the metacognitive sensitivity to correct or incorrect choices, 
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which are explained in more detail in Chapter 2. The majority of research has focused 
on this form of local confidence, i.e., confidence judgments given on trial-by-trial 
decisions (e.g., “I am confident that this choice was correct”). Global confidence forms 
over longer periods of time, integrating more information to form a confidence 
judgment over one’s ability to perform a certain task (e.g., “I am confident in my 
performance on this task”). Higher-order self-beliefs are metacognitive beliefs about 
the self, and span many (personal) domains.  

Functions of confidence 

Why is confidence an important topic of study and what are its functions? Accurate 
control over one’s behavior requires accurate monitoring of that behavior. Given the 
self-monitoring nature of confidence judgments, they are well suited to perform a 
myriad of complex cognitive functions such as adapting, planning and learning in 
complex and volatile environments. Confidence guides information seeking: if my 
confidence is low, I will be more likely to gather more information before making a 
decision (Balsdon et al., 2020; Desender et al., 2018; Pescetelli et al., 2021), which is 
also visible in neural signatures (Desender et al., 2019). Once a decision has been 
made, confidence judgments help to re-evaluate these decisions, possibly resulting in 
changes of mind (Folke et al., 2017; Rollwage et al., 2018; Stone et al., 2022). In doing 
so, it also guides future decision-making and learning (Cortese, 2022). Confidence 
serves as a reinforcement signal that promotes learning when no feedback is present 
(Guggenmos et al., 2016; Rouault et al., 2019), and on the other hand, if I am already 
highly confident, I am more likely to refrain from additional learning (Nassar et al., 
2010). During the learning process, confidence tracks changes in the environment, 
which helps with flexible adaptation of behavior (Heilbron & Meyniel, 2019) by 
influencing learning rates (Vinckier et al., 2016) and promoting learning from successes 
(Cortese et al., 2020), specifically when confidence is low (Lak et al., 2020). In terms of 
flexible strategy adjustment, confidence plays a role in the ratio between exploration 
and exploitation, as lower confidence leads to a higher tendency towards exploration 
(Boldt et al., 2019). Essentially, from an evolutionary standpoint, our survival depends 
on our ability to accurately monitor the confidence in our actions, as it is essential for 
guiding optimal behavior. 

Studying confidence in psychiatry 

This thesis is centered on exploring the overarching question of how confidence is 
affected by psychiatric symptoms and disorders. To address this, this thesis 
incorporates different sections dedicated to investigating specific aspects of this 
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question. Prior to introducing these sections, I will underscore the significance and 
relevance of studying confidence within the field of psychiatry. 

Given the omnipresence of confidence in our daily lives, dysfunction in confidence can 
have great significance. It is crucial for our behavioral control that your feeling of being 
correct (i.e., confidence) aligns with your actual performance. Inaccurate confidence 
judgments could contribute to pathological behavior and decision-making observed in 
psychiatric disorders. For example, being underconfident in locking the door properly 
could trigger compulsive checking behavior in patients with obsessive-compulsive 
disorder (OCD), whilst being too overconfident in incorrect beliefs may go hand in hand 
with, for example, continued gambling in patients suffering from gambling disorder 
(GD). 

Metacognition, or more generally beliefs about one’s abilities, have been a promising 
target for treatment. Several forms of metacognitive interventions have been developed 
in recent years that have shown to be effective in alleviating symptoms of different 
psychiatric disorders (Philipp et al., 2019). This thesis aids in getting more insight into 
deficits of confidence in psychiatry across various symptoms, contexts and cognitive 
domains, which hopefully will benefit the further development of these therapies. In 
this sense, quantification of the confidence disturbances has clinical value and is 
critical for refining the tools that could improve metacognitive ability in patients and at-
risk populations. 

 

Part I: Confidence and its Biases in Psychiatry 

In the first part of this thesis, I will give an overview of confidence in psychiatric 
disorders and symptoms in healthy, subclinical and clinical samples, with a special 
focus on the behavioral and neurobiological mechanisms of confidence biases in two 
compulsive disorders: obsessive-compulsive disorder (OCD) and gambling disorder 
(GD).  

Compulsivity and confidence in OCD and GD 

Compulsive behavior is defined as “repetitive acts that are characterized by the feeling 
that one ‘has to’ perform them while being aware that these acts are not in line with 
one’s overall goal.” (Luigjes et al., 2019), and is a hallmark of both OCD and addiction 
(Figee et al., 2016). Patients with OCD suffer from intrusive obsessions that cause 
distress and anxiety. In an attempt to reduce distress, patients perform compulsions: 
ritualistic compulsive behaviors that impair functioning in social and work environment 
(American Psychiatric Association, 2013). The estimated prevalence of OCD is 2 to 3% 
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(Ruscio et al., 2010; Stein et al., 2019), with a tenfold higher prevalence of sub-clinical 
symptoms (Fullana et al., 2009), indicating a substantial contribution to global burden 
of disease (Baxter et al., 2014).  

GD is defined as “persistent and recurrent problematic gambling behavior leading to 
clinically significant impairment or distress” (American Psychiatric Association, 2013). 
Prevalence estimates of problem gambling are up to 5.8% worldwide and 3.4% in 
Europe, with a three-to-four fold higher prevalence of subclinical gambling problems 
and related harm (Calado & Griffiths, 2016), which has been shown to be comparable 
to that of alcohol dependence (Abbott, 2020). 

Even though patients suffering from OCD or GD share symptoms of compulsivity, they 
also often show very distinct behavior, with evidence for risk avoidance and loss 
sensitivity in OCD (Shephard et al., 2021), but for risk seeking and reward sensitivity in 
GD (Clark et al., 2019). Dysfunctions in confidence could help explain these distinct 
profiles of compulsive behaviors. Clinical representations of these disorders suggest 
that the confidence patients have would lie on opposites sides of the spectrum, with 
lower confidence in OCD and higher confidence in GD. Lower confidence in one’s 
actions in OCD could go together with compulsive checking behavior, whereas higher 
confidence in one’s actions in GD could be accompanied by increased risk-taking 
behavior and gambling. In this way, dysfunctions of confidence could lie at the heart of 
compulsive behavior and makes it especially relevant to collectively study confidence 
and the biasing effect of incentives on confidence in these two compulsive disorders. 

While the study of confidence in psychiatry had been actively pursued for many years 
when I started my PhD project in 2019, no topical overview on abnormalities in 
confidence in psychiatry existed. As a starting point, in Chapter 2 we reviewed studies 
investigating confidence in psychiatry, both in clinical patient samples and subclinical 
samples that focused on psychiatric symptoms in either prodromal phases of disorder 
or the general population. We focused on OCD, schizophrenia, addiction, anxiety 
disorders and depression. This chapter provided us with a framework for our own future 
empirical investigations of confidence in psychiatry. 

The neurobiology of confidence  

Beyond behavioral and psychological assessment, many years of research have been 
devoted to studying the neurobiological basis of confidence. There is a strong 
consensus for a key role of the prefrontal cortex (PFC), as activity in both medial and 
lateral regions of the PFC, such as the dorsolateral PFC, rostrolateral PFC and 
ventromedial PFC (vmPFC) is modulated by confidence judgments (Fleming & Dolan, 
2012). Next to the PFC, confidence judgments elicit activity in a wider spread network, 
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among which the dorsal anterior cingulate cortex (dACC), ventral striatum (VS), 
precuneus, insula and parietal cortex (Rouault, McWilliams, et al., 2018; Vaccaro & 
Fleming, 2018). 

The vmPFC and VS are also involved in valuation processes such as reward anticipation 
and the encoding of desirability and expected values (Bartra et al., 2013; Lebreton et 
al., 2009). Behaviorally, it had been shown that monetary incentives bias confidence 
judgments (Lebreton et al., 2018). Building on this work, in Chapter 3, we describe a 
functional magnetic resonance imaging (fMRI) study in a sample of healthy participants 
investigating the neural basis of this incentive confidence bias, where we aimed 
investigate whether motivational signals could disrupt metacognitive signals in the 
brain.  

In Chapter 4 we further aimed to investigate the behavioral and neurobiological 
underpinnings of the incentive bias on confidence in OCD and GD using fMRI. We 
hypothesized that GD patients would show exaggerated overconfidence when a gain 
was at stake, while OCD patients would show exaggerated underconfidence when a 
loss was at stake.  

Transdiagnostic approach 

The diagnostic and statistical manual of mental disorders (DSM) is a standard 
classification that is most often used in clinical practice for diagnosing patients with 
psychiatric symptoms (American Psychiatric Association, 2013). Historically, most 
neurocognitive research in psychiatry has been performed using case-control studies, 
where clinical patient samples are compared to samples of healthy control participants 
on some neurocognitive phenomenon. There are, however, some concerns using this 
type of design. It is well-known that there is much heterogeneity of symptoms within a 
disorder, and much overlap of symptoms between disorders, together with high 
comorbidity (Insel et al., 2010). Therefore, a call has been made for a transdiagnostic 
approach to psychiatry research, in which neurocognitive processes are instead related 
to disorder-transcending continuous psychiatric symptoms in large general population 
samples rather than to categorical group adherence (patients versus healthy controls) 
in smaller clinical samples. Using this approach, studies have shown that a 
transdiagnostic symptom dimension of anxiety and depression related to decreased 
confidence, while a symptom dimension of compulsivity and intrusive thoughts instead 
related to increased confidence (Rouault, Seow, et al., 2018).  

In Chapter 5, we have applied a transdiagnostic approach to study how various levels 
of confidence (i.e., local confidence, global confidence and self-beliefs) are related, 
and how they relate to psychiatric symptoms in a large general population sample.  
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PART II: Confidence in OCD 

The second part of the thesis will focus on our investigations of confidence in OCD in 
various different contexts and in relation to different cognitive processes. First, we 
aimed to answer the open question whether the lower local confidence that is 
repeatedly found in patients with OCD compared to healthy participants would 
generalize to decreases in more global forms of confidence in Chapter 6. Moreover, 
psychiatry research in large general population samples is getting more popular and 
has especially gained momentum since the COVID-19 pandemic, using so-called 
analog studies. These studies, in OCD, are based on the assumption that highly 
compulsive individuals from the general population resemble clinical OCD patients in 
terms of symptoms and, importantly, in terms of the (meta)cognitive process under 
investigation (Abramowitz et al., 2014). Yet, hardly any studies test this assumption by 
directly comparing these groups, while contradicting metacognitive patterns have been 
found in these samples, indicating decreased confidence in patients with OCD, but 
increased confidence in highly compulsive individuals from the general population. 
This raised the important question whether findings regarding dysfunction of 
confidence can be generalized from general population samples to clinical samples, 
which we addressed in Chapter 6. 

In Chapter 7 we investigated the role of confidence in learning in a volatile environment 
using a predictive inference confidence task. Usually, when someone is very confident 
about their choices they are less likely to change their strategy and less open to learn 
from new evidence. It was, however, not clear if this type of metacognitive control was 
functioning well in patients with OCD, since previous research (both in case-control 
and transdiagnostic studies) using this same task had found mixing results (Marzuki et 
al., 2022; Seow & Gillan, 2020; Vaghi et al., 2017). Again, we compared our sample of 
OCD patients to both a healthy and highly compulsive sample from the general 
population. 

 

PART III: Confidence in GD 

The final part of this thesis is dedicated to investigating dysfunction of confidence in GD 
relating to gambling relevant contexts. First, in Chapter 8, using the same task as was 
used in Chapter 7, we investigated the role of confidence in learning in a volatile 
environment in GD. 

Next to metacognitive processes, attentional processes also play an active role in 
decision-making (Orquin & Mueller Loose, 2013), and attentional biases towards 
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gambling cues have been described in GD (Anselme & Robinson, 2020; Brevers et al., 
2011; Ciccarelli et al., 2016; Hønsi et al., 2013). In Chapter 9 we took a more direct 
approach to studying the role of attention in risky decision-making and confidence by 
employing eye-tracking in a sample of GD patients and healthy controls during a mixed-
gamble task.  

As an extension to this work, in Chapter 10, we focused on studying the effects of 
making risky versus safe decisions on confidence judgements in GD, with the 
hypothesis that patients with GD would be more confident while making risky versus 
safe choices, especially when the gains at stake were high, a dysfunction that could lie 
at the heart of their compulsive gambling behavior.  

 

Outline of this thesis 

This thesis investigates the overarching topic of confidence dysfunctions in psychiatry, 
with a special focus on compulsive disorders OCD and GD, across different contexts 
using behavioral and neuroimaging methods. 

In part I of this thesis, we start with an inquiry into the dysfunctions of confidence that 
are related to various clinical psychiatric disorders and subclinical psychiatric 
symptoms in Chapter 2, where we review the literature in terms of established 
confidence measures. In Chapter 3 we used fMRI to investigate the behavioral and 
neurobiological biasing effects of incentives on confidence in a sample of healthy 
participants. We extended this to compulsive disorders in Chapter 4 to investigate the 
incentive bias on confidence in patients with OCD and patients with GD. In Chapter 5 
we took a transdiagnostic approach to investigate the interrelations between 
confidence levels, as well as their relationship to (transdiagnostic) psychiatric 
symptoms in a large general population sample using a computational approach. 

In part II of this thesis we set forth to explore dysfunctions in confidence in various 
contexts in OCD. In Chapter 6 we explored confidence at local and global levels and 
their interplay in patients with OCD compared to both healthy and highly compulsive 
subjects from the general population. In Chapter 7 the link between learning, action 
and confidence was investigated in OCD patients compared to both healthy and highly 
compulsive subjects, using computational modelling. 

In part III of this thesis we shifted our focus towards confidence in GD. In Chapter 8 we 
studied the relationships between learning, action and confidence in GD patients 
compared to a healthy control group. In Chapter 9 we used an eye-tracking experiment 
to assess the relationship between attention, risky decision-making and confidence in 
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GD compared with healthy controls. This was followed up by Chapter 10 which focused 
on the influence of making risky choices on the feeling of confidence. Finally, Chapter 
11 provides a summary and general discussion of the findings presented in this thesis. 
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Abstract 
 
Our behavior is constantly accompanied by a sense of confidence and its’ precision is 
critical for adequate adaptation and survival. Importantly, abnormal confidence 
judgments that do not reflect reality may play a crucial role in pathological decision-
making typically seen in psychiatric disorders. In this review, we propose abnormalities 
of confidence as a new model of interpreting psychiatric symptoms. We hypothesize a 
dysfunction of confidence at the root of psychiatric symptoms either expressed 
subclinically in the general population or clinically in the patient population. 

Our review reveals a robust association between confidence abnormalities and 
psychiatric symptomatology. Confidence abnormalities are present in 
subclinical/prodromal phases of psychiatric disorders, show a positive relationship 
with symptom severity, and appear to normalize after recovery. In the reviewed 
literature, the strongest evidence was found for a decline in confidence in (sub)clinical 
OCD, and for a decrease in confidence discrimination in (sub)clinical schizophrenia. 
We found suggestive evidence for increased/decreased confidence in addiction and 
depression/anxiety, respectively. 

Confidence abnormalities may help to understand underlying psychopathological 
substrates across disorders, and should thus be considered transdiagnostically. This 
review provides clear evidence for confidence abnormalities in different psychiatric 
disorders, identifies current knowledge gaps and supplies suggestions for future 
avenues. As such, it may guide future translational research into the underlying 
processes governing these abnormalities, as well as future interventions to restore 
them. 
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Introduction 

Metacognition refers to our ability to think about, reflect, and comment upon our own 
thinking. Confidence judgment is one such metacognitive operation, and is described 
as the subjective feeling of being correct about a choice, decision or statement (Pouget 
et al., 2016). Not only is this feeling of confidence critical to re-evaluate previous 
decisions, it can also guide future decision-making and drive reasoning and social 
interactions (Fleming, Dolan, et al., 2012). Producing accurate confidence judgments 
is an individual ability, which seems stable across different sensory modalities (Ais et 
al., 2016; Faivre et al., 2018; Rahnev et al., 2015; Song et al., 2011), time-points 
(Fleming et al., 2016), and across cognitive domains (Rouault, McWilliams, et al., 2018) 
(but see (Kelemen et al., 2000; Morales et al., 2018)). 

The hypothesis that inaccurate confidence judgments can lead to detrimental 
decision-making - bearing extensive negative consequences for society and the 
individual - is supported by both theoretical and experimental consensus (Berner & 
Graber, 2008; Broihanne et al., 2014; Croskerry & Norman, 2008). Systematically 
inaccurate confidence judgments could contribute to persistent pathological decision-
making observed in psychiatric disorders. For example, underconfidence in memory 
may result in compulsory checking behavior as observed in patients suffering from 
obsessive-compulsive disorder (OCD). On the other hand, overconfidence in 
erroneous beliefs could underpin delusional thinking as observed in schizophrenia 
patients. Yet, to date an overview of abnormalities in confidence judgments across 
psychiatric disorders is lacking.  

Here, we review studies of confidence in subclinical and clinical psychiatric 
populations to apprehend the associations between confidence abnormalities and 
psychiatric disorders. Our review focuses on OCD, schizophrenia, addiction, anxiety, 
and depression, and includes studies in both subclinical and clinical populations. This 
is because psychiatric disorders have been proposed to be characterized by both 
qualitative and quantitative shifts in behavior (Wright, 2011), which can be represented 
by the visible part of a continuum of symptom severity, the lower end of which would be 
subclinical (Hankin et al., 2005; Krueger et al., 2005; Lincoln, 2007; Stip et al., 2009). 
Finally, we discuss the benefits of transdiagnostic approaches to investigate 
confidence and psychiatric symptoms in the general population. Insight into 
confidence abnormalities could reveal new targets for early interventions. Overall, this 
review provides a comprehensive framework for the investigation of confidence in 
psychiatry. It also highlights the methodological challenges and limitations present in 
this line of research, and delineates suggestions for future avenues of research. 
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Targeting confidence abnormalities in psychiatry could help alleviate symptoms and 
improve treatment outcomes. 

 

Methods  

Two separate systematic literature searches for subclinical and clinical populations 
were conducted through the electronic database PubMed in October 2018, using the 
following key terms: 

(1) (“confiden*” OR “metacogniti*” OR “meta-cogniti*”) AND (“psychiatr*” OR 
“impulsiv”* OR “complusiv*” OR “transdiagnostic**” OR “trans-diagnostic*” OR 
“individual differences” OR “symptom*” OR “healthy”). (862 hits) 

(2) (“confiden*” OR “metacogniti*” OR “meta-cogniti*”) AND (“depressi*” OR 
“schizophr*” OR “obsessive compulsive*” OR “OCD” OR “obsessive-compulsive” OR 
“addict*” OR “substance*” OR “psychiatr*” OR “eating” OR “MDD” OR “gambl*” OR 
“anxiety*”). (811 hits) 

The search was not limited regarding year of publication. We chose not to include 
autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) for 
reasons of clarity. Exclusion criteria were non-English manuscripts; studies using 
questionnaires to assess confidence, and clinical trials assessing effectiveness of 
metacognitive therapy. All duplicates were removed, abstracts were screened and full 
texts of relevant studies were reviewed. From the reference lists of selected papers, 
additional studies and relevant reviews or meta-analyses were included.  

 

Results  

We identified 83 studies that met inclusion criteria. Table 1 shows an overview of the 
task domains, the metacognitive measures and the most commonly used paradigms in 
these studies. Briefly, three types of confidence measures are often evaluated. 
Retrospective confidence judgements assess the correctness of a choice (Pannu & 
Kaszniak, 2005). Feeling of Knowing (FOK) and Judgments of Learning (JOL) are 
prospective confidence judgments about one’s ability to later retrieve knowledge about 
a specific subject (FOK) or about a learned cue or cue association (JOL). However, 
retrospective- and prospective judgments are considered to be different (Fleming et al., 
2016; Siedlecka et al., 2016), since they rely on distinct cognitive resources and are 
influenced by separate parameters, and should therefore not be used interchangeably. 
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In the current review we mostly focus on retrospective judgments, but for the sake of 
completeness we also include studies using prospective judgements. Confidence 
accuracy measures can be derived from comparing retrospective confidence 
judgements to objective task performance (Figure 1). Confidence judgments are 
deemed more accurate when correct choices are held with higher confidence than 
incorrect choices (discrimination), and when average confidence matches average 
performance (calibration). Yet, confidence measures can be confounded by changes in 
first-order performance (Figure 2). Therefore, recently bias free measures of confidence 
have been developed that rest on the foundations of signal detection theory (i.e. 
metacognitive sensitivity, or meta-d’) (Fleming, 2017; Fleming & Lau, 2014; Maniscalco 
& Lau, 2012), which measures the ability to discriminate between correct and incorrect 
choices with confidence judgments while controlling for confounds. Moreover, 
metacognitive efficiency, or meta-d’/d’, measures how efficiently perceptual 
information is used to form a metacognitive report. For further details on confidence 
accuracy metrics, see Figure 1. 
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Figure 1: Measures of confidence. Confidence measures can be divided into general measures 
of confidence level and precision measures of confidence estimation. To assess someone’s 
general level of confidence, confidence level or calibration can be analyzed. Calibration (or 
confidence bias) is usually calculated as the difference between mean task performance and 
confidence. This results in overconfidence when confidence levels are higher than performance 
levels, and underconfidence vice versa. To assess someone’s precision of confidence 
estimation, confidence discrimination, metacognitive sensitivity or metacognitive efficiency can 
be analyzed. Confidence discrimination refers to the difference in confidence levels between 
correct and incorrect choices. The larger this difference, the higher the discriminatory accuracy 
of confidence, signaling an increased ability to recognize accurate from inaccurate performance 
by using one’s metacognitive report. Confidence discrimination is sometimes referred to as ‘the 
confidence gap’. Confidence bias and discrimination are two independent aspects of 
metacognition: an individual might be underconfident, but still be highly sensitive to discriminate 
between accurate and inaccurate performance with their confidence. Similar to discrimination, 
metacognitive sensitivity, also referred to as parameter meta-d’, aims to measure the ability of a 
metacognitive observer to discriminate between correct and incorrect trials with their 
confidence judgments. Yet, it uses a more sophisticated calculation that is bias free, and 
controls for performance confounds. On the other hand, metacognitive efficiency, referred to as 
meta-d’/d’, indicates how well perceptual information (d’) is used to form a metacognitive report 
(meta-d’). When meta-d’/d’, or the M-ratio, equals 1 (i.e., indicated by the line in the graph), this 
signals a metacognitively ideal observer that uses all perceptual information captured in d’ for 
the formation of a metacognitive report. When meta-d’/d’ < 1, not all information was used to 
form a metacognitive report, corresponding to lower metacognitive efficiency. When meta-
d’/d’ >1, the observer retrieved additional information to form a metacognitive report, 
corresponding to higher metacognitive efficiency. 
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Figure 2: Confidence differences confounded by intergroup differences in first-order 
performance. 1) The difference in first-order performance between groups might result in untrue 
differences of confidence between groups. 2) First-order performance is equal between groups 
and therefore specific effects of group identity on confidence are isolated. This figure illustrates 
the need for bias free measures such as meta-d’ and metacognitive efficiency, which control for 
performance differences between groups. 
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Table 1: Most commonly studied cognitive domains, paradigms and measures 

Domain Paradigm Metacognitive 
measure 

Description of paradigm 

Memory Repeated 
Checking 
Task 

Confidence level 
(N-BF) 

Participants manipulate different objects 
(e.g., light switches) and rate their 
memory confidence. The effects of 
repeated checking on memory 
confidence are assessed. 

Repeated 
Cleaning 
Task 

Confidence level 
(N-BF) 

Participants clean different objects and 
rate their memory confidence in cleaning 
those objects. The effects of repeated 
cleaning on memory confidence are 
assessed. 

Verbal 
Memory 
Task  

Confidence level & 
FOK/JOL measures 
(N-BF) * 

Participants memorize words and after a 
time interval perform a recall or 
recognition and rate their memory 
confidence. 

Visual 
Memory 
Task 

Confidence level & 
FOK/JOL measures 
(N-BF) * 

Participants memorize visual stimuli and 
after a time interval perform a recall or 
recognition and rate their memory 
confidence. 

False-
Memory 
Task 

Confidence level, 
confidence in errors 
& discrimination (N-
BF) 

Most studies made use of the Deese-
Roediger-McDermott (DRM) paradigm. 
Word lists are presented and after a time 
interval a recognition test with old and 
new words (i.e., lure words) is 
administered and memory confidence is 
asked. 

Source-
Monitoring 
Task 

Confidence level, 
confidence in errors 
& discrimination (N-
BF) 

A wordlist is presented and participants 
create semantic associations for each 
word. Afterwards, participants recognize 
original (old) and self-created (new) 
words, their source (i.e., experimenter or 
self) and rate their memory confidence. 

Perception Perceptual 
Decision 
Making 
Task 

Confidence level 
(N-BF), 
metacognitive 
sensitivity (i.e., 
meta-d’) and 
efficiency (i.e., 
meta-d’/d’) (BF) 

Participants make a two-alternative 
decision about perceptual stimuli (i.e., 
which box contains most dots) and rate 
their confidence in each decision. 
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Most tasks involve retrospective confidence judgements after every decision or action. FOK: 
feeling of knowing, JOL: judgement of learning, N-BF: non bias free, BF: bias free. *: Task paradigm 
that uses both prospective and retrospective confidence judgments. 

 

OCD 

OCD is a psychiatric condition associated with repetitive and functionally impairing 
actions (i.e. compulsions, such as checking behaviors), mostly performed to alleviate 
distress induced by intrusive thoughts  (i.e. obsessions) (Figee et al., 2016; Fineberg et 
al., 2014).  

Subclinical: obsessive-compulsive tendencies and compulsivity  

Individuals can express compulsivity or obsessive-compulsive tendencies at varying 
levels of severity without receiving a diagnosis for OCD. Thirteen studies assessing the 
link between confidence and subclinical OCD symptoms were identified (Table 2A). 
Two studies found lowered confidence associated with high obsessive-compulsive 
(OC) tendencies using a false bio-feedback task in which participants evaluated their 
muscle tension (Lazarov et al., 2012; Zhang et al., 2017). High OC individuals showed 
more reliance on false feedback and lower confidence in evaluating their muscle 
tension while the influence of feedback on muscle tension was similar between high 
and low OC groups. Other studies have not found direct differences in confidence 
ratings or calibration between individuals with high and low OC tendencies (Ben 
Shachar et al., 2013; Hauser, Allen, et al., 2017; Rouault, Seow, et al., 2018), but a 

General 
Knowledge 

General 
Knowledge 
Task 

Confidence level 
(N-BF) 

Participants answer general knowledge 
questions and rate their level of 
confidence. 

Action Muscle 
Tension 
Task 

Confidence level 
(N-BF) 

Participants produce certain levels of 
muscle tension and rate their confidence 
about their subjective muscle tension 
estimates. 

Other Predictive 
Inference 
Task 

Confidence level 
(N-BF) 

Participants predict the position of a 
certain particle and state their 
confidence in their prediction, while the 
environment is changing over time. 

Wisconsin 
Card 
Sorting 
Task 

Confidence level 
(N-BF) 

Participants figure out a sorting rule and 
rate their confidence in this rule. The 
sorting rule changes over time and the 
participants have to relearn the rule. 

Emotion 
Task 

Confidence level 
(N-BF) 

Participants recognize facial emotions 
and state their confidence. 

2



 

30 
 

subset of these studies has identified other metacognitive effects. Hauser et al., (2017) 
used a motion detection task and found lower metacognitive efficiency (meta-d’/d’) in 
highly compulsive participants, suggesting that high OC subjects do not utilize all 
accessible information to form a metacognitive report. Ben Shachar et al., (2013) did 
not find any differences between high and low OC groups in any confidence measure 
they used (i.e., confidence level, calibration and discrimination) in a general knowledge 
task. However, they report that high OC participants were more reluctant to report their 
answers implicating that they required a higher level of confidence to act on their 
answer.  

Another way of investigating the relationship between confidence and OCD features 
(such as repetitive checking, cleaning or doubt) is by testing the effect of manipulating 
confidence on OCD features or vice versa. In particular, this has been done for 
confidence in memory (i.e. ‘metamemory’). Van Den Hout & Kindt (2003) were the first 
to show that OCD-like checking behavior leads to a decline in memory confidence 
levels in OCD-relevant scenarios (e.g., involving cleaning or checking), while memory 
performance was unaffected. Multiple studies have replicated these findings since, 
both for real life scenarios and mental checks (Ashbaugh & Radomsky, 2007; Coles et 
al., 2006; Radomsky et al., 2006; Radomsky & Alcolado, 2010; Van Den Hout & Kindt, 
2003b). Following the same hypothesis, another study using a repeated cleaning 
procedure found that memory confidence significantly increases over time for control 
items, yet remains stable for repeatedly cleaned items, while memory performance 
was equal for both items (Fowle & Boschen, 2011). Instead of examining the effect of 
compulsive behavior on memory confidence, Cuttler et al., (2013) studied the effect of 
manipulating memory confidence on compulsive behavior and found that participants 
whose memory confidence is diminished, experience a higher level of doubt and more 
urges to check in a prospective memory task. Moreover, using the same false bio-
feedback task as Lazarov et al., (2012), Zhang et al., (2017) found that the group with 
experimentally undermined confidence was more susceptible to distortions of 
confidence due to a higher reliance on the false feedback compared with the control 
group.  

In sum, there is substantial evidence that engaging in OC behaviors lowers memory 
confidence, and that decreasing confidence can increase OC tendencies, supporting 
the idea of a link between low confidence and subclinical OC tendencies, specifically 
in OCD-relevant situations (Ashbaugh & Radomsky, 2007; Coles et al., 2006; Cuttler et 
al., 2013; Fowle & Boschen, 2011; Radomsky et al., 2006; Radomsky & Alcolado, 2010; 
Van Den Hout & Kindt, 2003a, 2003b). Moreover, there are multiple indications of 
confidence abnormalities associated with subclinical OC tendencies in the cognitive 
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domains of interoception and perception (Lazarov et al., 2012; Zhang et al., 2017), such 
as a decrease in metacognitive efficiency (Hauser, Allen, et al., 2017), although this is 
not supported by all studies (Ben Shachar et al., 2013; Rouault, Seow, et al., 2018). 
These contradictory results cannot be further clarified by performance confounds, 
since all studies showed equal performance levels between groups. Concluding, 
subclinical OC tendencies are mostly associated with a decrease in confidence or 
metacognitive efficiency, both in OCD-relevant contexts as well as neutral task 
environments. 

Clinical OCD 

Of the 23 studies investigating confidence in OCD patients, most have focused on 
metamemory tasks (Table 2B). The pioneering study by McNally & Kohlbeck (1993) 
showed that OCD patients express lower confidence than healthy participants, 
whereas memory performance was equal between groups. Many studies have since 
replicated these findings, using both OCD-relevant and neutral tasks or stimuli (Cougle 
et al., 2007; Foa et al., 1997; Karadag et al., 2005; MacDonald et al., 1997; Moritz & 
Jaeger, 2018). Two studies reported that the low confidence observed in OCD patients 
was associated with a decrease in memory performance (Tuna et al., 2005; Zitterl et al., 
2001). Although memory performance deficits might have been the driving force behind 
some reported confidence deficits (Figure 2), many studies still find an impaired 
confidence in OCD patients in the absence of memory deficits (Foa et al., 1997; 
Karadag et al., 2005; MacDonald et al., 1997; Moritz & Jaeger, 2018). This association 
does not consistently replicate, however (Bucarelli & Purdon, 2016; Moritz et al., 2011; 
Moritz, Jacobsen, et al., 2006; Moritz, Kloss, et al., 2009; Moritz, Ruhe, et al., 2009; 
Tekcan et al., 2007). To explain these contradictory results, it has been suggested that 
the metamemory problems in OCD are amplified by contextual factors such as a 
heightened subjective feeling of responsibility (Boschen & Vuksanovic, 2007; Moritz et 
al., 2007; Radomsky et al., 2001). Furthermore, declining confidence levels with 
repetition of checks have been found in clinical OCD populations, also when 
controlling for anxiety levels, linking reduced memory confidence to typical OCD 
checking behavior (Boschen & Vuksanovic, 2007; Tolin et al., 2001). 

Declines in confidence in OCD patients have also been found in tasks evaluating 
perception and action (Hermans et al., 2008), general knowledge (Dar, 2004; Dar et al., 
2000), and interoception (Lazarov et al., 2014). A recent study found no differences in 
the dynamic course of confidence between OCD and healthy controls in a volatile 
reinforcement-learning task, but did show a dissociation between confidence and 
action in OCD patients (Vaghi et al., 2017). However, the authors did not analyze group 
differences for confidence precision or confidence calibration. 
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Overall, most evidence points to a decrease in confidence in OCD patients in multiple 
cognitive domains (i.e. memory, perception and interoception) (Cougle et al., 2007; 
Dar, 2004; Dar et al., 2000; Foa et al., 1997; Hermans et al., 2008; Karadag et al., 2005; 
Lazarov et al., 2014; MacDonald et al., 1997; McNally & Kohlbeck, 1993; Moritz & 
Jaeger, 2018; Tuna et al., 2005; Zitterl et al., 2001). This has been linked to checking 
behavior (Boschen & Vuksanovic, 2007; Tolin et al., 2001), where repetitions of actions 
are associated with a greater distortion of confidence levels. It is, however, not fully 
established whether decreases in confidence, in addition to OCD-relevant situations, 
also extend to neutral situations. Conflicting evidence exists, such that some studies 
did find decreases in confidence in OCD patients using neutral tasks (Cougle et al., 
2007; Dar, 2004; Dar et al., 2000; Karadag et al., 2005; Lazarov et al., 2014; MacDonald 
et al., 1997; Zitterl et al., 2001), whereas others did not (Moritz et al., 2011; Moritz, 
Jacobsen, et al., 2006; Moritz, Kloss, et al., 2009; Moritz, Ruhe, et al., 2009; Tekcan et 
al., 2007). None of these studies actively controlled for performance differences 
between groups, but most studies did nevertheless show equal levels of performance 
between groups. Importantly, confidence abnormalities are likely dependent on 
contextual factors, since multiple studies have reported decreases in confidence in 
OCD patients in OCD-relevant scenarios, or specifically when patients experience 
heightened responsibility (Boschen & Vuksanovic, 2007; Bucarelli & Purdon, 2016; 
Hermans et al., 2008; Moritz et al., 2007; Radomsky et al., 2001; Tolin et al., 2001). To 
our knowledge, no studies have yet investigated abnormalities in metacognitive 
sensitivity or efficiency in clinical OCD populations. To conclude, decreases in 
confidence have been found in OCD for various cognitive domains within both neutral 
and OCD-relevant contexts (Figure 3). However, some studies did not find differences 
within the OCD population.  

 

Schizophrenia 

Schizophrenia is a psychiatric disorder defined by positive symptoms, including 
hallucinations and delusions, and negative symptoms, comprising flattening of affect, 
loss of pleasure and social withdrawal (Schultz et al., 2007). Next to these symptoms, 
schizophrenic patients suffer from cognitive impairment (Bowie & Harvey, 2006). 

Subclinical: non-psychotic help-seeking individuals and delusion proneness 

Most patients experience a prodromal phase in which symptoms gradually develop into 
schizophrenia or psychosis (Schultz et al., 2007). One of the predictors of transition into 
psychosis is cognitive impairment, with high-risk individuals exhibiting moderate to 
severe deficits in cognitive abilities (Seidman et al., 2010). Next to the cognitive deficits, 
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metacognition also seems to be impaired in schizophrenia; however, the nature of the 
impairment is not yet fully understood.   

Eight studies investigating the link between confidence and subclinical schizophrenia 
were identified (Table 2C). Two studies evaluated confidence in verbal memory, 
executive functioning, and social functioning tasks as possible neuropsychological 
markers in early pre-psychotic stages of schizophrenia in help-seeking adolescents 
(Koren et al., 2017; Scheyer et al., 2014). Scheyer et al., (2014) found no differences in 
either cognitive or metacognitive abilities between individuals with high versus low risk 
for future psychosis; yet, confidence was a significant predictor for psychosocial 
functioning above and beyond cognitive abilities alone. Koren et al., (2017) assessed 
the relationship between confidence and self-disturbance in help-seeking adolescents 
with or without attenuated psychotic syndrome (APS), which is considered a prodromal 
phase of schizophrenia. Self-disturbance is a risk factor for developing psychosis, 
defined as the disruption of the sense of being a self-present subject of experience and 
action (Raballo et al., 2016). Results showed that confidence monitoring (i.e., the 
correlation between confidence and actual performance) had a significant positive 
relationship with self-disturbance, beyond neurocognitive functioning and APS 
symptoms alone. This indicates that a higher level of self-disturbance was related to 
increased metacognitive abilities. 

Regarding delusion proneness, three studies using false memory and reasoning tasks 
found that delusion prone subjects are more overconfident (McKay et al., 2006; 
Warman, 2008), especially in errors (Laws & Bhatt, 2005). Likewise, individuals with a 
high level of paranoia exhibited lower confidence discrimination in a visual task (Moritz, 
Göritz, et al., 2014). The authors argue that overconfidence in errors is induced by 
‘liberal acceptance’, when partial information is deemed sufficient for having high 
confidence in a decision (Moritz & Woodward, 2006b). In turn, this liberal acceptance 
of false memories or unlikely events may promote delusions and paranoid ideation. 
Another study, using a general knowledge task, confirmed overconfidence in errors in 
individuals with high paranoia levels, but also showed that it was dependent on 
subjective competence and perceived difficulty (Moritz et al., 2015). They found that 
overconfidence in errors is exaggerated when subjects feel highly competent or 
deemed the question easy. However, a recent study using a perceptual task did not find 
any direct relationships between self-reported schizotypy symptoms and confidence 
level or metacognitive efficiency (Rouault, Seow, et al., 2018). 

In sum, prior subclinical studies have produced mixed results. One study reports no 
differences between high and low risk groups (Scheyer et al., 2014), and one even 
shows improvement of metacognitive abilities with higher schizotypal symptoms 
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(Koren et al., 2017). Nevertheless, most of the studies, which were the most extensive 
in terms of participants, reported that delusion prone or highly paranoid individuals 
showed an overconfidence effect for errors, resulting in a diminished confidence 
discrimination within various cognitive domains (i.e. memory, perception and 
reasoning) (Laws & Bhatt, 2005; McKay et al., 2006; Moritz, Göritz, et al., 2014; Warman, 
2008). Of note, a recent study indicates that this effect might also be moderated by 
subjective level of competence (Moritz et al., 2015). None of the studies actively 
controlled for performance differences. 

Clinical Schizophrenia 

Similar to research in OCD, the most considerable evidence for confidence 
abnormalities in schizophrenia has come from metamemory studies. Most of the 23 
identified studies have either performed a source-monitoring or a false memory task 
(Table 2D). The majority reports that schizophrenia patients exhibit higher confidence 
for incorrect answers, resulting in a confidence discrimination deficit (Bhatt et al., 
2010; Eifler et al., 2015; Gaweda et al., 2012; Kircher et al., 2007; Moritz et al., 2003, 
2004, 2005, 2008; Moritz, Woodward, & Rodriguez-Raecke, 2006; Moritz & Woodward, 
2002). Schizophrenia, OCD and post-traumatic stress disorder (PTSD) patients all 
exhibited lower memory performance than healthy controls, but schizophrenia patients 
showed a specific impairment in discrimination compared with both OCD and PTSD 
control groups, due to a higher confidence in errors (Moritz & Woodward, 2006a). 
Moritz, Woodward, & Chen (2006) used the source-monitoring paradigm (Table 1) to 
study the developmental trajectory of confidence problems in first-episode psychosis 
patients (FEP). They found a confidence discrimination deficit in the FEP group due to 
overconfidence in errors. These results were replicated more recently in both FEP 
patients and high risk groups using a source-monitoring and false memory task 
(Eisenacher et al., 2015; Gawęda et al., 2018). Together, these findings reinforce the 
notion that an overconfidence in errors may serve as a risk factor for developing 
schizophrenia. 

The inflated confidence in errors, in the absence of performance differences, was also 
reported in other cognitive domains, such as emotion perception (Köther et al., 2012; 
Moritz et al., 2012; Peters et al., 2013). In the perceptual domain, at similar levels of 
performance, schizophrenia patients showed inflated confidence in errors compared 
with both a healthy and an OCD control group (Moritz, Ramdani, et al., 2014). Moreover, 
the amount of high confident errors significantly correlated with self-rated levels of 
current paranoia. Similarly, Davies et al., (2018) found that FEP patients have a 
significantly lower metacognitive sensitivity (meta-d’) compared with healthy subjects, 
despite similar performance and confidence levels, suggesting that schizophrenia 
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patients are impaired in discriminating between correct and incorrect trials with their 
confidence judgments. However, two studies did not find such a discrimination 
impairment, although one did report decreased metacognitive performance in 
schizophrenia patients (Bruno et al., 2012). The other reported higher confidence levels 
in errors for healthy controls, and more high confident source misattributions in 
schizophrenia patients (Peters et al., 2007). 

Lastly, a study using a FOK task paired with confidence judgments found no differences 
in confidence level between schizophrenia patients and healthy subjects, while FOK 
judgments were lower in the patient group (Bacon et al., 2001). This finding was 
replicated using a memory task (Bacon & Izaute, 2009). 

In sum, the most consistent finding in schizophrenia patients is an inflated 
retrospective confidence in errors resulting in reduced confidence discrimination 
within multiple cognitive domains (i.e. memory, visual and emotional perception) 
(Figure 3) (Bhatt et al., 2010; Eifler et al., 2015; Gaweda et al., 2012; Kircher et al., 2007; 
Köther et al., 2012; Moritz et al., 2008, 2012; Moritz, Woodward, & Rodriguez-Raecke, 
2006; Moritz et al., 2003, 2004, 2005; Moritz & Woodward, 2002, 2006b; Peters et al., 
2013). This reduced discrimination may be attributed to a deficit in metacognitive 
sensitivity (Davies et al., 2018). Furthermore, these abnormal confidence levels are 
already found, albeit less consistently, in early stages of the disorder (i.e. at risk 
populations and FEP patients) (Eisenacher et al., 2015; Gawęda et al., 2018; Moritz, 
Woodward, & Chen, 2006). Concluding, schizophrenia patients show abnormal 
confidence discriminatory abilities induced by overconfidence in errors. 

 

Addiction 

Addictions can be roughly divided in two categories: dependency to a substance (i.e., 
substance-use dependency; SUD) or to an activity (such as gambling disorder; GD). 
Addictions are characterized by persistent drug use or maladaptive behavior despite 
negative consequences (Koob & Volkow, 2010). SUDs and behavioral addictions have a 
common underlying neural mechanism that governs the development and sustenance 
of these disorders (Limbrick-Oldfield et al., 2013). Next to classic symptoms of habit 
forming and craving, addicted individuals are also impaired in a broad spectrum of 
cognitive functions (van Holst et al., 2010).  

Subclinical Addiction  

Three studies investigating confidence in subclinical addiction were identified (Table 
2E). Two studies divided a student population into probable pathological gamblers, 
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problem gamblers and no-problem gamblers and used a general knowledge task 
(Goodie, 2005; Lakey et al., 2007). Goodie (2005) found that pathological gamblers 
have significantly higher confidence, but also lower task performance, compared with 
the other groups, resulting in higher overconfidence. Similarly, Lakey et al., (2007) 
showed that non-problem gamblers were less overconfident than the other two groups, 
with no differences between the pathological and problem gamblers. Both studies also 
found a significant positive correlation between gambling severity and overconfidence. 
Considering SUD, a recent study using a perceptual task found no direct relationship 
between self-reported alcoholism symptoms and either confidence level or 
metacognitive efficiency in the general population (Rouault, Seow, et al., 2018). 

Taken together, these few studies showed some evidence for confidence abnormalities 
in subclinical GD within the semantic memory domain, pointing to increased 
overconfidence in a general context (Goodie, 2005; Lakey et al., 2007) (Figure 3). 
However, task performance was not held equal between groups, rendering it difficult to 
draw firm conclusions. Furthermore, these findings did not extend to links between 
alcoholism symptoms and confidence within the perceptual domain (Rouault, Seow, 
et al., 2018). The link between confidence abnormalities and subclinical symptoms of 
addiction is therefore not yet apparent. 

Clinical Addiction 

A total of five studies have investigated confidence in addiction (Table 2F). One study 
assessed confidence in GD patients and healthy controls using a non-gambling 
grammar task and reported similar confidence levels in both groups, while GD patients 
exhibit lower performance (Brevers et al., 2014). However, confidence correlated with 
performance in healthy controls, but not in GD patients, suggesting an abnormal 
confidence processing in gamblers. Considering SUD, Le Berre et al., (2010) studied 
confidence in alcohol-use disorder patients using a memory task with a prospective 
FOK measure. Results showed that alcohol use disorder patients had a significantly 
worse memory performance than healthy controls, and were less accurate regarding 
their FOK judgments as they overestimated their recognition performance. Moreover, a 
significant positive correlation was found between memory deficits, executive 
dysfunction and metamemory impairment in alcohol use disorder patients. In another 
study, using a visuo-perceptual task in which performance was held constant, active 
cocaine addicted individuals displayed a decreased metacognitive efficiency 
compared with remitted cocaine users and healthy subjects (Moeller et al., 2016). 
Interestingly, the remitted group did not differ from the healthy controls. Both cocaine 
user groups did not differ with regards to peak drug usage, suggesting that the results 
cannot be attributed to a greater lifetime addiction severity in active users.  
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To date, two studies have examined confidence in a population of opiate dependent 
patients receiving methadone maintenance treatment. Mintzer & Stitzer (2002) found 
that patients reported significantly higher confidence for incorrect choices in a memory 
task compared with healthy subjects, resulting in worse confidence discrimination. 
Recently, Sadeghi et al., (2017) found lower metacognitive efficiency for patients using 
a perceptual task, while no differences in mean confidence levels or performance 
could be detected. In the memory domain, however, patients exhibited lower 
performance but similar metacognitive efficiency than controls. These findings suggest 
that separate metacognitive systems might exist for different cognitive domains. 

Summing up, a single study in GD patients showed a disconnection between 
confidence and accuracy, indicating a deficiency in metacognition (Brevers et al., 
2014). Replications using bias free measures of confidence are needed in order to 
confirm this effect. In SUD patients, multiple studies correcting for performance 
differences and using bias-free confidence measures reported inflated retrospective 
confidence for errors and thus decreased confidence discrimination, as well as 
diminished metacognitive efficiency. This abnormality was found in both memory and 
perceptual domains (Mintzer & Stitzer, 2002; Sadeghi et al., 2017), and improved in 
remitted patients (Moeller et al., 2016). Replications and direct comparisons between 
addiction subtypes are needed to confirm the generalizability of these findings. 
Concluding, multiple bias-free studies reported a decrease in confidence 
discrimination and metacognitive efficiency in SUD patients (Figure 3). However, for GD 
patients, more research is needed. 

 

Anxiety and Depression 

Major depressive disorder (MDD) and anxiety disorders are common disorders with a 
lifetime prevalence of 16.2% and 28.8%, respectively (Kessler et al., 2003, 2005). Since 
they are both classified as mood disorders and are highly comorbid, they are 
considered jointly. MDD and anxiety disorders share a negativity bias in information 
processing, reflecting a greater focus on negative input (J. B. Engelmann et al., 2017; 
McClintock et al., 2011; McLaughlin & Nolen-Hoeksema, 2011; Williams et al., 2009). 
While general deficits in cognition are established symptoms in these disorders (Ferreri 
et al., 2011; Rock et al., 2014), studies investigating confidence disorders are scarce. 
However, the well-known hallmarks of both disorders: negative self-concepts, 
rumination and indecisiveness (McClintock et al., 2011), suggest that patients show a 
negative confidence bias. 
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Subclinical Anxiety and Depression 

Subclinical levels of depression and anxiety are common among the general population 
(Goldney et al., 2004). Five studies researching subclinical anxiety or depression were 
identified (Table 2G). Stone et al., (2001) used a general knowledge task in four groups 
from a general population sample: (1) non-depressed non-anxious, (2) non-depressed 
anxious, (3) depressed non-anxious, and (4) depressed anxious. They reported lower 
confidence levels in depressed non-anxious individuals compared with the control 
group (non-depressed, non-anxious), in the absence of performance differences. 
Surprisingly, the depressed anxious group did not differ from the control group on any 
measure, suggesting that the presence of anxiety itself might counterbalance the 
confidence abnormalities found in depression. Soderstrom et al., (2011) divided a non-
clinical sample into non-, mild- and moderate depression groups and used a memory 
task with a JOL measure (i.e., prospective confidence). While results showed 
overconfidence in all three groups, mildly depressed subjects exhibited significantly 
lower overconfidence than the other groups. No differences in calibration were found 
between the non- and moderately-depressed groups. However, caution must be taken 
when interpreting these results, as performance levels were significantly different 
between the groups. The authors of a third study divided a large group of 
undergraduates into depressed and non-depressed groups and asked participants to 
predict future events (Dunning & Story, 1991). They reported overconfidence in the 
depressed group, but this was fully driven by differences in prediction performance: 
while reporting similar levels of confidence, depressed individuals showed a decreased 
performance in predicting future events compared with the non-depressed group. 
Moreover, the lack of confidence differences between groups could be explained by the 
use of valenced life events rather than a neutral task: since depressed subjects 
commonly have a negative self-concept and a general focus on negative events 
(McClintock et al., 2011), they may have a high confidence that negative events could 
happen.  

One study did not detect any association between depression and/or anxiety 
symptoms and various confidence measures obtained via several cognitive tasks 
assessing executive functioning, memory and social emotional functioning (Quiles et 
al., 2015). However, Rouault, Seow, et al., (2018) did find a significant negative 
relationship between self-reported depression and anxiety symptoms and confidence 
level in the general population, indicating that individuals with higher depression or 
anxiety symptom scores report lower levels of confidence.  

Together, the research on metacognition in mood disorders remains inconclusive to 
date due to contradictory results. Two studies reported underconfidence in the 
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subclinical depressed groups within perceptual and semantic memory domains 
(Rouault, Seow, et al., 2018; Stone et al., 2001); two studies showed overconfidence 
due to performance deficits (Dunning & Story, 1991; Soderstrom et al., 2011) using 
prediction and memory tasks, and one study reported null findings in various cognitive 
domains (i.e. executive functioning, memory and emotional processing) (Quiles et al., 
2015). Moreover, individuals with both depression and anxiety symptoms did not show 
confidence abnormalities. However, some of these studies were confounded by 
differences in performance, which could have caused false reports of overconfidence. 
Regarding only the studies that did correct for performance differences and used 
retrospective confidence judgments (Rouault, Seow, et al., 2018; E. R. Stone et al., 
2001), all reported an effect of underconfidence. 

Clinical Anxiety and Depression 

In MDD patients, four studies were identified that mostly reported underconfidence 
compared with healthy controls using different paradigms (Table 2H). One study found 
decreased confidence discrimination in both current and recovered MDD patients 
using a general knowledge task (Hancock et al., 1996). This effect significantly 
correlated with depression severity, such that patients with more severe depression 
showed lower confidence levels and discrimination. A second study using four different 
decision tasks (i.e. an episodic memory, general knowledge, perceptual discrimination 
and a social judgment task) found that MDD patients reported lower confidence levels 
than the control group, whereas recovered patients did not (Fu et al., 2005). In both 
studies, performance was equal between the groups. In a third study, MDD patients 
exhibited lower performance in a memory task than a control and a chronic-fatigue 
syndrome patient group. This was accompanied by greater underconfidence in the 
MDD group, both when judgments were made after every single trial and after a block 
of trials (Szu-Ting Fu et al., 2012). Lastly, a recent study using an emotional perception 
task found no interaction between group and confidence in a model explaining 
incorrect responses (Fieker et al., 2016). However, in line with previous findings, the 
authors did find a significant association between low confidence levels and high 
depression severity scores. 

To our knowledge, there are no studies to date examining confidence focusing solely on 
anxiety patients versus healthy controls. However, a few studies investigating OCD 
used anxiety disorder patients as a clinical control group. Two studies found no 
difference between anxiety or panic disorder patients and healthy controls regarding 
confidence (Dar et al., 2000; Lazarov et al., 2014), whereas another study showed that 
anxious controls had lower confidence levels (Tolin et al., 2001). A recent study, which 
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did not include a healthy control group, found that anxious and OCD patients had 
similar levels of memory confidence (Bucarelli & Purdon, 2016). 

In summary, most studies showed a reduction of confidence levels in MDD in different 
cognitive domains (i.e. memory, visual and social perception) (Fu et al., 2005; Hancock 
et al., 1996; Szu-Ting Fu et al., 2012). Furthermore, some studies showed greater levels 
of underconfidence for current versus recovered MDD patients (Fu et al., 2005), 
whereas other studies did not report any differences (Fieker et al., 2016). Mixed results 
were found for anxiety disorders:  two studies showed decreased confidence levels 
similar to OCD when compared to healthy controls within the memory domain 
(Bucarelli & Purdon, 2016; Tolin et al., 2001), whereas two other studies did not find 
such differences using general knowledge and interoception paradigms (Dar et al., 
2000; Lazarov et al., 2014). Concluding, depression patients mostly showed an effect 
of underconfidence, whereas this effect was not clear-cut for anxiety patients (Figure 
3). 

 

Transdiagnostic Psychiatry 

Transdiagnostic psychiatry is an emerging scientific field which attempts to decipher 
the cognitive, affective and neurobiological processes underlying complex behavior by 
relating them to symptom dimensions. Since this approach transcends traditional 
diagnostic categories, it has the potential to refine the current nosology-based clinical 
classifications beyond the classical Diagnostic and Statistical Manual of Mental 
Disorders (DSM) diagnostic criteria (Huys et al., 2016; Stephan & Mathys, 2014). The 
underlying idea of this approach is that cognitive and brain-related functions (e.g., 
those relating to confidence processing) might map more closely onto symptomatology 
than DSM diagnoses.  

A recent study by Rouault, Seow, et al., (2018) leveraged such a transdiagnostic 
psychiatry approach to investigate the relationship between confidence and 
psychiatric symptomatology in the general population. A large sample from the general 
population performed a perceptual decision-making task and answered self-report 
questionnaires spanning a range of psychiatric symptoms, including depression, 
general anxiety, schizotypy, impulsivity, OCD, social anxiety, eating disorders, apathy 
and alcohol dependency (Experiment 1: n = 498. Experiment 2: n = 497. See table 
2A,2C,2E,2G). The relationships between accuracy, decision parameters, confidence 
and metacognitive efficiency (meta-d’/d’) were examined. Results showed that the 
symptoms were not associated with decision parameters, but that higher levels of 
depression and anxiety symptoms were significantly associated with decreased 



Chapter 2 

41 
 

confidence. Furthermore, a factor analysis was carried out to retrieve a parsimonious 
latent structure that best explained the variance at the item level of all questionnaires, 
which identified three symptom dimensions: Anxious-Depression (AD), Compulsive 
Behavior and Intrusive Thought (CIT) and Social Withdrawal (SW). The AD dimension 
was significantly associated with lower confidence and higher metacognitive 
efficiency, whereas the CIT cluster was related to higher confidence and a lower 
metacognitive efficiency. The metacognitive efficiency results did, however, not survive 
correction for multiple comparisons and must be interpreted with caution. Lastly, none 
of the three symptom dimensions showed a relationship with decision parameters, 
indicating that psychiatric symptoms are related to shifts in confidence, but not in 
performance. Therefore, changes in confidence may represent a specific behavioral 
correlate of subclinical psychopathology that could be an important component of 
transdiagnostic psychiatry. 
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Discussion 

In this review we sought to obtain an answer to the question whether confidence 
judgments are abnormal across psychiatric disorders. We found evidence for 
confidence abnormalities across a variety of psychiatric disorders, which take specific 
directions for the different populations (Figure 3). For (sub)clinical OCD, the most 
consistent finding is a decrease in confidence level, especially related to typical OCD 
contexts, such as checking behavior. Regarding (sub)clinical schizophrenia, we 
primarily found increased confidence in errors resulting in a decrease of discrimination 
and metacognitive sensitivity. This diminished discriminatory ability between correct 
(real) and incorrect (imagined) situations fits core schizophrenia symptoms such as 
delusions and hallucinations, and was recently also found to be dependent on 
subjective competence. In clinical addiction, an increase in confidence – leading to a 
decrease in confidence discrimination and metacognitive efficiency – was found, 
which corresponds to the symptomatic lack of self-insight in this population (Goldstein 
et al., 2009). Subclinical addiction has not been studied as extensively, but 
overconfidence was found in subclinical GD. In clinical anxiety and depression, 
reductions in confidence levels were found, which fit with the negative information 
processing bias observed in mood disorders (McLaughlin & Nolen-Hoeksema, 2011). 
However, subclinical studies show mixed results and no studies using anxiety patients 
as the primary group of interest have been performed to date. Together, these results 
demonstrate that clinical and subclinical studies generally show similar results. 

While these results suggest that there are abnormalities in confidence estimations in 
psychiatric patients, another important question is how these abnormalities relate to 
psychiatric disorders. Are these abnormalities closely linked or even underlying 
psychiatric symptoms? Are they a result of the disorder or perhaps only a byproduct 
without any significance for symptomatology? The studies discussed in this review 
indicate that there is a close interplay between psychiatric symptoms and confidence. 
For instance, several studies found that abnormal levels of confidence are already 
present in non-clinical populations with psychiatric tendencies or subclinical 
prodromal populations (Davies et al., 2018; Eisenacher et al., 2015; Gawęda et al., 
2018; Hauser, Allen, et al., 2017; Lazarov et al., 2012; Moritz, Woodward, & Chen, 2006; 
Zhang et al., 2017). Moreover, a normalization of confidence abnormalities was found 
in three studies after patients recovered (Fu et al., 2005; Hancock et al., 1996; Moeller 
et al., 2016). Furthermore, four studies found direct correlations between confidence 
abnormalities and symptom severity (Fieker et al., 2016; Goodie, 2005; Hancock et al., 
1996; Lakey et al., 2007). The interaction between psychiatric symptoms and 
confidence abnormalities was also demonstrated by studies showing that engaging in 
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compulsive behaviors lowered confidence levels, whereas undermining confidence 
lead to increases in compulsive tendencies (Ashbaugh & Radomsky, 2007; Coles et al., 
2006; Cuttler et al., 2013; Fowle & Boschen, 2011; Radomsky et al., 2006; Radomsky & 
Alcolado, 2010; Van Den Hout & Kindt, 2003a, 2003b), indicating that confidence and 
pathological behavior are coupled. While the evidence for the strong relationship 
between confidence and psychiatric symptoms is convincing, the directionality of the 
effect is not unequivocal and should therefore be further explored in future studies 
using causal manipulations of confidence or longitudinal designs.  

These findings raise many questions and give way to research advancing our 
understanding of confidence abnormalities in psychiatry. Confidence is not a unitary 
construct, since confidence abnormalities are differently expressed in various contexts 
(Moritz et al., 2007, 2015), and the role of context in confidence abnormalities should 
be further identified. For example, it is possible that confidence abnormalities 
aggravate in a symptom-related context. For instance, a gambler might be 
overconfident in general, but show an even increased overconfidence during gambling. 
Another interesting future avenue would be to study if normalization of confidence 
deviations would translate into decreased symptom severity, and vice versa. 
Interestingly, a recent paper showed that adaptive training can cause a domain-general 
enhancement of metacognitive abilities in the general population (Carpenter et al., 
2019). Up to now, several forms of metacognitive training have been developed as 
treatment for psychiatric patients. Importantly, recent meta-analyses indicated that 
they were effective in reducing symptoms within a wide range of psychiatric disorders 
(Liu et al., 2018; Philipp et al., 2019). Furthermore, metacognitive training, as well as 
antipsychotic medication, have been shown to attenuate overconfidence in errors in 
schizophrenia patients (Köther et al., 2017; Moritz et al., 2017). Future work should 
focus on translating current knowledge about confidence abnormalities in psychiatry 
to new treatment interventions, tailored to specific confidence abnormalities. 
Furthermore, it remains uncertain whether confidence abnormalities in psychiatry 
generalize over different cognitive domains and contexts. Few studies have 
systematically and directly studied the transfer of confidence abnormalities across 
different domains within a population and showed mixed results favoring either 
domain-general (Hermans et al., 2008) or domain-specific (Fu et al., 2005; Sadeghi et 
al., 2017) views. However, the majority of the discussed studies used metamemory 
tasks; therefore, more research is needed to establish the generalizability of confidence 
disruptions to other cognitive domains. More knowledge about the relationship 
between confidence abnormalities in various domains and psychiatric disorders may 
eventually allow for personalized therapies focusing on individual deficits. 
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Next to using the traditional DSM diagnostic categories, it is important to study 
confidence using a transdiagnostic approach focusing on the level of symptoms. 
Recently, Rouault, Seow, et al., (2018) used a transdiagnostic approach and found that 
a symptom cluster of compulsivity and intrusive thoughts is related to heightened 
confidence, whereas an anxiety and depression cluster is related to lowered 
confidence in a large sample of the general population. Importantly, their results were 
less pronounced when symptoms were related to confidence abnormalities in the 
traditional diagnostic categorical (i.e., disorder-specific) way. This may indicate that 
confidence abnormalities are better explained by specific symptom clusters than 
disorder categories that are heterogeneous in their display of symptoms, because they 
show overlap with other disorders. For example, there  might be large individual variety 
in the role that anxiety (Weinstein et al., 2015) and compulsivity play in psychiatric 
disorders such as addictions and OCD, resulting in different propensities for under- or 
overconfidence. Currently, it is not clear if and how these transdiagnostic findings 
generalize to clinical groups, although our findings seem to suggest that confidence 
abnormalities are similar between clinical and subclinical populations. An interesting 
avenue for future work is to apply transdiagnostic approaches to clinical groups and 
investigate whether symptom-based classification improves correlations with 
confidence abnormalities compared to classical DSM-based classification. Moreover, 
in addition to the data-driven transdiagnostic techniques adopted by Rouault, Seow, et 
al., (2018), other theory-driven techniques fitting the Research Domain Criteria (RDoC) 
framework should be used to further explore confidence abnormalities in psychiatric 
populations (Insel et al., 2010). Bearing in mind the advantages of the transdiagnostic 
approach, new treatment interventions focusing on treatment of confidence 
abnormalities related to specific symptom clusters instead of DSM classifications 
could be a promising new avenue. Furthermore, next to confidence being an important 
transdiagnostic factor associated with psychiatric disorders, many other factors have 
been shown to be of transdiagnostic value, such as neurocognitive deficits and 
motivation (Bora et al., 2010; Romanowska et al., 2018; Whitton et al., 2015). These 
factors may also contribute to confidence deviations within psychiatric populations 
(Eifler et al., 2015), which makes for an important area of future research. 

Confidence can be viewed as a broader concept than the cognitive operationalization 
reviewed in this paper, relating to themes relevant to psychiatry such as trust and self-
confidence (Borkowski et al., 1990; Sowislo & Orth, 2013). In order to gain a wider 
perspective on the role of confidence in psychiatry it would be interesting to explore 
how these themes are related and investigate the phenomenology of confidence 
abnormalities in these disorders.  
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The reviewed studies also indicate that there are methodological shortcomings in the 
field. Most of the reported studies suffered from (one of) two limitations. First, they did 
not account for performance differences between groups of interest. Performing better 
at a task leads to an increase in confidence (Maniscalco & Lau, 2012), and there is 
growing evidence that confidence judgments guide future behavior (Fleming & Daw, 
2017). It is thus crucial to control for performance differences to isolate effects in 
confidence. Second, they did not use bias free measures next to the conventional 
measures of confidence level, such as calibration and discrimination. Bias free 
measures account for performance differences and response biases and provide more 
in-depth information about one’s metacognitive abilities. Future work would benefit 
from using tasks that control for potential performance differences and use bias free 
measures such as meta-d’ (although these measures require a considerable amount of 
trials to obtain sufficient statistical power (Rouault, McWilliams, et al., 2018)). 
Furthermore, a discrepancy exists in how confidence is assessed inside and outside 
the clinical fields, with more effort toward a normative definition of confidence1, 
operationalization using (Bayesian) computational frameworks (Fleming & Daw, 2017; 
Kepecs & Mainen, 2012) and confidence evaluation, incentivization or assessment 
(Hollard et al., 2016) outside of clinical fields. Adopting these standards in clinical 
research could help improving our knowledge about confidence abnormalities in 
psychiatry. Lastly, there is more and more research into the neurobiological basis of 
confidence, which shows that brain areas such as the lateral and medial prefrontal 
cortex and insula are related to confidence encoding (Vaccaro & Fleming, 2018). 
Interestingly, these brain areas also play a central role in the various psychiatric 
disorders discussed in this review (Chai et al., 2011; J. B. Engelmann et al., 2017; 
Goldstein & Volkow, 2011; Namkung et al., 2017; Yücel et al., 2007). Therefore, studying 
the neural mechanisms responsible for the confidence abnormalities observed in 
these populations is an important future research endeavor. 
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Table 2. Overview of reviewed studies 

Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

A) Overview of subclinical OCD studies   

Ashbaugh & 
Radomsky 

2007 152 HC Repeated 
Checking 
Task ** 

↓ condence high-
checkers vs low-
checkers 

- 

Ben Shachar 
et al. 

2013 47 HC; high 
& low OC 
tendencies 

General 
Knowledge 
Task 

== confidence high 
vs low OC 
tendencies 

+ 

Coles, 
Radomsky & 
Horng 

2006 S1: 51 HC 
S2: 81 HC 

Repeated 
Checking 
Task ** 

S1 & S2: ↓ 
confidence with 
repeated checking 

+ 

Cuttler et al. 2013 199 HC Prospective 
Memory 
Task 

↓ condence 
undermined group 

+ 

Fowle & 
Boschen 

2011 60 HC Repeated 
Cleaning 
Task ** 

no increase in 
confidence for 
repeatedly cleaned 
items, increase in 
confidence for 
non-repeatedly 
cleaned items 

+ 

Hauser et al. 2017 40 HC; high 
& low OC 
tendencies 

Global 
Motion 
Detection 
Task 

↓ metacognitive 
efficiency high 
compulsive group  

++ 

Lazarov et al. 2012 38 HC; high 
& low OC 
tendencies 

False 
Feedback 
Muscle 
Tension 
Task  

↓ condence high 
compulsive group 

+ 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Radomsky, 
Gilchrist & 
Dussault 

2006 55 HC Repeated 
Checking 
Task ** 

↓ condence with 
repeated checking 

+ 

Radomsky & 
Alcolado 

2010 62 HC Repeated 
Mental 
Checking 
Task ** 

↓ condence with 
repeated checking 

- 

Rouault, 
Seow, Gillan 
& Fleming 

2018 S1: 498 HC 
S2: 497 HC 

Perceptual 
Decision-
Making 
Task 

S1: no relationship 
OCD symptoms 
and confidence 
S2: no relationship 
OCD symptoms 
and confidence or 
metacognitive 
efficiency 
AD symptom 
dimension ↓ 
confidence and ↑ 
metacognitive 
efficiency, CIT 
symptom 
dimension ↑ 
confidence and ↓ 
metacognitive 
efficiency 

++ 
 
 
 
 

Van den Hout 
& Kindt 

2003a S1: 39 HC 
S2: 40 HC 

Repeated 
Checking 
Task ** 

S1 & S2: ↓ 
confidence with 
repeated checking 

+ 

Van den Hout 
& Kindt 

2003b 40 HC  Repeated 
Checking 
Task ** 
 
 
  

↓ condence with 
repeated checking 

+ 



Chapter 2 

49 
 

Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Zhang et al. 2017 S1: 30 HC 
S2: 32 HC 

False 
Feedback 
Muscle 
Tension 
Task 

S1 & S2: ↓ 
confidence high 
compulsive group 

+ 

B) Overview of clinical OCD studies 

Boschen & 
Vuksanovic 

2007 15 OCD, 40 
HC 

Repeated 
Checking 
Task ** 

↓ condence OCD 
vs HC 
↓ condence with 
repeated checking 

+ 

Bucarelli & 
Purdon 

2016 30 OCD, 18 
anxious 
controls 

Repeated 
Checking 
Task ** 

== confidence 
OCD vs anxious 
controls 

- 

Cougle, 
Salkovskis & 
Wahl 

2007 39 OCD 
checkers, 20 
OCD non-
checkers, 
22 anxious 
controls, 69 
HC 

Memory 
Task 

↓ condence OCD 
vs HC and anxious 
controls 

- 

Dar et al. 2000 20 OCD 
checkers, 29 
PD, 23 HC 

General 
Knowledge 
Task 

↓ condence OCD 
vs HC 

+ 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Dar 2004 S1: 20 OCD 
checkers, 20 
PD, 20 HC 
S2: 15 OCD 
checkers, 15 
HC 
S3: 6 OCD 
checkers, 6 
HC 

General 
Knowledge 
Task 

S1, S2 & S3: ↓ 
confidence OCD vs 
both control 
groups 
S1, S2 & S3: ↓ 
confidence with 
repeated checking 

+ 

Foa et al. 1997 15 OCD, 15 
HC 

Memory 
Task 

↓ condence OCD 
vs HC 

+ 

Hermans et 
al. 

2008 16 OCD, 16 
clinical 
controls, 16 
HC 

Repeated 
Actions 
Task ** 

↓ condence OCD 
vs both control 
groups 

- 

Karadag et al. 2005 32 OCD, 31 
HC 

Memory 
Task 

↓ condence OCD 
vs HC 

+ 

Lazarov et al. 2014 20 OCD, 20 
anxious 
controls, 20 
HC 

False 
Feedback 
Muscle 
Tension 
Task 

↓ condence OCD 
vs HC and anxious 
controls 

+ 

MacDonald 
et al. 

1997 10 OCD 
checkers, 10 
OCD non-
checkers, 10 
HC 
 
 
 
 
 
 
  

Memory 
Task 

↓ condence OCD 
checkers vs non-
checkers and HC 

+ 



Chapter 2 

51 
 

Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

McNally & 
Kohlbeck 

1993 12 OCD 
checkers, 12 
OCD non-
checkers, 12 
HC 

Reality 
Monitoring 
Task 

↓ condence OCD 
vs HC 

+ 

Moritz, 
Jacobsen, 
Willenborg, 
Jelinek & 
Fricke 

2006 17 OCD 
checkers, 10 
OCD non 
checkers, 51 
HC 

Source 
Memory 
Task 

== confidence 
OCD vs HC 

+ 

Moritz, Wahl, 
Zurowski, 
Jelinek, Hand 
& Fricke 

2007 28 OCD, 28 
HC 

Memory 
Task ** 

↓ condence OCD 
vs HC under high 
responsibility 

+ 

Moritz, Kloss, 
von 
Eckstaedt & 
Jelinek 

2009 43 OCD, 46 
HC 

Memory 
Task 

== confidence 
OCD vs HC 

+ 

Moritz, Ruhe, 
Jelinek & 
Naber 

2009 32 OCD, 32 
HC 

Memory 
Task 

== confidence 
OCD vs HC 

+ 

Moritz et al. 2011 30 OCD, 20 
HC 

Memory 
Task 

== confidence 
OCD vs HC 

+ 

Moritz & 
Jaeger 

2018 26 OCD, 21 
HC 

Memory 
Task 

↓ condence OCD 
vs HC 

+ 

Radomsky, 
Rachman & 
Hammond 

 

 

 
 

2001 11 OCD Repeated 
Checking 
Task **  

↓ condence 
under high 
responsibility 
 
 
 
  

- 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Tekcan, 
Topçuoglu & 
Kaya 

2007 25 OCD 
checkers, 16 
OCD non-
checkers, 27 
HC 

Memory 
Task 

== confidence 
OCD vs HC 

+ 

Tolin et al. 2001 14 OCD, 14 
anxious 
controls, 14 
HC 

Repeated 
Memory 
Task ** 

↓ condence OCD 
vs both control 
groups with 
repetition 

+ 

Tuna, Tekcan 
& Topçuoglu 

2005 17 OCD, 16 
subclinical 
checkers, 15 
HC 

Memory 
Task 

↓ condence OCD 
vs HC 

- 

Vaghi et al. 2017 24 OCD, 25 
HC 

Predictive 
Inference 
Task 

== confidence 
OCD vs HC 

- 

Zitterl et al. 2001 27 OCD, 27 
HC 

Memory 
Task 

↓ condence OCD 
vs HC 

- 

C) Overview of subclinical schizophrenia studies 

Koren et al. 2017 61 help 
seeking 
adolescents 

Verbal 
Memory, 
Executive – 
and Social 
Functioning 
Tasks 
 
 
 
 
 
 
 

Positive 
relationship self-
disturbance and 
meta-cognitive 
control 
 

+ 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Laws & Bhatt 2005 105 HC Memory 
Task 

↑ condence in 
errors high 
delusion-
proneness 
↓ discrimination 
high delusion-
proneness 

- 

McKay, 
Langdon & 
Coltheart 

2006 58 HC Reasoning 
Task 

↑ condence high 
delusion-
proneness 

- 

Moritz, 
Göritz, van 
Quaquebeke, 
Andreaou, 
Jungclaussen 
& Peters 

2014 2008 HC Visual 
Perception 
Task 

↑ condence in 
errors high 
paranoia  
↓ discrimination 
high paranoia 

- 

Moritz et al. 2015 
 
 

2321 HC General 
Knowledge 
Task** 

↑ confidence in 
errors high 
paranoia, 
exaggerated with 
high competence 
or easy questions 
↓ discrimination 
high paranoia, 
exaggerated with 
high competence 
or easy questions 
 
 
 
 
 
 
 
 

- 

2
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Rouault, 
Seow, Gillan 
& Fleming 

2018 S1: 498 HC 
S2: 497 HC 

Perceptual 
Decision-
Making 
Task 

S1: No relationship 
SCZ symptoms 
and confidence 
S2: No relationship 
SCZ symptoms 
and confidence or 
metacognitive 
efficiency 
AD symptom 
dimension ↓ 
confidence and ↑ 
metacognitive 
efficiency, CIT 
symptom 
dimension ↑ 
confidence and ↓ 
metacognitive 
efficiency 

++ 

Scheyer et al. 2014 78 help 
seeking 
adolescents 

Verbal 
memory, 
executive 
functioning 
& social 
functioning 
tasks 

== confidence high 
vs low psychosis-
prone groups 

+ 

Warman 2008 70 HC Decision-
making task 

↑ condence high 
delusion-
proneness 

- 

 
D) Overview of clinical schizophrenia studies 

Bacon et al. * 2001 19 SCZ, 19 
HC 

General 
Knowledge 
Task 

== confidence SCZ 
vs HC 
↓ FOK ratings SCZ 
vs HC 

- 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Bacon & 
Izaute* 

2009 21 SCZ, 21 
HC 

Memory 
Task 

↓ FOK ratings SCZ 
vs HC 

- 

Bhatt, Laws & 
McKenna 

2010 25 SCZ, 20 
HC 

False-
Memory 
Task 

↑ confidence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Bruno et al. 2012 28 SCZ, 14 
HC 

Emotional 
and Non-
Emotional 
WCST 

== discrimination 
SCZ vs HC, but ↓ 
metacognitive 
performance SCZ 
vs HC 

+ 

Davies et al. 2018 41 FEP, 21 
HC 

Perceptual 
Decision-
Making 
Task 

↓ meta-d’ FEP vs 
HC 

++ 

Eifler et al. 2015 32 SCZ, 25 
HC 

False-
memory 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Eisenacher et 
al. 

2015 34 at risk 
patients, 21 
FEP, 38 HC 

Verbal 
Recognition 
Task 

↑ confidence in 
errors at risk and 
FEP vs HC 
↓ discrimination at 
risk and FPE vs HC 

+ 

Gaweda, 
Moritz & 
Kokoszka 

2012 32 SCZ, 32 
HC 

Source-
Monitoring 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 
 
 
 
 
 

- 

2
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Gaweda et al. 2018 36 at risk 
patients, 25 
FEP, 33 HC 

Source-
Monitoring 
Task 

↑ condence in 
errors UHR and 
FEP vs HC 
↓ discrimination 
UHR and FEP vs 
HC 

- 

Kircher et al. 2007 27 SCZ, 19 
HC 

False-
Memory 
Task 

↑ condence 
(more so in errors) 
SCZ vs HC 

+ 

Köther et al. 2012 76 SCZ, 30 
HC 

Emotion 
Recognition 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Moritz & 
Woodward 

2002 23 SCZ, 15 
HC 

Source-
Monitoring 
Task 

↑ confidence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Moritz, 
Woodward & 
Ruff 

2003 30 SCZ, 21 
HC 

Source-
Monitoring 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Moritz et al. 2004 20 SCZ, 20 
HC 

False-
Memory 
Task 

↑ confidence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Moritz et al. 2005 30 SCZ, 15 
HC 

Source-
Monitoring 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 
 
 
 
 

- 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Moritz & 
Woodward 

2006b 31 SCZ, 48 
psychiatric 
controls, 61 
HC 

Source-
Monitoring 
Task 

↑ condence in 
errors SCZ vs both 
control groups 
↓ discrimination 
SCZ vs both 
control groups 

+ 

Moritz, 
Woodward & 
Rodriguez-
Raecke 

2006 35 SCZ, 34 
HC 

False-
Memory 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Moritz, 
Woodward & 
Chen 

2006 30 FEP, 15 
HC 

Source-
Monitoring 
Task 

↑ condence in 
errors FEP vs HC 
↓ discrimination 
FEP vs HC 

- 

Moritz et al. 2008 68 SCZ, 25 
HC 

False Visual 
Memory 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

Moritz et al. 2012 23 SCZ, 29 
HC 

Emotion 
Perception 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

+ 

Moritz, 
Ramdani, 
Klass, et al. 

2014 55 SCZ, 58 
OCD, 45 HC 

Perceptual 
Decision-
Making 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

+ 

Peters et al. 2007 23 SCZ, 20 
HC 

False-
Memory 
Task 

↑ condence in 
errors HC vs SCZ 
↓ discrimination 
SCZ vs HC 
 
 
 

+ 

2
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Peters et al. 2013 27 SCZ, 24 
HC 

Emotional 
Memory 
Task 

↑ condence in 
errors SCZ vs HC 
↓ discrimination 
SCZ vs HC 

- 

E) Overview of subclinical addiction studies 

Goodie 2005 S1: 200 HC 
S2: 384 HC 

General 
Knowledge 
Task 

S1 & S2: ↑ 
overconfidence 
problem and 
possible 
pathological 
gamblers 

- 

Lakey, 
Goodie & 
Campbell 

2007 221 HC General 
Knowledge 
Task 
& Iowa 
Gambling 
Task 

↑ overconfidence 
problem and 
possible 
pathological 
gamblers 

- 

Rouault, 
Seow, Gillan, 
Fleming 

2018 S2: 497 HC  Perceptual 
Decision-
Making 
Task 

S2: No relationship 
alcoholism 
symptoms and 
confidence or 
metacognitive 
efficiency 
AD symptom 
dimension ↓ 
confidence and ↑ 
metacognitive 
efficiency, CIT 
symptom 
dimension ↑ 
confidence and ↓ 
metacognitive 
efficiency 
 

++ 



Chapter 2 

59 
 

Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

F) Overview of clinical addiction studies 

Brevers et al. 2014 25 GD, 25 
HC 

Grammar 
Task 

Disconnection 
confidence and 
accuracy GD 

- 

Le Berre et 
al.* 

2010 28 AUD, 28 
HC 

Memory 
Task 

↑ FOK judgments 
AUD vs HC 

- 

Mintzer & 
Stitzer 

2002 18 MMP, 21 
HC 

Memory 
Task 

↑ condence for 
errors MMP vs HC 
↓ discrimination 
MMP vs HC 

- 

Moeller et al. 2016 14 remitted 
CUD, 8 
active CUD, 
13 HC 

Perceptual 
Decision-
Making 
Task 

↓ metacognitive 
efficiency active 
CUD vs remitted 
CUD and HC 

++ 

Sadeghi et al. 2017 23 MMP, 24 
HC 

Memory & 
Perceptual 
Task 

↓ metacognitive 
efficiency MMP vs 
HC perceptual 
task, but not 
memory task 

++ 

G) Overview of subclinical depression/anxiety studies 

Dunning & 
Story 

1991 S1: 164 HC 
S2: 259 HC 

Future 
Prediction 
Task 

S1 & S2: ↑ 
confidence 
depressed vs non-
depressed 
 
 
 
 

- 

     
 
 

 

2
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Quiles, 
Prouteau & 
Verdoux 

2015 50 HC WCST, Digit 
Span, 
Memory 
Task & 
Emotion 
Recognition 
Task 

No relationship 
confidence and 
depression/anxiety 
symptoms 

- 

Rouault, 
Seow, Gillan, 
Fleming 

2018 S1: 498 HC 
S2: 497 HC 

Perceptual 
Decision-
Making 
Task 

S1: Negative 
relationship 
confidence levels 
and 
depression/anxiety 
symptoms 
S2: Negative 
relationship 
confidence levels 
and anxiety 
symptoms, no 
relationship with 
metacognitive 
efficiency 
AD symptom 
dimension ↓ 
confidence and ↑ 
metacognitive 
efficiency. CIT 
symptom 
dimension ↑ 
confidence and ↓ 
metacognitive 
efficiency 
 
 
 
 
 
 

++ 
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Soderstrom, 
Davalos & 
Vásquez* 

2011 97 HC Memory 
Task 

↓ calibration based 
on JOL mildly 
depressed vs HC 
== calibration 
based on JOL 
moderate 
depressed vs HC 

- 

Stone, Dodrill 
& Johnson 

2001 200 HC General 
Knowledge 
Task 

↓ condence 
depressed group 

+ 

 
H) Overview of clinical depression/anxiety studies 

Bucarelli & 
Purdon 

2016 30 OCD, 18 
ANX 

Repeated 
Checking 
Task 

== confidence 
ODC vs ANX 

- 

Dar et al. 2000 20 OCD 
checkers, 29 
PD, 23 HC 

General 
Knowledge 
Task 

== confidence PD 
vs OCD and HC 

+ 

Fieker et al. 2016 45 MDD, 30 
HC 

Emotional 
Perception 
Task 

Negative 
correlation 
confidence and 
depression 
severity 

+ 

Fu et al. 2005 15 MDD, 15 
recovered 
MDD 
patients, 22 
HC 

Memory, 
General 
Knowledge, 
Perceptual 
& Social 
Judgment 
Task 
 
 
 

↓ condence MDD 
vs HC 
== confidence 
recovered MDD vs 
HC and MDD 

- 

2
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Authors Year Sample size 
and study 
populations 

Task Results Performance 
bias free 

Hancock, 
Moffoot & 
O’Carroll 

1996 14 MDD, 14 
recovered 
MDD 
patients, 14 
HC 

General 
Knowledge 
Task 

↓ condence for 
correct answers in 
MDD vs HC  
== confidence 
recovered MDD vs 
HC 

+ 

Lazarov et al. 2014 20 OCD, 20 
ANX, 20 HC 

False 
Feedback 
Muscle 
Tension 
Task 

↓ condence OCD 
vs ANX and HC 

+ 

Szu-Ting Fu 
et al. 

2012 23 MDD, 22 
dysphoria 
patients, 32 
HC 

Memory 
Task 

↓ condence MDD 
vs HC and 
dysphoria 

- 

Tolin et al. 2001 14 OCD, 14 
ANX, 14 HC 

Memory 
Task 

↓ condence ANX 
vs HC 

+ 

This table shows a summary of all studies assessing confidence in the different psychiatric 
disorders included in this review. In the various subparts, studies using the following populations 
are described: A) subclinical OCD, B) clinical OCD, C) subclinical schizophrenia, D) clinical 
schizophrenia, E) subclinical addiction, F) clinical addiction, G) subclinical depression/anxiety 
and H) clinical depression/anxiety. The results are schematically represented with ↓ signaling a 
significant decrease, ↑ significant increase and == no differences. Regarding the performance 
bias, the signs indicate the following: ++: Study used bias free measures such as meta-d’ and/or 
actively kept performance equal between groups (e.g., by using a staircase procedure), +: The 
assessed groups had equal levels of performance, -: Study did not use bias free measures and 
did not control for performance differences between groups, or did not report accuracy 
measures. For more information about the most frequently used tasks, see Table 1. The asterisks 
represent the following: *: This study used a prospective confidence measure, **: This study has 
taken into account moderators (i.e., OCD-relevant contexts, responsibility level or subjective 
competence). Abbreviations: HC = healthy controls, OC = obsessive-compulsive, OCD = 
obsessive-compulsive disorder, AD = anxious-depressive, CIT= compulsive behavior and 
intrusive thought, PD = panic disorder, SCZ = schizophrenia, FEP = first-episode psychosis, FOK 
= feeling of knowing, GD = gambling disorder, AUD = alcohol use disorder, MMP = methadone 
maintenance patients, CUD = cocaine use disorder, ANX = anxiety disorder, MDD = major 
depressive disorder, S1 = study 1, S2 = study 2. 
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Abstract 

A growing body of evidence suggests that, during decision-making, BOLD signal in the 
ventromedial prefrontal cortex (VMPFC) correlates both with motivational variables – 
such as incentives and expected values – and metacognitive variables – such as 
confidence judgments, which reflect the subjective probability of being correct. At the 
behavioral level, we recently demonstrated that the value of monetary stakes bias 
confidence judgments, with gain (respectively loss) prospects increasing (respectively 
decreasing) confidence judgments, even for similar levels of difficulty and 
performance. If and how this value-confidence interaction is reflected in the VMPFC 
remains unknown. Here, we used an incentivized perceptual decision-making fMRI task 
that dissociates key decision-making variables, thereby allowing to test several 
hypotheses about the role of the VMPFC in the value-confidence interaction. While our 
initial analyses seemingly indicate that the VMPFC combines incentives and 
confidence to form an expected value signal, we falsified this conclusion with a 
meticulous dissection of qualitative activation patterns. Rather, our results show that 
strong VMPFC confidence signals observed in trials with gain prospects are disrupted 
in trials with no – or negative (loss) monetary prospects. Deciphering how decision 
variables are represented and interact at finer scales seems necessary to better 
understand biased (meta)cognition. 
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Introduction 

Over the past decades, a growing number of neurophysiological studies in human and 
non-human primates have established that the neural signals recorded during learning 
and decision-making tasks in the orbito-medial parts of the prefrontal cortex (OMPFC) 
– the medial orbitofrontal cortex (OFC) and the ventromedial prefrontal cortex (VMPFC) 
– correlate with key concepts from theories of motivation and decision-making (Kable 
& Glimcher, 2009; Padoa-Schioppa, 2007; Rangel & Hare, 2010). For instance, in 
Pavlovian conditioning tasks, activity of neurons in the non-human primate OFC 
correlate with the anticipatory value of upcoming rewards, with neural activity 
predicting the monkeys’ subjective preferences (Tremblay & Schultz, 1999). In 
economic decision-making tasks, neuronal activity in the same region of the OFC 
correlates with the subjective value of available options (Padoa-Schioppa & Assad, 
2006). In humans, similar results have been derived from functional neuroimaging 
studies. Blood oxygen level-dependent  (BOLD) signal in the VMPFC scales with the 
anticipation of upcoming rewards (Kahnt et al., 2011; Knutson et al., 2003); the 
subjective pleasantness and desirability attributed to different stimuli (Lebreton et al., 
2009); the willingness to pay for different types of goods (Chib et al., 2009; Levy & 
Glimcher, 2011; Plassmann et al., 2007), and the expected value (EV) of prizes, 
performance incentives and economic bundles such as lotteries (Gläscher et al., 2009; 
Hare et al., 2008; Knutson et al., 2005; McNamee et al., 2013). Overall, together with 
the midbrain and the ventral striatum (VS), the VMPFC seems to form a ‘brain valuation 
system’ (Bartra et al., 2013; Haber & Behrens, 2014; Pessiglione & Lebreton, 2015), 
whose activity automatically indexes the value of available options so as to guide value-
based decision-making (Lebreton et al., 2009; Levy & Glimcher, 2011) and motivate 
motor and cognitive performance (Pessiglione & Lebreton, 2015). 

Recently, a set of human neurophysiological studies have suggested that activity in the 
VMPFC is also related to metacognitive processes (Fleming, Huijgen, et al., 2012; 
Vaccaro & Fleming, 2018). In particular, both single neuron and BOLD activity in the 
VMPFC correlates with participants’ confidence in their own judgments and choices 
(De Martino et al., 2012; Lebreton et al., 2015; Lopez-Persem et al., 2020; Shapiro & 
Grafton, 2020). Confidence is a metacognitive variable that can be defined as one’s 
subjective estimate of the probability of a given choice being correct (Fleming & Daw, 
2017; Pouget et al., 2016). Just like values, confidence judgments seem to be 
automatically represented in the VMPFC, for different types of judgments and choices 
(Abitbol et al., 2015; Lopez-Persem et al., 2020; Morales et al., 2018). Confidence 
signals could be useful for the flexible adjustment of behavior – such as monitoring and 
reevaluating previous decisions (Folke et al., 2017), tracking changes in the 
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environment (Heilbron & Meyniel, 2019; Vinckier et al., 2016), adapting future decisions 
(Boldt et al., 2019; Folke et al., 2017), or arbitrating between different strategies (Daw 
et al., 2005; Donoso et al., 2014).  

Interestingly, at the behavioral level, values and confidence seem to interact. For 
instance, a handful of studies in psychology and economics have documented that 
positive incentive values, operationalized as prospects of monetary bonuses, increase 
subjective estimates of confidence (Giardini et al., 2008). Similar confidence boosts 
have been reported with higher state values, operationalized as positive incidental 
psychological states such as elevated mood (Koellinger & Treffers, 2015), absence of 
worry (Massoni, 2014) and emotional arousal (Allen et al., 2016; Jönsson et al., 2005; 
Kuhnen & Knutson, 2011). Recently, we designed an incentivized perceptual decision-
making task to demonstrate that monetary incentives bias confidence judgments, with 
gain (respective loss) prospects increasing (respectively decreasing) confidence 
judgments, even for similar levels of difficulty and performance (Lebreton et al., 2018). 
This result was also replicated in a reinforcement-learning context (Lebreton, Bacily, et 
al., 2019; C. C. Ting et al., 2020). We explicitly hypothesized that this interaction would 
stem from the concurrent neural representation of – hence putative interaction 
between – incentive values and confidence in the VMPFC (Lebreton et al., 2018).  

Here, we used a functional neuroimaging adaptation of our original perceptual 
decision-making paradigm that allows for investigation of the overlap in neural 
correlates between incentive value and confidence (Lebreton et al., 2018). Our first set 
of analyses did not show the hypothesized overlap of incentive value and confidence 
signals in the VMPFC at the expected statistical threshold (p < 0.05 whole-brain 
corrected family wise error (FWE) at the cluster level), nor in other regions of interest 
(ROI) that have been linked with value, motivation and confidence in the past - such as 
the VS and the anterior cingulate cortex (ACC). Therefore, we formulated an alternative 
hypothesis, positing that VMPFC integrates confidence and incentive signals into a 
probabilistic EV signal. We ran several quantitative and qualitative analyses that 
thoroughly compared the relative merits of these different hypotheses for the neural 
basis of the value-confidence interaction. Our results ultimately depict a complex 
picture, suggesting that motivational signals (notably prospects of loss) can disrupt 
metacognitive signals in the VMPFC. 
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Results 

To investigate the neurobiological basis of the interactions between incentives and 
confidence, we modified the task used in Lebreton et al. (2018) to make it suitable for 
functional magnetic resonance imaging (fMRI) (Figure 1A). Basically, this task is a 
simple perceptual task (contrast discrimination), featuring a 2-alternative forced 
choice followed by a confidence judgment. Then, we experimentally manipulated the 
available monetary outcomes, defining several incentive conditions: at each trial, 
participants could win (gain context) or lose (loss context) points – or not gain or lose 
anything (neutral context) – depending on the correctness of their choice. Incentives 
were presented in an interleaved fashion, in order to avoid contextualization of 
outcomes (rather than in a blocked design, where absence of gain could be reframed 
as relative loss in a gain block, or vice versa). Importantly, this incentivization was 
implemented after the moment of choice and before confidence rating. Consequently, 
by design, there should not be any incentivization effects on either accuracy or reaction 
times as they develop during the choice. Note that this design corresponds to the 
simplest implementation of the task – corresponding to Experiment 2 in Lebreton et al. 
(2018) –, which otherwise conditioned monetary outcomes to confidence rating 
precision rather than choice accuracy (for details see (Lebreton et al., 2018)). Yet, our 
previous results suggested that this task still reveals an effect of incentives on 
confidence, while keeping instructions simpler – a desirable feature especially for 
clinical and fMRI studies. 

 

Behavioral results  

To start, we verified that our task generated the incentive-confidence interaction at the 
behavioral level. First, using an approach similar to Lebreton et al. (2018), we used 
linear mixed-effect models to evaluate the effects of our experimental manipulation of 
incentives (i.e. the incentive condition) on behavioral variables (see Methods). More 
specifically, we defined and tested the incentives’ biasing effects (i.e., the net incentive 
value, or in other words, the linear effect of incentives coded as -1, 0 and +1) and 
incentives’ motivational effects (i.e., the absolute incentive value, or in other words, the 
mere presence of incentives, indicating whether something is at stake coded as 0 and 
+1. Replicating our previous results, we found a significant positive effect of incentive 
net value on confidence (β = 0.78 ± 0.32, t4317 = 2.43, p = 0.015; Figure 1B, 1C) and no 
effect of incentive absolute value (β = -0.32 ± 0.55, t4317 = -0.58, p = 0.565; Figure 1C). 
This result alone validates the presence of an incentive-confidence interaction at the 
behavioral level. Importantly, this effect was not driven by any net incentive value 
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effects on accuracy or reaction time (RT) (accuracy: β = 0.38 ± 0.93, t4317 = 0.41, p = 
0.685; RT: β = 13.75 ± 19.22, t4317 = 0.72, p = 0.474). Moreover, we did not find evidence 
for an effect of absolute incentive value on both accuracy and RT (accuracy: β = 1.86 ± 
1.45, t4317 = 1.28, P = 0.199; RT: β = -25.24 ± 29.17, t4317 = -0.87, p = 0.387). Next, to 
confirm the robustness of our main effect of net incentive value on confidence, we ran 
several full linear mixed-effects models, which included additional control variables 
that could influence confidence as well (evidence, accuracy, reaction times, et cetera, 
see Appendix A). Overall, the incentive-confidence interaction remained significant 
after accounting for those other potential sources of biases and confounds. 

At last, we tested for an incentive effect on metacognitive sensitivity – a metric that 
measures the efficacy with which subjects discriminate between correct and incorrect 
answers using their confidence ratings (see Methods for details on its’ computation). 
Replicating earlier findings (Lebreton et al., 2018), we found that incentive condition did 
not have a significant effect on metacognitive sensitivity (F(2,62) = 0.25, p = 0.783. Loss: 
5.5973 ± 1.2106, neutral: 4.8572 ± 1.0515, gain: 5.2797 ± 0.8692). 
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Figure 1: Experimental Design and Behavioral Results. a) Experimental paradigm. Participants 
viewed two Gabor patches on both sides of the screen (150 ms) and then chose which had the 
highest contrast (left/right, self-paced). After a jitter of a random interval between 4500 to 6000 
ms, the incentive condition was shown (900 ms; green frame for win trials, grey frame for neutral 
trials, red frame for loss trials). Afterwards, participants were asked to report their confidence in 
the earlier made choice on a scale ranging from 50% to 100% with steps of 5%. The initial position 
of the cursor was randomized between 65% and 85%. Finally, subjects received feedback. The 
inter trial interval (ITI) had a random duration between 4500 and 6000 ms. The calibration session 
only consisted of Gabor discrimination, without confidence rating, incentives or feedback and 
was used to adjust difficulty so that every individual reached a performance of 70%. b) Behavioral 
results. Individual-averaged accuracy (left), reaction times (middle) and confidence (right) as a 
function of incentive condition (-100/red, 0/grey, +100/green). Colored dots represent individuals 
(N=32), grey lines highlight within subject variation across conditions. Error bars represent 
sample mean ± standard error of the mean. Note that for confidence and accuracy, we computed 
the average per incentive level per individual, but that for reaction times, we computed the 
median for each incentive condition rather than the mean due to their skewed distribution. c) 
Generalized linear mixed-effect regression (GLMER) results. Graph depict fixed-effect regression 
coefficients (β) for incentive condition (Inc.) and absolute incentive condition (|Inc.|) predicting 
performance (top), reaction-times (middle) and confidence (bottom). Error bars represent 
standard errors of fixed effects. * p < 0.05 
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fMRI results 

Having established the presence of a robust confidence-incentive interaction at the 
behavioral level, we next turned to the analysis of the functional neuroimaging data. 
Critically, our task allowed us to temporally distinguish the moment of stimulus 
presentation and choice – where the decision value and an implicit estimation of 
(un)certainty are expected to build up – from the incentive presentation and confidence 
rating moment – where the explicit, metacognitive confidence signal is expected to 
interact with the incentive (Figure 2A,B). 

 

 
Figure 2: Overview of General Linear Models for fMRI Analyses. a-b) Events of interest. The 
timeline depicts the succession of events within a trial a) Yellow boxes highlight the two 
events/timing of interest (stimulus/choice and incentive/confidence), that are modelled as stick 
function for the functional magnetic resonance imaging (fMRI) analysis. We also modelled the 
feedback event as a stick function. c) general linear models (GLMs) parametric regressors 
specification. The graph displays the different combination of parametric modulators of each 
event of interest for all GLMs used to analyze the fMRI data. 

 

BOLD signal in the VMPFC correlates significantly with early certainty and incentives 
but weakly with confidence 

Our original hypothesis proposes that incentives bias confidence because those two 
variables are both correlated to activity in the same brain area – presumably the VMPFC 
(De Martino et al., 2012; Lebreton et al., 2015). To test this hypothesis, we built a first 
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fMRI GLM (GLM1) which modeled 1) early certainty during stimulus and choice, and 2) 
both incentives and confidence ratings during incentive/rating (Figure 2C). Early 
certainty was defined and computed as the precursor of confidence (i.e., an incentive 
bias-free signal of confidence), that builds up before the commitment to a choice (see 
Methods for details). During choice, early certainty positively correlated with activation 
in the VMPFC and the posterior cingulate cortex (PCC) (Figure 3A). This replicates 
several studies that have reported an early and automatic (i.e., without explicit 
instructions) encoding of confidence in the VMPFC (De Martino et al., 2017; Lebreton 
et al., 2015; Shapiro & Grafton, 2020). Negative correlations of early certainty were 
observed in a widespread network including the bilateral dorsolateral prefrontal cortex 
(DLPFC) and rostro-lateral prefrontal cortex (RLPFC), bilateral anterior insula, right 
putamen, right inferior frontal gyrus, supplementary motor area (SMA), mid- and 
anterior cingulate cortex and bilateral inferior parietal lobe. This large network has 
already been implicated in uncertainty and metacognition (Vaccaro & Fleming, 2018). 

During the incentive/rating moment, we found positive correlations between incentive 
value and activity in the VMPFC - extending to clusters in the dorsomedial prefrontal 
cortex (DMPFC) (Figure 3B). This is in line with our hypothesis and with a large body of 
neuro-economics literature (Bartra et al., 2013). A small cluster was detected in the 
occipital lobe, which negatively correlated with incentives.  

Finally, regarding subjective confidence, we found significant positive effects in a large, 
lateralized visuo-motor network including the left primary motor cortex, left putamen 
and left para-hippocampal gyrus, as well as the right cerebellum and right visual cortex 
(Figure 3C). All those activations were mirrored in the negative correlation with 
confidence (although with lower and sometimes subthreshold significance), 
suggesting these brain regions are part of the visuo-motor network that processes the 
movement of the cursor on the rating scale (remember that movements of the cursor 
were operationalized with the left (respective right) index finger to move the cursor 
toward the left (respective right). 

Outside those visuo-motor areas, activity in a large cluster in the dorsal anterior 
cingulate cortex (dACC) and the mid cingulate cortex (MCC) was found to positively 
correlate with confidence. Interestingly, an adjacent region of the dACC negatively 
correlated with early certainty in the choice period (Figure 3A). 

To our surprise, and in contradiction with our hypothesis, no whole-brain significant 
cluster was found in the VMPFC at our a priori defined statistical threshold. There were, 
however signs of sub-threshold activations (Figure 3C). 
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As observed with confidence activations, motor-related activity can be an important 
confound. To ensure that our activity patterns of interest (i.e., early certainty, incentive 
and confidence) were not related to motor processes, we replicate our analyses using 
an exclusive motor-related mask, generated from large-scale automated meta-
analyses (see Methods for more details). Importantly, those control analyses revealed 
that most activations – with the exception of the visuo-motor activations identified in 
the confidence activation maps – remain significantly associated to our variables of 
interest (for whole-brain activation tables when using this exclusive mask, see 
Appendix A, Table A13). 

Figure 3: Whole Brain fMRI Results. a-c) Whole brain statistical blood-oxygen level dependent 
(BOLD) activity correlating with general linear model 1 (GLM1) ‘early certainty’ (a), incentives (b) 
and confidence (c). d) Whole brain statistical maps of BOLD activity correlating with GLM3 
‘expected value’.  N=30. Unless otherwise specified, all displayed cluster survived p < 0.05 family 
wise error (FWE) cluster correction. Voxel-wise cluster-defining threshold was set at p < 0.001, 
uncorrected. Red/yellow clusters: positive activations. Blue clusters: negative activations. For 
whole-brain activation tables see Appendix A, Table A12. 

 

Accounting for incentive bias in confidence does not restore VMPFC confidence 
activations 

Next, we attempted to understand the absence of strong correlations with confidence 
in the VMPFC, despite the same region robustly encoding early certainty and incentives 
(i.e., precursors of confidence). We reasoned that because confidence is biased by 
incentive, the shared variance between those two variables could have decreased our 
chances to reveal clear confidence signals during confidence ratings. We therefore 
built two control GLMs, which differed in how the incentive/rating period was modelled 
(Figure 2C): GLM2a only included confidence as a parametric modulator, while GLM2b 
included incentive and early certainty (i.e., the precursor of confidence devoid of 
incentive shared variance). We defined an anatomical VMPFC ROI (see Methods and 
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Figure 4A), and extracted individual standardized regression coefficients (t-values) 
corresponding to the confidence variable in those three GLMs (GLM1, GLM2a, GLM2b) 
(see Methods). We then tested whether the difference in the GLM specifications had an 
impact on these activations at the rating period (GLM1 and 2a: confidence; GLM2b: 
certainty) using repeated measure ANOVAs. Results showed that activations for 
GLM2a-confidence and GLM2b-early certainty during incentive/rating period were 
indistinguishable from GLM1-confidence (ANOVA, the main effect of GLMs: F(2,29) = 
0.68; p = 0.509), falsifying the hypothesis that the weak confidence activations in 
VMPFC observed with GLM1 were due to an ill-specified GLM.  

BOLD signal in the VMPFC strongly correlates with expected value 

Having established that BOLD activity in the VMPFC only weakly correlates with 
confidence after the incentive display, we proposed an alternative hypothesis – namely 
that the VMPFC encodes a signal commensurate to an EV. The rationale of this 
hypothesis is twofold. First, because confidence represents a subjective probability of 
being correct, it may be combined with information about the prospective monetary 
bonus to generate a representation of EV, once this reward information is revealed. 
Second, activity in the VMPFC has been repeatedly shown to correlate with EV in 
different contexts (lotteries, et cetera) (Gläscher et al., 2009; Hare et al., 2008; Knutson 
et al., 2005; McNamee et al., 2013). To test this hypothesis, we built another fMRI GLM 
similar to the previous ones, but that instead modeled EV at the time of incentive/rating 
(GLM 3; see Figure 2C). 

Whole-brain results showed massive positive correlations between EV and signal in the 
VMPFC stretching into the anterior medial prefrontal cortex, as well as the ventral and 
dorsal part of the anterior cingulate cortex and the mid cingulate cortex (Figure 3D, 
Appendix A, Table A12). There were no activation clusters negatively related to EV. 

BOLD signal in the VMPFC correlates better with expected value than with other 
variables  

Although these results seem to validate our second hypothesis, our observation of 
more activations (wider cluster, lower p-values) at the whole-brain level for EV than for 
confidence does not constitute a formal statistical test that VMPFC signals might rather 
correlate with EV than with confidence. These results may be owing to incentives and 
EV being highly correlated – in other words, VMPFC activations to EV could simply be a 
result of VMPFC activations to incentives. To rule out these hypotheses, we built an 
additional GLM (GLM4), which only included incentive at the incentive/rating period 
(Figure 2C). Again, we extracted VMPFC individual standardized regression coefficients 
(t-values) corresponding to the early certainty, incentive and confidence-related 
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activations in all available GLMs. We tested whether the different specifications had an 
impact on those activations using repeated measure ANOVAs, and post-hoc t-tests 
(Figure 4, Table 1). Although activations for early certainty during choice moment were 
similar for all GLMs (ANOVA, main effect of GLM; F(4,29) = 0.24, p = 0.916; Figure 4B), 
GLM specification had an impact on both the incentive activations (ANOVA, main effect 
of GLM; F(3,29) = 10.67, p = 4.837×10-6; Figure 4C) and the confidence activations 
(ANOVA, main effect of GLM; F(3,29) = 3.22, p = 0.027; Figure 4D) during incentive/rating 
moment. In both cases, post-hoc t-tests showed that t-values extracted from the GLM3 
that related to the EV regressor were significantly higher than from other GLMs with a 
different coding of incentives (GLM1 vs GLM3: t29 = 3.90, p = 5.306×10-4; GLM2b vs 
GLM3: t29 = 3.38, p = 0.002 , GLM4 vs GLM3: t29 = 2.97, p = 0.006), and marginally higher 
from other GLMs with a different coding of confidence (GLM1 vs. GLM3: t29 = 1.92, p = 
0.064; GLM2a vs. GLM3: t29 = 1.72, p = 0.096; GLM2b vs. GLM3: t29 = 2.36, p = 0.025). 
Overall, these analyses suggest that the VMPFC combines incentive and confidence 
signals in the form of an EV signal.  

 

Figure 4: Activation in Ventromedial Prefrontal Cortex Across Models. a) Anatomical 
ventromedial prefrontal cortex (VMPFC) region of interest (ROI). b-d Comparison of VMPFC 
activations to different specifications of early certainty during choice moment (b), incentives 
during incentive/rating moment (c) and confidence during incentive/rating moment (d), as 
implemented in the different GLMs. Dots represent individual activations; bar and error bars 
indicate sample mean ± standard error of the mean. Grey lines highlight within subject variation 
across the different specifications. N=30. Cert: early certainty; Inc.: incentives; conf.: 
confidence; EV: expected value. Diamond-ended horizontal bars indicate the results of repeated-
measure ANOVAs. Dash-ended horizontal bars indicate the result of post-hoc paired t-tests. ~ p 
< 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001 
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Table 1: Comparison of ventromedial prefrontal cortex (VMPFC) parametric activity (t-
values) as a function of model specification (GLMs) 

The table reports descriptive and inferential statistics on VMPFC region of interest (ROI) 
parametric activations with three different variables of interest: early certainty effects at choice 
moment, incentive effects at rating moment and confidence effects at rating moment (see Figure 
4). Per effect of interest, results of one-sample t-tests against zero, repeated-measure (RM) 
ANOVAs on the main effect of GLMS, and post-hoc t-test results are shown. 

 

Qualitative falsification of the EV model of VMPFC activity 

At last, in order to confirm the conclusions drawn from our quantitative comparison of 
VMPFC activations, we ran a qualitative falsification exercise (Palminteri et al., 2017). 
Leveraging the factorial design of our experiment, we could draw qualitative patterns of 
activations that would be expected under different hypotheses underlying VMPFC 
activation (Figure 5A).  

To this end, we designed a final GLM (GLM5) that divided the task in two time points 
(stimulus/choice and incentive/rating), and three incentive conditions, and that 
incorporated a baseline and a regression slope with confidence judgment for all these 
events. We then extracted the VMPFC activations for all these regressors using our ROI, 
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0.52 ± 0.18 
t29 = 2.91 
p = 0.007 

0.53 ± 0.18 
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p = 0.007 

0.53 ± 0.18 
t29 = 2.93 
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In
ce

nt
iv

e 

GLM1  GLM2b GLM3 GLM4 
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0.33 ± 0.09 
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p = 1.981×10-4 

0.34 ± 0.09 
t29 = 3.68 
p = 9.433×10-4 

RM ANOVA  t-test 
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p = 4.837×10-6 
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GLM1 GLM2a GLM2b GLM3  
0.18± 0.08 
t29 = 2.14 
p = 0.041 

0.21 ± 0.09 
t29 = 2.30 
p = 0.028 

0.12 ± 0.09 
t29 = 1.35 
p = 0.187 

0.42 ± 0.10 
t29 = 4.26 
p = 1.981×10-4 

 

RM ANOVA  t-test 
[3 vs 1] 

t-test 
[3 vs 2a] 

t-test 
[3 vs 2b] 

F(3,29) = 3.22 
p = 0.027  

0.24 ± 0.13 
t29 = 1.92 
p = 0.064 

0.21 ± 0.12 
t29 = -1.72 
p = 0.096 

0.30 ± 0.13 
t29 = 2.36 
p = 0.025 
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and compared them with the theorized qualitative patterns we would expect if the 
VMPFC encoded one of these variables (Figure 5B,C and Table 2, Table 3). As expected, 
at the moment of the stimulus/choice, there was no effect of incentive conditions on 
VMPFC baseline activity, nor on its correlation with confidence – “slope” (ANOVA 
baseline: F(2,29) = 0.36, p = 0.701; ANOVA correlation with confidence: F(2,29) = 0.56, 
p = 0.574). Basically, the slopes were significantly positive in all three incentive 
conditions (Loss: t29 = 2.10, p = 0.045; Neutral: t29 = 2.43, p = 0.021; Gain: t29 = 3.04, p = 
0.005), confirming that the VMPFC encodes an early certainty signal. 

At rating moment, incentive conditions had an effect on both VMPFC baseline activity, 
and on the correlation of VMPFC activity with confidence (ANOVA baseline: F(2,29)= 
8.56, p = 5.543×10-4; ANOVA correlation with confidence: F(2,29)= 5.26, p = 0.008). 
Post-hoc testing revealed that VMPFC baseline activity was significantly larger in gain 
versus loss (t29 = 3.47, p = 0.002) and in gain versus neutral conditions (t29 = 3.17, p = 
0.004), but not in neutral versus loss condition (t29 = 0.43, p = 0.673) (see Table 3). This 
constitutes a deviation from a standard linear model of incentives, and suggest that 
different regions might process incentives in gains and loss contexts (Palminteri & 
Pessiglione, 2017). 

Moreover, we found that the correlation of VMPFC activity with confidence is 
significantly positive in the gain condition only (t29 = 3.29, p = 0.003), and not in the loss 
(t29 = -0.75, p = 0.457) nor neutral (t29 = 0.70, p = 0.491) conditions. The correlation with 
confidence was therefore significantly higher in gain versus loss (t29 = 3.13, p = 0.004) 
and in gain versus neutral conditions (t29 = 2.02, p = 0.053), but not in neutral versus loss 
condition (t29 = 1.03, p = 0.313). Although the absence of correlation in the neutral 
condition would be expected if the VMPFC encodes EV, the lack of correlation in the 
loss condition was not predicted by any of our models (Figure 5A). Because VMPFC 
confidence activations were robustly observed in the gain domain, as well as VMPFC 
early certainty activations in all three conditions, we suggest that the lack of VMPFC 
confidence activations in the neutral and loss conditions is a feature of the VMPFC 
signal, rather than a failure of our design to elicit those activations (e.g., due to limited 
statistical power or excessive statistical noise). 
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Figure 5: Activation in Ventromedial Prefrontal Cortex across Incentives and Timepoints. a) 
Qualitative ventromedial prefrontal cortex (VMPFC) activation patterns predicted under different 
models. The different boxes present how blood-oxygen level dependent (BOLD) signal should 
vary with increasing confidence in the three incentive conditions (green: +100; grey: 0; red: -100), 
under different hypotheses (i.e., encoding different variables), at different time points. Bar graphs 
in insets summarize these relationships as expected intercepts (or baseline – top) and slope 
(bottom). b-c) VMPFC region of interest (ROI) analysis (N=30). T-values corresponding to baseline 
and regression slope were extracted in the three incentive conditions, and at the two time-points 
of interest (b: stimulus/choice; c: incentive/rating). Dots represent individual activations; bar and 
error bars indicate sample mean ± standard error of the mean. Grey lines highlight within subject 
variation across the different incentive conditions. Diamond-ended horizontal bars indicate the 
results of repeated-measure ANOVAs. Dash-ended horizontal bars indicate the result of post-
hoc paired t-tests. ns: P>0.05; * P<0.05; ** P<0.01; *** P < 0.001 
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Table 2: Comparison of ventromedial prefrontal cortex (VMPFC) activity at choice moment 
(t-values), as a function of incentive condition 

 

 

 

 

 

 
The table reports descriptive and inferential statistics on VMPFC region of interest (ROI) 
parametric activations in our three incentive conditions during choice moment, for both baseline 
activity as well as the correlation with early certainty (i.e., slope) (see Figure 5B). Results of 
repeated measures (RM) ANOVAs and one-sample t-tests against 0 are shown. Inc. = incentive. 

 

Table 3: Comparison of ventromedial prefrontal cortex (VMPFC) activity at rating moment (t-
values), as a function of incentive condition 

The table reports descriptive and inferential statistics on VMPFC region of interest (ROI) 
parametric activations in our three incentive conditions during rating moment, for both baseline 
activity as well as the correlation with confidence (i.e., slope) (see Figure 5C). Results of one-
sample t-tests against 0, repeated measures (RM) ANOVAs and post-hoc t-tests are shown. Inc. 
= incentive. 
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To evaluate whether the lack of robust confidence activation in the neutral and loss 
condition could be caused by the rough averaging of the VMPFC signal over the 
anatomical ROI, we also performed a finer-grained analysis. We extracted confidence 
activations in the three conditions and two time-points at the voxel level in a large 
anatomical area covering most of the medial prefrontal cortex, averaged those 
activations over two dimensions (respectively X and Z, and X and Y), and assessed how 
activations unfold over the last dimension – respectively Y and Z (Figure 6). This last 
analysis confirmed three main facts: first, the early certainty activations are robustly 
observed in the same portion of the VMPFC, and – as expected – with similar effect sizes 
in the three conditions; second, the confidence activations in the gain condition are 
observed at similar levels as the early certainty activations, confirming that our 
experimental design elicits robust activations at the incentive/confidence rating time-
point; third, no confidence activations can be detected at this finer-grained level in the 
neutral or loss condition, in the VMPFC. If anything, it seems that the confidence 
activations in the loss condition trend toward a negative correlation between VMPFC 
BOLD signal and confidence.  

Overall, these results initially explain why EV appears a better model of VMPFC 
activation than confidence and/or incentive (correct pattern in gains and neutral 
conditions), but ultimately falsify this account by demonstrating the absence of 
positive correlation between VMPFC activation and confidence in the loss condition. 
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Figure 6: Activation in Ventromedial Prefrontal Cortex across Y and Z dimensions. a) Large 
anatomical medial prefrontal cortex region of interest (ROI). The Y (blue) and Z (yellow) arrows 
indicate the dimensions over which the signal is extracted and marginalized – respectively 
corresponding to the postero-anterior axis and ventro-dorsal axis. b-c. MPFC region of interest 
(ROI) analysis of confidence activations, at the voxel-level, marginalized over the Y (b) and Z (c) 
dimensions. Voxel-wise T-values corresponding to regression slope were extracted in the three 
incentive conditions (green: +100; grey: 0; red: -100), and at the two time-points of interest (left: 
stimulus/choice; right: incentive/rating), averaged over two dimensions and plotted as a function 
of the third dimension. Dots and error bars indicate sample mean ± standard error of the mean 
(N=30).  

 

Discussion 

In this study, we set out to investigate the neural signature of incentive bias on 
confidence estimations, using an fMRI-optimized version of an incentivized perceptual 
decision-making task (Lebreton et al., 2018). First, at the behavioral level, we replicated 
the biasing effect of incentives on confidence estimation, in the form of higher 
confidence in gain contexts and lower confidence in loss context – despite equal 
difficulty and performance. This result is the fourth independent replication of this bias, 
initially revealed in perceptual decision making and later generalized in a 
reinforcement-learning task (Lebreton, Bacily, et al., 2019; C. C. Ting et al., 2020). Note, 
however, that the bias’ effect size remains small – a few average confidence percentage 
points at the population level –, what a priori limits our ability to dissect its precise 
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neurophysiological basis with current (correlational) functional neuroimaging 
techniques.  

Our initial goal and hypothesis were therefore quite simple and modest. In the 
literature, it is now well established that the BOLD signal in the VMPFC correlates with 
confidence and/or values in a variety of tasks (De Martino et al., 2012, 2017; Lebreton 
et al., 2015; Lopez-Persem et al., 2020; Morales et al., 2018; Shapiro & Grafton, 2020). 
We reasoned that if we could provide evidence for the presence of both incentive and 
confidence signals in the VMPFC during our task, this would reinforce the intuition that 
the VMPFC has a role in the observed behavioral phenomenon, i.e., the incentive bias 
on confidence. Our neuroimaging predictions were that 1) the VMPFC should correlate 
with early certainty before and during choice, regardless of the context, and 2) the 
VMPFC should integrate confidence and incentive after the choice and the revealing of 
the incentive condition. Our broader, speculative neural hypothesis was that during this 
last confidence judgment step, a third-party metacognitive region or network would 
sample signal in the VMPFC (Meyniel, Sigman, et al., 2015; Shekhar & Rahnev, 2018), 
and incidentally end up with a biased confidence estimate incorporating incentive 
signal. Our limited sample size combined with some known limits of brain-behavior 
analyses (Lebreton, Bavard, et al., 2019) restricted a priori any ambition to validate a 
neurobiological model of the observed confidence bias by running inter-individual 
correlations between VMPFC activations and the confidence bias estimated at the 
behavioral level. 

Our fMRI investigation of the neural correlates of early certainty confirms our first 
prediction: BOLD activity in the VMPFC positively correlates with early certainty in all 
conditions. This result replicates and extends previous studies demonstrating this area 
to be associated to the initial and automatic processing of confidence during choice 
(De Martino et al., 2012; Lebreton et al., 2015; Shapiro & Grafton, 2020). In parallel with 
this positive correlation in the VMPFC, we also observed wide-spread negative 
correlations in the DLPFC, DMPFC and insula, a network robustly associated with both 
metacognition and uncertainty (Molenberghs et al., 2016; Morales et al., 2018; Vaccaro 
& Fleming, 2018). Contrary to our second prediction, we only found weak evidence (i.e., 
at a lower statistical threshold than the one we defined a priori) for confidence encoding 
in the VMPFC. Robust activations were nonetheless observed in the dACC, a region 
known to be recruited in metacognitive judgments (Bang & Fleming, 2018; Fleming, 
Huijgen, et al., 2012). 

Given that the lack of robust confidence signal in the VMPFC is somewhat in 
contradiction with what we expected from our previous work, as well as numerous 
other reports in the literature (De Martino et al., 2012, 2017; Lebreton et al., 2015; 
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Lopez-Persem et al., 2020; Morales et al., 2018; Shapiro & Grafton, 2020), we 
formulated an alternative hypothesis: we proposed that VMPFC could encode a signal 
commensurate to an expected reward (or EV), i.e., incorporating the subjective 
probability of being correct with the potential incentive bonus when revealed. Whole-
brain activations and ROI quantitative analyses clearly showed that this second 
hypothesis seems to give a better account of VMPFC BOLD activations. EV signals are 
frequently reported in the VMPFC, but mostly in reinforcement-learning contexts, 
where they are critical to both choices between available options and learning – i.e., 
value updating, through the computation of prediction errors (Chase et al., 2015). In the 
present perceptual task, there is no learning, therefore no explicit need to encode EV. 

Because quantitative comparisons of hypotheses are notoriously hard to interpret, we 
decided to leverage the factorial aspect of our design to proceed to a qualitative 
hypothesis falsification, to validate – or falsify – the EV account of VMPFC activity 
(Palminteri et al., 2017). In short, different hypotheses about what should be contained 
in VMPFC signal (EV, confidence and/or incentives) predict different patterns of 
activations (baseline and correlation with confidence) in our different incentive 
conditions. From activity extracted from an anatomical VMPFC ROI, it is clear that 
VMPFC activity correlates with confidence only in the gain context, once the incentive 
has been revealed. This finding explains why the EV hypothesis obtained stronger 
quantitative support than the confidence and/or incentives hypotheses (as the VMPFC 
activity pattern is similar to the EV predictions in the gain and neutral context). However, 
it also ultimately falsifies this EV hypothesis as well, as VMPFC activity does not seem 
to correlate with confidence in the loss context. Interestingly, VMPFC does correlate 
with early certainty – a precursor of confidence – in all conditions before the incentives 
are revealed. Therefore, it does not seem that the VMPFC fails to activate in the neutral 
and loss conditions, but rather that the signal is actively suppressed once those 
contexts are explicit. Moreover, the fact that we do not observe confidence activations 
in neutral or loss condition is also not due to the fact that participants are less focused 
on evaluating confidence in those conditions compared to the gain condition, as we 
showed that the confidence sensitivity is identical in all incentive conditions. In 
summary, we believe that our results show a complex picture of disruptions of 
confidence signals within the VMPFC in response to motivational signals.  

The absence of VMPFC confidence signal in the neutral condition might seem at odds 
with other studies that report such signal in non-incentivized tasks such as 
pleasantness or desirability ratings (Lebreton et al., 2015). One possible explanation is 
that VMPFC confidence signals, like attentional modulation of evidence integration 
(Sepulveda et al., 2020), are primarily observed for behavior or conditions that are 
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relevant to participants’ goals: in non-incentivized tasks such as pleasantness or 
desirability ratings, participants still have a goal, which is to provide ratings that are as 
accurate as possible. In our task, if the goal of participants is to maximize their score, 
the neutral condition might not be goal-relevant, which could result in a disrupted 
VMPFC confidence signal. Note that because our design features interleaved (rather 
than blocked) conditions, the valence manipulation is somewhat exacerbated, as the 
succession of the different conditions limit the contextualization of outcomes (whereby 
the absence of loss could be reframed as a relative gain in a loss-block). Also, because 
trials featuring gains, losses and neutral incentives follow each-others in a 
pseudorandomized order, the interleaved design also prevent any systematic bias or 
confound for the valence effects (at the behavioral or neurobiological levels) that could 
be due to the processing of the feedbacks (gains, losses or nothing). 

The notion that there are different brain networks which execute symmetric 
computations in gains versus loss contexts is increasingly popular (Palminteri & 
Pessiglione, 2017; Seymour et al., 2015). Because the positive, gain context network 
also typically includes the ventral striatum (VS; see e.g. (Bartra et al., 2013; Knutson et 
al., 2005), we replicated all analyses using an anatomical VS ROI (see Appendix A). 
These analyses qualitatively rendered very similar results to what we observed in the 
VMPFC.  In the present dataset though, we did not find any region correlating either 
positively or negatively with confidence in the loss context, even when exploring the 
whole brain level with very lenient statistical thresholds. The dACC is a promising area, 
since it has repeatedly been associated with loss anticipation and correlated positively 
with subjective confidence in our data. However, when we performed a similar 
falsification exercise within the dACC as we used within the VMPFC (see Appendix A), 
the results were similar to the VMPFC activation patterns: dACC activity only correlated 
with confidence within the gain contexts. In summary, it remains an open question what 
the neurobiological correlates of confidence judgments in loss contexts are.  

Our results constitute a stepping stone and have important implications for studying 
clinical populations where these (meta)cognitive processes go awry. It shows that 
motivational processes can influence confidence, and when there are discrepancies 
between one’s behavior and confidence in that behavior, this could give rise to 
pathological decision making. Indeed, several psychiatric disorders such as addiction, 
obsessive-compulsive disorder and schizophrenia have been associated with 
disrupted incentive processing (Admon et al., 2012; Choi et al., 2012; Clark et al., 2019; 
Koob & Volkow, 2016; Strauss et al., 2014) and studies have additionally demonstrated 
distorted confidence estimations in these groups (Hoven et al., 2019). Our study 
indicates that the VMPFC is a key region involved in the interaction between motivation 
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and metacognition, and VMPFC function is also often affected in many psychiatric 
disorders (Hiser & Koenigs, 2018). The current study provides a means of studying 
neurobiological explanations for confidence abnormalities and their interaction with 
incentive motivation in the clinical population which can potentially impact clinical 
practice, as it could help treat psychopathology (Hiser & Koenigs, 2018). Therefore, the 
relationship between motivational processes and confidence estimation and their role 
in psychopathology warrants future investigation. 

In conclusion, we show that although the VMPFC seems to encode both value and 
metacognitive signals, these metacognitive signals are only present during the 
prospect of gain and are disrupted in a context with loss or no monetary prospects. 
Studies targeting this problem within a finer spatial (Kepecs & Mainen, 2012; Lopez-
Persem et al., 2020; Middlebrooks et al., 2013) and/or temporal scale (Desender et al., 
2016) could help with resolving and better comprehending biased confidence 
judgments and metacognition overall. 

 

Methods 

Participants 

We included 33 right-handed healthy participants with normal or corrected to normal 
vision. Exclusion criteria were an IQ below 80, insufficient command of the Dutch 
language or MRI contraindications. All experimental procedures were approved by the 
Medical Ethics Committee of the Academic Medical Center, University of Amsterdam 
(METC 2015_319) and participants gave written informed consent. Participants were 
compensated with a base amount of €40 and additional gains based on task 
performance. Session-level behavioral and fMRI data were excluded when task 
accuracy was below 60% or when subjects did not show sufficient variation in their 
confidence reports (standard deviation of confidence judgments < 5 confidence 
points), and session-level fMRI data when participants showed head movements > 3.5 
mm. This led to the inclusion of 32 participants (18/14 females/males, 18-58 years old 
(sd: 9.76)) for the behavioral analyses and 30 for the fMRI analyses, of which four 
participants contributed only one of two task sessions.  
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Decision-making and confidence judgment task 

We adapted the task from Lebreton et al. (2018) for use in an fMRI environment with 
fMRI suitable timing intervals. For an overview and details, see Figure 1A. All tasks used 
in this study were implemented using MATLAB® (MathWorks Inc., Sherborn, MA, USA) 
and the COGENT toolbox (www.vislab.ucl.ac.uk/cogent.php).  

 

Study procedure 

On the day of testing, subjects were first assessed for clinical and demographic data, 
after which they performed one practice session (10 trials) outside of the scanner and 
another one inside the scanner to become acquainted with the task. Subjects were 
instructed that they would only be rewarded based on their performance (i.e., they 
should be as accurate as possible to maximize their earnings), and that it was important 
to give accurate confidence judgments. They were notified that 50% confidence would 
signal that they made a guess, whereas 100% confidence would signal that they were 
absolutely certain that they made the correct choice. Thus, performance but not 
confidence was incentivized. According to our previous findings (Lebreton et al., 2018), 
this design elicits incentive bias on confidence while keeping confidence sensitivity 
identical across conditions – an important consideration when interpreting differences 
in confidence activations between those conditions. All subjects initially performed a 
144-trial calibration session inside the scanner to tailor the difficulty levels of the task 
to each individual and to keep performance constant across subjects. This was done 
using a staircase procedure, which data were used to estimate a full psychometric 
function, whose parameters were used to generate stimuli for the main task, spanning 
three difficulty levels (i.e. 65%, 75% and 85% accuracy, on average) (for details see 
(Lebreton et al., 2018)). 

Two sessions of the main task were performed in the fMRI scanner, each consisting of 
72 trials with 24 trials per incentive condition, presented in a random order. The practice 
task, calibration and main sessions were projected onto an Iiyama monitor in the fMRI 
environment, which subjects could see through a 45-degree angle mirror fixed to the 
head coil. After completing the fMRI task, six random trials were drawn (i.e., two of each 
incentive condition) on which the payment was based. If subjects made an accurate 
choice, they would either gain or avoid losing points, whereas they would miss out on 
gaining or losing points when making an error. In the neutral trials, nothing was at stake. 
Finally, the total amount of points was converted to money. 
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Behavioral measures 

We extracted various trial-by-trial experimental factors (evidence, incentive and 
difficulty level) and behavioral measures (accuracy, subjective confidence ratings, 
reaction times). Control analyses were performed to confirm the properties of 
confidence ratings (Appendix A). Three additional variables were computed as 
combinations of those experimental factors and behavioral measures: early certainty, 
EV and metacognitive sensitivity. 

Early certainty 

We built an “early certainty” variable that represents a confidence signal prior to the 
biasing effects of incentives. We assume that such an early certainty signal should be 
encoded automatically at the moment of choice, in turn allowing us to investigate 
confidence signals with and without incentive bias (Lebreton et al., 2015). Importantly, 
such a signal should be highly correlated with the later, biased confidence judgment 
obtained from the subjects, while exhibiting no statistically significant relationship with 
incentives. Therefore, we used a leave-one-trial-out approach to obtain trial-by-trial 
estimations of early certainty (Bang & Fleming, 2018). We fitted a generalized linear 
regression model to each subject’s subjective confidence ratings using choice and 
stimulus features as predictors (i.e., log-transformed reaction times, evidence, 
accuracy and the interaction between accuracy and evidence), using the whole 
individual dataset but trial X. We then applied this model’s estimates to generate 
predictions about the early certainty in trial X, using the choice and stimulus features 
of trial X. This process was repeated for every trial, resulting in a trial-by-trial prediction 
of early certainty based on stimulus features at choice moment. The resulting early 
certainty signal featured high correlation with confidence, and no statistical 
relationship with incentives (see Appendix A for more details). Importantly, since the 
early certainty signal follows the main properties of confidence judgments (Appendix 
A, Figure A6), but does not show any incentive bias, this critically enables us to 
differentiate between non-biased confidence signals during decision-making and 
biased confidence signals after incentivization. 

Expected value 

We computed a value-based measure of EV. In our task paradigm, EV was computed as 
an integrative signal of early certainty (i.e., the non-biased probability of being correct) 
and the incentive value (i.e., the value-context of the current trial). Early certainty 
ratings represent the subjects’ probability of being correct, and thus the probability of 
gaining (or avoid losing) the incentive at stake. Thus, EV corresponds to 0 in the neutral 
condition (no value is expected to be gained or lost), is equal to early certainty in the 
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gain condition (e.g., being 100% certain results in a maximal EV in a positive incentive 
environment), and is equal to early certainty – 100 (e.g., being 100% certain in a loss 
trial results in an EV of 0, as you avoid losing).  

Metacognitive sensitivity 

Metacognitive sensitivity is a metric that indicates how well an observer’s confidence 
judgments discriminate between their correct and incorrect answers and can be 
represented using several indexes. For example, discrimination is a metric calculated 
as the difference between the average confidence for correct answers and the average 
confidence for incorrect answers, whereas meta-d’ is a metric based on the Signal 
Detection Theory framework (Maniscalco & Lau, 2012). Notably, meta-d’ computations 
are known to be imprecise in designs with a low number of trials per condition (Rouault, 
McWilliams, et al., 2018). This, together with results from our earlier work (Lebreton et 
al., 2018) showing high correlations between discrimination and meta-d’, as well as 
identical conclusions with respect to the effects of incentives on these measures, lead 
to us using the discrimination metric as our measure of metacognitive sensitivity. 

 

fMRI acquisition & preprocessing 

fMRI data was acquired by using a 3.0 Tesla Intera MRI scanner (Philips Medical 
Systems, Best, The Netherlands). Following the acquisition of a T1-weighted structural 
anatomical image, 37 axial T2*-weighted EPI functional slices sensitive to BOLD 
contrast were acquired. A multi echo (3 echoes) combine interleaved scan sequence 
was applied, designed to optimize functional sensitivity in all parts of the brain (Poser 
et al., 2006). The following imaging parameters were used: repetition time (TR), 2.375 
seconds; echo times (TEs), 9.0ms, 24.0ms, and 43.8ms, (total echo train length: 75ms); 
3 mm (isometric) voxel size; 37 transverse slices; 3 mm slice thickness; 0.3 mm slice-
gap. Two experimental sessions were carried out, each consisting of 570 volumes. All 
further analyses were performed using MATLAB® with SPM12 software (Wellcome 
Department of Cognitive Neurology, London, UK). 

Raw multi-echo functional scans were weighed and combined into 570 volumes per 
scan session. During the combining process, realignment was performed on the 
functional data by using linear interpolation to the first volume. The first 30 dummy 
scans were discarded. The remaining functional images were co-registered with the T1-
weighted structural image, segmented for normalization to Montreal Neurological 
Institute (MNI) space and smoothed using a Gaussian kernel of 6 mm at full-width at 
half-maximum.  
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Due to sudden motion, in combination with the interleaved scanning method, a number 
of subjects showed artifacts in some functional volumes. In order to reduce those 
artifacts, the Art-Repair toolbox (Mazaika et al., 2007) was used to detect large volume-
to-volume movement and repair outlier volumes. The toolbox identifies outliers by 
using a threshold for the variation of the mean intensity of the BOLD signal and a 
volume-to-volume motion threshold. A threshold of 1.5% variation from the mean 
intensity was used to detect and repair volume outliers by interpolating from the 
adjacent volumes (n=12). 

 

Statistics and reproducibility: behavioral analyses 

All behavioral analyses were performed using MATLAB® and the R environment (RStudio 
Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA). For the 
statistical analyses reported in the main text, we used linear mixed-effects models 
(estimated with the fitglme function in MATLAB®) to model accuracy, reaction times and 
confidence. In order to analyze the effect of the incentive condition (i.e., of our 
experimental manipulation of incentives), for all three trial-by-trial dependent variables 
we used the absolute incentive value (i.e., the absolute value of the monetary incentive, 
|V|, coded as 0 and +1) and the net incentive value (i.e., the linear value of the monetary 
incentive, V, coded as -1, 0 and +1) as predictor variables. All mixed models included 
random intercepts and random slopes (N=32). Additional control analyses are reported 
in Appendix A. For the analysis of metacognitive sensitivity, we performed a repeated 
measures ANOVA, with net incentive value as within-subject factor. 

 

Statistics and reproducibility: fMRI analyses 

All fMRI analyses were conducted using SPM12. All general linear models (GLMs) were 
estimated on subject-level (N=30) with two moments of interest: the moment of choice 
(i.e., presentation of the Gabor patches) and the moment of incentive 
presentation/confidence rating (Figure 2). The rating moment follows the presentation 
of the incentive after 900 ms, hence the decision to analyze them as a single moment 
of interest. Moreover, the GLMs also included a regressor for the feedback moment, 
which was not of interest for analysis, but was intended to explain variance in neural 
responses related to value and accuracy feedback, but unrelated to the decision-
making process.  
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When using parametric modulators in our GLMs, those were not orthogonalized and 
competed to explain variance. Nuisance regressors consisting of six motion 
parameters were included in all GLMs. Regressors were modeled separately for each 
scan session and constants were included to account for between-session differences 
in mean activation. All events were modeled by convolving a series of delta functions 
with the canonical hemodynamic response function (HRF) at the onset of each event 
and were linearly regressed onto the functional BOLD-response signal. Low frequency 
noise was filtered with a high pass filter with a cut off of 128 seconds. All contrasts were 
computed at subject level and taken to a group level mixed effect analysis using one-
sample t-tests. 

We controlled for the number of sessions while making the first-level contrasts. We 
assessed group-level main effects by applying one-sample t-tests against 0 to these 
contrast images. All whole-brain activation maps were thresholded using family wise 
error correction for multiple correction (FWE) at cluster level (pFWE_clu < 0.05), with a 
voxel cluster-defining threshold of p < .001 uncorrected.  

GLM1: neural signatures of certainty, incentive and confidence 

GLM1 consisted of three regressors for the three moments of interest: ‘choice’, 
‘incentive/rating’ and ‘feedback’, to which one or more parametric modulators (pmod) 
were added (Figure 2). The regressors were specified as stick function time-locked to 
the onset of the events. The choice regressor was modulated by two pmods: early 
certainty (z-scored before entering the GLM) and button press (left/ right choice) in 
order to control for activity related to motor preparation. The incentive/rating regressor 
was modulated by two pmods: incentive value and subjective confidence level (z-
scored). Lastly, the feedback regressor was modulated by a pmod of accuracy.  

Importantly, to ensure that our brain activations of interest (i.e., related to early 
certainty, incentive and confidence) were not confounded by motor-related activations, 
we performed control analyses that implemented an exclusive masking for motor 
activations. To do so, we generated the exclusive mask from ‘Neurosynth’ (a platform 
for large-scale, automated synthesis of fMRI data (Yarkoni et al., 2011)), using the term 
‘motor’ (https://neurosynth.org/analyses/terms/motor/). This mask represents key 
regions related to motor processes as identified by an automated meta-analysis of 
2565 studies.  

GLM2a: control for incentive bias 1 

GLM2a consisted of the same regressors as GLM1, except that rating moment was only 
modulated by confidence judgments (i.e., we deleted the incentive modulator).  
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GLM2b: control for incentive bias 2 

GLM2b consisted of the same regressors as GLM1, except that the pmod of confidence 
judgments at rating moment was replaced by a pmod for early certainty.  

GLM3: neural signatures of expected value 

GLM3 consisted of the same regressors as GLM1, except that rating moment was 
modulated by a single pmod of EV.  

GLM4: control for incentive  

GLM4 consisted of the same regressors as GLM1, except that rating moment was only 
modulated by incentives (i.e., we deleted the confidence judgment modulator).  

GLM5: qualitative patterns of activations 

GLM5 included a regressor for all three incentives at two timepoints of interest: choice 
and rating moment, as well as a regressor at feedback moment. All regressors at choice 
moment were modulated by a pmod of early certainty and button press (L/R). All 
regressors at rating moment were modulated by a pmod of confidence judgment. The 
feedback regressor was modulated by accuracy. This GLM allowed us to investigate 
activity related to both baseline and the regression slope with early certainty or 
confidence judgment for these events.  

Regions of interest 

To avoid circular inference, we took an independent anatomical ROI of the VMPFC from 
the Brainnetome Atlas (Fan et al., 2016). We included three areas along the ventral 
medial axis for the VMPFC ROI. Using this ROI, we extracted individual t-statistics (i.e., 
normalized beta estimates (Lebreton, Bavard, et al., 2019)) from contrasts of interest, 
and statistically compared them using paired t-tests or repeated measure ANOVAs. 

Moreover, in order to perform a finer-grained analysis into early certainty and 
confidence activations, we took a larger anatomical ROI, covering most of the medial 
prefrontal cortex (MPFC) from the Brainnetome Atlas (Fan et al., 2016). With this ROI, 
we extracted individual t-statistics from our contrasts of interest in GLM5 and averaged 
those activations over two dimensions (respectively X and Z, and X and Y), so that we 
could assess the spread of activations over the last dimension, respectively Y (anterior-
posterior axis) and Z (ventral-dorsal axis). 
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Abstract 

Aim  
Compulsivity is a common phenotype amongst psychiatric disorders, such as 
obsessive-compulsive disorder (OCD) and gambling disorder (GD). Deficiencies in 
metacognition, such as the inability to estimate ones’ performance via confidence 
judgments could contribute to pathological decision-making. Earlier research has 
shown that OCD patients exhibit underconfidence, while GD patients exhibit 
overconfidence. Moreover, it is known that motivational states (e.g., monetary 
incentives) influence metacognition, with gain (respectively loss) prospects increasing 
(respectively decreasing) confidence. Here, we reasoned that OCD and GD 
symptomatology might correspond to an exacerbation of this interaction between 
metacognition and motivation. 

Methods  
We hypothesized GD’s overconfidence to be exaggerated during gain prospects, while 
OCD’s underconfidence to be worsened in loss context, which we expected to see 
represented in ventromedial prefrontal cortex (VMPFC) blood-oxygen-level-dependent 
(BOLD) activity. We tested those hypotheses in a task-based functional magnetic 
resonance imaging (fMRI) design (27 GD, 28 OCD, 55 controls). The trial is registered in 
the Dutch Trial Register (NL6171). 

Results  
We showed increased confidence for GD versus OCD patients, that could partly be 
explained by sex and IQ. Although our primary analyses did not support the 
hypothesized interaction between incentives and groups, exploratory analyses did 
show increased confidence in GD patients specifically in gain context. fMRI analyses 
confirmed a central role for VMPFC in the processing of confidence and incentives, but 
no differences between the groups.  

Conclusion 
OCD and GD patients reside at opposite ends of the confidence spectrum, while no 
interaction with incentives was found, nor group differences in neuronal processing of 
confidence. 
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Introduction 

Compulsive behaviors are defined as “repetitive acts that are characterized by the 
feeling that one ‘has to’ perform them while being aware that these acts are not in line 
with one’s overall goal” (Luigjes et al., 2019). Various psychiatric disorders are 
associated with compulsivity, of which obsessive-compulsive disorder (OCD) is the 
most typical (Stein, 2002), but it’s also seen in addictive disorders such as gambling 
disorder (GD) (van Timmeren et al., 2018). Both disorders are characterized by a loss of 
control over their compulsive behaviors, albeit originating from distinct motivations, 
serving different purposes and relating to distinct symptoms (Chamberlain et al., 2005; 
Figee et al., 2016). Hence, compulsivity seems to be a common phenotype in otherwise 
symptomatically different disorders.  

Dysfunctions in metacognition could explain distinct features of compulsive behaviors. 
Metacognition is the ability to monitor, reflect on, and think about our own behavior 
(Fleming, Dolan, et al., 2012). One metacognitive computation is the judgment of 
confidence, defined as the subjective estimate of the probability of being correct about 
a choice (Pouget et al., 2016). Confidence plays a key role in decision-making and 
learning (Fleming, Dolan, et al., 2012; Meyniel, Sigman, et al., 2015; Pouget et al., 2016), 
and therefore in steering our future behavior (Folke et al., 2017; Samaha et al., 2019). It 
is crucial for behavioral control that one’s confidence is in line with reality. 
Nonetheless, discrepancies between actual behavior (e.g. choice accuracy) and 
confidence in that behavior (subjective estimate of accuracy) have been consistently 
described, which could contribute to pathological (compulsive) decision-making as 
seen in various psychiatric disorders (Hoven et al., 2019). Clinical presentations of OCD 
and GD indeed suggest confidence abnormalities in the opposite direction, 
underconfidence and overconfidence, respectively, which could both promote 
detrimental decision-making, such as checking behavior and compulsive gambling 
(Fortune & Goodie, 2012; Goodie & Fortune, 2013; Nestadt et al., 2016; Samuels et al., 
2017). In a recent review we showed that both people with subclinical and clinical OCD 
consistently showed a decrease in confidence level, which was especially profound in 
OCD-symptom contexts (Hoven et al., 2019). Oppositely, in pathological gamblers, 
there was evidence for overconfidence in rewarding gambling contexts. which was also 
related to symptom severity (Goodie, 2005; Lakey et al., 2007). In sum, patients with GD 
and those with OCD seem to function at opposite sides of the confidence continuum, 
respectively over- and underestimating their performance, which could explain how 
opposite traits may underlie similar pathological behavior (i.e., compulsive behavior). 

Reward processes are important for learning and decision-making and interact with 
cognition (Pessoa & Engelmann, 2010). Many studies have implicated subcortical 
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regions such as the ventral striatum (VS) and cortical regions such as the ventromedial 
prefrontal cortex (VMPFC) in reward processing, forming a “brain valuation system” 
(Bartra et al., 2013; Lopez-Persem et al., 2020; Rangel et al., 2008) whose activity 
relates to value-based decision-making (Lebreton et al., 2009) and motivates behavior 
(Pessiglione & Lebreton, 2015). Both patients with OCD and those with GD show 
deficits in reward processes and accompanying dysregulated neural circuitries. A 
recent review on neuroimaging of reward mechanisms by Clark et al. (2019) clearly 
indicated dysregulated reward circuitries, especially focused on the VMPFC and VS in 
patients with GD, with mixed evidence regarding the direction of these effects. In 
patients with OCD, a recent review showed that the ventral affective circuit, consisting 
of medial frontal cortex and VS was consistently shown to be dysregulated, showing 
decreased activity in response to rewards, which was increased in response to losses 
(Shephard et al., 2021). This is particularly relevant to the question of how confidence 
might contribute to those pathologies’ symptoms, as an increasing number of studies 
show that affective and motivational states can influence confidence (Allen et al., 2016; 
Koellinger & Treffers, 2015; Massoni, 2014). Recently, we demonstrated that monetary 
incentives bias confidence judgments in healthy individuals, where prospects of gain 
(respectively loss) increase (respectively decrease) confidence, while performance 
levels remained unaffected in both perceptual and reinforcement-learning contexts 
(Hoven, Brunner, et al., 2022; Lebreton et al., 2018; Lebreton, Bacily, et al., 2019; C. C. 
Ting et al., 2020). 

We therefore reasoned that an interaction between incentive and confidence 
processing could cause or fuel the compulsive behaviors in GD and OCD. On the one 
hand, prospects of high monetary incentives could exaggerate overconfidence in 
patients with GD, leading to continuation of compulsive gambling; on the other hand, 
in OCD this could lead to exaggerated decreased confidence in negative value context 
as harm avoidance is considered one of the core motivations of compulsive behavior 
in patients with OCD (Bey et al., 2017, 2020; Summerfeldt et al., 2014). 

On the neurobiological side, a growing number of functional magnetic resonance 
imaging (fMRI) studies have associated metacognitive processes with activity in the 
frontal-parietal network (Allen et al., 2017; Baird et al., 2013; Fleming et al., 2010; 
Hilgenstock et al., 2014; Vaccaro & Fleming, 2018), and activity in the dorsomedial 
prefrontal cortex (dmPFC), insula and dorsal anterior cingulate cortex (dACC) has been 
negatively associated with confidence, suggesting a role for these areas in representing 
uncertainty-related variables (Fleming et al., 2018; Molenberghs et al., 2016; Morales 
et al., 2018; Rouault & Fleming, 2020; Shenhav et al., 2016). Interestingly, recent 
studies have also found activity in the VS, the VMPFC, and perigenual anterior cingulate 
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cortex (pgACC) - to be positively associated with confidence (Bang & Fleming, 2018; De 
Martino et al., 2012; Gherman & Philiastides, 2018; Hebart et al., 2016; Lebreton et al., 
2015; Rouault, McWilliams, et al., 2018; Rouault & Fleming, 2020). Importantly, this 
latter network has been previously positively associated with value-based processes 
(Bartra et al., 2013; Haber & Behrens, 2014; Haber & Knutson, 2010; Lopez-Persem et 
al., 2020). Actually, both confidence judgments and value information seem to be 
automatically integrated into VMPFC’s activity (Gherman & Philiastides, 2015; Lebreton 
et al., 2009, 2015; Lopez-Persem et al., 2020; Shapiro & Grafton, 2020). Yet, little is 
known about whether and how the behavioral interaction observed between incentives 
and confidence can be explained by their shared association with the VMPFC. In an 
attempt to answer this question, we recently reported an important interaction 
between incentive and metacognitive signals in the VMPFC in healthy individuals: 
confidence signals in the VMPFC were observed in trials with gain prospects, but 
disrupted in trials with no – or negative (loss) monetary prospects (Hoven, Brunner, et 
al., 2022). This suggests that the VMPFC has a key role in mediating the relationship 
between incentives and metacognition. Given the crucial roles of the VMPFC and VS in 
reward processes and metacognition, which were found to be dysregulated in GD and 
OCD, we hypothesized that both regions would show disrupted activation patterns 
related to incentive processing and metacognition and their interaction in patients 
compared with healthy controls (HCs).  

Overall, in the present study we investigate metacognitive ability and its interaction with 
incentive motivation in patients with OCD and those with GD, behaviorally and 
neurobiologically.  

 

Methods 
Ethics 

Experimental procedures were approved by the Medical Ethics Committee of the 
Academic Medical Center, University of Amsterdam. All subjects provided written 
informed consent.  

 

Participants 

We recruited a total of 31 patients with GD, 29 patients with OCD and 55 HCs between 
the ages of 18 and 65 years. Of our HC sample of 55 participants, 25 participants were 
included in our earlier work (Hoven, Brunner, et al., 2022). HCs were recruited through 
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online advertisements and from our participant database. Patients with GD were 
recruited from a local treatment center (Jellinek Addiction Treatment Center 
Amsterdam) and were recently diagnosed with GD. Patients with OCD were recruited 
through the department of psychiatry at the Academic Medical Center in Amsterdam 
and were diagnosed with OCD.  

 

Exclusion Criteria 

After applying all exclusion criteria (see Appendix B), we included 27 patients with GD, 
28 patients with OCD and 55 HCs for the behavioral analyses, of which four, two, and 
two participants contributed only one of two task sessions, respectively. For the fMRI 
analyses we included 24 patients with GD, 27 patients with OCD and 53 HCs, of which 
seven, three, and two participants contributed only one of two task sessions, 
respectively. 

 

Experimental Design and Study Procedure 

We used a similar experimental design and study procedure as previously described 
(Hoven, Brunner, et al., 2022). For details on the experimental design and study 
procedure, see Hoven et al. (2022) and Figure 1. In sum, participants performed a 
simple perceptual decision-making task, with a two-alternative forced choice of 
contrast discrimination followed by a confidence judgment. In each trial, participants 
could either win (gain context) or lose (loss context) points, or not (neutral context), 
conditional on the accuracy of the choice in that trial. Importantly, this incentivization 
was administered after the choice moment but before the confidence rating. The task 
was implemented using MATLAB (The MathWorks, Inc.) and the COGENT toolbox.  
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Figure 1: Experimental paradigm. Participants viewed two Gabor patches on both sides of the 
screen (150 ms) and then chose which had the highest contrast (left/right, self-paced) (for more 
information, see Hoven et al., 2020). After a jitter of a random interval between 4500 to 6000 ms, 
the incentive was shown (900 ms; green frame for win trials, grey frame for neutral trials, red 
frame for loss trials). Afterwards, participants were asked to report their confidence in their 
choice on a rating scale ranging from 50% to 100% with steps op 5%. The initial position of the 
cursor was randomized between 65% and 85%. Finally, subjects received feedback. The inter trial 
interval (ITI) had a random duration between 4500 and 6000 ms. The calibration session only 
consisted of Gabor discrimination, without confidence rating, incentives or feedback and was 
used to adjust difficulty so that every individual reached a performance of 70%.  

 

Behavioral Measures 

We extracted trial-by-trial experimental factors including incentive condition, evidence, 
and behavioral measures (accuracy, confidence ratings, reaction times). Evidence was 
calculated by normalizing the unsigned difference of the two Gabor patches’ contrast 
intensities by their sum to adjust for saturation effects (for more details see (Lebreton 
et al., 2018)). In addition, we computed an extra latent variable: early certainty. 

The early certainty variable was computed in order to analyze BOLD activity at choice 
moment, when the brain encodes a confidence signal that is not yet biased by 
incentives. This was done by making a trial-by-trial prediction of early certainty based 
on stimulus features (reaction times, evidence and accuracy) at choice moment. This 
resulted in an early certainty signal that was highly correlated with confidence, but 
showed no statistical relationship with incentives (see Appendix B). For more details, 
see (Hoven, Brunner, et al., 2022). 

Next to confidence ratings we also assessed additional metacognitive metrics: (i) 
confidence calibration - the difference between average confidence and average 
performance as an indicator of overconfidence or underconfidence, (ii) metacognitive 
sensitivity - the ability to discriminate between correct answers and errors using 
confidence judgments (see Appendix B).  
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Behavioral Analyses 

All analyses were performed in the R environment (RStudio Team (2015). RStudio: 
Integrated Development for R. RStudio, Inc., Boston, MA). We used linear mixed effects 
models (LMEMs) as implemented in the lmer function from the lme4 and afex packages 
(Bates et al., 2015; Singmann et al., 2015). To determine p-values for the fixed effects, 
we performed Type 3 F tests with Satterthwaite approximation for degrees of freedom 
as implemented in the afex package. When relevant, we used the ‘emmeans’ package 
to perform post-hoc tests that were corrected for multiple comparisons using Tukey’s 
method (Lenth et al., 2018). 

To answer our main research questions, we built several LMEMs and performed a model 
selection procedure (Table 1). The final model (Model 1) included fixed effects of 
incentive, group, accuracy and evidence (z-scored) and interactions between incentive 
and group, as well as two-way and three-way interactions between evidence, accuracy 
and group. Moreover, a random subject intercept and a random slope of incentives per 
subject were included in the final model as well. To confirm that the incentive condition 
or group did not influence accuracy or reaction time, we modelled additional LMEMs 
with performance and reaction time as dependent variables (Model 2, Model 3).  

Lastly, we added IQ (z-scored) and sex as fixed effects to our original Model 1 (Model 4) 
to control for differences in the distribution of these demographic variables. Model fit 
was assessed and compared using Chi-square tests on log-likelihood values. 
Additional control analyses on the properties of confidence, early certainty, confidence 
calibration and metacognitive sensitivity are reported in Appendix B.  

Due to a technical bug, our design was not fully balanced as the level of perceptual 
evidence was not equal across the incentive conditions. ANOVA and post-hoc testing 
indeed showed that evidence was highest in neutral condition, followed by gain and 
loss. There were no group differences, nor an interaction between group and incentive. 
These effects cannot account for any group differences we find in our data, since 
evidence did not differ between groups. Importantly, the evidence differences did not 
affect performance, since performance is equal across conditions. See Appendix B for 
more details. 

 

fMRI Analyses 

For details on fMRI acquisition and preprocessing see Appendix B and Hoven et al. 
2022.  
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All fMRI analyses were conducted using SPM12. Critically, our design allowed us to 
distinguish between our two timepoints of interest: 1) the moment of stimulus 
presentation and choice in which implicit (un)certainty about the choice is formed, and 
2) the moment of incentive presentation and confidence rating, in which the value of 
incentives and the confidence rating are encoded. We built a general linear model (GLM 
1) estimated on subject-level with these two moments of interest: the moment of 
choice (i.e., stimulus presentation) and the moment of incentive 
presentation/confidence rating. We chose to analyze the incentive presentation and 
confidence rating as a single timepoint since the rating moment followed the 
presentation of the incentive after 900 ms, with regressors time-locked to the onset of 
incentive presentation. We also included a regressor for the moment of feedback to 
explain variance in neural responses related to feedback on accuracy and value that 
was not related to the decision-making process, but this regressor was not of interest 
for the current analyses. All whole-brain activation maps were thresholded using 
family-wise error correction (FWE) at cluster level (PFWE_clu < 0.05), with a voxel 
cluster-defining threshold of p<.001 uncorrected. 

Using GLM 1, with regressors for choice modulated by early certainty, for 
incentive/rating modulated by incentive and confidence, and for feedback modulated 
by accuracy we were able to investigate our contrasts of interest: (1) choice moment 
modulated by early certainty, (2) incentive/rating moment modulated by incentive value 
and (3) incentive/rating moment modulated by confidence rating. For details see 
Appendix B.   

In order to study the interaction between incentive motivation and metacognitive ability 
on the neurobiological level we leveraged the factorial design of our task to build GLM 
2. We used GLM 2 to explicate the effect of incentive motivation on both the integration 
of evidence at choice moment, as well as on confidence formation, and compare those 
between groups. GLM 2 consisted of regressors for each time point (choice and 
incentive/rating moments) and for each incentive condition, as well as a single 
regressor at feedback moment, resulting in seven regressors. For all these events we 
examined both baseline activity and regression slopes relating to their pmod of interest: 
signed evidence for choice and confidence for incentive/rating. See Appendix B for 
more details.  

Since the results by Hoven et al., 2022 suggested that the VMPFC plays an important 
role in the interaction between incentive motivation and metacognition, we created a 
functional region of interest (ROI) that represented the confidence-related activity in 
the VMPFC cluster from our GLM 1 across groups results (see Figure 3D, Table 5). We 
then extracted individual t-statistics within this ROI (i.e. normalized beta estimates 
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(Lebreton, Bavard, et al., 2019)) from our contrasts of interest and performed one-
sample t-tests against 0 to check for positive or negative activation patterns. Then, we 
compared them between incentive conditions, groups, and studied their interactions 
using mixed ANOVAs implemented in the afex package. When appropriate, we 
performed post-hoc testing using the emmeans package, correcting for multiple 
comparisons using Tukey’s method. Since we also hypothesized that the VS would play 
a role in the interaction between incentives and metacognition, we performed the same 
ROI analysis in the VS with a functional ROI that represented the incentive-related 
activity in the VS cluster from our GLM 1 across group results (see Table 5). 

Table 1: Model descriptions and comparison 

Shown here are the model notations of all models with their respective Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) values, as well as model comparison 
outcomes with corresponding χ2 and P-values, resulting in the winning model ‘E’, which is 
referred to as Model 1 in the manuscript. 

 

 

 

Model Model notation AIC BIC Comparison X2 P-
value 

Winning 
model 

A Confidence ~ 
Incentive * Group + 
(Incentive|Subject) 

12291
9  

123041      

B Confidence ~ 
Incentive * Group + 
Accuracy + 
(Incentive|Subject) 

12227
3  

122402  A vs. B 648.
59 
 

< 2.2e-
16 
 

B 

C Confidence ~ 
Incentive * Group + 
Accuracy + Evidence 
+ (Incentive|Subject) 

12200
4  

122141  B vs. C 271.
00 
 

< 2.2e-
16 
 

C 

D Confidence ~ 
Incentive * Group + 
Accuracy*Evidence + 
(Incentive|Subject) 

12179
1  

121936  C vs. D 214.
53 
 

< 2.2e-
16 
 

D 

E Confidence ~ 
Incentive * Group + 
Accuracy*Evidence*
Group + 
(Incentive|Subject) 

12175
1 

121942  D vs. E 52.1
41 
 

1.747e
-09 
 

E 

F Confidence ~ 
Incentive * Group +  
Accuracy*Evidence*
Group + Sex + IQ + 
(Incentive|Subject) 

12175
2  

121958  E vs. F 2.70
18 
 

0.259 
 

E 
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Results 

Demographics 

IQ and sex distributions differed between groups (IQ: F2,107 = 3.222, p=0.0438; sex: X = 
14.483, df = 2, p<.001), with higher IQ scores for HC subjects compared with GD 
patients (t = 2.53, p=0.014) and with mostly men in the GD group, and relatively more 
women in the OCD group (Table 2). This corresponds to the natural distribution 
observed in epidemiological studies for OCD and GD, showing higher prevalence of GD 
amongst men, and a slightly higher prevalence of OCD in women (Black & Shaw, 2019; 
Calado & Griffiths, 2016; Mathes et al., 2019; Ruscio et al., 2010). Age did not differ 
between groups. For post-hoc group differences on questionnaire scores, see Table 2. 

 

Table 2: Demographics 

Means ± standard deviations of various demographic variables are shown per group, for sex 
counts are displayed. Statistics for group comparisons are shown, including F and X2 statistics, 
degrees of freedom and p-values. IQ= estimated Intelligence Quotient, GD = gambling disorder, 
HAMA = Hamilton Anxiety Rating Scale, HC = healthy control, HDRS = Hamilton Depression 
Rating Scale, OCD = obsessive-compulsive disorder PGSI = Problem Gamblers Severity Index, Y-
BOCS = Yale-Brown Obsessive Compulsive Scale. *p<.05, ***p<.001 

 

 HC GD OCD Statistics 

Age 33.51 ± 12.32 33.22 ± 10.40 31.93 ± 8.21 F2,107 = 0.25, p = 0.777 
IQ* 91.18 ± 10.96 85.22 ± 9.53 89.54 ± 8.32 F2,107 = 3.22, p = 0.0438 

HC vs GD: t(80) = 2.41, p = 0.0181 
HC vs OCD: t(81) = 0.70, p = 0.487 
GD vs OCD: t(53) = 1.79, p = 0.0791 

Y-BOCS*** 0.25 ± 1.76 1.19 ± 2.60 20.36 ± 6.15 F2,107 = 322.2, p<.001 
HC vs GD: t(80) = -1.01, p = 0.0592 
HC vs OCD: t(81) = -22.64, p<0.001 
GD vs OCD: t(53) = 14.97, p<0.001 

PGSI*** 0.05 ± 0.40 14.85 ± 4.80 0.64 ± 1.91 F2,107 = 380.5, p<.001 
HC vs GD: t(80) = -22.84, p<0.001 
HC vs OCD: t(81) = -2.20, p = 0.030 
GD vs OCD: t(53) = -14.52, p<0.001 

HAMA*** 1.09 ± 1.97 3.93 ± 5.88 11.43 ± 6.28 F2,107 = 48.02, p<.001 
HC vs GD: t(80) = -3.24, p = 0.0017 
HC vs OCD: t(81) = -11.22, p<0.001 
GD vs OCD: t(53) = 4.57, p<0.001 

HDRS*** 1.31 ± 2.31 5.07 ± 6.24 7.71 ± 4.04 F2,107 = 24.97, p<.001 
HC vs GD: t(80) = -3.97, p<0.001 
HC vs OCD: t(81) = -9.19, p<0.001  
GD vs OCD: t(53) = 1.87, p = 0.0673 

Sex (m/f)*** 33 / 22 24 / 3 11 / 17 X2(2) = 14.483, p<.001 
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Behavioral Results 

To start, we answered our main questions: (1) are there group differences in confidence, 
and (2) what is the influence of incentive motivation on confidence. Model 1 showed a 
main effect of group (F2,112 = 4.7910, p=.01) and incentive (F2,112 = 20.9371, p<.001) on 
confidence (Figure 2, Appendix B Table B3). We also found a main effect of accuracy 
(F1,15107 = 608.8906, p<0.001), with subjects showing higher confidence for correct 
answers. Moreover, there was a significant two-way interaction of group and evidence 
(F2,15099 = 3.5094, p=0.02994). As expected, we also found a significant interaction 
between accuracy and evidence, replicating the ‘X-pattern’ signature of evidence 
integration where confidence increases with increasing evidence when correct, and 
vice versa (F1,15097=185.3245, p<0.001)64. Interestingly, the evidence integration effect 
differed per group, as signaled by a significant three-way interaction between accuracy, 
evidence and group (F2,15094 = 3.0533, p=0.04723) (Appendix B Figure B3, Table B3, for 
post-hoc tests see Appendix B). Lastly, the interaction between incentive and group 
revealed a trend towards an effect (F4,112= 2.2821, p=0.06487). 

Post-hoc tests indicated a significantly higher confidence in GD patients versus OCD 
patients (GD-OCD = 6.38 ± 2.12, Z-ratio = 3.014, p=0.0073), and a trend towards higher 
confidence in GD compared to HC subjects (GD-HC = 4.30 ± 1.84, Z-ratio = 2.333, 
p=0.0513), whereas OCD patients did not differ from HC subjects. Moreover, we 
replicated the parametric effect of incentive value on confidence (loss-neutral =-1.80 ± 
0.429, Z-ratio = -4.192, p<0.001; loss-gain =-3.14 ± 0.486, Z-ratio = -6.460, p<0.001; 
neutral-gain = -1.34 ± 0.363, Z-ratio = -3.683, p<0.001). With regards to the three-way 
interaction, we found that GD patients’ confidence was less influenced by evidence for 
correct answers compared to both HCs and OCD patients (see Appendix B, Figure B3). 
Exploratory post-hoc analyses on the group*incentive interaction effect showed that, 
especially in context of possible gains, GD patients were more confident than OCD 
patients (GD - OCD = 8.12 ± 2.24, Z-ratio = 3.621, p<0.001) and HC subjects (GD - HC = 
5.83 ± 1.95, Z-ratio = 2.989, p=0.0079), with no differences between HC and OCD 
patients in any incentive condition (Table 3).  

As control analyses we estimated Model 2 and 3 with accuracy and reaction time as 
dependent variables (Table 4). No effect of group, incentive or an interaction effect on 
accuracy or reaction time were found, as expected from our design (where incentives 
follow choices), confirming that accuracy and response times cannot confound any 
effect of incentives that we found on confidence.  
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Figure 2: Behavioral results. Individual-averaged confidence, accuracy, reaction times and 
evidence as a function of incentive condition (loss, neutral and gain) per group. Green dots and 
lines represent gambling disorder patients, blue dots and lines represent healthy controls and 
red dots and lines represent obsessive-compulsive disorder patients. Dots represent individuals, 
and lines highlight within subject variation across conditions. Error bars represent sample mean 
± SEM per group. GD = gambling disorder, HC = healthy control, OCD = obsessive-compulsive 
disorder  
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Table 3: Results of linear mixed-effects models 

Model 1 Confidence 

Incentive F(2.00, 112.34) = 20.94, p < .001  

Group F(2.00, 112.51) = 4.79, p = .010 

Accuracy F(1.00, 15107.05) = 608.89, p < .001  

Evidence F(1.00, 15104.05) = 0.04, p = .848 

Incentive:Group F(4.00, 112.10) = 2.28, p = .065 

Accuracy:Evidence F(1.00, 15097.33) = 185.32, p < .001  

Group:Accuracy F(2.00, 15106.28) = 2.27, p = .103 

Group:Evidence F(2.00, 15099.41) = 3.51, p = .030 

Group:Accuracy:Evidence. F(2.00, 15094.35) = 3.05, p = .047 

  

Model 4 Confidence 

Incentive F(2.00, 112.34) = 20.93, p < .001  

Group F(2.00, 112.50) = 2.75, p = .068 

Sex F(1.00, 110.26) = 2.88, p = .093 

IQ F(1.00, 109.80) = 0.03, p = .865 

Accuracy F(1.00, 15107.01) = 609.14, p < .001  

Evidence F(1.00, 15104.51) = 0.04, p = .845 

Incentive:Group F(4.00, 112.11) = 2.29, p = .064 

Accuracy:Evidence F(1.00, 15097.16) = 185.42, p < .001  

Group:Accuracy F(2.00, 15106.06) = 2.30, p = .100 

Group:Evidence F(2.00, 15098.91) = 3.45, p = .032 

Group:Accuracy:Evidence F(2.00, 15094.15) = 3.09, p = .046 
Shown here are the results of Model 1 (without demographics) and Model 4 (with demographics) 
acquired using Type 3 F tests with Satterthwaite approximation for degrees of freedom using the 
afex package. Shown are F values, with corresponding degrees of freedom and P-values. 
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Table 4: Results of control models 
Model 2: Accuracy ~ Incentive*Group + (1+Incentive|Subject) 

Group F2,109 = 0.5827, p = 0.5601 

Incentive F2,1591 = 1.0319, p = 0.3566 

Group*Incentive F4,1586 = 0.8671, p = 0.4830 

Model 3: RT ~ Incentive*Group + (1+Incentive|Subject) 

Group F2,110 = 0.5207, p = 0.5956 

Incentive F2,220 = 0.0994, p = 0.9054 

Group*Incentive F4,219 = 0.4269, p = 0.7891 

Shown here are the results of Model 2 and Model 3 linear mixed-effects models, acquired using 
Type 3 F tests with Satterthwaite approximation for degrees of freedom using the afex package. 
Shown are F values, with corresponding degrees of freedom and P-values. 

 

Since sex and IQ were significantly different between the groups, we aimed to control 
for these variables by adding them as fixed effects, resulting in Model 4. The main effect 
of group did not remain significant, but showed a trend towards an effect (F2,112 = 
2.7465, p=0.06846), while the main effect of incentive did remain significant (F2,112 = 
20.9326, p< 0.001). We found no evidence for a significant effect of sex (F1,110 = 
2.8776, p=0.09264), or IQ (F1,109 = 0.0291, p=0.86489). The interaction effect between 
group and incentive remained non-significant at trend-level (F4,112 = 2.2898, 
p=0.06412). The significant three-way interaction between accuracy, evidence and 
group persisted (F2,15094 = 3.0871, p=0.04566). Importantly, when performing a Chi-
square test on the log-likelihood values of the models excluding and including the 
demographic variables to compare model fit, the model without demographics showed 
a better model fit (X2 = 2.7018, df=2, p=0.259), thereby favoring this simpler model. 
Additionally, to investigate how confidence was differently affected by sex in our healthy 
controls, we performed a two-sample t-test which showed that males were generally 
more confident than females (males: 76.51 ± 1.04; females: 71.70 ± 0.77) (t52 = 2.6518, 
p-value=0.01057). However, both sex and IQ did not show a significant influence on 
confidence level in Model 4. 

Next to confidence, we also examined calibration and metacognitive sensitivity (see 
Appendix B). In short, we showed that GD patients were more overconfident than OCD 
patients, without an effect of incentive condition. No differences in metacognitive 
sensitivity were found between groups or incentive conditions. 
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fMRI results GLM 1 

We analyzed functional neuroimaging data to test for differences in brain activity 
between groups for our contrasts of interest: (1) choice moment modulated by early 
certainty, (2) rating/incentive moment modulated by incentive value, and (3) 
rating/incentive moment modulated by confidence. The results from the fMRI group 
analysis revealed no significant differences between the groups for any of our 
contrasts.  

Next, we grouped all subjects together and performed one-sample t-tests on our 
contrasts of interest to examine the results across groups (cluster-generating voxel 
threshold p<.001 uncorr.; clusterwise correction for multiple comparisons pFWE<0.05). 
During choice, early certainty positively correlated with activation in the precuneus, 
VMPFC, bilateral VS and putamen, and bilateral visual areas (Figure 3A). The dorsal 
anterior cingulate cortex, bilateral dorsomedial- and dorsolateral prefrontal cortex, 
bilateral insula, thalamus, middle frontal gyrus, bilateral sensorimotor cortex, superior 
and inferior parietal lobe related negatively to early certainty (Figure 3A).  

At the moment of incentive presentation, the incentive value correlated positively with 
activation in the VS and VMPFC stretching into more dorsal areas, as well as the 
superior temporal gyrus (Figure 3B). Incentive value was negatively related to activity in 
the right (pre)motor cortex and dorsolateral PFC, as well as the left middle and superior 
temporal gyrus, left occipitotemporal gyrus, and left middle and inferior frontal gyrus. 
Moreover, activity in right lateral occipitotemporal gyrus and middle temporal gyrus 
were negatively related to incentive value (Figure 3B). 

During rating moment, confidence was positively related to activity in the VMPFC, left 
motor cortex and putamen and bilateral visual areas (Figure 3C). The following areas 
were negatively related to confidence: the left superior and inferior parietal lobes, right 
dorsolateral PFC, right supramarginal gyrus and thalamus, right motor cortex stretching 
into the dorsolateral PFC, left visual cortex and cerebellum (Figure 3C). See Table 5 for 
details of across group fMRI results. 
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Figure 3: Whole brain statistical bold-oxygen-level-dependent (BOLD) activity across 
groups. Red/yellow areas represent areas with a positive relationship, while green/blue areas 
represent areas that have a negative relationship. (A) Areas correlating significantly with early 
certainty at choice moment. Shown are positive activations in ventromedial prefrontal cortex, 
ventral striatum and visual cortices. Negative activations in dorsal anterior cingulate cortex, 
dorsolateral prefrontal cortices, insula, parietal cortices. (B) Areas correlating significantly with 
incentive value at incentive/rating moment. Shown are positive activations in ventromedial 
prefrontal cortex, anterior cingulate cortex, ventral striatum. Negative activations in dorsolateral 
prefrontal cortices and temporal gyri (C) Areas correlating significantly with confidence 
judgments at incentive/rating moment. Positive actions are shown in ventromedial prefrontal 
cortex, motor cortex and putamen. Negative clusters in motor cortex and dorsolateral prefrontal 
cortex. All clusters survived P<0.05 FWE cluster correction. Voxel-wise cluster-defining threshold 
was set at P<.001, uncorrected. For whole brain activation see Table 5. (D) Region of interest (ROI) 
of the VMPFC used for GLM2 analyses. 
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Table 5: Whole brain activation  

Effect Brain Region k Peak 
z-
score 

P (FWE 
cluster 
corrected) 

Peak 
MNI x 

y z Hemi-
sphere 

Early 
Certainty + 

Precuneus 
Ventromedial 
PFC 
Ventral Striatum 
Putamen 

2180 6.66 <.001 -6 -34 11 LR 

Lingual gyrus 
(visual cortex) 

154 6.39 <.001 18 -81 -4 R 

Lingual gyrus 
(visual cortex) 

54 4.49 0.045 -21 -79 -4 L 

Early 
Certainty - 

Dorsal Anterior 
Cingulate  
Dorsomedial 
PFC 
Dorsolateral PFC 
Insula 
Thalamus 
Middle Frontal 
Gyrus 
Precentral Gyrus 
Postcentral 
Gyrus 
Supramarginal 
Gyrus 
Superior Parietal 
Lobe 
Inferior Parietal 
Lobe 
Calcarine gyrus 
(visual cortex) 

13299 Inf 
(>8) 

<.001 45 14 2 LR 

Middle Occipital 
Lobe 
Middle Temporal 
Gyrus 
Lateral Occipito-
temporal Gyrus 

451 7.06 <.001 -30 
-48 
-45 

-91 
-67 
-61 

-4 
-1 
-10 

L 

Right 
Cerebellum 

144 6.64 <.001 33 -55 -31 R 

Incentive 
Value + 

Ventral Striatum 74 4.75 .004 -12 11 -4 L 
Ventromedial 
PFC 
 
Dorsomedial 
PFC 

212 4.53 <.001 -3 
-9 
0 

44 
50 
35 

-4 
-4 
14 

LR 

Superior 
Temporal Gyrus 

48 4.25 .026 -45 
-39 

-16 
-22 

-1 
5 

L 

Incentive 
Value - 

Precentral gyrus 
stretching into 
premotor cortex 
and dorsolateral 
PFC 

283 5.81 <.001 39 
45 
48 

11 
5 
14 

26 
32 
29 

R 

Middle temporal 
gyrus 

277 5.26 <.001 -54 
-51 

-43 
-52 

2 
11 

L 
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Superior 
temporal gyrus 

-48 -25 -7 

Lateral 
occipitotemporal 
gyrus 
Medial 
occipitotemporal 
gyrus 
 

183 5.06 <.001 -45 
-24 
-24 

-61 
-73 
-82 

-13 
-7 
-10 

L 

Middle frontal 
gyrus 
 
Inferior frontal 
gyrus 

299 4.93 <.001 -45 
-39 
-54 

2 
17 
17 

53 
23 
14 

L 

Lateral 
occipitotemporal 
gyrus 
 

116 4.90 <.001 42 
45 

-58 
-49 

-13 
-13 

R 

Middle temporal 
gyrus 
 

47 3.74 .029 57 
60 
57 

-46 
-46 
-61 

11 
2 
2 

R 

Confidence 
+ 

Middle 
occipitotemporal 
gyrus 
Lateral 
occipitotemporal 
gyrus 
Cerebellum 

1947 Inf 
(>8) 

<.001 12 
21 
15 

-73 
-70 
-52 

-10 
-7 
-16 

R 

Motor cortex 
(precentral 
gyrus) 

993 Inf 
(>8) 

<.001 -36 
-36 
-54 

-25 
-19 
-16 

65 
47 
47 

L 

Putamen 
Rolandic 
operculum 
 

968 5.91 <.001 -30 
-45 
-30 

-19 
-16 
-22 

2 
20 
14 

L 

Occipital lobe 65 4.58 .011 42 -67 5 R 
Ventromedial 
PFC 

92 4.39 .002 -3 
-12 
-19 

56 
47 
41 

-4 
8 
-1 

LR 

Confidence 
- 

Lingual gyrus 
(visual cortex) 
Cerebellum 

1144 Inf 
(>8) 

<.001 -9 
-15 
-24 

-79 
-52 
-67 

-7 
-22 
-28 

L 

Motor cortex 
(precentral 
gyrus) 
Stretching into 
dorsolateral PFC 

2421 Inf 
(>8) 

<.001 45 
42 
39 

-16 
-37 
-52 

59 
62 
41 

R 

Supramarginal 
gyrus 
Thalamus 

262 6.92 <.001 45 
15 

-19 
-22 

20 
2 

R 

Superior parietal 
lobe 
Inferior parietal 
lobe 
 

168 5.09 <.001 -33 
-39 
-39 

-58 
-52 
-43 

41 
47 
41 

L 
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Middle frontal 
gyrus 
(Dorsolateral 
PFC) 
 

71 4.49 .007 -45 
-45 

32 
23 

32 
35 

R 

Brain activations (whole brain analyses) showing activity related to early certainty at choice 
moment, as well as activity related to incentive and confidence at incentive/rating moment. All 
whole-brain activation maps were thresholded using family-wise error correction for multiple 
correction (FWE) at cluster level (P FWE_clu < 0.05), with a voxel cluster-defining threshold of 
P<0.001 uncorrected. Activity that positively correlates to given variable is denoted by ‘+’, 
whereas negative correlations are denoted by ‘-‘. PFC = prefrontal cortex. 

 

Interaction between metacognition and incentives in VMPFC (GLM 2) 

Our recent study suggested an important role of the VMPFC in the interaction between 
incentive-processing and metacognitive signals (Hoven, Brunner, et al., 2022). To 
investigate how this interaction takes effect in and differs between our clinical groups, 
we performed an ROI analysis by leveraging our factorial design. We extracted VMPFC 
activations for both time points (choice and rating), all incentives (loss, neutral and 
gain), and all groups (HC, OCD and GD), for both baseline activity and a regression 
slope with (1) signed evidence and (2) confidence judgments (see Figure 3D for the ROI). 

First, one-sample t-tests showed that, overall, VMPFC baseline activations were 
negative at choice and rating moment (choice: t100 = -3.611, p<0.001; baseline: t100 = -
4.9287, p<0.001). The correlations between VMPFC activity and both signed evidence 
at choice moment and confidence at rating moment, however, were significantly 
positive (choice: t100 = 3.057, p=0.003; baseline: t100 = 3.7399, p<0.001) (Figure 4). This 
implies that the VMPFC represents both confidence judgments and signed evidence 
(i.e., interaction between accuracy and evidence: increased VMPFC activity with 
increased evidence when correct and vice versa).  

Then, we investigated whether there were effects of incentive condition and group 
around this general signal. As expected, at choice moment there were no effects of 
incentive condition on VMPFC baseline activity, nor on its correlation with the signed 
evidence signal (i.e., slope) (Figure 4, Table 6). Despite the behavioral group effect on 
evidence integration, we did not find a group nor interaction effect on both baseline 
VMPFC activity and the correlation with signed evidence. At rating moment, however, 
incentive condition had a significant effect on both the baseline VMPFC activity, as well 
as its correlation with confidence. Post-hoc testing showed that the baseline VMPFC 
activity was higher during gain versus loss (t196: -3.874, p<0.001), and during gain versus 
neutral (t196 = -3.228, p<0.001), but no differences between neutral and loss conditions 
were found (t196 = -0.646, p=0.7948). The correlation of VMPFC activity with confidence 
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was significantly higher (i.e., increased slope) in gain versus neutral (t196 = -3.053, 
p=0.0072), while no differences between gain and loss, or between neutral and loss 
were found. Moreover, there was a significant group effect on VMPFC baseline activity 
during rating moment. The post-hoc tests revealed that OCD subjects had significantly 
decreased activity compared with HCs, averaged over incentive conditions (t98 = -2.515, 
p=0.0358). No interaction effects between group and incentive were found on baseline 
activity or its correlation with confidence at rating moment. 

Similar analyses using a ROI of the VS were performed (see Appendix B), with similar 
results: VS activity correlated with signed evidence, but no incentive, group or 
interaction effects were found at choice moment. Similarly, the correlation of VS 
activity with confidence was significantly higher in gain versus neutral, with no group 
difference at rating moment. 

 

Table 6: Results of VMPFC ROI analysis 

Shown here are the results of the mixed ANOVAs of t-statistics in the ventromedial prefrontal 
cortex (VMPFC) region of interest (ROI) using the afex package. Shown are the main effects of 
incentive condition, group and their interaction effect on the choice and rating time points, 
focusing on both the baseline activity as well as the slope of signed evidence and confidence 
judgments, respectively. F-values, with corresponding degrees of freedom and p-values are 
reported. 

  

 Incentive Group Incentive x Group 
Choice Baseline F(1.99, 195.28) = 0.37 

p = 0.687 
F(2, 98) = 0.54 
p = 0.582 

F(3.99, 195.28) = 0.41 
p = 0.803 

Choice Slope 
‘Signed Evidence’ 

F(1.99, 195) = 1.15 
p = 0.320 

F(2, 98) = 0.20 
p=0.819 

F(3.98, 195) = 0.31 
p = 0.869 

Rating Baseline F(1.91, 186.81) = 8.61 
p<0.001 

F(2, 98) = 3.24 
p = 0.044 

F(3.81, 186.81) = 0.44 
p = 0.771 

Rating Slope  
‘Confidence 
Judgment’ 

F(1.92, 187.68) = 4.67 
p = 0.012 

F(2, 98) = 0.99 
p = 0.375 

F(3.83, 187.68) = 1.29 
p = 0.277 
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Figure 4: Activation in ventromedial prefrontal cortex across incentives and groups. 
Ventromedial prefrontal cortex region of interest (ROI) analysis. T-values corresponding to 
baseline and regression slopes were extracted for all three groups and three incentive conditions, 
at two time points of interest: choice and incentive/rating moment. Green dots and lines 
represent gambling disorder patients, blue dots and lines represent healthy controls and red dots 
and lines represent obsessive-compulsive disorder patients. Dots represent individual t-
statistics, and error bars represent sample mean ± SEM per group. Black bars represent 
significant post-hoc tests. Yellow bars represent average t-values, with corresponding 
significance level of one-sample t-tests against 0. (* p<0.05, ** p<0.01, *** p<0.001). GD = 
gambling disorder, HC = healthy control, OCD = obsessive-compulsive disorder. 

 

Discussion 

In this study we investigated the (neural signatures of) metacognitive ability and its 
interaction with incentive motivation in two compulsive disorders: OCD and GD. First, 
we replicated the biasing effect of incentives on confidence estimation in all groups, 
showing that confidence was higher in the gain context and lower in the loss context. 
This is a robust effect, that has now been independently replicated multiple times 
(Hoven, Brunner, et al., 2022; Lebreton et al., 2018; Lebreton, Bacily, et al., 2019; C. C. 
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Ting et al., 2020). We initially found evidence for a significantly higher confidence in GD 
patients versus OCD patients, although this effect diminished after controlling for sex 
and IQ differences between groups. Hence, we only found moderate evidence for our 
hypothesis of group differences in confidence, as well as for our hypothesis that 
incentive motivation would affect confidence judgments differently in the groups. 
Future research should address the role of the demographic confounding factors more 
specifically.  

When looking into the computational signatures of confidence formation in more 
detail, GD patients interestingly showed less integration of evidence into their 
confidence judgments for correct choices compared to both HCs and OCD patients. 
This suggests that GD patients were less able to use evidence they received to form 
confidence judgments. This decreased sensitivity to objective evidence could fit GD’s 
symptomatology of cognitive inflexibility (Perandrés-Gómez et al., 2021; van Timmeren 
et al., 2018), and cognitive distortions (Ledgerwood et al., 2020; Mallorquí-Bagué et al., 
2019). Illusion of control leads pathological gamblers to believe they can predict 
outcomes, rendering them less influenced by objective evidence, which may promote 
continuation of (overconfident) gambling behavior (Cowley et al., 2015; Goodie & 
Fortune, 2013).  

Notably, our patient groups seemed to be situated on opposite sides of the confidence 
spectrum, with GD patients being more confident than OCD patients. However, this 
effect was partly driven by sex and IQ differences between groups. The GD group 
consisted mostly of males, whereas the OCD group had a more mixed composition, 
mirroring the prevalence distribution of these disorders (Howe et al., 2019; 
Subramaniam et al., 2015; Swedo et al., 1989; Welte et al., 2017). Consistent with our 
findings of increased confidence in HC male subjects, recent studies have shown that 
males are more confident than females, despite equal performance (Ariel et al., 2018; 
Rivers et al., 2021). Therefore, the effect of sex might have explained some variance in 
our data, but does not fully explain the group differences, since we do find a trend 
toward a group effect. The importance of taking into account sex and gender as factors 
in both neuroscience and psychiatry research is increasingly recognized and acted 
upon (Cahill, 2006), since sex differences play a role in the incidence, treatment and 
manifestation of psychopathology (Cosgrove et al., 2007; Gobinath et al., 2017). The 
precise role of sex and gender in metacognition deserves more attention and should be 
characterized further in future research.  

Our data shows no convincing evidence for an exaggerated decrease/increase in 
confidence during loss/gain anticipation in OCD/GD, respectively. However, the 
group*incentive interaction approached significance, with increased confidence in GD 
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patients compared to both OCD patients and HCs, specifically in the gain condition. 
This finding agrees with literature demonstrating increased reward sensitivity in GD 
(Navas et al., 2017; Van Holst, Veltman, Bchel, et al., 2012). Confidence in OCD 
patients has been mostly studied using metamemory paradigms, and abnormalities 
were most profound in OCD-relevant contexts (Boschen & Vuksanovic, 2007; Bucarelli 
& Purdon, 2016; Hermans et al., 2008; Moritz et al., 2007; Radomsky et al., 2001; Tolin 
et al., 2001). Earlier studies probing confidence in GD are sparse, and whilst they all did 
show an effect of overconfidence in (sub)clinical problem gamblers, none of the 
studies actively controlled for performance differences, making it difficult to draw 
strong conclusions about confidence biases (Brevers et al., 2014; Goodie, 2005; Lakey 
et al., 2007). 

Since confidence in GD and OCD did not differ from the healthy population we cannot 
technically speak of confidence ‘abnormalities’ in GD and OCD. Future work is 
necessary to study the link between compulsivity and confidence more directly. One 
interesting method is transdiagnostic research to study metacognition in psychiatry. 
Transdiagnostic research methods are useful, since (meta)cognition might relate more 
closely to symptoms than diagnoses, due to high levels of comorbidity and 
heterogeneity of symptoms within disorders.  Indeed, a transdiagnostic factor of 
‘anxious-depression’ was negatively related to confidence, whereas ‘compulsive 
behavior and intrusive thoughts’ were positively related to confidence and showed 
decoupling of confidence and behavior by diminished utilizing of perceptual evidence 
for confidence judgments (Seow & Gillan, 2020). This latter result is in line with our 
findings of diminished evidence integration into confidence judgments in GD patients.  

The brain areas we found to be related to confidence and incentive processing converge 
with earlier work. Confidence was found to be positively related to the VMPFC via 
automatic processing at the choice moment (De Martino et al., 2012; Lebreton et al., 
2015; Lopez-Persem et al., 2020; Shapiro & Grafton, 2020). Early certainty processing 
was also positively related to activity in the VS and precuneus (Hebart et al., 2016; 
Rouault, McWilliams, et al., 2018; Vaccaro & Fleming, 2018). We also observed a wide-
spread network of areas negatively related to early certainty, containing the dACC, 
dorsolateral PFC, insula, inferior parietal lobe and midfrontal gyrus, a network 
repeatedly associated with uncertainty and metacognitive processes (Hebart et al., 
2016; Molenberghs et al., 2016; Morales et al., 2018; Vaccaro & Fleming, 2018). Also, 
well-known relationships between reward processing and activity in both VS and 
VMPFC were replicated (Bartra et al., 2013; Lebreton et al., 2009). Moreover, we found 
negative relationships between incentive value and BOLD activity in the central 
executive network (i.e. lateral PFC and middle frontal gyrus), as well as superior 
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temporal gyrus (Liu et al., 2011; Wilson et al., 2018). Confidence was found to be 
related to VMPFC activity, not only at choice moment, but also during rating (De Martino 
et al., 2012; Lebreton et al., 2015; Lopez-Persem et al., 2020). Overall, our fMRI findings 
closely resemble activation patterns previously shown in healthy populations. 

We also replicated the effect of incentive condition on VMPFC baseline activity and on 
the correlation of VMPFC activity with confidence, which was highest in gain 
conditions, which we also found in the VS (Hoven, Brunner, et al., 2022). While we found 
aberrant evidence integration in GD patients on a behavioral level, we did not find any 
group differences in evidence processing on neurobiological level. Interestingly, OCD 
patients showed a decreased baseline VMPFC activity during incentive/rating moment, 
which fits with earlier work showing neurobiological deficits in a ‘ventral motivational 
circuit’ including the VMPFC (Stein et al., 2019; Thorsen et al., 2018). However, we did 
not find any interactions with incentive condition in the VMPFC activity related to either 
signed evidence or confidence.  

In sum, contrary to our hypotheses, we did not find neurobiological deficits directly 
related to confidence or to the effects of incentive on confidence in our clinical 
samples. This might not be surprising, given that the behavioral group effects were 
small (and disappeared when controlling for demographics), which limited our ability a 
priori to find impairments in neural circuits mediating confidence processes. Because, 
to our knowledge, the present study represents the first attempt in investigating the joint 
neural basis of metacognitive and reward processes in both GD and OCD, further study 
- e.g. looking into transdiagnostic variations of symptoms - might be more powerful in 
detecting clinically useful neurocognitive signatures of those processes than the 
present clinical case-control comparisons (Parkes et al., 2019).  
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Abstract 

Confidence is suggested to be a key component in psychiatry and manifests at various 
hierarchical levels, from confidence in a decision (local confidence), to confidence 
about performance (global confidence) to higher-order traits such as self-beliefs. Most 
research focused on local confidence, but global levels may relate more closely to 
symptoms. Using a transdiagnostic framework, we tested the relationships between 
self-reported psychopathology, local and global confidence and higher-order self-
beliefs in a general population sample(N=489). Here we show contrasting relationships 
between confidence and psychopathology dimensions. An anxious-depression (AD) 
dimension related to local and global underconfidence. Contrarily, a compulsive-
intrusive-thoughts (CIT) dimension related to increased overconfidence at both levels, 
and showed a decoupling between (i) higher-order self-beliefs and (ii) local and global 
task confidence. The strongest predictor of mental health was a self-beliefs dimension. 
This study examines higher-order confidence in relation to psychiatric symptoms 
fluctuating in the general population. Critically psychopathological symptoms show 
distinct associations with confidence. 
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Introduction 

Using confidence judgments, we are able to think about, reflect upon and evaluate our 
own thoughts, decisions and actions, which is central to our behavior and crucial for 
adequate adaptation (Boldt et al., 2019; Heilbron & Meyniel, 2019; Vinckier et al., 2016), 
behavioral control (D. G. Lee & Daunizeau, 2021) and learning (Fleming, Dolan, et al., 
2012; Folke et al., 2017; Pouget et al., 2016). A plethora of studies have shown 
impairments in confidence in various psychiatric populations (Hoven et al., 2019), 
ranging from over- to underconfidence. The majority of these earlier studies have 
focused on ‘local’ confidence, i.e., the level of confidence reported on individual trial-
by-trial decisions. Local confidence is usually quantified using distinctive, independent 
metrics: confidence bias and metacognitive sensitivity. Confidence bias (or calibration) 
reflects one’s overall confidence level relative to one’s actual performance, whereas 
metacognitive sensitivity reflects how well one’s confidence judgments distinguish 
between correct and incorrect choices. However, these metrics are limited regarding 
their time scale and the scope of behaviors they control.  

A new theoretical framework has emerged which posits that confidence manifests at 
various hierarchical levels of abstraction, from ‘local’ confidence judgments on a 
specific trial to more ‘global’ metacognitive constructs (Seow et al., 2021). In this 
framework, local constructs are theorized to pertain to isolated choices. In contrast, 
global constructs are proposed to reflect beliefs formed over extended periods of time 
and integrate larger amounts of information. For instance, one can develop global 
confidence about one's ability to perform a certain task. These local and global 
constructs are likely related to even higher-order feelings of confidence about the self: 
self-beliefs, such as self-esteem, self-efficacy, mastery and autonomy, which are 
relatively more stable over time for a given individual. All these constructs focus on the 
self from distinct angles. Self-esteem relates to one’s self-worth (Quiles et al., 2015), 
self-efficacy to beliefs in one’s ability to influence their lives (Bandura, 1977), autonomy 
to one’s ability to live a meaningful life (Bergamin et al., 2022), and mastery to one’s 
beliefs to control their lives (Eklund et al., 2003; O’Kearney et al., 2020).  

How these various levels of confidence are mutually related, and how they relate to 
psychopathology are important open questions. One could argue that individuals 
suffering from depressive symptoms develop negative self-beliefs, which could give 
rise to lower confidence levels. These relationships between confidence levels may 
differ for individuals suffering from other symptomatology, whose symptoms might 
instead be related to increased confidence. Thus, alterations in local confidence found 
across psychopathology could go hand-in-hand with alterations in global confidence, 
and eventually with higher-order levels of confidence, such as self-belief constructs in 
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a specific manner, dependent on the psychiatric symptoms at hand. In particular, 
relative to local confidence, higher-order forms of confidence may be more directly 
related to clinically relevant subjective experiences and psychopathological behavior 
in daily life. These higher-order constructs could influence behavior over a wide range 
of contexts and over longer time scales, where local confidence instead would only 
influence small-scale decisions. For example, patients suffering from major depression 
could in general have lower self-esteem and lower global confidence about their 
abilities, resulting in avoidance behavior and negative schemas (Beck, 2003; Korn et al., 
2014; Moroz & Dunkley, 2015). Gaining a deeper understanding of the mechanisms of 
higher-order confidence is hypothesized to provide more insight into clinically relevant 
psychopathological behavior (Seow et al., 2021). By identifying which specific 
processes are most impacted, therapies can be tailored and refined to be more 
effective in treating symptoms.  

A recent study operated the formation of global confidence in a behavioral task 
(Rouault et al., 2019). Participants performed two mini-blocks of perceptual games; 
after each block, they selected the game in which they thought they performed best, 
and gave global confidence ratings about their perceived ability at the games; both 
proxies for global confidence. To decompose the relationships between these various 
levels of confidence and mental health symptoms, a recent case has been made to 
employ a transdiagnostic approach (Seow et al., 2021). The central idea is that cognitive 
processes might relate more closely to transdiagnostic symptomatology than to DSM 
diagnoses, due to high levels of comorbidity and heterogeneity in symptoms within a 
disorder (Insel et al., 2010). For example, many OCD patients suffer to a greater or lesser 
extent from compulsivity, as well as anxiety, which can disguise important findings 
when only considering classic DSM disorder boundaries. Here, we leveraged a 
previously validated transdiagnostic approach that allowed to establish three latent 
transdiagnostic symptom dimensions termed “Anxious-Depression” (AD), 
“Compulsive Behavior and Intrusive Thought” (CIT) and “Social Withdrawal” (SW) 

(Gillan et al., 2016). With this approach, previous work has shown that higher scores on 
the AD dimension related to lower confidence, while higher scores on the CIT 
dimension related to higher confidence levels (Rouault, Seow, et al., 2018; Seow & 
Gillan, 2020). Some of these findings were only visible within the transdiagnostic 
framework. Likewise, it has been argued that opposing effects of certain symptoms on 
local confidence could be clarified by considering multiple hierarchical levels of 
confidence at the same time, each of which may map differently onto mental health 
symptoms (Seow et al., 2021). Local confidence ratings could, for example, be more 
strongly driven by a prior of low self-beliefs in anxious-depression, whereas in 
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compulsivity these priors may have less impact. However, studies testing these 
hypotheses are currently lacking. 

Here, we tested this proposition by systematically investigating the relations between 
and within the various levels of the confidence hierarchy and psychiatric symptoms. As 
preregistered (https://osf.io/6vbpr), we acquired questionnaire and task data from a 
large general population sample online, using a previously validated “local and global 
confidence task” (Rouault et al., 2019) with a transdiagnostic approach. We 
hypothesized that local confidence informs global confidence, and negative 
(respectively positive) relationships between the AD (respectively CIT) symptom 
dimension and both local and global confidence, corresponding to a general under- and 
overconfidence, respectively. Moreover, based on the proposed hierarchical structure 
of confidence, we expected positive relationships between local confidence, global 
confidence and self-belief constructs. Finally, we tested whether there would be 
dissociations in the relationships between the hierarchical levels of confidence 
depending on symptom dimensions, and identified which of the hierarchical levels of 
confidence best explained symptom dimensions. 

 

Results 

Experimental Design 

In this cross-sectional study, conducted online, human subjects performed a local and 
global confidence task (Rouault et al., 2019). During this perceptual decision-making 
task, participants performed short blocks with two randomly interleaved ‘games’ 
indicated by two arbitrary color cues (Figure 1). In each trial of a game subjects had to 
indicate which of two black boxed contained a higher number of white dots. The games 
involved different conditions: they could either be easy of difficult (i.e., difficulty 
feature), and deliver either veridical feedback or no feedback (i.e., feedback feature). 
These features resulted in six possible pairings of conditions within each block, which 
were repeated twice in randomized order. On all trials without feedback participants 
had to indicate their local confidence about their probability of being correct on that 
specific trial from 50% - 100%. After each block participants had to choose on which 
game they believed they performed best (global task choice) for which they were 
incentivized, and they had to rate their confidence in their overall performance on each 
of the two games (global confidence) on a scale from 50% to 100%. See Methods for 
more details on the task. 
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After finishing the task, participants filled in self-report questionnaires assessing 
psychiatric symptoms and self-belief constructs (see Methods for details). To study the 
interplay between the various hierarchical levels of confidence (local, global and self-
beliefs) and psychopathology, we assessed psychopathology across a large range of 
different symptoms, as well as various higher order self-belief constructs.  

Figure 1: Experimental task design. A Participants performed learning blocks with two 
randomly alternating trials from two tasks, indicated by a task cue. Each task was either easy or 
difficult and provided feedback or no feedback (C), resulting in six different possible task pairings. 
Each trial started with the presentation of a color cue, indicating which of the two tasks was 
presented, after which subjects had to choose which of two boxes contained a higher number of 
dots. Each judgment was either easy or difficult, dependent on the dot difference between the 
boxes. After their choice, subjects either received feedback (correct or incorrect) about their 
choice, or did not receive feedback and instead were asked to provide a local confidence rating 
about the probability of their perceptual judgment being correct. B At the end of each learning 
block participants were asked to choose which task should be used to calculate a bonus (based 
on their performance; global task choice. They also rated their overall ability; global confidence. 
Together, they are measures of global metacognition. D The hierarchical levels of metacognitive 
evaluations, which consist of local confidence at the trial level in isolated decisions, global 
confidence at the task level and Self-Beliefs, which operate at a level more directly relevant to 
daily life. All levels include reciprocal interactions with the other levels, in a way that local 
confidence contributes to global confidence, and eventually to Self-Beliefs, and in turn these 
levels can impose their influence on local confidence. From trial level information at local 
confidence levels, to the aggregation of multiple trials at global confidence levels, up to the 
integration of multiple sources of information encountered in real life situations in one’s Self-
Beliefs. 
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Behavioral Variables 

In order to relate our confidence measures to our psychopathology measures, various 
behavioral variables were calculated. First, we calculated global calibration (task level), 
which is the difference between average global confidence and performance on all 
trials, reflecting how well subjects’ overall task confidence matches their overall actual 
performance. For local calibration (trial level), we calculated the difference between 
average local confidence and performance on no feedback games only. Moreover, the 
correlation between local and global confidence levels was calculated for the non-
feedback condition only (see Methods for more details). Finally, metacognitive 
efficiency (i.e. meta-d’/d’, or M-Ratio) was calculated per subject, which is a confidence 
precision measure, indexing how well subjects can discriminate between correct and 
incorrect choices using their local confidence ratings, independently of performance 
or confidence biases (Fleming, 2017; Maniscalco & Lau, 2012). After applying rigorous 
exclusion criteria (see Methods), data of 489 participants were used for the analyses. 

 

Transdiagnostic Dimensions 

Within a specific psychiatric questionnaire, different items may map onto different 
latent psychiatric factors, which would be obscured in traditional analyses. In order to 
obtain a more parsimonious latent transdiagnostic structure that would explain this 
item-level variation in scores on all psychiatry questionnaires, we performed a factor 
analysis and tested the relationship between our task variables and these latent 
transdiagnostic psychiatry dimensions (see Appendix C, Figure C1 and Figure C9 for 
more details on the factor analysis). Our factor analysis indicated that a three-factor 
structure provided the best and most parsimonious fit of the variance across the 
questionnaire items, showing very strong correlations with the item loadings from 
previous studies (Rouault, Seow, et al., 2018) (Appendix C: Figure C8), indicating that 
the factor analysis robustly identifies the same latent constructs. For consistency, 
these three factors were given the same labels as earlier studies, according to the items 
that loaded the most strongly on each factor, even though these labels are to some 
extent arbitrary (Appendix C: Figure C1B) (Gillan et al., 2016; Rouault, Seow, et al., 
2018): ‘Anxious-Depression (AD)’, ‘Compulsive Behavior and Intrusive Thought (CIT)’, 
and ‘Social Withdrawal (SW)’.  
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Relating Task Variables to Transdiagnostic Dimensions 

First, our aim was to test the specific relationships between each transdiagnostic 
symptom dimension (AD, CIT and SW) and task variables (performance, local 
confidence, global confidence, local calibration, global calibration, metacognitive 
efficiency and the correlation between local and global confidence), while controlling 
for the other transdiagnostic dimensions and demographics. In this way, we tested 
whether we could replicate previously found relationships between local confidence 
and transdiagnostic dimensions, and whether these relationships were also found for 
higher-order levels of confidence.  

Results of our multiple regression analyses showed that the AD dimension was 
significantly positively related with performance, while a significant negative 
relationship existed for the CIT dimension (Figure 2A, Table C1). Mean local and global 
confidence were significantly negatively related with scores on the AD dimension. For 
both local and global calibration, we found a significant negative (i.e., underconfidence) 
associations with the AD dimension, but positive (i.e., overconfidence) relationships 
with the CIT dimension. 

Because there were effects of symptom dimensions on performance, we performed a 
sensitivity analysis to examine whether our results were maintained when adding 
participant’s average performance level as a predictor to our regression models when 
predicting local and global confidence (i.e., Local/Global Confidence ~ AD + CIT + SW 
+ Mean Performance + Age + IQ + Gender). We again found a negative relationships 
between AD and both local and global confidence (local: β = -0.247 ± 0.045, t = -5.526, 
pcor < 0.001; global: β = -0.219 ± 0.040, t = -5.473, pcor < 0.001), and also again showed 
significant positive relationships between CIT and both local and global confidence 
(local: β = 0.160 ± 0.046, t = 3.508, pcor < 0.01; global: β = 0.125 ± 0.041, t = 3.049, pcor < 
0.05), with a type I error rate of .05/7. For additional exploratory analyses on reaction 
times and inattentiveness see Appendix C. 

Moreover, CIT was associated with a lower correlation between local and global 
confidence, indicating that high CIT scores related to a more distorted coupling 
between local and global confidence. No associations with metacognitive efficiency 
were found, and the SW dimension did not relate significantly to any of our task 
variables (Appendix C: Table C1). 

We further asked whether the uncovered relationships between the confidence 
variables and transdiagnostic dimensions were significantly different from each other. 
Since the SW dimension did not significantly relate to any of our variables, we did not 
include it in post-hoc tests. For performance, the regression coefficient of the CIT 
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dimension was significantly lower than that of the AD dimension (Appendix C:Table C1). 
For local confidence, local calibration and global calibration, the regression 
coefficients of CIT were significantly higher than those of AD, indicating that individuals 
scoring high on CIT show a higher (over)confidence than those scoring high on AD. 
Moreover, the correlation of local and global confidence was significantly higher for AD 
than CIT, suggesting that local and global confidence show a better coupling in 
individuals scoring high on AD versus those scoring high on CIT.  

Note that AD and CIT dimensions show a significant positive correlation (r = 0.24, 
p<.001, Figure 2D). Therefore, our finding of opposing relationships cannot be 
attributed to a negative correlation between the factors. 
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Figure 2: Behavioral results of transdiagnostic dimensions and self-beliefs. A: Regression 
coefficients of the two-sided multiple regression models of the three latent factors comprising 
‘Anxious-Depression’ (AD), ‘Compulsive behavior and Intrusive Thought’ (CIT) and ‘Social 
Withdrawal’ (SW) and various dependent variables measuring performance and metacognition. 
All factor scores were entered as predictors for each regression model, together with age, gender 
and IQ. N = 489 independent subjects. Results are corrected for multiple testing. B: Regression 
coefficients of the two-sided multiple regression models of the latent ‘Self-Beliefs’ (SB) factor. 
The regression model containing SB factor scores, together with age, gender and IQ revealed 
positive associations between SB scores and both local and global confidence and calibration. 
N = 489 independent subjects. Results are corrected for multiple testing. C: Relating the three 
psychiatry factors to the SB factor using a two-sided regression analysis. All three psychiatric 
factors are strongly negatively related to SB factor scores, with strongest effects for the AD 
scores. N = 489 independent subjects. D: Pearson correlation matrix of the psychiatric and SB 
factor scores across subjects. Correlation tests were two-sided and Bonferroni corrected for 
multiple testing. Error bars represent SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, corrected for 
multiple comparisons over the number of dependent variables tested, ° p < 0.05 uncorrected. 
Exact p-values are described in Tables C1 and C2. AD = ‘Anxious-Depression’, CIT = ‘Compulsive 
behavior and Intrusive Thoughts’, SW = ‘Social Withdrawal’, SB = ‘Self-Beliefs’, Corr Local Global 
= correlation between local confidence and global confidence. 
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Relating Task Variables to Self-Beliefs 

Since all self-belief construct questionnaire scores correlated highly (Appendix C: 
Figure C1C, Figure C5), we aimed to acquire an all-encompassing single latent factor 
underlying these constructs. To do so, we performed a second factor analysis on the 
self-belief construct questionnaires using the same methods. All questionnaires 
showed an average loading of > 0.5 (autonomy M = 0.50 ± 0.16, mastery M = 0.55 ± 0.1, 
self-esteem (Rosenberg’s) M = 0.70 ± 0.08, self-efficacy M = 0.56 ± 0.09, self-esteem 
(Short Form) M = 0.63 ± 0.09). We labeled this factor the ‘Self-Beliefs’ (SB) factor 
(Appendix C: Figure C1D), an even higher hierarchical level of confidence. We then 
tested the association between this factor (i.e., highest-order level of confidence), 
performance, local confidence and global confidence using multiple linear regressions 
(see Methods for details) (Figure 2B). There was a significant positive relationship 
between SB scores and both local and global confidence, as well as local and global 
calibration, indicating that subjects with higher scores on the SB factor were more 
overconfident (Figure 2B, Table C2). 

 

Relating Transdiagnostic Dimensions to Self-Beliefs  

After investigating the associations between the transdiagnostic dimensions and both 
local and global confidence, we examined the associations between the 
transdiagnostic dimensions and the highest-order level of Self-Beliefs using a linear 
regression. We found that all three transdiagnostic dimensions related negatively to SB 
scores, while correcting for demographics (AD: β = -0.706 ± 0.022, p<.001; CIT: β = -
0.151 ± 0.023, p<.001; SW: β = -0.259 ± 0.023, p<.001) (Figure 2C). Post-hoc 
comparisons showed that the regression coefficient of the AD factor was significantly 
more negative than the SW (t = 12.257, p<.001) and CIT coefficient (t = 16.134, p<.001), 
whereas the coefficient of SW was more negative compared to CIT (t = 2.949, p = 0.003). 

 
Relationships Between the Various Levels of Confidence 

Since we argued that local confidence, global confidence and SB scores each 
represent various levels of confidence, it is expected that they show positive 
associations. Indeed, we found that local and global confidence were significantly 
positively correlated (r=0.82, p < 0.001). Moreover, local confidence and SB scores, as 
well as global confidence and SB scores were also significantly positively related 
(r=0.16, p<0.001; r=0.13, p = 0.004, respectively). Although, as expected, the task 
variables of local and global confidence correlate more strongly together than they both 
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do with the questionnaire-based SB scores, critically all three confidence levels 
studied here correlate positively. 

Predicting Psychopathology with Levels of Confidence 

Even though the various levels of confidence were positively correlated, their influence 
on symptoms could be divergent. Thus, to assess the influence and relative importance 
of the hierarchical levels in predicting psychiatric symptoms, we entered all three 
confidence levels as predictors of psychiatric dimension scores in three separate 
regressions (one for each dimension, see Methods for details) (Figure 3, Table C3).  

SB scores strongly negatively predicted AD and SW scores, whereas neither local 
confidence nor global confidence was a significant predictor of AD or SW. For CIT, both 
SB scores and global confidence significantly negatively explained CIT scores, but 
contrarily, local confidence was a significant positive predictor of CIT scores. For all 
three psychiatric symptom dimensions, post-hoc tests showed stronger effects of the 
SB factor compared to both local confidence and global confidence measures 
(Appendix C: Table C4). Also, a comparison of the standardized absolute regression 
coefficients of the SB and local confidence predicting CIT indicated that SB was the 
most important predictor. Since local confidence and global confidence are highly 
correlated, we also examined (i) regression models where we used the average of local 
and global confidence as a predictor alongside self-beliefs and (ii) regression models 
where we only used either local or global confidence as a predictor alongside self-
beliefs. Both approaches resulted in similar results as described above, see Appendix 
C for more detail. 

Taken together, these results show that Self-Beliefs is the strongest predictor for all 
psychiatry dimensions. For CIT, a dissociation was found in the predictions of local 
confidence on the one hand, and global confidence and Self-Beliefs on the other hand. 
This further supports the finding of a decoupling between local and global confidence 
in high CIT individuals. 
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Figure 3: Relationships between hierarchical levels of metacognition and transdiagnostic 
symptom dimensions. Regression coefficients of the two-sided regression models predicting 
AD scores, CIT scores or SW scores with the three levels of metacognitive hierarchy: local 
confidence, global confidence and ‘Self-Beliefs’ (SB) score. All three levels of the hierarchy were 
entered as predictors for each model, together with age, gender and IQ. Error bars represent SEM. 
* p < 0.05, ** p < 0.01, *** p < 0.001. Post-hoc test results comparing the strength of the regression 
coefficients were corrected for multiple comparisons. Exact p-values are described in Tables C3 
and C4. AD = ‘Anxious-Depression’, CIT = ‘Compulsive behavior and Intrusive Thoughts’, SW = 
‘Social Withdrawal’. 

 

Discussion 

Measures of local confidence, global confidence, and self-beliefs, all concern 
judgments of the self and one’s personal competence, albeit at various levels of 
abstraction formed over different timescales. Together, they are proposed to form a 
hierarchical structure of confidence, of which all levels impact our behavior (Rouault et 
al., 2019; Seow et al., 2021). Even though higher-order levels of confidence are an 
evident determinant of mental health (Quiles et al., 2015; Silverstone & Salsali, 2003), 
mostly local confidence has been empirically studied using behavioral tasks. Here, we 
assessed three key hierarchical levels of confidence across a large spectrum of 
psychopathology. We found opposite relationships between subclinical psychiatric 
symptoms and the hierarchical levels of confidence. Interestingly, the levels of 
confidence differently explained symptom dimensions, depending on the type of 
psychopathology. 
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First, our transdiagnostic approach revealed that the “Anxious-Depression” (AD) 
symptom dimension was associated with local and global underconfidence. Contrarily, 
the “Compulsive Behavior and Intrusive Thoughts” (CIT) symptom dimension was 
related to local and global overconfidence, presumably driven by lower performance 
levels. The current study thus replicates and extends earlier results on local confidence 
(Rouault, Seow, et al., 2018; Seow & Gillan, 2020), by showing that alterations in local 
confidence generalize to global confidence. Interestingly, the “Social Withdrawal” (SW) 
symptom dimension did not significantly relate to either local or global confidence, but 
had a strong negative relationship with self-beliefs. This suggests that individuals with 
high SW symptom scores suffer from low self-beliefs, despite being able to properly 
evaluate their global and local confidence. 

Positive associations between local confidence, global confidence, and higher-order 
self-beliefs were found. This is in line with evidence for associations between 
confidence and metacognitive beliefs in educational settings (Kleitman & Gibson, 
2011; Kleitman & Stankov, 2007), positive associations between local confidence and 
self-esteem (Moses-Payne et al., 2019), and decreased global confidence in individuals 
with low versus high self-esteem (Rouault et al., 2022). While previous reports had 
suggested that self-beliefs may function as a prior informing lower levels of confidence, 
the current study, for the first time empirically tested their relations. By doing so our 
study critically extends the literature by showing that higher-order self-beliefs are 
strongly positively related to confidence and overconfidence at both global and local 
levels in the same participants, while not being related to performance.  

Self-beliefs were a general predictor of mental health, which manifested as strong 
negative relationships between all three symptom dimensions and SB scores, 
indicating that self-beliefs are affected across the entire spectrum of psychopathology. 
Self-beliefs were most strongly affected in the AD dimension, and least affected in the 
CIT dimension. This difference is reflected in the DSM, in which a feeling of 
worthlessness is a diagnostic criterion for depression (American Psychiatric 
Association, 2013). Indeed, self-beliefs such as self-esteem, autonomy and self-
efficacy are usually strongly diminished in depression and anxiety disorders (Bachrach 
et al., 2013; Beck, 2003; Bekker & Belt, 2006; Bekker & Croon, 2010; Muris, 2002; 
Sowislo & Orth, 2013). In contrast, diminished self-beliefs are not an explicit diagnostic 
criterion of OCD and schizophrenia, disorders that contain symptoms relating to CIT. 
Instead, such symptoms might be more related to a lack of self-control and/or a loss of 
sense of reality, which could secondarily affect self-beliefs (Henriksen & Parnas, 2014; 
Strayhorn, 2002). Our findings are in line with these observations and suggest that, to 
the extent that self-beliefs may act as priors, their influence was strongest in AD, 
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resulting in decreased lower-level confidence. In contrast, for CIT and SW the prior was 
less strong, and possibly, therefore, did not lead to negative changes in local 
confidence. Despite these differences between dimensions, self-beliefs are deemed 
an important factor across many different disorders and symptoms (Silverstone & 
Salsali, 2003). 

Intriguingly, while for AD and SW symptoms there was no additional predictive 
influence of local and global confidence beyond self-beliefs, local and global 
confidence did significantly predict CIT symptoms, with a dissociation in the 
directionality of these effects. Higher CIT symptom scores were negatively related to 
self-beliefs and global confidence, but positively related to local confidence. It thus 
seems that higher local confidence in CIT did not generalize to increases in global 
confidence or self-beliefs, and vice versa that the influence of a negative self-beliefs 
prior did not lead to decreased local confidence levels. These findings of a disconnect 
between confidence levels are reinforced by our finding of a decreased correlation 
between local and global confidence with higher CIT symptoms.  

The formation of local confidence is a coalescence of multiple influences: from higher-
order confidence priors to local assessments of decision evidence. In CIT, it could be 
that higher-order confidence priors are not optimally used or simply underweighted to 
inform local confidence judgments. Alternatively, the assessment of local decision 
evidence might be erratic in CIT, and therefore less incorporated into higher-order 
beliefs about self-confidence. Indeed, it has been previously found that CIT is 
associated with lower sensitivity to environmental evidence while informing 
confidence, leading to a decoupling between action and confidence (Seow & Gillan, 
2020). This sub-optimal transfer of information between different levels of confidence 
could lead to maladaptive generalization across tasks and domains, resulting in rigid 
self-beliefs that are not updated appropriately or not at all following decision 
performance. This suggestion fits with recent theoretical models on the formation of 
confidence (Rouault, McWilliams, et al., 2018) and self-esteem (N. M. P. De Ruiter et al., 
2017) that suggest reciprocal relationships between various levels of self-beliefs, 
where higher levels can impact or constrain lower level components (i.e. local 
confidence) and simultaneously these lower levels can exert bottom-up influence on 
higher-order levels.  

We hypothesized that confidence levels higher up the hierarchy would relate more 
strongly to symptomatology. Indeed, self-beliefs significantly explained the 
transdiagnostic symptom dimensions more strongly than local or global confidence, 
implying that they would be the most important determinant of mental health. 
However, stronger relationships between self-beliefs and symptoms could also arise 
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since they both rely on questionnaires and focused on phenomenological experiences, 
whereas local and global confidence are task-based behavioral outcomes. However, 
the fact that we do find relationships between self-beliefs and local and global 
confidence encourages the notion that behavioral confidence measures can help 
characterize the cognitive processes that contribute to important phenomenological 
experiences, such as self-beliefs and mental health.  

Unlike previous findings showing a subthreshold decrease in metacognitive efficiency 
with CIT (Rouault, Seow, et al., 2018), we found no evidence for such a deviation other 
than a subthreshold increase of metacognitive efficiency in CIT. This also is in contrast 
to our review evidencing a worsened metacognitive efficiency in schizophrenia and 
addiction (Hoven et al., 2019), disorders with symptoms that are thought to overlap with 
our CIT factor. However, a recent meta-analysis revealed that alterations in 
metacognitive efficiency in schizophrenia likely have been overestimated, which would 
better correspond to our present findings (Rouy et al., 2021). Although metacognitive 
efficiency takes into account task performance, here, by design, performance was not 
constant for all subjects. This may have impacted the relationship between 
metacognitive efficiency and symptoms. Moreover, it is worth noting that, due to the 
relatively low number of trials in the current task, estimates of metacognitive efficiency 
may not be reliable enough for robustly assessing these associations (Guggenmos, 
2021). In the current subclinical sample, however neither symptoms nor symptom 
dimensions significantly related to metacognitive efficiency, but instead, point to 
specific disturbances of confidence level and bias.  

Our study has limitations. By design, our task did not maintain a constant level of 
performance across subjects, so we could not strictly isolate confidence changes from 
performance changes. Using calibration measures, however, we could contrast 
confidence with objective performance. In addition, controlling for performance 
differences between subjects did not eradicate the positive relationship between CIT 
and both local and global confidence. Since trials with excessive reaction times were 
excluded, inattentive trials could not have influenced our findings of lower performance 
on the task. Moreover, a positive relationship between CIT scores and reaction times 
did not survive correction for multiple testing (see Appendix C). Overall, the relatively 
lower performance in individuals with high CIT scores is likely not due to 
inattentiveness, and has also been reported recently in a reinforcement learning 
paradigm (J. K. Lee et al., 2023). This study is cross-sectional and only allowed us to test 
for associations. Future longitudinal studies need to clarify how confidence develops 
within each level over time, and how the levels reciprocally influence each other. 
Longitudinal designs would also help to disentangle the directionality of the influence 
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between shifts in metacognition and shifts in mental health symptoms, at least in 
establishing temporal precedence of one onto the other (e.g. (Orth et al., 2008; Rieger 
et al., 2016)). Nevertheless, our findings advance our understanding of the 
computational processes underlying the hierarchical framework, which could in turn 
help to precisely target treatments to the cognitive steps that are distorted and to a 
patient’s specific symptom profile. Even though we are careful not to extrapolate our 
findings pertaining to fluctuations in (sub)clinical symptoms in the general population 
to formally diagnosed patients, previous studies have shown the same behavioral 
effects in diagnosed clinical samples and general population samples using a 
transdiagnostic approach (Gillan et al., 2011, 2016; Seow & Gillan, 2020; Snorrason et 
al., 2016; Vaghi et al., 2017), but see (Hoven, Rouault, et al., 2023). Using a general 
population sample allowed us to study a broad set of symptoms and aspects of mental 
health rather than focusing on one specific disorder or symptom set. Applying a 
transdiagnostic approach to large clinical samples would be an important next step for 
this area of research. In addition, it remains to be tested how our findings generalize to 
other cognitive domains (Benwell et al., 2022), and to daily decisions. Also, the 
influence of higher-order cognitive states, such as emotional distress or motivational 
state on confidence should be taken into consideration, since they could play a 
possible role as additional underlying factors for changes in metacognitive abilities. 
Here, we have relied on metacognition as typically defined in the field of cognitive 
neuroscience, quantifying the correspondence between subjective confidence 
judgments and objective task performance (Katyal & Fleming, 2023). However, in other 
fields such as cognitive psychology models, the definition of metacognitions 
encompasses other processes, including intersubjective processes. A goal for future 
research is to combine insights from cognitive psychology models, specifically the 
metacognitive model by Wells (Wells, 2019), which centers around beliefs about 
thinking (i.e. metacognitions), with findings from cognitive neuroscience studies that 
examine feelings of confidence as a type of metacognition (Katyal & Fleming, 2023). 

The current study provides empirical evidence that aberrancies in local confidence 
extend to higher-order levels of confidence, that self-beliefs are related to local and 
global confidence, that the associations between these confidence levels and 
psychiatric symptom dimensions differ depending on the type of psychopathology and 
that confidence measures higher up the hierarchy related more strongly to symptoms 
across psychiatry.  
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Methods 

Ethics Approval and Consent 

All participants gave informed consent in accordance with procedures approved by the 
Ethics Committee of the University of Amsterdam (2020-CP-12416). 

 

Participants 

Data of 625 participants were collected online through the Prolific Academic platform 
(prolific.co). Sample size was based on earlier similar transdiagnostic studies (Rouault, 
Seow, et al., 2018). Subjects were not screened for psychiatric diagnosis with official 
clinical interviews, but sampled from the general population focusing on continuous 
variation across psychiatric symptoms that naturally fluctuate in the general 
population. All participants were paid a base amount of €7.5 per hour, plus a €1.5 bonus 
when passing check questions. The whole experiment lasted 1.5 hours on average and 
was conducted in English. Using Prolific’s available demographic information, we only 
invited participants who reported being fluent in English, regardless of their 
geographical location. We did not collect data on ethnic or cultural background. 
 

Study Design 

The current study is a cross-sectional study. All data were collected between 13 
October and 2 November 2020, and each participant was tested once. 

 

Local and Global Confidence Task 

The perceptual-decision making task was adapted from Experiment 3 from Rouault et 
al. (2019) (Rouault et al., 2019) and was coded in JavaScript, HTML and CSS using 
jsPsych version 4.3 and hosted on Gorilla (Anwyl-Irvine et al., 2020). The code ensured 
that browsers were in full screen throughout the experiment. 

During this experiment, participants performed short blocks with two randomly 
interleaved ’games’ (6 trials each, pseudo-randomized) indicated by two arbitrary color 
cues (Figure 1). All games involved perceptual discrimination judgments. In each trial 
of a game subjects indicated which of two black boxes contained a higher number of 
white dots. The games involved different conditions: easy or difficult (i.e., difficulty 
feature), and deliver either veridical feedback or no feedback (i.e., feedback feature), 
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resulting in six possible pairings of conditions within each block, which were repeated 
twice in randomized order. On all trials without feedback participants had to indicate 
their local confidence about their probability of being correct on that specific trial on a 
scale from ‘50% correct (chance level)’ to ‘100% correct (perfect)’. After each block 
participants had to choose between the two games, on which one they believed they 
performed best (global task choice), for which they were incentivized. Moreover, 
subjects were asked to rate their confidence in their overall performance on each of the 
two games (global confidence) on a scale from 50% to 100%. Subjects were not 
explicitly informed about the conditions of the games. For more information on the task 
structure, see Appendix C. 

 
Self-report Psychiatric and Self-Belief Questionnaires 

The symptoms assessed included alcoholism, apathy, impulsivity, eating disorders, 
social anxiety, obsessive-compulsive disorder, schizotypy, depression and generalized 
anxiety. The self-belief constructs assessed included autonomy, self-efficacy, mastery 
and self-esteem. Moreover, subjects were assessed with a rapid IQ evaluation (Condon 
& Revelle, 2014). The order of questionnaires was fully randomized. See Appendix C for 
detailed information on the specific questionnaires used and for distributions of total 
scores (Appendix C: Figure C6). Both the task and questionnaires were validated in 
previous research. 

 

Exclusion Criteria 

To ensure good data quality, we employed a state-of-the-art approach (Zorowitz et al., 
2021), using a combination of multiple task-based and questionnaire-based checks, as 
preregistered here: https://osf.io/6vbpr. As described in Appendix C, we made sure that 
subjects who did not perform adequately on the task, failed comprehension tests or 
attention checks were excluded from analyses. After implementing our criteria, our 
final sample consisted of 489 subjects that were on average 27.2 years old (± 8.5 years), 
of which 318 were male. For more details on exclusion criteria, see Appendix C. An a 
posteriori power analysis using the G*Power toolbox (Faul et al., 2007) was performed 
using the smallest effect size from previous transdiagnostic research (f2=0.107)21, a 
power of 80% and an alpha levelof .05, which confirmed that a sample of 438 subjects 
would be well-powered. We took into account an expected exclusion rate of 25% 
(common in online studies), and our final sample consisted of 489 subjects. 
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Behavioral Variables 

Analyses were performed using R-Studio version 4.0.3. We calculated global 
calibration and local calibration. In addition, the relationship between local and global 
confidence in the non-feedback condition was calculated, resulting in 12 games per 
subject. We extracted the average local confidence per subject per game, and the 
corresponding global confidence. A Spearman's correlation was performed between 
the local and global confidence values per subject, which indicated the degree of 
correlation between the local and global confidence levels. 

Moreover, we computed metacognitive efficiency (meta-d’/d’, or M-Ratio) per subject. 
Since this computation relies on a signal detection theory framework and assumes that 
all trials have a constant signal strength, we calculated metacognitive efficiency 
separately for easy and hard trials in no-feedback trials (36 trials per difficulty level) and 
averaged the two values per subject. We used the HMeta-d toolbox to perform 
individual participant fits to compute metacognitive efficiency (using the 
fit_meta_d_mcmc function from the toolbox). Due to a small number of trials per 
subject, some subjects’ metacognitive efficiency values were noisy, resulting in values 
that were negative or >3 standard deviations from the mean. Those subjects were 
excluded (N=40) only for the regressions with metacognitive efficiency, such that in 
those regressions we used data of 449 subjects. Finally, we performed several control 
analyses to corroborate the effects of the task features (feedback and difficulty) on 
performance, local- and global confidence (Rouault et al., 2019), described in Appendix 
C (Figure C2, Figure C3).  

 

Relating Task Variables to Questionnaires  

As a first step, we studied the relationship between our task variables and scores on 
the (1) individual psychiatric symptom questionnaires and (2) individual self-belief 
construct questionnaires, using regressions, as is further detailed in Appendix C (Figure 
C4, Figure C5).  

 

Relating Task Variables to Transdiagnostic Dimensions 

For more details on the factor analysis, see Appendix C, Figure C1 and Figure C9. First, 
we tested the specific relationships between each psychiatric symptom factor and task 
variables, while controlling for the other factors and demographics. To do this, we used 
linear regressions, and controlled for demographics, as such: 
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Behavioral variable ~ AD + CIT + SW + Age + IQ + Gender 

All regressors were z-scored before entering the models, such that we obtained 
standardized (i.e., comparable) regression coefficients. To correct for multiple testing a 
Bonferroni correction was applied that took the number of dependent variables into 
account, following Rouault, Seow, et al. (2018), which resulted in a type I error rate of 
.05/7. Post-hoc tests on regression coefficients were performed using the esticon() 
function from the doBy package in order to test whether the strength of the associations 
between the three factors and our various dependent variables differed. Post-hoc tests 
were also corrected using a Bonferroni correction with a type I error rate of .05/7. The 
distribution of data was assumed to be normal but this was not formally tested 
(Appendix C: Figure C7). 

 

Relating Task Variables to Self-Beliefs 

We tested the association between the SB factor (i.e., highest-order level of confidence) 
and the task variables using linear regressions: 

Behavioral variable ~ SB + Age + IQ + Gender 

Again, all regressors were z-scored and Bonferroni correction was applied (type I error 
rate of .05/7). 

 

Relating Transdiagnostic Dimensions to Self-Beliefs 

To directly relate our three psychiatry dimensions to the Self-Beliefs factor, a single 
linear regression was performed, as such:  

SB ~ AD + CIT + SW + Age + IQ + Gender  

Regression coefficients were compared post-hoc, and were Bonferroni corrected for 
the number of tests (type I error rate of .05/3).  

 

Predicting Psychopathology with Levels of Confidence 

Finally, we aimed to investigate how the three hierarchical levels of confidence studied 
(i.e., local confidence, global confidence and Self-Beliefs) may contribute to 
fluctuations in each psychiatric factor. Importantly, after establishing the relationships 
between the task variables and each symptom dimension, we aimed to investigate 
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which hierarchical level would best predict each of our psychiatric symptom 
dimensions. To achieve this, we set each psychiatric factor as the dependent variable 
in three separate regressions. The hierarchical levels of confidence were set to 
compete for variance that allowed us to compare their predictive power in predicting 
symptom severity, and to identify possible dissociations between the three confidence 
levels. To do so, we conducted Pearson’s correlation tests, and three linear regressions, 
where we separately regressed the three psychopathology factors (i.e., AD, CIT and SW, 
z-scored) on local confidence, global confidence, and Self-Beliefs scores, as such: 
Psychiatry dimension (AD / CIT / SW) ~ local confidence + global confidence + SB + Age 
+ IQ + Gender. 

Regression coefficients were compared post-hoc, and were Bonferroni corrected for 
the number of tests (type I error rate of .05/3).  

 

Data Availability 

Fully anonymized task and questionnaire data are available on https://osf.io/ncg4s/.  

 

Code Availability 

The R analysis script is available on https://osf.io/ncg4s/.  
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Abstract 

Background 
Our confidence, a form of metacognition, guides our behavior. Confidence 
abnormalities have been found in obsessive-compulsive disorder (OCD). A first notion 
based on clinical case-control studies suggests lower confidence in OCD patients 
compared to healthy controls. Contrarily, studies in highly compulsive individuals from 
general population samples showed that obsessive-compulsive symptoms related 
positively or not at all to confidence. A second notion suggests that an impairment in 
confidence estimation and usage is related to compulsive behavior, which is more 
often supported by studies in general population samples. These opposite findings call 
into question whether findings from highly compulsive individuals from the general 
population are generalizable to OCD patient populations.   

Methods 
To test this, we investigated confidence at three hierarchical levels: local confidence in 
single decisions, global confidence in task performance and higher-order self-beliefs 
in 40 OCD patients (medication-free, no comorbid diagnoses), 40 controls, and 40 
matched high-compulsive individuals from the general population (HComp). 

Results 
In line with the first notion we found that OCD patients exhibited relative 
underconfidence at all three hierarchical levels. In contrast, HComp individuals 
showed local and global overconfidence and worsened metacognitive sensitivity 
compared with OCD patients, in line with the second notion.  

Conclusions 
Metacognitive functioning observed in a general highly-compulsive population, often 
used as analogue for OCD, is distinct from that in a clinical OCD population, suggesting 
that OC symptoms in these two groups relate differently to (meta)cognitive processes. 
These findings call for caution in generalizing (meta)cognitive findings from general 
population to clinical samples. 
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Introduction 

Humans have the ability to monitor and introspect on their own thoughts and cognitive 
processes, a process referred to as metacognition (Fleming, Dolan, et al., 2012). In our 
uncertain world, our metacognition, and in particular our sense of confidence, guides 
our behavior. The feeling of confidence helps us seek information (Balsdon et al., 2020; 
Desender et al., 2019; Pescetelli et al., 2021; Rollwage et al., 2020), guides our learning 
(Cortese, 2022; Guggenmos et al., 2016) and changes our mind (Stone et al., 2022), 
especially when external feedback is lacking (Rouault et al., 2019). There is great 
variability in how well humans are able to judge their own performance. Given the 
fundamental function of metacognition in guiding behavior, distortions in 
metacognitive ability have been associated with pathological behavior (Hoven et al., 
2019), such as excessive checking behavior when having low confidence (Baptista et 
al., 2021).  

Traditionally, theories have placed dysfunctions of metacognition at the center of 
obsessive-compulsive disorder (OCD) aetiology (Purdon & Clark, 1999; Wells & 
Papageorgiou, 1998). Varying notions about the nature of these dysfunctions have been 
proposed. A first notion suggests that OCD patients suffer from a negative bias in 
confidence, resulting in underconfidence relative to healthy control subjects. This 
underconfidence may not necessarily be a defect in judging one’s performance, since 
it could be an appropriate correction of the usual overconfidence seen in healthy 
individuals (Johnson & Fowler, 2011). Nevertheless, it could lead to excessive doubts, 
low self-beliefs and obsessive thoughts which could in turn promote compulsive 
behaviors, while checking behavior itself can also provoke feelings of low confidence 
(Jaeger et al., 2021; Radomsky et al., 2006). Indeed, a recent meta-analysis of 19 
studies covering a variety of cognitive tasks indicated that patients with OCD showed 
general underconfidence, in both cognitive domains of memory and perception (i.e., 
less confident than they should be considering their performance) (Dar et al., 2022). 
These studies focused mostly on local confidence judgments while doing specific tasks 
(i.e. trial by trial estimates on the correctness of a decision (Pouget et al., 2016) with the 
underlying assumption that underconfidence on a local level is related to clinically 
relevant subjective experiences of doubts such as decreased self-beliefs (i.e. higher 
order metacognition), but this has not yet been investigated. Recent studies suggest 
that local confidence and self-beliefs may be linked by more global estimates of 
confidence (e.g. confidence about performance on multiple decisions or a task) and 
that investigating the interplay between these hierarchical levels of confidence may 
bridge this gap (Seow et al., 2021). 
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A second notion suggests that perhaps not underconfidence, but an impairment in 
estimating or properly utilizing confidence judgments lies at the heart of OCD 
symptoms, particularly for compulsive behavior. This might manifest as a decreased 
sensitivity to identify correct from incorrect decisions using confidence judgments (i.e., 
decreased metacognitive sensitivity) (Hauser, Allen, et al., 2017; Rouault, Seow, et al., 
2018) or a decoupling between levels of metacognition (Hoven, Luigjes, et al., 2023). 
As a result, patients might be less capable to self-correct and inform their future 
decisions using their confidence, and thus revert to compulsive behavior.  

We will test these two notions using a behavioral protocol probing three hierarchical 
levels of confidence. The hypothesis put forward by the first notion is that relative 
underconfidence will be found in OCD patients at all three levels. The expectation that 
follows from the second notion is an impairment in using confidence judgements to 
separate correct from incorrect choices (i.e., metacognitive sensitivity). Note that these 
two notions are not mutually exclusive, and could simultaneously exist. However, 
following the second notion, a decoupling between different levels of metacognition 
could be expected which opposes the first notion of underconfidence across the three 
levels.  

The relationship between obsessive-compulsive (OC) symptoms and metacognition 
has also been studied using general population samples, with the advantage of probing 
large samples with less time and costs investments, while also sampling larger 
symptom variability. Three such studies did not find evidence for a direct relationship 
between local confidence and OC symptoms (Benwell et al., 2022; Hoven, Luigjes, et 
al., 2023; Rouault, Seow, et al., 2018), while another study did find a positive 
relationship, indicating that increased OC symptoms related to higher confidence 
(Seow & Gillan, 2020). Moreover, high OC symptoms in the general population have 
been related to decreases in metacognitive sensitivity, also without a difference in local 
confidence (Hauser, Allen, et al., 2017). Overall, there is no evidence for decreased 
confidence, but some indication of reduced metacognitive sensitivity in these samples. 
The assumption of these types of studies is that there is a spectrum of OCD 
symptomatology where highly compulsive individuals resemble (albeit to a lesser 
extent) OCD patients in terms of possibly disturbed (meta)cognitive processes. 
However, the comparability of OCD patients and highly compulsive individuals have not 
been directly tested using carefully matched groups. Since clinical studies and general 
population studies have reported mixed findings regarding the relationship between OC 
symptoms and metacognition, these populations might be inherently different. In 
terms of metacognitive functioning, highly compulsive individuals from the general 
population could (1) resemble OCD patients (to a lesser extent) regarding both 
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decreased confidence levels and metacognitive sensitivity, (2) only resemble OCD 
patients regarding decreased usage of confidence (i.e., decreased sensitivity, 
decreased coupling between metacognitive levels), or (3) be inherently different from 
OCD patients.  

To test this, here we compared OCD patients not only to healthy subjects, but also to a 
group of matched highly compulsive individuals, on a wide range of metacognitive 
functions and their relationship with compulsive symptoms. We investigate both local 
confidence, global confidence, and higher-order self-beliefs to obtain an inclusive 
picture of metacognitive abilities in people suffering from OC symptoms. We expect (as 
preregistered: https://osf.io/3knjc) decreased local and global confidence in OCD 
patients compared to HCs, as well as decreased self-beliefs (i.e., self-esteem, 
autonomy). Moreover, since OCD patients were found to be more reliant on external 
feedback when assessing their confidence (Lazarov et al., 2014), we expected that 
underconfidence in OCD patients would be more pronounced in trials without 
feedback and with increased symptom severity. Also, we expect lower metacognitive 
sensitivity in OCD patients, resulting in a decreased ability to use local confidence to 
differentiate between correct and incorrect answers (i.e., discrimination), and we 
expect a distorted relationship between local and global confidence in OCD as well. 
Finally, we test whether abnormalities in metacognition found in OCD resemble those 
of matched highly compulsive individuals. 

 

Methods 

Ethics 

All experimental procedures were approved by the Medical Ethics Committee of the 
Amsterdam University Medical Centre. All participants provided written informed 
consent before the start of any experimental procedure and were reimbursed for their 
time. 

 

Participants 

In this study we collected data from three groups: HCs, OCD patients and high-
compulsive non-clinical subjects. We did not perform an a-priori power analysis for the 
sample sizes of these three groups. Instead, we based our sample size on similar 
studies assessing clinical populations (e.g. (Marton et al., 2019; Radomsky et al., 2014; 
Vaghi et al., 2017)). 
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OCD patients 

45 patients with OCD, aged between 18 and 65 years old were included. They were 
recruited via various local treatment centers and patient associations across the 
Netherlands, and previously and/or currently underwent psychotherapy. The average 
duration of symptoms in the patient group was 19.3 years with an average time since 
diagnosis of 9.2 years. Severity as measured by the Y-BOCS (mean: 21.88 ± 5.84) 
indicated to be in the upper range of moderate and lower range of severe symptom 
strength. Exclusion criteria included diagnoses of any comorbid psychiatric disorders, 
and the use of any medication for the treatment of psychiatric symptoms, including, 
but not limited to, selective serotonin reuptake inhibitors, tricyclic antidepressants, or 
antipsychotics. After applying task-based exclusion criteria of lower than chance level 
performance or too little variation in confidence judgements (for more extensive 
description see (Hoven, Luigjes, et al., 2023), our final sample consisted of 40 OCD 
patients. 

Healthy controls 

45 HCs were included in this study, between 18 and 65 years old. They were recruited 
through online advertisements and from our participant database across the 
Netherlands. HCs were matched to OCD patients on age, sex and education levels. 
Exclusion criteria included diagnoses of any psychiatric disorder or the use of any 
psychotropic medication. After applying task-based exclusion criteria (Hoven, Luigjes, 
et al., 2023), our final sample consisted of 40 HCs. 

High-compulsive subjects 

As part of a larger previous study, 625 English speaking world-wide participants were 
collected online via the Prolific Academic platform (www.prolific.co) (see (Hoven, 
Luigjes, et al., 2023)for more details). Subjects were not screened for psychiatric 
diagnosis, since our aim was to collect data based on continuous variation in 
psychiatric symptoms within the general population. We excluded subjects who failed 
attention and comprehension checks, and used the same task-based exclusion criteria 
as in the clinical sample, and the final sample consisted of 489 subjects. Then we 
performed propensity score matching in order to select subjects from our large general 
population sample (N=489) to match our patient sample in terms of obsessive-
compulsive symptoms. Using the MatchIt package in R (Ho et al., 2007) we performed 
nearest neighbor matching. We matched our OCD patient sample to an equal number 
of high-compulsive subjects from the general population sample based on Obsessive-
Compulsive Inventory Revised (OCI-R) score, age, sex and education level (Foa et al., 
2002). Our final sample thus consisted of three sets of 40 subjects: 40 OCD patients, 
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40 HCs and 40 high-compulsive subjects (HComp) from the general population study. 
Demographics were compared between groups using two-sample t-tests for 
continuous measures or Chi-square tests for categorical measures. 

 

Questionnaires 

All HCs and OCD patients were subjected to the MINI structured psychiatric interview 
(Sheehan et al., 1998) to screen for any (comorbid) psychiatric disorders. OCD 
symptom severity was measured using the Obsessive-Compulsive Inventory – Revised 
(OCI-R) (Foa et al., 2002). All our 120 subjects were assessed with questionnaires on 
autonomy (Autonomy Scale Amsterdam: ASA) (Bergamin et al., 2023) and self-esteem 
(Rosenberg Self-Esteem Scale: rSES) (Rosenberg, 1965) as measures of higher-order 
self-beliefs. Moreover, anxiety and depression symptoms were assessed using the 
Depression Anxiety and Stress Scale (DASS) (Parkitny & McAuley, 2010) in the clinical 
sample (OCD and HC) and using the Generalized Anxiety Disorder-7 questionnaire 
(Williams, 2014), and Zung’s depression scale (Zung, 1965), respectively, in the general 
population (HComp) sample. Metacognitive beliefs were measured in the clinical 
sample using the Metacognitions Questionnaire-30 (MCQ-30) (Wells & Cartwright-
Hatton, 2004). 

 

Local and Global Confidence Task 

The perceptual-decision making task was adapted from Experiment 3 in Rouault et al. 
(2019) and was coded in JavaScript, HTML and CSS using jsPsych version 4.3 and 
hosted on Gorilla (gorilla.sc) (Anwyl-Irvine et al., 2020). All subjects performed the task 
online using their personal computer. 

All participants performed blocks with two randomly interleaved perceptual tasks (with 
6 pseudo-randomized trials each) indicated by two color cues (Figure 1). Participants 
had to indicate which of two black boxes contained a higher number of white dots. Two 
experimental features were implemented: a task could be easy or difficult (i.e., difficulty 
feature), and could deliver veridical feedback or no feedback (i.e., feedback feature), 
resulting in six possible pairings of tasks within each block. All six possible pairings 
occurred twice in randomized order, resulting in 144 trials per participant. On each trial 
without feedback (72 trials per participant) participants indicated their local 
confidence about their probability of being correct on that specific trial on a scale from 
‘50% correct (chance level)’ to ‘100% correct (perfect)’. At the end of each block 
participants had to indicate the task in which they believed they performed best. 
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Moreover, participants rated their confidence in their overall performance on each of 
the two tasks (global confidence) on a scale from 50% to 100%. For more detailed 
information on the task specifics, see (Hoven, Luigjes, et al., 2023). 

 
Figure 1: Experimental design. A) Participants performed learning blocks with two randomly 
alternating trials from two tasks, indicated by a task cue. Each task was either easy or difficult 
and provided feedback or no feedback (2x2 design), resulting in six different possible task 
pairings. Each trial started with the presentation of a color cue, indicating which of the two tasks 
was presented, after which subjects had to choose which of two boxes contained a higher 
number of dots. Each judgment was either easy or difficult, dependent on the dot difference 
between the boxes. After their choice, subjects either received feedback (correct or incorrect) 
about their choice, or did not receive feedback and instead were asked to provide a local 
confidence rating about the probability of their perceptual judgment being correct. B) At the end 
of each learning block participants were asked to choose which task should be used to calculate 
a bonus based on their performance; global task choice. They also rated their overall ability; 
global confidence. Both are measures of global metacognition. 

 

Task-based measures of metacognition 

Using local and global confidence, we calculated local calibration (decision level), 
which is the difference between average local confidence and performance on no 
feedback tasks only. Global calibration (task level) was calculated as the difference 
between average global confidence and performance on all trials. These measures 
reflect how well one’s confidence matches one’s actual performance and can be 
interpreted as overconfidence or underconfidence. We also calculated the direct 
correlation between average local and global confidence per subject on no feedback 
tasks only. Note that for one OCD patient this correlation could not be determined due 
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to a lack of variance in their global confidence. Moreover, we computed discrimination, 
which is a metric of metacognitive sensitivity that indicates how well one’s confidence 
judgments discriminate between their own correct and incorrect choices. It is 
calculated as the difference between the average confidence for correct and the 
average confidence for incorrect trials. Another metric to assess metacognitive 
sensitivity is meta-d’ (Fleming, 2017), whose computations are known to be imprecise 
in designs with a low number of trials per subject per condition (Rouault, McWilliams, 
et al., 2018) (in our case, 36 trials). Moreover, since results from earlier work (Lebreton 
et al., 2018) showed high correlations between discrimination and meta-d’, we used the 
discrimination metric as our measure of metacognitive sensitivity in the current study. 

 

Analyses 

All analyses were performed using RStudio (version 2022.07.2). Mixed ANOVAs (afex 
package in R (Singmann et al., 2015)) were used to investigate the effects of group, 
difficulty and feedback on: accuracy, reaction times, global task choice and global 
confidence, and to investigate the effects of group and difficulty on local confidence. 
Using this approach, we investigated whether OCD patients showed metacognitive 
deviations compared to HCs, and importantly, whether and how metacognitive findings 
from a general population sample of HComp individuals are comparable to a clinical 
sample of OCD patients. 

Two-sample t-tests were used to compare local calibration, global calibration, 
discrimination, the correlation of local and global confidence, autonomy and self-
esteem between (1) OCD and HC, and (2) OCD and HComp subjects. One sample t-
tests against 0 were performed to formally assess the existence over- or 
underconfidence for both local and global calibration in each of the three groups. 
Additionally, regression analyses were performed to explore differences between 
groups in how internal fluctuations in local confidence would predict global 
confidence, over and above fluctuations in accuracy or reaction times. For these 
regressions, only blocks without feedback were used (since only these blocks 
contained local confidence judgments). All predictors were standardized (z-scored). In 
this analysis we aimed to predict differences in global confidence between tasks using 
main effects and the interactions between group and the difference in accuracy, RT and 
local confidence between those tasks, as follows: 

Δ global confidence ~ Δ accuracy*group + Δ RT*group + Δ local confidence*group 
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For all analyses where the measure of local confidence was used (i.e., local calibration, 
discrimination, correlation of local and global confidence), only the 72 trials from the 
no-feedback condition were used, since participants only rated their local confidence 
in those trials. In order to assess if there were differences in the relationship between 
obsessive-compulsive symptom strength (OCI-R score) and metacognitive abilities 
between OCD patients and HComp subjects, we performed linear regressions on our 
metacognition variables with OCI-R score, group and their interaction as predictors.  

All analyses codes and anonymized data that will reproduce the figures can be found at 
https://osf.io/ksfp6/. 

 

Results 

Demographics 

Demographic and clinical characteristics are given in Table 1. The groups did not differ 
in terms of age, sex distribution or years of education. OCD patients have significantly 
higher OCI-R scores than HCs, while OCI-R scores were similar between OCD patients 
and HComp subjects (Figure 2A). Together, this confirms successful matching of the 
groups. For details on all descriptive statistics and statistical outcomes, see Table 1. 
For correlations between questionnaires, see Appendix D Table D1. 

 

Replication Analyses on Task Structure 

Using mixed ANOVAs in our clinical sample, we replicated earlier findings investigating 
the effects of feedback and difficulty on performance and metacognition (Rouault et 
al., 2019). For performance, reaction times and global confidence we assessed the 
effects of feedback, difficulty and group, whereas for local confidence we assessed the 
effects of difficulty, accuracy and group. For none of the analyses interactions between 
task features and group were found. 

In line with previous findings, performance was better for easy versus hard tasks 
(F(1,78) = 501.93, p<.001), but did not differ between feedback or no feedback 
conditions (F(1,78) = 0.14, p = 0.705). Reaction times were faster for easy versus hard 
tasks (F(1,78) = 42.01, p<.001) and tasks that provided feedback versus no feedback 
(F(1,78) = 28.45, p<.001). 

Global confidence was higher for easy versus hard tasks (F(1,78) = 87.58, p<.001), and 
for tasks providing feedback versus no feedback (F(1,78) = 101.92, p<.001), even 
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though performance was equal between presence and absence of feedback. The 
difference in global confidence between feedback and no-feedback tasks was bigger 
when the tasks were easy (F(1,78) = 5.10, p = 0.0267). As expected, local confidence 
was higher for easy versus hard tasks (F(1,78) = 114.99, p<.001), and for correct versus 
incorrect trials (F(1,78) = 217.01, p<.001). Together, these results largely confirm 
previous observations with this protocol (Hoven, Luigjes, et al., 2023; Rouault et al., 
2019). 

 

Comparing OCD patients to healthy controls 

In line with our expectations, OCD patients showed significantly lower local calibration 
compared with HCs, and a trend level of lower global calibration, indicating 
underconfidence relative to HCs (Table 1, Figure 3A,B). These results were due to 
significantly decreased local and global confidence levels in OCD compared with HCs, 
without any performance or reaction time differences (Figure 3C,D,F). One sample t-
tests against zero indicated that HCs showed significant local (t39 = 3.42, p = .001) and 
global overconfidence (t39 = 3.81, p<.001), while local and global calibration did not 
differ from zero in the OCD group, indicating that the OCD group was well calibrated 
(local: t39 = -0.09, p = 0.928, global: t39 = 0.86, p = 0.397). Moreover, autonomy (as 
measured by the ASA), self-esteem (as measured by the rSES) were found to be 
significantly lower in patients with OCD compared with HCs (Figure 2B,C), while 
metacognitive beliefs (as measured by the MCQ-30) were significantly more distorted 
(Table 1).  

No significant interactions between task parameters (feedback or difficulty) and group 
were found, refuting our hypothesis that OCD patients would especially show lower 
global confidence when feedback was unavailable. Also, no group differences in 
discrimination or the correlation between local and global confidence were found 
(Table 1, Figure 3E). 
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Table 1: Demographics, clinical data and task performance per group and differences 
between groups 

 
 

OCD  
(N = 40) 

HCs 
(N = 40) 

HComp 
(N=40) 

OCD vs. 
HCs 

OCD vs. 
HComp 

Demographics 
Age in years 38.18 

(11.22) 
38.58 (11.11) 36.53 

(12.73) 
T = 0.16 
P = 0.87 

T = 0.61 
P = 0.54 

Females (%) 26 (65%) 27 (67.5%) 28 (70%) X2 = 0.81 
P = 0.81 

X2 = 0.23 
P = 0.63 

Years of 
education 

10.11 (3.21) 10.20 (3.13) 10.35 (2.64) T = 0.12 
P = 0.90 

T = -0.36  
P = 0.72 

Questionnaire Scores 
OCI-R 23.23 (9.43) 2.90 (2.48) 23.35 

(13.18) 
T = -13.19 
P < .001 

T = -0.05  
P = 0.96 

ASA 133.33 
(21.70) 

168.13 
(19.18) 

160.35 
(33.99) 

T = -7.60 
P < .001 

T = 4.24 
P < .001 

rSES 16.95 (4.89) 23.48 (3.94) 18.53 (7.56) T = -6.57 
P < .001 

T = 1.11 
P = 0.273 

DASS 34.2 (17.31) 4.98 (4.23)  T = -10.37 
P < .001 

 

DASS anx 9.05 (6.59) 0.68 (0.92)  T = -7.96 
P < .001 

 

DASS dep 10.38 (8.28) 1.28 (1.47)  T = -6.84 
P < .001 

 

MCQ-30 66.10 
(15.45) 

42.88 (8.79)  T = -8.26 
P < .001 

 

GAD-7   9.08 (6.20)   
ZungDEP   44.78 

(11.11) 
  

Metacognition 
Accuracy 
(percent correct) 

75.04 (7.00) 76.49 (7.76) 69.90 (8.64) F = 0.81 
P = 0.372 
η2G = 
0.006 

F = 8.59 
P = 0.004 
η2G = 0.061 

Local 
Confidence (on 
50-100 scale) 

74.74 (8.11) 81.14 (8.04) 76.82 (9.58) F = 12.59 
P < .001 
η2G = 
0.129 

F = 1.11 
P = 0.296 
η2G = 0.013 

Global 
Confidence 

76.24 (7.27) 80.69 (7.34) 76.21 (8.83) F = 7.42 
P = 0.008 
η2G = 
0.069 

F = .0002 
P = 0.989 
η2G = 
2.1·10-6 

Local Calibration -0.17 
(11.83) 

4.82 (8.92) 6.63 (11.22) T = 2.13 
P = 0.036 
d = 0.48 

T = 2.64 
P = 0.010 
d = 0.59 

Global 
Calibration 

1.20 (8.84) 4.20 (6.98) 6.31 (9.62) T = 1.68 
P =0.096 
d = 0.38 

T = 2.48 
P = 0.015 
d = 0.55 
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Correlation Local 
& Global 
Confidence 

0.51 0.56 0.52 T = -0.80 
P = 0.429 
d = 0.18 

T = 0.18 
P = 0.862 
d = 0.04 

Discrimination 9.40 (5.94) 8.34 (4.77) 6.73  
(4.66) 

T = 0.88 
P = 0.383 
d = 0.20 

T = -2.24 
P = 0.028 
d = 0.50 

Abbreviations: OCD = Obsessive-Compulsive Disorder, HCs = Healthy Controls, HComp = High-
Compulsive subjects, OCI-R: Obsessive-Compulsive Inventory-Revised, ASA: Autonomy Scale 
Amsterdam, rSES: Rosenberg Self-Esteem Scale, DASS: Depression Anxiety and Stress Scale, 
DASS anx: Depression Anxiety and Stress – subscale Anxiety, DASS dep: Depression Anxiety and 
Stress – subscale Depression, GAD-7: Generalized Anxiety Disorder-7 Questionnaire, ZungDEP: 
Zung’s Depression scale, T = T-value from two-sample t-test, F = F-value from ANOVA, P = P-value, 
η2G = Generalized Eta-squared, d = Cohen’s d. Data are reported as mean (standard deviation). 

 

 

 

Figure 2: Clinical scores across groups. Scores on the (A) OCI-R score, (B) ASA score reflecting 
autonomy and (C) rSES score reflecting self-esteem per group. Dots show data from individual 
participants, boxplots show median and upper/lower quartile with whiskers indicating the 1.5 
interquartile range, distributions show the probability density function of all data points per 
group. *p <.05, **p < .01, ***p < .001. HC = Healthy Control subjects, OCD= Obsessive-
Compulsive Disorder patients, HComp = High-Compulsive subjects from general population 
sample, OCI-R = Obsessive-Compulsive Inventory-Revised, ASA = Autonomy Scale Amsterdam, 
rSES = Rosenberg’s Self Esteem Scale. 
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It has been argued that the findings of decreased confidence in OCD in case-control 
studies could be driven by comorbid depressive and anxiety symptoms, while 
compulsivity would contrarily lead to increased (over)confidence (Rouault, Seow, et al., 
2018; Seow & Gillan, 2020). We performed regression analyses investigating the effect 
of group (OCD versus HC) on local and global confidence and calibration, while 
controlling for anxiety and depression symptoms (DASS scores). The effect of group on 
all four metacognitive outcome measures remained significant (local confidence: β = -
8.508 ± 2.785, p = 0.003; global confidence: β = -6.027 ± 2.526, p = 0.0195; local 
calibration: β = -11.091 ± 3.521, p = 0.002; global calibration: β = -7.234 ± 2.691, p = 
0.009; see Appendix D Table D3 for full regression results). This suggests that in this 
clinical case-control sample decreases in confidence in OCD compared to HCs were 
not explained away by comorbid anxiety and depression symptoms. 

 

Comparing OCD patients to high compulsive subjects 

HComp subjects had significantly higher calibration (i.e., more overconfidence) at both 
local and global levels compared to OCD patients (Table 1, Figure 3A,B). One sample t-
tests against zero confirmed that the HComp group showed significant local (t39 = 3.73, 
p<.001) and global overconfidence (t39 = 4.15, p<.001). This was due to a significantly 
worse performance of HComp subjects compared with OCD patients, while local and 
global confidence levels (and reaction times) did not differ between groups (Figure 
3C,D,F). In other words, HComp subjects were just as confident in their decisions as 
OCD patients, while performing significantly worse, leading to overconfidence. 
Moreover, autonomy was significantly lower in patients with OCD compared with 
HComp subjects, but there were no group differences in self-esteem scores (Figure 
2B,C). 

HComp subjects showed decreased discrimination compared with OCD patients, 
indicating that the difference in confidence between correct and incorrect choices was 
smaller in this group, reflecting worse metacognitive sensitivity (Figure 2E). However, 
no group differences were found in the correlation between local and global 
confidence. Again, we did not find any significant interaction effects between task 
parameters (feedback or difficulty) and group.  

To deepen our understanding of the relationships between obsessive compulsive 
symptoms and metacognition beyond group differences, we investigated if OCD 
patients and HComp subjects showed a different relationship between obsessive 
compulsive symptom strength and metacognitive ability. Using regression analyses, a 
trend level interaction effect of OCI-R score and group on local confidence was found 
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(β = 4.03 ± 2.09, p = 0.057, see Appendix D Table D4 for full regression results). This 
interaction effect hints at a negative relationship in the OCD patients (i.e., more 
symptoms reflect lower local confidence), and a positive relationship in the HComp 
group (i.e., more symptoms reflect higher local confidence), however, post-hoc 
correlational tests did not show significance for the groups separately (OCD: r = -0.26, 
t38= -1.63, p = 0.11; HComp: r = 0.18, t38= 1.16, p = 0.25) (Figure 4). 

 
Figure 3: Metacognition and performance across groups.  

Local calibration (A), global calibration (B), local confidence (C), global confidence (D), 
discrimination (E), and accuracy (F) data, all in percentages. Dots show data from individual 
participants, boxplots show median and upper/lower quartile with whiskers indicating the 1.5 
interquartile range, distributions show the probability density function of all data points per 
group. For plots A, B and E significance stars represent two-sample t-tests, for plots C, D and F 
significance stars represent the main effect of group in mixed ANOVAs (see Table 1). *p <.05, **p 
< .01, ***p < .001. HC = Healthy Control subjects, OCD= Obsessive-Compulsive Disorder 
patients, HComp = High-Compulsive subjects from the general population sample. 
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Comparing healthy controls to highly compulsive subjects 

For completeness, we performed exploratory analyses to compare the HC and HComp 
groups using the same methods as were used to compare the other groups. For results, 
see Appendix D (Table D2). 

 

Interplay between hierarchical levels of metacognition 

Using regression analyses we replicated in our clinical sample that differences in local 
confidence between two tasks significantly inform global confidence differences 
between those tasks (β = 6.57 ± 1.21, p<.001), over and above differences in objective 
accuracy (β = -0.32 ± 1.05, p = 0.761) or reaction times (β = 0.22 ± 1.05, p = 0.831). No 
interaction effects with group were found, suggesting that the relationship between 
local and global confidence did not differ between OCD patients and HCs, or between 
OCD patients and HComp subjects. This is in line with non-significant group 
differences between the correlation coefficients of local and global confidence (Table 
1). 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: The relationship between local confidence and OCI-R scores in OCD patients and 
highly compulsive non-clinical subjects. Individual data points showing the relationship 
between OCI-R score and local confidence, which is negative in the OCD group, and positive in 
the HComp group. OCD = Obsessive-Compulsive Disorder patients, HComp = High-Compulsive 
subjects from the general population sample. 
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Discussion 

Human research in psychiatry has historically been carried out by examining either 
clinical patient samples or psychiatric symptoms at subclinical or clinical levels in 
samples from the general population. It is assumed, but hardly ever formally tested, 
that psychological or cognitive processes that play a role in the symptoms in question 
are comparable between clinical patient samples and general population samples 
(Abramowitz et al., 2014). The current study tested this assumption by directly 
comparing carefully matched clinical and analogue groups on cognitive processes 
central to the development and maintenance of OCD. 

In line with our hypotheses and the notion of a negative confidence bias (Dar et al., 
2022), the current study shows decreased local confidence in patients with OCD 
compared to HCs, with no performance differences, where HC are overconfident and 
OCD patients are relatively more underconfident. Interestingly, this negative bias 
extended to higher order levels of metacognition, both task-based and questionnaire-
based. Patients with OCD compared to HCs had decreases in global confidence, 
metacognitive beliefs, self-esteem and autonomy. However, critically, OCD patients 
showed no impairments in confidence estimation or usage: they were just as good in 
discriminating between correct and incorrect choices using their confidence 
judgments (i.e., measured using discrimination), did not show specifically decreased 
confidence in trials without feedback, and showed no distortion of the relationship 
between local and global confidence. Overall, this supports the notion of a general 
negative bias across hierarchical metacognitive levels, reflecting the wide-spread 
nature of these deficits in OCD, with no evidence for disturbances in the estimation and 
usage of confidence. It remains possible, however, that deficits in metacognitive 
sensitivity and coupling of metacognitive levels would be more pronounced in clinically 
relevant contexts than in the current neutral perceptual task (Hoven et al., 2019). 

Interestingly, the metacognitive pattern of the high-compulsive general population 
sample was different from the OCD sample, challenging the assumption that these two 
sample types are directly comparable. Contrary to the notion of a negative confidence 
bias in OCD samples, HComp subjects were significantly more overconfident – both at 
the local (decision) and global (task) levels – than patients with OCD, which was driven 
by decreased performance with equal confidence. Importantly, the metacognitive 
aberrancies of HComp did not resemble those of OCD patients. Instead, they were in 
the opposite direction: HComp individuals had relatively higher  overconfidence (albeit 
not significant, see Appendix D) than HCs. Moreover, directly going against the 
assumption of similar associations between symptoms and cognitive processes for 
clinical and general population samples, there were tentative opposite associations 
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between OC symptoms and local confidence in patients with OCD (negative 
relationship) and HComp subjects (positive relationship). In line with previous findings 
of a decreased metacognitive sensitivity (Hauser, Allen, et al., 2017), HComp subjects 
were worse in discriminating errors from correct answers using their confidence 
judgments compared with OCD patients. 

Unlike most prior case-control studies in OCD, here we controlled for the influence of 
comorbid symptomatology (e.g., anxiety and depression) on confidence in patients 
with OCD. Since depression is associated with decreases in confidence (Hoven et al., 
2019), it could partly explain lower confidence in OCD. We found, however, that 
decreases in local and global confidence and calibration levels in OCD compared to 
HCs remained when controlling for anxiety and depression symptoms. Additionally, 
anxiety and depression scores in OCD and HComp groups (using the DASS in OCD, and 
GAD-7 and Zung Depression Scale in HComp) both indicated mild severity. It is thus 
unlikely that the opposite metacognitive patterns we found are due to strong 
differences in comorbid symptoms between these samples. In the same line, a 
possible explanation is that decreased calibration (i.e., relative underconfidence) as 
found in our OCD sample relates more strongly to (anxiety driven) obsessive symptoms, 
whereas overconfidence or defects in metacognitive sensitivity would relate more 
strongly to compulsive symptoms. Yet, obsessive and compulsive symptoms, as 
measured by the Y-BOCS in the patients, were on average equally severe, going against 
the idea that more severe obsessions versus compulsions would drive 
underconfidence.  

To account for comorbidities and heterogeneity within OCD and other disorders, a case 
has been made for transdiagnostic, dimensional approaches (Insel et al., 2010). 
Studies with large general population samples, found that a symptom cluster of 
‘Compulsive Behavior and Intrusive Thoughts’ (CIT), mostly including symptoms of 
OCD, schizotypy, eating disorders, alcoholism and impulsivity, was related to increases 
in local confidence, whereas a symptom cluster of ‘Anxious Depression’ (AD) was 
related to decreases in local confidence, while disorder-specific symptoms did not 
show these associations (Benwell et al., 2022; Rouault, Seow, et al., 2018; Seow & 
Gillan, 2020). In recent work, we extended these findings showing that CIT symptoms 
related to local and global overconfidence, while AD symptoms related to local and 
global underconfidence (Hoven, Luigjes, et al., 2023). In light of previous findings that 
AD symptoms lead to lower confidence, while CIT symptoms lead to higher confidence, 
it could be that our current general population sample has higher CIT symptom 
dimension scores than the OCD sample which may additionally include non-OCD 
symptoms. Moreover, in the OCD sample we found lower confidence even when 
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corrected for anxiety and depression symptoms. This questions the idea that the 
symptom dimensions and their relation with confidence biases may directly translate 
to a clinical population, at least in the case of OCD and compulsive symptoms. 
Although caution is warranted in generalizing transdiagnostic findings to clinical 
populations, transdiagnostic research is valuable in itself (McGorry et al., 2018; Vanes 
& Dolan, 2021). An impactful step forward would be to apply transdiagnostic research 
within clinical samples. Recently, within a large patient sample of generalized anxiety 
disorder and OCD patients, it was found that deficits in goal-directed behavior were 
more strongly associated with a dimension of compulsivity symptoms than OCD 
diagnosis status itself (Gillan et al., 2020), supporting the importance of studying both 
transdiagnostic symptoms and diagnostic criteria in concert in clinical samples. 

The current study has to be interpreted in light of its limitations. Because of the difficulty 
manipulation in the experimental design, we did not use a staircase procedure, and 
used calibration measures to analyze the strength of correspondence between 
confidence and performance. Differences in performance between the OCD and 
HComp group were found, with a negative relationship between OCI-R score and 
performance in the large general population sample (Hoven, Luigjes, et al., 2023). 
Including subjects’ mean performance in the propensity score matching strongly 
worsened the matching on our primary variable of interest, the OCI-R score, which is 
why we did not pursue matching on performance. In next studies it would be useful to 
keep performance equal between participants to more clearly isolate changes in 
confidence. Our clinical sample consisted of Dutch OCD patients that were help-
seeking, did not use psychotropic medication at time of testing and did not suffer from 
co-morbid diagnoses. This allowed us to isolate associations with metacognition 
without these confounds, but could limit the generalizability of our findings to the 
general OCD patient population, because co-morbidities and medication use are 
common in OCD (Grabe et al., 2000; Ruscio et al., 2010). Moreover, all subjects were 
tested online (and originated from a variety of countries), allowing for less control over 
the environment in which the task was performed. Nevertheless, online testing has 
many advantages, including lower costs and access to larger and more representative 
samples. Future studies could investigate metacognition in a more clinically relevant 
setting, by – for example – studying the effects of symptom provocation on 
metacognitive abilities, and could study the specific role of obsessions versus 
compulsions in metacognition. Moreover, metacognition does not only serve 
monitoring purposes, but also has a controlling function, which should be investigated 
further in OCD (Vaghi et al., 2017).  
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Together, these findings argue for being cautious in generalizing metacognitive findings 
from highly compulsive samples from the general population to clinical samples. In our 
current samples, with equal OC symptom severity, distinct neurocognitive processes 
might be at play, relating to OC symptoms in different ways. This caution might not 
apply similarly to all psychiatric disorders, since for example, both clinical and general 
population studies have consistently shown decreases in confidence in depression 
(Hoven et al., 2019; Rouault, Seow, et al., 2018). Overall, the current study showed 
evidence for decreased local and global confidence, as well as decreased higher order 
metacognition in OCD patients compared with HCs. Meanwhile, a general population 
sample with similar OC symptoms showed local and global overconfidence and 
diminished metacognitive sensitivity compared with OCD patients. The patterns 
observed in a non-clinical population, used as an analogue for OCD, may thus not 
necessarily generalize to clinical samples. 
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Abstract 

Background 

Our sense of confidence guides our actions. A decoupling between confidence and 
action could relate to compulsive behavior as seen in obsessive-compulsive disorder 
(OCD). The link between confidence and action in OCD has been investigated in clinical 
case-control studies and in the general population with discrepant findings. The 
generalizability of findings from highly-compulsive samples from the general 
population to clinical OCD samples has been questioned. Here, we address the 
discrepancies by investigating the relationship between action and confidence in OCD 
patients compared to healthy controls (HC) and a population sample of matched 
highly-compulsive subjects (HComp). 

Methods 

38 medication and comorbid diagnosis free OCD patients, 37 HC and 76 matched 
HComp participants performed a predictive inference task to investigate action and 
confidence while learning under volatility. Action-updating, confidence and their 
coupling in the OCD group were compared to HC and HComp groups. Moreover, 
computational modeling was performed to compare groups on error sensitivity, and 
parameters reflecting learning and environmental changes. 

Results 

OCD patients showed lower confidence and higher learning rates in reaction to 
(particularly small) prediction errors than both HC and HComp groups, signaling 
hyperactive error signaling and a negative confidence bias. No evidence was found for 
differences in action-confidence coupling between groups. 

Conclusions 

Different behavioral profiles are related to obsessive-compulsive symptoms in different 
samples, with lower confidence and higher error sensitivity in clinical OCD samples. 
Overall, the underlying mechanisms of obsessive-compulsive behavior might differ 
between clinical and highly-compulsive general population samples, resulting in 
different (meta)cognitive profiles.
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Introduction 

Throughout daily life we perform actions based on our beliefs and our sense of 
confidence in those beliefs. For example, if I am confident that I have brought my 
passport to the airport, I am less likely to engage in actions to double-check it. 
Following the Bayesian framework of belief updating (Knill & Pouget, 2004; Meyniel & 
Dehaene, 2017; Parr & Friston, 2017), in addition to new information, confidence in 
prior beliefs also plays a role in determining the extent to which a belief is updated. The 
more confident one is in their belief, the less impactful new information is, leading to 
minimal updates of their existing beliefs. When confidence is low, however, it can 
motivate the gathering of additional evidence to increase confidence in those beliefs 
(Boldt et al., 2019; Desender et al., 2018, 2019). In this way, the confidence with which 
a belief is held shapes our future behavior, particularly in volatile and uncertain 
environments.  

This process of utilizing new information and confidence to guide decision-making can 
go awry in various disorders psychiatric disorders, among which obsessive-compulsive 
disorder (OCD). OCD is a psychiatric disorder that is typically characterized by intrusive 
obsessions and compulsions (American Psychiatric Association, 2013). Moreover, 
OCD has been associated with abnormalities in confidence (i.e., the subjective feeling 
of being correct in a choice, belief or decision), with most studies showing lower 
confidence in patients compared with healthy controls (Dar et al., 2022). A bias toward 
lower confidence, indicating a disruption in metacognitive monitoring, could lead to 
doubts and uncertainty that drive compulsive behavior in OCD. An alternative theory on 
confidence in OCD has suggested that the repetitive nature of compulsions is driven 
not by underconfidence but by a dissociation between confidence and actions, 
indicating a disruption in metacognitive control. In this framework, OCD behavior is 
viewed as a disruption of goal-directed action (Gillan et al., 2011, 2020; Gillan & 
Robbins, 2014) where information from confidence judgments is not used accurately 
to inform behavior. For example, patients with OCD have been found to show a 
weakened association between confidence and updating of actions, while confidence 
in those actions were not affected (Vaghi et al., 2017). This dissociation of the 
interaction between action and confidence resembles the clinical presentation of OCD 
where patients often continue performing actions that they know are disproportionate, 
and which are by definition ego-dystonic (i.e., not consistent with the persons’ beliefs) 
(Kashyap et al., 2014). 

Previous research has examined the relation between confidence and action in 
individuals with OCD during a volatile learning process (Marzuki et al., 2022; Vaghi et 
al., 2017). These studies employed a predictive inference task, wherein participants 
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had to catch particles and assess their confidence in successfully catching the particle. 
Vaghi and colleagues found that, compared to healthy controls, OCD patients exhibited 
a dissociation between action and confidence, which was primarily driven by excessive 
updating of actions in response to small changes in the environment (Vaghi et al., 
2017). Specifically, when OCD patients had to guess the location of an upcoming 
particle using a virtual bucket, they excessively moved their bucket in response to small 
prediction errors, while their confidence in successfully catching the particle did not 
differ from healthy controls. In these patients, the usual negative coupling of 
confidence to the updating of the bucket location was weakened. Using the same 
paradigm, Marzuki and colleagues also found excessive action updating for small 
prediction errors in adolescent OCD patients, but did not observe a dissociation 
between action and confidence (Marzuki et al., 2022). 

In addition to clinical samples, OCD is often studied using analogue samples from the 
general population to assess relationships between (meta)cognitive phenomena and 
obsessive-compulsive (OC) symptoms (Abramowitz et al., 2014). Seow & Gillan (2020) 
conducted a study with the same predictive inference task as Vaghi et al. (2017), using 
a large general population sample and found that OC symptom severity was positively 
related to a dissociation between action and confidence. However, unlike the results of 
the study by Vaghi et al. (2017), here the authors reported that subjects with high OC 
symptom severity showed increased confidence rather than increased action updating. 
The dissociation between action and confidence was not specific to OC symptoms, 
however, and was also found for other psychiatric symptoms (e.g., depression, anxiety, 
psychosis). When using a transdiagnostic approach to consider co-morbid symptoms 
across psychiatric disorders, it was discovered that a symptom dimension of 
compulsivity specifically contributed to the action-confidence dissociation through 
inflated confidence. A recent replication study, however, failed to replicate the 
associations between OC symptoms and both confidence or the coupling between 
action and confidence (Loosen et al., 2023). 

In general population studies it is often assumed that the (meta)cognitive abilities of 
highly compulsive individuals resemble those of patients with OCD, albeit to a lesser 
degree. However, in a recent study we challenged this assumption and showed distinct 
metacognitive patterns in highly compulsive individuals and patients with OCD (with 
similar OC symptom severity), suggesting that these groups are inherently different 
(Hoven, Rouault, et al., 2023). This finding may explain why previous research has 
shown conflicting results on the cause of the dissociation between action and 
confidence, with one study finding it was due to increased action updating (Vaghi et al., 
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2017), while the other study found that it was due to increased confidence (Seow & 
Gillan, 2020). 

Here we aimed to address the discrepancies between previous studies by investigating 
action, confidence, and their coupling in a group of OCD patients who were not taking 
medication and did not have any co-morbid diagnoses. We compared this group to two 
other samples: (1) a group of healthy controls and (2) a group of highly compulsive 
individuals matched to the patient group. Moreover, we will compare our subjects’ 
behavior to a reduced Bayesian model used in previous studies, allowing us to compare 
how patients, healthy controls and highly compulsive subjects from the general 
population respond differently to various sources of environmental information (i.e., 
recent outcomes, surprising outcomes, uncertainty, and feedback) in updating their 
actions and confidence. We found evidence for lower confidence and higher error 
sensitivity in OCD patients compared to both healthy controls and highly compulsive 
subjects, but not for group differences in the coupling between action and confidence. 
Overall, this indicates that caution is warranted in generalizing findings from high 
compulsive samples from the general population to clinical OCD samples. 

 

Methods 

Participants 

This study included three groups of participants: patients with OCD, healthy controls 
(HCs) and highly compulsive individuals from the general population (HComp). The 
study was approved by the Medical Ethics Committee of the Amsterdam University 
Medical Centre, and all subjects provided written informed consent before 
participating and were reimbursed for their time. 

Patients with OCD 

Recruitment through the psychiatry department of the Amsterdam University Medical 
Centre and OCD community websites resulted in the inclusion of 43 OCD patients 
between 18 and 65 years in the study whose diagnosis of OCD was confirmed using 
structured psychiatric interviews. Exclusion criteria included a current diagnosis of 
major depressive disorder, (hypo)mania, anxiety disorders, substance use disorders or 
psychotic disorders, and use of medication for the treatment of psychiatric symptoms 
during the time of inclusion.  
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Healthy controls 

45 HCs were included and recruited through online advertisements and matched to 
OCD patients in terms of age, gender, and education. 

Highly compulsive individuals from the general population 

Data from HComp individuals from the general population was obtained from a 
previous study by Seow & Gillan (2020). This study collected data from a large general 
population sample (N=589) through Amazon’s Mechanical Turk, with 427 participants 
remaining after applying exclusion criteria, using similar task-based exclusion criteria 
as the current study (see ‘Subject task-based exclusions’ ). These HComp participants 
completed the exact same online task as the OCD and HC groups, but with 150 trials 
per participant rather than 300.  

We used propensity score matching to select participants from the HComp sample to 
match the patient sample in terms of OC symptom severity. We used the MatchIt 
package in R (Ho et al., 2007) to perform optimal pair matching to minimize the sum of 
the absolute pairwise distances in the matched sample. To balance the number of trials 
completed, we used a 1:2 ratio of OCD participants to HComp participants in the 
matching process, resulting in a similar number of data points for both groups. 
Matching was performed based on the Obsessive-Compulsive Inventory-Revised score 
(OCI-R (Foa et al., 2002)), age, and sex. Demographics were compared between groups 
using two-sample t-tests for continuous measures and Chi-square tests for categorical 
measures. Our final sample, after task-based exclusions (see ‘Subject task-based 
exclusions’ for more information) consisted of 38 patients with OCD, 37 HCs and 76 
HComp participants. 

 

Questionnaires 

HC and OCD participants were assessed using the MINI structured psychiatric 
interview to screen for additional psychiatric disorders (Sheehan et al., 1998). OC-
symptoms were measured using the Obsessive-Compulsive Inventory - Revised (OCI-
R) in all participants (Foa et al., 2002), and symptom severity was additionally assessed 
in patients with OCD using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). 
Patients with a YBOCS score < 12 were not included in the study. Anxiety and 
depression symptoms were assessed using the Depression Anxiety and Stress Scale 
(DASS) (Parkitny & McAuley, 2010) in OCD and HC and the STAI (Marteau & Bekker, 
1992) and Zung’s self-rating depression scale (Zung, 1965) in HComp participants.  
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Predictive inference task 

We used the web-based version of the predictive inference task, originally described by 
Nassar et al. (2010), and modified by Seow & Gillan, (2020). The task involved error-
driven learning, in which participants had to infer the landing location of a particle 
based on its previous landing locations. To do this, participants were shown a circle 
with a center dot and asked to place a “bucket” (represented by a curved rectangle) at 
the predicted landing location of the particle, which they could update after each trial. 
After confirming their bucket placement, participants rated their confidence that the 
particle would land in the bucket on a scale of 1 (not at all confident) to 100 (extremely 
confident). The confidence scale was randomly initiated at a rating of either 25 or 75, to 
stimulate participant action (Figure 1). 

After confirming the confidence rating, a particle was fired from the center dot. The 
landing location of the particle was sampled from a Gaussian distribution with a fixed 
standard deviation (SD) of 12. At certain trials, known as change-points (CP), a new 
mean was drawn from a uniform distribution over the full range of the circle U(1,360), 
with a probability of 0.125 (hazard rate, H). Optimal task performance thus required 
participants to distinguish between signal (change-point) and noise (SD of the 
generative distribution). Participants were rewarded for correctly catching the particle 
in their bucket and penalized for missing it via point summations and subtractions, 
respectively.  

The task consisted of 4 blocks of 75 trials, with a practice round that was not included 
in the final score and not analyzed. Participants were given a quiz after practicing that 
they had to answer correctly before the task started to ensure they understood the task 
instructions. Participants were instructed to earn as many points as possible, which 
would be converted to monetary rewards and could be up to €5. Confidence ratings 
were not directly incentivized, but participants were instructed to rate their confidence 
as accurately as possible. If participants had left their confidence rating as the default 
for more than 70% of the trials at the 20th and 50th trial mark, participants were 
reverted back to the instructions.  

All participants performed the same task, which was coded in JavaScript and hosted 
on Gorilla for the OCD and HC group (Anwyl-Irvine et al., 2020), and on Amazon’s 
Mechanical Turk for the HComp group. The HComp group completed 150 trials per 
participant, while the OCD and HC groups completed 300 trials per participant. 
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Figure 1: Predictive Inference Task. (A) Trial sequence of the task. Participants had to position 
their bucket (i.e., yellow bar on the edge of the circle) to catch a flying particle that was released 
from the center dot to the edge of the circle. After positioning their bucket, participants indicated 
their confidence in catching the particle. The particle was either caught (bar turned green) or 
missed (bar turned red), which resulted in gaining or losing points, respectively. (B) In every trial, 
the particle landing position was sampled from a random Gaussian distribution. The trajectories 
were always straight lines from the center to the landing position. Particles thus landed close 
together with a small amount of noise. Current trial particle trajectory is marked in black, 
previous trial particle trajectories are marked in blue. Over time participants thus learn about the 
Gaussian distribution from which the particle trajectories are drawn. (C) During a change-point 
the mean of the Gaussian distribution abruptly changes to another point in the circle. The particle 
landing locations are then sampled in a similar manner, until a new change-point occurs. Figure 
was adapted with permission from Seow et al., (2020). 

 

Task-based exclusions 

We preregistered task-based exclusions (https://osf.io/zury3), based on criteria set by 
Seow & Gillan, (2020). Specifically, participants were excluded if they left their 
confidence rating at the default score on >60% of trials (n = 3; 1 OCD), if their mean 
confidence after hits was lower than their mean confidence after misses (n=7, 3 OCD), 
or if the correlation between confidence rating and the default confidence was >0.5 
(n=7, 2 OCD) to ensure subjects sufficiently used the confidence scale. After applying 
these criteria, the final dataset included data from 75 participants (38 OCD, 37 HC; 26 
females in each group). The same exclusion criteria were applied to the dataset from 
Seow & Gillan (2020). In addition to subject-based exclusions, we also performed trial-
based exclusions (see section ‘Computational Model’ ). 
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Analyses 

All data preparation and analyses were conducted using MATLAB (version 2018b) and 
R (version 4.2.1). We compared the OCD and HC groups, as well as the OCD and 
HComp groups separately. Our analysis plan for the clinical case-control sample was 
pre-registered (https://osf.io/zury3), and the same analyses were applied to the 
comparison between OCD and HComp groups. Additional control analyses can be 
found in the Appendix E. 

Action and confidence 

Our first aim was to compare action updating and confidence between groups. We 
used linear-mixed effects models using the package lme4 (Bates et al., 2015), with 
either action update (absolute difference in bucket position from trial (t) to trial (t+1)) or 
confidence as dependent variable and group as predictor, together with random 
intercepts.  

Action-confidence coupling 

Our second aim was to assess differences in the strength of action-confidence 
coupling between groups. We constructed a linear mixed-effects model with trial-by-
trial action update as the dependent variable and trial-by-trial confidence (z-scored), 
group and their interaction as predictors. Random intercepts and slopes of the effect 
of confidence were added. 

In addition, we conducted a Pearson’s correlation to examine the relationship between 
the strength of action-confidence coupling and OCI-R scores in the OCD group, using 
subject-level β coefficients of the action-confidence coupling. 

Computational model 

A computational modeling approach was used to examine whether and how the 
relationship between behavior on the task (i.e., action or confidence) and various 
environmental parameters differed between groups. In a volatile environment, 
participants must adjust their learning rate based on recent evidence in order to update 
their beliefs about the generative distribution. Large prediction errors signal a radical 
change in the environment, requiring strong belief updating with higher learning rates, 
while small prediction errors likely are noise and do not require belief updating, in which 
case learning rates are low.  

The human prediction error δ�� (PE) for each trial was calculated as the difference 
between the current bucket position b�  and the particle landing location X�  . 
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δ�� =  X� – b�  

Human learning rate α�� (LR) was then calculated as the fraction of PE used for the 
subsequent action update, which was calculated as the absolute difference in bucket 
position from trial (t) to trial (t+1): 

α��  =  |b��� – b�|
δ��

 

Trials were excluded from all analyses (both model-free and model-based) if the LR 
exceeded the 95th percentile (4.9% of OCD trials, 5% of HC trials, 5% of HComp trials), 
which was calculated separately for each group (Marzuki et al., 2022). Due to motor 
noise in bucket movement when using the keyboard, trials with very small prediction 
errors (<5) are sensitive to measurement error (McGuire et al., 2014). In this way, trials 
with small PEs often resulted in very large LRs, even if action update was minimal. 
Several trials in our sample revealed to have extremely high learning rates due to motor 
noise, we applied a more stringent exclusion threshold than we reported in our pre-
registration, similar to the one used in the paper by Marzuki et al. (2022). In addition, 
trials with PE = 0 were excluded, since these trials do not drive error-driven learning 
(1.96% of OCD trials, 2.06% of HC trials, 1.99% of HComp trials). Additionally, the first 
and last trials within each block were excluded from analyses; in the first trials, there is 
no error-driven learning yet, and for the last trials no learning rate could be calculated. 
Finally, due to technical server failure, some trials were not properly recorded and 
therefore not analyzed (53 OCD trials, 2 HC trials), along with the trials following those 
corrupted trials, since action updates could not be calculated in these cases. In total, 
8.98% of OCD trials, 9.12% of HC trials and 9.09% of HComp were excluded from all 
analyses. 

 

Error sensitivity 

To assess group differences in error sensitivity for learning, linear mixed models were 
constructed with human LR as the dependent variable and human PE, group and their 
interaction as predictors. For visualization of the relationship, values of PE were binned 
into 20 quantiles that each contained an equal fraction of trials. For each quantile, the 
average LR was computed per subject. 
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Computational analyses 

Additionally, task behavior of participants was analyzed using a quasi-optimal Bayesian 
observer model that approximates optimal task behavior (Nassar et al., 2010), that was 
also used in previous research (Marzuki et al., 2022; Seow & Gillan, 2020; Vaghi et al., 
2017). The publicly shared data by Seow & Gillan, (2020) included the model 
parameters derived from the quasi-optimal Bayesian observer model for each HComp 
subject. Using the same model (publicly available from (Vaghi et al., 2017)) we fitted 
the particle landing locations of individual subjects to obtain model parameters for the 
OCD and HC groups. 

The model parameters represent statistical characteristics of the environment 
experienced by participants during the task. In short, these statistical features included 
the prediction error 𝛿𝛿 (PE, the absolute difference between model belief and location of 
the particle), the probability that a change-point occurred (CPP, the likelihood that the 
sampling distribution of the particle’s location has changed, thus that a change-point 
has occurred), and relative uncertainty (RU, the fraction of uncertainty about the mean 
that is not due to noise). RU was expressed as its inverse, named model confidence 
(MC, related to the precision of the model’s own beliefs about the mean), to allow for a 
comparison with confidence reported in the task (Vaghi et al., 2017). For more 
information on the model see Appendix E. 

We assessed how these different Bayesian parameters related to participant behavior, 
and whether this differed between the groups. Following previous studies, participant 
behavior (either action or confidence) was regressed against three latent variables 
computed by the Bayesian model: absolute PE, CPP and (1-CPP)(1-MC), and the 
categorical variable hits, indicating whether the particle was caught. While PE 
represents uncertainty regarding the most recent observation, CPP and (1-CPP)(1-MC) 
represent the model’s estimation that a change-point did or did not occur, given the 
sequence of past observations, respectively. The dependent variable action was 
calculated as: LR * PE, indicating the bucket update. The predictors in the action model 
were also interacted with PE for the regression on action (McGuire et al., 2014; Nassar 
et al., 2019; Seow & Gillan, 2020; Vaghi et al., 2017). Mixed models were constructed 
with either action or confidence as the dependent variable, and the three model 
parameters and Hit as fixed-effect predictors (all z-scored), which were all interacted 
with group. Random intercepts and slopes of all predictors were also included in the 
model. 
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In addition, we also performed sensitivity analyses where we calculated the best fitting 
hazard rate parameter for each subject based on the fit of the model on the participant’s 
behavior (see Appendix E). 

 

Results 

Demographics 

There were no differences in age or gender distribution between HC and OCD groups, 
or between HComp and OCD groups. OCD patients had significantly higher OCI-R 
scores than HCs, while OCI-R scores were similar for OCD and HComp groups, which 
confirms successful matching of the groups. For details on demographics and clinical 
data, see Table 1. 
 

Table 1: Demographics, clinical and task-based variables 

Abbreviations: OCD = Obsessive-Compulsive Disorder, HC = Healthy Controls, HComp = High-
Compulsive subjects, OCI-R: Obsessive-Compulsive Inventory-Revised. Data are reported as 
mean (standard deviation). Welch’s t-tests were used to compare OCI-R scores between OCD 
and HC groups, since variances were not equal. 

 

Comparing OCD patients to healthy control subjects 

Model-free results 

Lower confidence in OCD but no differences in action updating  

To investigate whether our groups differed in terms of task behavior, we conducted a 
mixed-model analysis comparing action and confidence between the OCD and HC 
groups. Patients with OCD had significantly lower confidence than HCs (β = -18.9 (4.9), 
t = -3.83, p<.001), but there were no differences in the amount of action updating 
between groups (β = 0.8 (1.5), t = 0.56, p=0.579) (Figure 2).  

 OCD HC HComp OCD vs. HC OCD vs 
HComp 

Age 36.3 (10.9) 38.9 (10.9) 36.8 (11.1) t73 = 1.02 
p = 0.31 

t112 = 0.22 
p = 0.83 

Females 
(%) 

26 (68.4%) 26 (70.3%) 49 (64.5%) X2 = 0.03 
p = 0.86 

X2 = 0.18 
p = 0.68 

Years of 
education 

3.9 (0.9) 3.8 (0.8)  t73 = -0.72 
p = 0.47 

 

OCI-R 24.0 (10.6) 2.6 (2.2) 24.8 (14.7) t40.3 = -12.19 
p < .001 

t112 = 0.31 
p = 0.75 
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No differences in action-confidence coupling  

Next, we evaluated whether the coupling between action update and confidence 
differed between the groups. As expected, a significant negative relationship between 
confidence and action update existed across groups, such that higher confidence was 
related to less action updating (i.e., action-confidence coupling) (β = -9.06 (0.85), t = -
10.66, p<.001). However, there was no evidence for a distortion of this action-
confidence coupling in OCD, as no interaction between group and confidence on 
action updating was found (β = 1.06 (1.19), t = 0.89, p=0.379) (Figure 3A). The same 
results were found when using confidence update from trial t-1 to t as a predictor.  

Symptom severity and task behavior 

To rule out the possibility that the decrease in confidence in OCD was due to comorbid 
anxiety and depression symptoms, we conducted a similar mixed-model analysis while 
controlling for DASS scores. The effect of group on confidence remained significant (β 
= -27.1 (7.8), t=-3.48, p<.001), while there was no effect of DASS score (β = 0.30 (0.22) t 
= 1.36, p = 0.179). This suggests that the lower confidence in OCD compared to HCs 
was not explained by comorbid anxiety and depression symptoms.  

Higher learning rates for small prediction errors in OCD  

We also assessed differences in error sensitivity between the OCD and HC groups. 
Across both groups, learning rates increased as a function of prediction error 
magnitude (β = 0.004 (0.0002), t = 24.00, p<.001), and thus learning rates were highest 
after large errors. This effect was less pronounced in OCD (significant PE x group 
interaction effect: β = -0.001 (0.0002), t = -4.89, p<.001). To unpack this effect, a post-
hoc mixed-model analysis binning the prediction error in 3 quantiles (i.e., low, medium 
and high error magnitude), showed that OCD patients specifically had increased 
learning rates when error magnitude was small (HC-OCD estimate = -0.16 (0.06), Z-
ratio: -2.57, p=0.01). Learning rates were not higher for OCD in general (β = 0.113 (0.06), 
t = 1.78, p = 0.080. This indicates that only when errors were small, the influence of the 
most recent outcome on subsequent action (i.e., PE) was higher in the OCD compared 
to the HC group (Figure 4). Moreover, the learning rate at small error magnitude was 
significantly positively related to OCI-R score in OCD patients (r = 0.34, p = 0.039). 

Model-based results 

No differences in the effect of Bayesian parameters on behavior  

Finally, we assessed whether behavior (action and confidence) was differently 
predicted by the Bayesian parameters, which represent different forms of uncertainty 
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and feedback. As expected, action was significantly predicted by all model-derived 
parameters and hit, such that increases in PE, CPP and (1-CPP)*(1-MC) predicted an 
increase in action, while a successful catch of the particle predicted a decrease in 
action. We did not find any evidence for group differences in the strength of these 
effects (Figure 5). Confidence was, as expected, negatively predicted by both PE, CPP 
and (1-CPP)*(1-MC), and increased with a successful catch of the particle. Again, we 
did not find any evidence for group differences in the strength of these effects (Figure 
5).  

No differences in perceived hazard rates 

Sensitivity analyses in which we performed the same analyses as described above, 
including the subject-specific perceived hazard rate as a covariate (for calculation see 
Appendix E) indicated that the perceived hazard rate did not differ between the OCD 
and HC groups. Moreover, none of the significant group differences found between 
OCD patients and HCs were influenced by differences in perceived hazard rate 
between groups. For more details, see Appendix E. 

 

Comparing OCD patients to highly compulsive subjects from the general 
population 

Model-free results 

Lower confidence and higher action updating in OCD  

Patients with OCD showed significantly lower confidence than HComp participants (β 
= -14.43 (4.50), t = -3.20, p=.0018), and in addition, patients had significantly higher 
action update than the HComp group (β = 4.81 (1.09), t = 4.41, p<.001) (Figure 2).  

No differences in action-confidence coupling  

Next, we assessed group differences in the action-confidence coupling. Again, as 
expected we found a negative relationship between confidence and action update 
across groups (β = -8.65 (0.75), t = -11.60, p<.001).  We did not find an interaction effect 
between group and confidence (β = 0.65 (1.25), t = 0.52, p=0.60), suggesting similar 
coupling of action and confidence in OCD patients and HComp subjects (Figure 3A). 
The same results were found when using confidence update (difference in confidence 
from trial t-1 to t as used in Vaghi et al. (2017)) instead of confidence as predictor. 
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Symptom severity and task behavior 

To get more insight into the relationship between task behavior and symptom severity, 
we performed a linear regression to investigate whether the relationship between 
confidence and OCI-R score differed between the OCD and HComp groups. Indeed, a 
significant interaction effect was found (β = -0.73 (0.36), t = -2.03, p = 0.04), indicating 
that there was a significantly positive relationship between OCI-R and confidence for 
the HComp group (β = 0.824 (0.16), t = 5.12, p < 0.001), while no relationship existed for 
the OCD group (β = 0.095 (0.32), t = 0.30, p = 0.768). This indicates that HComp subjects 
with higher symptom severity were more confident compared to those with low 
symptom severity, whereas this is not the case in the patient group. We did not find 
evidence for a group difference in the relationship between OCI-R score and action 
updating. 

We further aimed to investigate whether the relationship between action-confidence 
coupling and OCI-R score differed between groups. Using a regression analysis, a 
significant interaction between OCI-R score and group was found (β = -0.18 (0.08), t = -
2.12, p = 0.036), indicating that in HComp there was a positive relationship between 
OCI-R score and action-confidence coupling (β = 0.188 (0.04), t = 4.98, p<.001), while 
no relationship existed for the OCD group (β = 0.010 (0.08), t = 0.13, p = 0.896) (Figure 
3B). This suggests that subjects from the HComp group with more severe obsessive-
compulsive symptoms had a weaker coupling between action and confidence. 

Higher learning rates in OCD, regardless of error magnitude 

In terms of error sensitivity, we again showed that learning rates increased as a function 
of prediction error magnitude across groups (β = 0.005 (0.0001), t = 35.66, p<.001). This 
effect was less pronounced in OCD than HComp (β = -0.002 (0.0002), t = -10.88, 
p<.001). Moreover, OCD patients had higher learning rates than HComp subjects over 
the whole range of error magnitudes (main effect of group: β = 0.342 (0.045), t = 7.53, 
p<.001) (Figure 4).  

Model based results 

More sensitive to prediction error, but less sensitive to surprising outcomes and relative 
uncertainty in adjusting actions in OCD 

Lastly, we compared the effects of the Bayesian parameters on behavior in the OCD 
and HComp groups. We found the same main effects of PE, CPP, (1-CPP)*(1-MC) and 
hit on action and confidence. However, now, the strength of the effects on action 
differed significantly between the groups. We found a stronger effect of PE on action in 
OCD compared to HComp, indicating that OCD patients were more sensitive to the 
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most recent error magnitude in adjusting their action. Contrarily, we found weaker 
effects of CPP and (1-CPP)*(1-MC) on action in OCD, suggesting that OCD patients 
were less sensitive to surprising outcomes and relative uncertainty over the course of 
past observations in adjusting their subsequent actions compared to HComp subjects 
(Figure 5). We did not find any evidence for group differences in the strength of the 
effects of the model parameters on confidence (Figure 5). 

Higher perceived hazard rates in OCD 

Again, we performed sensitivity analyses to account for differences in subject-specific 
perceived hazard rates. These analyses showed that the group difference in action 
update between OCD and HComp groups was predominantly driven by a group 
difference in perceived hazard rates (which was higher in OCD than in HComp), while 
all other significant effects were unaffected by including hazard rate as a covariate. This 
indicates that the difference in perceived hazard rate between OCD patients and 
HComp participants explained their difference in action updating, but not their 
differences in confidence and learning rate. For more details, see Appendix E. 
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Figure 2: Task behavior across groups. Mean confidence (A) and action update (B) per group. 
Dots show data from individual participants, boxplots show median and upper/lower quantile 
with whiskers indicating the 1.5 interquartile range, distributions show the probability density 
function of all data points per group. Significance starts represent the main effects of group in the 
respective mixed-effects models. **p<.01, ***p<.001. HC = healthy control subjects, OCD = 
obsessive-compulsive disorder patients, HComp= highly compulsive subjects from the general 
population. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Action-confidence coupling across groups. (A) Results from a regression model 
where action update was predicted by confidence. As expected, across all groups, regression 
coefficients were negative indicating that higher confidence was associated with smaller action 
updates of the bucket location. Dots represent regression coefficients of individual subjects, 
boxplots show median and upper/lower quantile with whiskers indicating the 1.5 interquartile 
range, distributions show the probability density function of all data points per group. (B) The 
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relationship between symptom severity as measured by the OCI-R and action-confidence 
coupling in OCD and HComp groups. The shaded areas represent the 95% confidence intervals. 
A significant interaction effect indicated that a positive relationship exists for the HComp group, 
but not for the OCD group, indicating that HComp subjects with higher symptom severity had 
more distorted action-confidence coupling. HC = healthy control subjects, OCD = obsessive-
compulsive disorder patients, HComp= highly compulsive subjects from the general population, 
OCI-R = obsessive-compulsive inventory revised. 

 

 

Figure 4: Learning rates and error sensitivity. (A) Mean learning rates per group (α��). Patients 
had significantly increased learning rates compared to the HComp group, but not to the HC 
group. Dots represent regression coefficients of individual subjects, boxplots show median and 
upper/lower quantile with whiskers indicating the 1.5 interquartile range, distributions show the 
probability density function of all data points per group. (B) The relationship between prediction 
error magnitude (δ��) and learning rate for each group. Prediction errors were divided in 20 
quantiles, of which 18 quantiles are shown here for visualization purposes. Dots represent mean 
learning rates per group, error bars represent the SEM. All groups’ learning rates were higher when 
prediction errors were larger. Learning rates were higher in the OCD group compared to the HC 
group at low error magnitudes, and compared to the HComp group across the whole range of 
error magnitudes. *** p<0.001, represents the main effects of prediction error on learning rate in 
both mixed-effects models. 
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Figure 5: Model-based results on action and confidence. Regression coefficients of the 
regressions assessing the relationship between the parameters from the computational model 
and (A) human action (i.e., learning rate * absolute prediction error), or (B) human confidence. 
Small dots represent individual regression coefficients, big dots represent mean regression 
coefficients per group, error bars denote SEM per group. Predictors included absolute prediction 
error (PE), change-point probability (CPP), model confidence (MC) and a categorical variable 
representing hits/misses. (C) Human learning rate, model learning rate, human confidence and 
model confidence aligned to change-points (vertical line). Learning rates increased and 
confidence decreased after a change-point. Confidence was decreased in the OCD group across 
the entire range of trials, whereas learning rate was decreased in the HComp group across the 
entire range of trials. 

 

Discussion 

In this study we sought to extend our understanding of the relationship between action 
and confidence in a volatile learning environment, comparing individuals with OCD to 
both healthy and highly compulsive people from the general population. The current 
paradigm has been previously used to investigate OCD adult patients (Vaghi et al., 
2017), OCD adolescent patients (Marzuki et al., 2022) and non-clinical samples with 
varying obsessive-compulsive symptoms (Seow & Gillan, 2020). Here, we specifically 
included medication-free OCD patients without comorbid diagnoses to obtain a more 
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specific profile of disturbances in action, confidence and their coupling, which we 
further aimed to compare to a highly compulsive non-clinical sample. 

Findings are inconsistent and discrepant between studies examining clinical OCD 
samples. We did not find evidence that the coupling between action and confidence 
was disturbed in OCD, in concordance with Marzuki et al. (2022), but in contrast to 
Vaghi et al. (2017). In addition, model-based results are inconsistent; while earlier 
studies showed that OCD patients were more (Vaghi et al., 2017) or less (Marzuki et al., 
2022) influenced by prediction errors in adapting their action or confidence, 
respectively, than healthy controls, we did not find any differences in the effects of the 
model-based parameters on action or confidence between OCD patients and the 
control group.  

A consistent finding between the various studies is an increased learning rate in OCD 
patients compared to controls (Vaghi et al., 2017), specifically when prediction error is 
low (Marzuki et al., 2022). The finding that OCD patients are especially prone to 
excessive action updating in response to non-relevant small errors, without a beneficial 
effect on their performance, could be indicative of hyperactive error signaling (Norman 
et al., 2019; Stern et al., 2011). Increased error sensitivity is a well-known 
endophenotype of OCD (Riesel, 2019), which has been related to an increased risk for 
developing OCD (Riesel et al., 2011). Overly precise action updating also resembles 
excessive checking and information gathering behavior typical for OCD, which has 
been found especially when actions come with no external cost (Banca et al., 2015; 
Hauser, Allen, et al., 2017; Toffolo et al., 2016).  

OCD patients were less confident than controls in their actions, while accuracy and 
action updating were equal, corroborating previous work (Dar et al., 2022; Hoven et al., 
2019). Even when controlling for anxiety and depression symptoms, OCD patients still 
showed lower confidence than controls, refuting the idea that decreases in confidence 
in OCD might be driven by comorbid anxiety and depression symptoms (Seow & Gillan, 
2020).  

After comparing our comorbid and medication-free OCD sample to healthy controls, 
we aimed to compare the OCD sample to a non-clinical sample with equal obsessive-
compulsive symptom strength. Many studies have used analogue samples from the 
general population to study the relationship between (meta)cognitive phenomena and 
psychiatric symptoms, with the assumption that these relationships resemble those 
found in clinical patient samples. However, we recently showed divergent relationships 
between metacognition and obsessive-compulsive symptoms in patients with OCD 
and highly compulsive individuals from the general population with similar OCD 
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symptom severity (Hoven, Rouault, et al., 2023). Here, we corroborate our previous 
findings, showing that OCD patients had decreased confidence compared to the 
HComp group, which was specific to the OCD group as exploratory analyses showed 
no differences between healthy controls and the HComp group. Furthermore, OCD 
patients had increased learning rates compared to the HComp group and their actions 
were more strongly predicted by prediction error and less by the change point 
probability or uncertainty about the landing position. These results, however, were not 
specific to OCD patients and may relate to a relatively higher perceived volatility of the 
task as indicated by higher hazard rates in both the OCD and HC groups compared to 
the HComp group (Figure S2). Interestingly, different relationships were found between 
OC symptoms and task parameters for the OCD and HComp group: a positive 
relationship between OC symptom severity and confidence was found in the HComp 
group, which was not present in OCD patients. Finally, although there was no difference 
in the coupling of action and confidence between the groups, HComp subjects with 
more severe OC symptoms had significantly weaker action-confidence coupling (Seow 
& Gillan, 2020), while this relationship did not exist in OCD patients. 

These findings point to the idea that there are different behavioral and (meta)cognitive 
profiles that go together with obsessive-compulsive symptoms, which might be 
contingent on the clinical or sub-clinical nature of the sample in question. In line, it is 
plausible that there are different mechanisms that could relate to similar obsessive-
compulsive symptom severity, but to different behavioral manifestations. Our findings 
support a recent model of OCD proposed by Fradkin et al. (2020) which suggests that 
OCD patients experience difficulty in using past experiences to inform future actions, 
resulting in excessive uncertainty about their own actions (e.g. low confidence) and the 
state of the world. This low confidence may lead to increased reliance on immediate 
sensory feedback at the expense of prior beliefs. This profile of behavior seems 
consistent with our profile of lower confidence and higher learning rates during non-
relevant small errors in OCD patients. The positive correlation between learning rates 
during small errors and OCD symptoms further supports this interpretation. On the 
other hand, Fradkin’s model suggests that compulsive behavior can also result from 
overreliance on prior beliefs at the expense of new evidence, leading to habitual 
behavior taking precedence. This interpretation is more in line with the profile of the 
HComp group, which showed a more restricted range of action (lower learning rate), 
higher confidence and a positive relationship between compulsive symptoms and the 
decoupling between action and confidence. It suggests that while OCD patients and 
HComp individuals may present with similar symptoms, the underlying mechanisms of 
their behavior may differ substantially. However, we acknowledge that alternative 
explanations for the differences exist, and more research is needed to establish 
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whether indeed compulsive behavior of these two groups can have different origins. 
Furthermore, it is worth noting that even though the symptom severity as measured 
with the OCI-R is similar between groups, the extent to which their symptoms impact 
daily life may be different. Since the OCI-R measures distress induced by specific and 
select types of obsession and compulsions, it can confound severity with the type and 
range of symptoms (Abramovitch et al., 2020). It is plausible that individuals suffering 
from OCD exhibit a greater frequency of compulsive behaviors on a daily basis, leading 
to a more pronounced impact on their work, social interactions, and family life 
compared to those in the HComp group, even if their OCI-R scores are similar. The 
comparability of the burden of the compulsive symptoms in clinical and analogue 
samples is a topic worth exploring further using more comprehensive assessment of 
OCD symptoms. 

Compulsivity is a broad concept that is defined as “repetitive acts that are 
characterized by the feeling that one ‘has to’ perform them while one is aware that these 
acts are not in line with one’s overall goal” (Luigjes et al., 2019). Compulsive behavior 
is observed in other disorders than OCD, such as (gambling) addiction (Figee et al., 
2016), where it instead goes hand-in-hand with increased confidence (Hoven et al., 
2019). Moreover, multiple previous studies have shown that a transdiagnostic factor 
incorporating compulsivity and intrusive thoughts related to increased confidence in 
sub-clinical samples (Benwell et al., 2022; Hoven, Luigjes, et al., 2023; Rouault, Seow, 
et al., 2018; Seow & Gillan, 2020). In future studies it would be of interest to compare 
relationships between transdiagnostic symptom scores and (meta)cognition between 
non-clinical and clinical samples.  

This study has to be seen in light of its limitations. All groups were tested online, but 
nevertheless received extensive instructions. The OCD and HC groups were not 
recruited via specialized online research platforms, whereas the HComp group was. It 
is likely that the HComp group consisted of subjects with more experience in 
participating in online research, which could relate to the finding that the HComp group 
was better able to estimate the volatility of the task. For reasons of consistency with 
previous studies we included the model-based analyses. However, while a recent study 
indicated that the main measures of confidence and learning rates yield good internal 
consistency and test-retest reliability, the Bayesian model parameters had poorer 
psychometric quality (Loosen et al., 2023). Therefore, the model-based measures 
should be used and interpreted with caution, especially for studying between-subject 
differences. Improving the ecological validity of the paradigm, using a task where 
excessive action updating is penalized, or where the context is more symptom-specific, 
could provide insight into behavior of OCD patients when excessive precision is costly.  
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Together, we showed that OCD patients have lower confidence and increased error 
sensitivity than healthy and highly compulsive subjects from the general population, 
without a dissociation between action and confidence. This points to disturbances in 
metacognitive monitoring (where confidence is negatively impacted), without 
disturbances in metacognitive control (i.e., utilizing confidence to inform behavior) in 
OCD. Importantly, clinical OCD patients have lower confidence than highly compulsive 
subjects from the general population. It is likely that the underlying mechanisms of 
compulsive behavior differ substantially between these groups, resulting in contrasting 
(meta)cognitive behavioral manifestations despite equal OC symptom severity. 
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Abstract 
 
Decisions and learning processes are under metacognitive control, where confidence 
in one’s actions guides future behaviour. Indeed, studies have shown that being more 
confident results in less action updating and learning, and vice versa. This coupling 
between action and confidence can be disrupted, as has been found in individuals with 
high compulsivity symptoms. Patients with Gambling Disorder (GD) have been shown 
to exhibit both higher confidence and deficits in learning. In this study, we tested the 
hypotheses that patients with GD display increased confidence, reduced action 
updating and lower learning rates. Additionally, we investigated whether the action-
confidence coupling was distorted in patients with GD. To address this, 27 patients with 
GD and 30 healthy controls performed a predictive inference task designed to assess 
action and confidence dynamics during learning under volatility. Action-updating, 
confidence and their coupling were assessed and computational modeling estimated 
parameters for learning rates, error sensitivity, and sensitivity to environmental 
changes. Contrary to our expectations, results revealed no significant group 
differences in action updating or confidence levels. Nevertheless, GD patients 
exhibited a weakened coupling between confidence and action, as well as lower 
learning rates. This suggests that patients with GD may underutilize confidence when 
steering future behavioral choices. Ultimately, these findings point to a disruption of 
metacognitive control in GD, without a general overconfidence bias in neutral, non-
incentivized volatile learning contexts. 
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Introduction 

Gambling Disorder (GD) is a recognized psychiatric disorder characterized by a loss of 
control and an inability to stop gambling despite known adverse consequences. This 
irrational or compulsive behavior has spurred numerous studies to investigate the 
decision-making processes underlying this behavior, including reinforcement learning. 

Learning in GD has frequently been investigated by feedback-based learning tasks, 
such as reinforcement learning, reversal learning and model-based learning, revealing 
various impairments. Using reinforcement learning tasks, patients with GD have shown 
to have less strategic exploration of choice options, lower non-decision time, more 
decision noise, and lower learning rates for losses, but higher learning rates for rewards 
(for a review, see (Hales et al., 2023)). There is also evidence of impairments in 
probabilistic reversal learning (Boog et al., 2014; M. B. de Ruiter et al., 2009; Perandrés-
Gómez et al., 2021; van Timmeren et al., 2018). Studies focusing on model-based 
learning have also suggested that patients with GD rely more on model-free than 
model-based learning than healthy controls (Bruder et al., 2021; Wyckmans et al., 
2019), however not all studies showed this (Van Timmeren et al., 2023; Wagner et al., 
2022). In all, there is evidence that GD is associated with deficits in (reinforcement) 
learning and decision-making. 

Decision-making and learning processes are guided by metacognitive control, a 
process rooted in metacognition – our capacity to monitor and reflect upon our 
thoughts and actions. This capacity can be assessed by prompting individuals to 
evaluate their level of confidence in the accuracy of their choices. Indeed, research has 
demonstrated that confidence has a guiding role in information seeking, impacting 
decision-making, reassessment of choices, and learning (Balsdon et al., 2020; 
Desender et al., 2018; Meyniel, Schlunegger, et al., 2015). Moreover, confidence 
contributes to the adaptable adjustment of behavior, influencing the balance between 
exploration and exploitation (Boldt et al., 2019; Heilbron & Meyniel, 2019). Thus, a 
sense of confidence about one’s choices has been demonstrated to be indispensable 
for optimal decision-making. 

An influential Bayesian framework of learning shows that confidence in actions 
influences behavior (Knill & Pouget, 2004; Meyniel, Sigman, et al., 2015; Parr & Friston, 
2017). Crucially, this framework predicts that the impact of new information on 
subsequent actions depends on the epistemic confidence of the decision-maker. 
When one is more confident, new information has less impact, resulting in less action 
updating and less learning. Conversely, lower confidence motivates gathering 
additional evidence to increase confidence in possible actions and also facilitates 
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learning. Thus, in healthy populations, there is a strong link between confidence and 
subsequent action and learning. However, in many psychiatric disorders, confidence 
judgments are distorted, showing underconfidence or overconfidence relative to 
performance (Hoven et al., 2019). Specifically, patients with GD have exhibited 
overconfidence, particularly in contexts involving monetary gains (Goodie, 2005; 
Hoven, de Boer, et al., 2022). Studies investigating the coupling between confidence 
and action, and their relationship with psychiatric symptoms have shown that 
individuals with high compulsive (but not gambling) symptoms have a weakened 
confidence-action coupling (Seow & Gillan, 2020). This suggests that highly compulsive 
individuals tend to consider their confidence to a lesser extent when informing their 
future actions. However, it is currently unknown whether the relationship between 
confidence and action, and subsequent learning, is affected in GD. 

Based on earlier findings, we hypothesized that patients with GD, relative to controls, 
show higher confidence, less action-updating and lower learning rates. With regard to 
the coupling of confidence and subsequent actions, we posited two hypotheses. First, 
patients with GD could have an intact coupling between confidence and action, in line 
with the Bayesian framework. The alternative hypothesis posited that GD patients 
(similar to findings of individuals with highly compulsive symptoms) have a weakened 
confidence-action coupling. 

To test these hypotheses, we investigated confidence, action, their coupling and 
learning by using a predictive inference task originally described by (Nassar et al., 
2010), and used in many studies since (Hoven, Mulder, et al., 2023; Seow & Gillan, 
2020; Vaghi et al., 2017) in patients with GD and matched healthy controls. Our results 
revealed that patients with GD have a weaker action-confidence coupling but exhibit 
similar confidence levels and action updating compared to controls. Moreover, 
patients demonstrated lower learning rates than controls.  

 

Methods 

Participants 

27 patients with GD and 30 healthy controls (HCs) were included in this study, matched 
on age, sex and education. The study was approved by the Ethics Board of the 
Behavioral Science Laboratory at the University of Amsterdam (2018-DP-9420). All 
subjects provided written informed consent and were reimbursed for their time. 
Patients with GD were recruited through patient clinics in the Netherlands and HCs via 
an online participation pool. All patients with GD had been in treatment for their 
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gambling problems at least once and had gambled regularly within the past 12 months 
prior to participating. The HCs did not currently or in the 6 months prior to participation 
suffer from any psychiatric disorders and did not use any psychotropic medication. 

 

Experimental procedure 

Predictive inference task 

All participants performed a predictive inference task, similar to the one reported in 
(Vaghi et al., 2017), implemented using Psychtoolbox in MATLAB.  

This task allows for the investigation of the relationship between error-driven learning 
and confidence, by letting participants infer the landing location of a particle based on 
its previous landing locations. A circle with a dot in the center was shown to 
participants, after which they had to place a “bucket” (represented by a curved 
rectangle) at the location at which they predicted a particle (i.e. a ‘coin’) would land. 
The position of the bucket could be updated every trial in response to new information. 
After confirming the location of the bucket, participants were asked to rate their 
confidence that they would catch the particle in the bucket on a scale of 1 (not at all 
confident) to 100 (extremely confident) (Figure 1). 

After the confidence rating was confirmed, the particle would fly from the center dot to 
the edge of the circle. The landing location of the particle was sampled from a Gaussian 
distribution with a fixed standard deviation (SD) of 12. At certain ‘change-point’ (CP) 
trials a new mean for the particle landing location was drawn from a uniform 
distribution over the full range of the circle U(1,360), with a fixed probability of 0.125 
(hazard rate, H). Performing accurately on this task thus required participants to 
distinguish between actual signals of change (i.e. CP trials) and noise (SD of the 
generative Gaussian distribution). When the particle landed in the bucket, participants 
received points, and they were penalized for missing the particle. 

The task consisted of 4 blocks of 75 trials, with a practice round that was not included 
in the analyses. Participants were instructed to earn as many points as possible, which 
would be converted to a bonus up to €5. Confidence ratings were not directly 
incentivized, but participants were instructed to rate their confidence as accurately as 
possible.  

Moreover, a subset of the sample (24 GD, 15 HC) additionally performed the predictive 
inference task at a higher hazard rate of 0.20, corresponding to higher task volatility. As 
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the main focus of this paper is on the results of the original task, analyses pertaining to 
the higher volatility task can be found in Appendix F. 

 

Task-based exclusions 

Based on exclusion criteria set by (Seow & Gillan, 2020) and our previous study  using 
this task (Hoven, Mulder, et al., 2023), we excluded participants when their mean 
confidence after hits was lower than their mean confidence after misses (n=6, of which 
2 GD). Since this current version of the task (lab-based instead of online (Seow & Gillan, 
2020)) did not randomly initialize the confidence rating every trial, we cannot use 
previously used exclusion criteria pertaining to the deviation of subjects’ confidence 
ratings compared to the initialized confidence rating. After applying the subject-based 
exclusion criteria, the final dataset included data from 51 participants (25 GD (4 
females), 26 HC (6 females)). For one GD subject, data for one out of four blocks was 
corrupted and thus this subject has data for 225 instead of 300 trials. Since previous 
studies did not use any exclusion criteria based on accuracy on the task, here we also 
did not apply accuracy-based exclusion criteria. However, when inspecting the data, 
one GD participant showed an average accuracy of around 18%, and analyses 
excluding this subject are detailed in Appendix F. In addition to subject-based 
exclusions, we also performed trial-based exclusions (see section ‘Computational 
Model’ ). 

 

Analyses 

All data analyses were conducted using MATLAB (version 2018b) and R (version 4.2.1) 
using packages lme4, lmerTest, nlme and emmeans (Bates et al., 2015; Kuznetsova et 
al., 2017; Lenth et al., 2018; Pinheiro et al., 2022), and were similar to our previous case-
control work in OCD for consistency (Hoven, Mulder, et al., 2023). 

Action and confidence 

First, to compare action updating and confidence between groups, separate linear-
mixed effects models were fitted with either action update (absolute difference in 
bucket position from trial (t) to trial (t+1)) or confidence as dependent variable and a 
fixed effect of group, together with random intercepts per subject.  
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Action-confidence coupling 

Second, differences in the strength of action-confidence coupling between groups 
were assessed using a mixed-effects model with action update as the dependent 
variable and confidence (z-scored), group and their interaction as fixed effects together 
with random intercepts and random slopes of confidence per subject. 

In addition, we conducted two Pearson’s correlation tests to examine the relationship 
between the strength of action-confidence coupling (using subject-level β coefficients 
of the action-confidence coupling model) and PGSI and GBQ scores in the GD group. 

Computational model 

Third, a computational approach was employed, similar to earlier work (Hoven, Mulder, 
et al., 2023; Marzuki et al., 2022; Seow & Gillan, 2020; Vaghi et al., 2017), in order to 
examine whether and how the relationship between behavior on the task (i.e. action or 
confidence) and various parameters describing the volatile environment differed 
between groups. In a volatile setting, where the environment is subject to frequent 
changes, participants need to adjust their learning rate based on recent information to 
update their beliefs about the generative distribution. When significant discrepancies 
between predicted and observed outcomes occur (i.e., large prediction errors), 
indicating a substantial shift in the environment, belief updates need to be strong and 
learning rates should be higher. Conversely, when prediction errors are small and likely 
due to random fluctuations, belief updates are less necessary, resulting in lower 
learning rates. 

For each trial, the human prediction error δ�� (PE) was calculated as the difference 
between the current bucket position b�  and the particle landing location X�  . 

δ�� =  X� – b�  

Subsequently, the human learning rate α�� (LR) was calculated as the proportion of PE 
used for the subsequent action update, which was calculated as the absolute 
difference in bucket position from trial (t) to trial (t+1): 

α��  =  |b��� – b�|
δ��

 

Following earlier studies, trials were excluded from all analyses if the LR exceeded the 
99th percentile which was calculated separately for each group (Seow & Gillan, 2020; 
Vaghi et al., 2017). In addition, trials where PE = 0 were excluded, since these trials do 
not drive error-driven learning (1.95% of GD trials, 1.97% of HC trials). Additionally, the 
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first and last trials within each block were excluded from analyses; in the first trials, 
there is no error-driven learning yet, and for the last trials no learning rate could be 
calculated. In total, 5.49% of GD trials and 5.52% of HC trials were excluded from 
analyses. 

Error Sensitivity 

To assess group differences in error sensitivity in terms of learning, a linear mixed 
model with human LR as the dependent variable and human PE, group and their 
interaction as predictors was run. For visualization purposes, PE was binned into 20 
quantiles with each an equal fraction of trials, for which the average LR was computed 
per subject. 
 
Bayesian Observer Model Analyses 

Following previous research (Marzuki et al., 2022; Seow & Gillan, 2020; Vaghi et al., 
2017), behavior of participants was analyzed using a quasi-optimal Bayesian observer 
model that approximates optimal task behavior (Nassar et al., 2010). Using the model 
code that is publicly available (Vaghi et al., 2017), we fitted the particle landing 
locations of all subjects to obtain individual-level model parameters. These parameters 
represent various statistical characteristics of the environment experienced by 
participants during the task. They include, on a trial-by-trial basis, the prediction error 
𝛿𝛿 (PE, the absolute difference between model belief and location of the coin), the 
probability that a change-point occurred (CPP, the likelihood that the sampling 
distribution of the coin’s location has changed, thus that a change-point has occurred), 
and relative uncertainty (RU, the fraction of uncertainty about the generative mean that 
is not due to noise). RU was expressed as its inverse, termed model confidence (MC, 
the precision of the model’s beliefs about the mean), to allow for a more direct 
comparison with confidence judgments from the task. For more detail on the model 
see Appendix F. 

After fitting the model to the task data and obtaining the latent parameters for each 
subject, we assessed how these parameters related to participant behavior (action and 
confidence), and whether these relationships differed between the groups. Following 
previous studies, two separate mixed-effects models were assessed, where participant 
behavior (either action or confidence) was regressed against three model parameters: 
absolute PE, CPP and (1-CPP)(1-MC), and the categorical variable hit, indicating 
whether the particle was caught or not. Here, PE represents information regarding the 
most recent observation, while CPP and (1-CPP)(1-MC) represent the model’s 
estimation that a change-point did or did not occur, given the sequence of past 
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observations, respectively. For the action model, the dependent variable was 
calculated as: LR * PE, which is equal to the bucket update, and the predictors were 
also interacted with PE, following previous work (McGuire et al., 2014; Nassar et al., 
2019; Seow & Gillan, 2020; Vaghi et al., 2017). For both models, all fixed-effects were z-
scored and interacted with group. Random intercepts and slopes of all predictors were 
also included in the models. 

In the Bayesian model, the hazard rate is a constant of 0.125, which is equal to the 
hazard rate in the task. As additional sensitivity analyses we furthermore calculated the 
perceived hazard rate as a free parameter for each subject based on the best fit of the 
model on the participant’s behavior (see Appendix F for more information). 

 

Results 

There were no differences in age (t49 = 0.42, p = 0.68), gender distribution (X2 = 0.40, p = 
0.52) or education level (t49 = -0.38, p = 0.71) between HC and GD groups. For details on 
demographics, clinical and task data, see Table 1. 

Table 1: Demographic, clinical and task variables 

 

 

 

 

 

 

 

 

 

 

 
Abbreviations: GD = Gambling Disorder, HC = Healthy Controls, PGSI: Problem Gambling 
Severity Index, GBQ: Gamblers Belief Questionnaire. Data are reported as mean (standard 
deviation).  

 

 

 GD HC 

Age 36.8 (11.4) 35.6 (8.8) 

Females (%) 4 (16.0%) 6 (23.1%) 

Education Level 3.12 (0.9) 3.23 (1.2) 

PGSI 15.1 (4.2)  

GBQ 56.4 (21.2)  

Accuracy (%) 60.17 (9.78) 62.28 (5.46) 

Confidence 47.84 (25.16) 50.52 (21.45) 

Confidence Update 15.12 (8.62) 13.35 (7.40) 

Learning Rate 0.37 (0.14) 0.47 (0.21) 

Action Update 18.59 (4.31) 19.62 (4.57) 

Prediction Error 27.22 (10.99) 24.61 (2.29) 
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No group differences in action updating or confidence  

Mixed-model analyses were conducted to test group differences in task behavior (i.e. 
action and confidence). No differences in the amount of action updating (β = -1.02 
(1.24), t = -1.82, p=0.415), nor differences in confidence (β = -2.67 (6.54), t = -0.41, 
p=0.684) were found between groups. Accuracy was equal between the groups as well 
(t49=-0.95, p=0.345). The proportion of trials in which no action update was performed 
was higher in GD, however (t49=2.48, p=0.017; GD = 60.1%, HC = 50.5%). 

Weaker action-confidence coupling in GD 

Next, we evaluated whether the coupling between action update and confidence 
differed between the groups. As expected, a significant negative relationship between 
confidence and action update existed across groups, such that higher confidence was 
related to less action updating (i.e. action-confidence coupling) (β = -8.26 (1.14), t = -
7.23, p<.001). Moreover, there was evidence for a distortion of this action-confidence 
coupling in GD, as a significant interaction between group and confidence was found 
(β = 3.28 (1.63), t = 2.01, p=0.045), indicating a weaker action-confidence coupling in 
GD (estimated marginal slope = -4.98 (1.17)) than in HC (estimated marginal slope = -
8.26 (1.14)).  

Within the GD group, no significant correlation was found between action-confidence 
coupling and PGSI score (r = -0.23, p=0.266), or GBQ score (r = -0.07, p=0.754). 

Lower learning rates in GD  

We also assessed differences in learning rates and the error sensitivity in terms of 
learning between the GD and HC groups. Across both groups, learning rates increased 
as a function of prediction error magnitude (β = 0.006 (0.0002), t = 39.51, p<.001), and 
thus learning rates were highest after large errors. Moreover, learning rates were found 
to be significantly lower overall in the GD group (β = -0.13 (0.05), t = -2.39, p=0.021), but 
no evidence was found for an interaction effect between PE and group. 

To look at the group differences in cases of low, middle or high error magnitude, 
following previous research (Hoven, Mulder, et al., 2023; Vaghi et al., 2017), a mixed-
model analysis binning the prediction error in 3 quantiles (i.e., low, medium or high error 
magnitude) was run. This indicated that patients with GD specifically had decreased 
learning rates when error magnitude was small (HC-GD estimate = 0.13 (0.05), Z-ratio: 
2.60, p=0.009) and medium (HC-GD estimate = 0.19 (0.05), Z-ratio: 3.79, p<0.001). This 
indicates that when errors were of small or medium size, the influence of the most 
recent outcome on subsequent action (i.e. PE) was lower in the GD compared to the 
HC group, whilst this did not differ for larger PEs.  
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Stronger effect of uncertainty about the generative mean of the distribution on action in 
GD  

Finally, we assessed whether task behavior (action and confidence) was differently 
predicted by the latent model parameters that represent different forms of uncertainty 
and feedback in the volatile environment. As expected, action was significantly 
predicted by all model-derived parameters and hit, such that increases in PE, CPP and 
(1-CPP)*(1-MC) predicted an increase in action, while a successful catch of the particle 
predicted a decrease in action. Moreover, a significant interaction between group and 
the (1-CPP)*(1-MC) parameter indicated a stronger effect of relative uncertainty of the 
belief about the mean of the distribution in the GD group compared to the HC group (β 
= 1.72 (0.72), t = 2.37, p=0.022). 

Confidence was, as expected, significantly negatively predicted by CPP and (1-CPP)*(1-
MC), but only marginally by PE, and significantly increased with a successful catch of 
the particle. We did not find any evidence for group differences in the strength of these 
effects (see Appendix F).  

No group differences in perceived hazard rates 

Sensitivity analyses using the subject-specific perceived hazard rate (see Appendix F) 
first of all showed no differences in hazard rate between groups (mean GD: 0.54, mean 
HC: 0.59: t49=-0.61, p=0.542). Moreover, in sensitivity analyses we performed the same 
analyses as described above, but including the subject-specific hazard rate as a 
covariate. These analyses indicated that none of the significant group differences that 
were found were influenced by differences in perceived hazard rate. For more details, 
see Appendix F. 
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Figure 1: Predictive Inference Task. (A) Trial of the predictive inference task. Participants 
positioned their bucket (i.e. yellow bar) to catch a flying particle that was released from the center 
dot to the edge of the circle. After positioning their bucket, participants indicated their confidence 
in catching the particle. The particle was either caught (bar turned green) or missed (bar turned 
red), which resulted in gaining or losing points, respectively. The number of points obtained is 
shown in the right upper corner. (B) In every trial, the landing positions of the particles were 
sampled from a random Gaussian distribution with a standard deviation. This noise resulted in 
the particles to land close together with a small amount of noise. Current trial particle trajectory 
is marked in black, while previous trials particle trajectories are marked in blue. Over time 
participants learn about the Gaussian distribution from which the particle trajectories are drawn. 
(C) During a change-point the mean of the Gaussian distribution of the landing position changes. 
After a change point, the landing positions are again sampled using the new Gaussian 
distribution, until a new change-point occurs. Figure was adapted with permission from Seow et 
al., (2020). 
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Figure 2: Task behavior across groups. Mean confidence (A) and action update (B) per group. 
(C)  Regression coefficient from the relationship between action update and confidence. As 
expected, regression coefficients were negative indicating that lower confidence was associated 
with bigger action updates of the location of the bucket. Dots represent (A)(B) data from 
individual participants and (C) regression coefficients of individual subjects. Boxplots show 
median and upper/lower quantile with whiskers indicating the 1.5 interquartile range, 
distributions show the probability density function of all data points per group. Significance stars 
represent the main effects of group in the respective mixed-effects models. * p<.05, **p<.01, 
***p<.001. HC = healthy control subjects, GD = gambling disorder patients. 
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Figure 3: Learning rates and error sensitivity. (A) Mean learning rates per group (α��). Patients 
had significantly decreased learning rates compared to the HC group. Dots represent learning 
rates of individual subjects, boxplots show median and upper/lower quantile with whiskers 
indicating the 1.5 interquartile range, distributions show the probability density function of all 
data points per group. (B) The relationship between prediction error magnitude (δ��) and learning 
rate for both group. Prediction errors were divided in 20 quantiles, of which 18 quantiles are 
shown here for visualization purposes. Dots represent mean learning rates per group, error bars 
represent the SEM. Overall, learning rates were higher when prediction errors were larger. 
Learning rates were lower in the GD group compared to the HC group at low and medium error 
magnitudes. * p<0.05, ** p<0.01, *** p<0.001 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Model-based results on action and confidence. Regression coefficients of the 
regressions assessing the relationship between the parameters from the computational model 
and (A) human action (i.e. learning rate * absolute prediction error), or (B) human confidence. 
Small dots represent individual regression coefficients, big dots represent mean regression 
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coefficients per group, error bars denote SEM per group. Predictors included absolute prediction 
error (PE), change-point probability (CPP), model confidence (MC) and a categorical variable 
representing hits/misses. * p<0.05, ** p<0.01, *** p<0.001 

 

Discussion 

Drawing on previous observations of increased confidence and impaired reinforcement 
learning in GD, here we extended the literature by investigating the connection between 
confidence and action updating and subsequent learning in patients with GD. Our 
results showed that patients with GD demonstrated comparable levels of confidence, 
action updating, and performance, but had a weaker coupling between confidence and 
action. This indicates that patients with GD assign less significance to their confidence 
levels when performing actions under volatility. These findings support the hypothesis 
that GD is characterized by decreased confidence-action coupling.  

This dissociation between action and confidence resembles the clinical presentation 
of GD, where patients often continue gambling despite knowing it is unwise. It suggests 
a disruption in metacognitive control, which might also be associated with a disruption 
of model-based action (Voon et al., 2015), as has been found in GD before (Bruder et 
al., 2021; Wyckmans et al., 2019). Though current models for compulsive gambling 
behavior do not incorporate the role of metacognition or confidence, we can draw on a 
recent model of obsessive-compulsive disorder (OCD) (Fradkin et al., 2020). This 
model describes that compulsive behavior can arise from overreliance on prior beliefs 
(e.g., overconfidence in those beliefs) at the expense of new evidence, leading to less 
learning, more stickiness, and habitual behavior. This kind of behavior was indeed 
observed in highly compulsive individuals from the general population, indicating lower 
learning rates and decreased action-confidence coupling (Seow & Gillan, 2020), 
although gambling symptoms were not explicitly assessed in this study.  

The current findings indicate overall lower learning rates in GD, with a specific decrease 
in learning rates when the error magnitude was small or medium. GD patients overall 
seem to move their bucket position less frequently (i.e., significantly lower proportion 
of trials in which the bucket was moved), while there was no difference in the degree of 
movement (i.e., action update). This suggests that patients exhibit more sticky 
behaviour than healthy controls, which aligns with prior research (Perandrés-Gómez et 
al., 2021; van Timmeren et al., 2018; Wiehler et al., 2021). However, lower learning rates 
in GD were not always directly evident in experimental tasks (Hales et al., 2023). For 
example, a recent study employing a probabilistic instrumental learning task with three 
conditions (reward, avoidance, neutral) found no overall differences in the proportion 
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of correct choices between patients with GD and HCs in reward or avoidance trials. 
However, employing a computational model with two separate learning rates revealed 
that patients with GD exhibited relatively excessive sensitivity to positive prediction 
errors (PEs), but insensitivity to negative PEs (Suzuki et al., 2023). These findings 
underscore the notion that GD might be linked to subtle and specific differences in 
learning rates, which might not always be easily discernible without employing 
sensitive experiments and computational modeling (Hales et al., 2023). 

Our study found no evidence of increased confidence judgements in patients with GD, 
a finding that aligns with previous research using a non-incentivized learning task 
(Brevers et al., 2014). This contrasts, however, with studies that have used monetary 
incentives, where GD patients have shown higher levels of confidence (Goodie, 2005; 
Hoven, de Boer, et al., 2022). As suggested (Hoven, Hirmas, et al., 2023), it appears that 
overconfidence in GD manifests mainly in disorder-relevant contexts, such as during 
gambling task or when gains or risk are involved. This raises important questions for 
future research: under what circumstances do distortions in confidence occur in GD, 
and how do these distortions impact learning and decision-making?  

Recent investigations in healthy populations have begun to elucidate the relationship 
between learning biases and confidence biases (Lebreton, Bacily, et al., 2019; Salem-
Garcia et al., 2023; C. Ting et al., 2023). These studies have shown that individuals tend 
to be more confident when learning to seek gains as opposed to avoiding losses. This 
'valence-induced confidence bias' has been linked to reduced context-dependent 
learning, while a general overconfidence bias correlated with a confirmatory learning 
bias (Salem-Garcia et al., 2023; C. Ting et al., 2023). Applying this framework to GD, one 
could hypothesize that in an incentivized reinforcement learning task, GD patients 
would exhibit both elevated confidence and a more pronounced valence-induced 
confidence bias. This in turn could be associated with increased confirmatory learning 
and decreased context-dependent learning relative to HCs. This pattern could offer 
insights into rigid, disadvantageous decision-making in GD. Subsequent research 
should validate these hypotheses, potentially providing a more nuanced understanding 
of the cognitive biases at play in GD 

Our current study comes with limitations. In line with prior research, we integrated 
model-based analyses for consistency. However, it's important to note that while 
recent findings suggested good internal consistency and test-retest reliability for the 
main measures of confidence and learning rate, the psychometric quality of the 
Bayesian model parameters was comparatively lower (Loosen et al., 2023). This implies 
that the utilization and interpretation of model-based metrics should be exercised 
cautiously, particularly when examining differences between individuals. Also, the 
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predictive inference task does not resemble a real-world gambling game. Hence, 
enhancing the ecological validity of our approach could involve using a task that 
simulates monetary involvement and enforces penalties for excessive action updating. 
Furthermore, our study population was drawn from therapy centers, encompassing 
individuals who had undergone cognitive-behavioral therapy (CBT) for their gambling 
disorder. Given that CBT targets the reduction of irrational gambling-related thoughts to 
mitigate the influence of outcome significance on decision-making (Sylvain et al., 1997; 
Toneatto, 1999), it's possible that CBT contributed to a reduction in overconfidence 
during the present task. It could be hypothesized that untreated GD patients might 
exhibit more pronounced overconfidence and/or a stronger disconnection between 
confidence and action. 

In conclusion, our study investigated the connection between confidence and action in 
patients with GD in a volatile learning task. We found a weaker coupling between 
confidence and action, suggesting disrupted metacognitive control in GD, without a 
general positive confidence bias in GD. Additionally our findings indicated lower 
learning rates in GD, indicating differences in learning under volatile conditions. All in 
all, these findings suggest that GD is associated with disturbance in metacognitive 
control. Future research could advance by incorporating metacognitive ability as an 
important factor for comprehending disadvantageous decision-making in GD. 
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Abstract 

Gambling disorder (GD) is a behavioral addiction characterized by impairments in 
decision-making, favoring risk- and reward-prone choices. One explanatory factor for 
this behavior is a deviation in attentional processes, as increasing evidence indicates 
that GD patients show an attentional bias toward gambling stimuli. However, previous 
attentional studies have not directly investigated attention during risky decision-
making. 26 patients with GD and 29 healthy matched controls (HC) completed a mixed 
gambles task combined with eye-tracking to investigate attentional biases for potential 
gains versus losses during decision-making under risk. Results indicate that compared 
to HC, GD patients gambled more and were less loss averse. GD patients did not show 
a direct attentional bias towards gains (or relative to losses). Using a recent 
(neuro)economics model that considers average attention and trial-wise deviations in 
average attention, we conducted fine-grained exploratory analyses of the attentional 
data. Results indicate that the average attention for gains in GD patients moderated the 
effect of gain value on gambling choices, whereas this was not the case for HC. GD 
patients with high average attention for gains started gambling at less high gain values. 
A similar trend-level effect was found for losses, where GD patients with high average 
attention for losses stopped gambling at lower loss values. This study gives more insight 
into how attentional processes in GD play a role in gambling behavior, which could have 
implications for the development of future treatments focusing on attentional training 
or for the development of interventions that increase the salience of losses. 
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Introduction 

Gambling disorder (GD) is the first behavioral addiction to be classified in the DSM-5 

(American Psychiatric Association, 2013) and is characterized by persistent and 
problematic gambling behavior despite the – often negative – consequences. One of 
the hallmarks of GD is an impairment in decision-making, which is biased toward risky 
choices with high pay-out (see for reviews (van Holst et al., 2010; Wiehler & Peters, 
2015)). Indeed, relative to controls, patients with GD are found to be more risk-seeking 
in a number of tasks (Brand et al., 2005; Brevers et al., 2012; Goudriaan et al., 2005; 
Ligneul et al., 2013; Ochoa et al., 2013; Spurrier & Blaszczynski, 2014). Risk-seeking 
behavior in GD has also been associated with lower sensitivity to the expected value of 
choices (Limbrick-Oldfield et al., 2020), and diminished loss aversion (Gelskov et al., 
2016; Giorgetta et al., 2014). Some research has also suggested that risky decision-
making in GD is linked to abnormal processing of rewards (Goudriaan et al., 2006). 
Many neuroimaging studies have studied reactivity to monetary gains, showing mixed 
results. Increased, decreased and normal striatal responses to rewards have been 
found in GD, resulting in a complex picture on reward sensitivity (Limbrick-Oldfield et 
al., 2013; Luijten et al., 2017). An integrative model of addiction posits an explanation 
for the above-mentioned findings by virtue of the presence or absence of addiction-
related cues (Leyton & Vezina, 2013). Finally, another factor that has been suggested to 
contribute to risky decision-making in GD is overconfidence, which could lead to 
overoptimistic behavior (Brevers et al., 2013, 2014; Goodie, 2005; Lakey et al., 2007). 
The mechanisms underlying these abnormal economic decisions across various 
contexts in GD are unclear to date. Recent advances in the fields of behavioral 
economics (Krajbich et al., 2010; Orquin & Mueller Loose, 2013) and neuroeconomics 
(Hare et al., 2011; Lim et al., 2011) indicate that attentional processes may underlie 
psychopathological distortions of (risky) decision-making. One intriguing possibility 
suggested by this body of work is that GD patients’ attention deployment differs from 
healthy controls during risky decision-making. 
 
Attentional processes play an active role in decision-making (Orquin & Mueller Loose, 
2013). Choice options that we focus on longer and more often are more likely to be 
chosen (Krajbich et al., 2010; Lim et al., 2011; Pachur et al., 2018; Thomas et al., 2019), 
and higher valued choice options attract more attention (Anderson et al., 2011; Gluth 
et al., 2018, 2020). Indeed, studies in healthy subjects have indicated that attention 
directed towards reward cues predicted one’s degree of risk-taking, with a larger 
attentional bias for high-value cues (San Martín et al., 2016). So far, studies 
investigating attention in GD have primarily analysed reaction times or fixation times 
when viewing addiction-relevant stimuli vs non-addiction-relevant stimuli, known as 
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attentional bias studies (Cox et al., 2014; Field & Cox, 2008; Hønsi et al., 2013). These 
studies have shown that increased attention to addiction-relevant cues plays an 
important role in the onset and the maintenance of addictive (and also gambling) 
behavior (Anselme & Robinson, 2020; Brevers et al., 2011; Ciccarelli et al., 2016, 2019; 
Grant & Bowling, 2015; McGrath et al., 2018; Sancho et al., 2021; Vizcaino et al., 2013), 
but also see (Anderson, 2016; Christiansen et al., 2015). These findings have led to the 
development of attentional bias modification training as interventions against addictive 
behavior (Heitmann et al., 2018), which is currently being tested in GD (Boffo et al., 
2017; Hilgenstock et al., 2014). Eye-tracking provides a more direct measure of 
attentional processes than solely studying reaction times. Previous studies have 
revealed that people who feel emerged in gambling allocate their visual attention more 
to specific stimuli during gambling, such as ‘amount won’ messages (Rogers et al., 
2017) or ‘credit window’ (Murch et al., 2020) than to more general stimuli. However, it is 
currently unknown whether GD is associated with abnormal attention towards gains or 
losses during decision-making and how it influences these decisions. 

The current study aims to fill this knowledge gap by applying eye-tracking during a mixed 
gambles task in healthy controls and patients with GD. Moreover, by including 
confidence judgments in the current study, we can test how confidence relates to 
gambling propensity, since this has been postulated to be linked (Goodie, 2005; Hoven, 
de Boer, et al., 2022), but so far remains untested. We hypothesized that compared to 
controls, GD patients would show increased gambling propensity, higher confidence in 
their choices, increased reward sensitivity and a lower level of loss aversion. With 
respect to attentional processes, we hypothesized that GD patients would exhibit more 
attention to gains and less attention to losses and that attention would influence GD 
patients’ choice behaviour more strongly.  

 

Methods 

Participants 

A total of 27 GD patients and 30 HC subjects were included in this study (Table 1), 
matched on age, sex and education. Recruitment was performed via an online 
participation pool and patient clinics in the Netherlands. All GD patients had followed 
at least one treatment and had gambled regularly within the previous year. All HC 
subjects did not currently or in the previous 6 months suffer from any psychiatric 
disorder, including gambling disorder, and did not use medication. 
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All participants signed an informed consent form prior to the start of the experiment. 
The experiment was conducted in accordance with the ethical principles outlined in 
the Declaration of Helsinki and was approved by the Ethics Board of the Behavioral 
Science Laboratory at the University of Amsterdam.  

 

Experimental Task and Procedure 

The mixed gambles task involved making risky decisions, choosing from two alternative 
options (Figure 1A). Mixed gambles were presented as a 50/50 chance of gaining or 
losing a specific value and participants were asked to decide between two options: 
rejecting (sure option) or accepting (gambling option) the gamble. The sure option 
always entailed opting for the initial endowment of €25 without the possibility of 
additional bonuses. The gambling option always entailed potentially gaining or losing 
additional bonuses, both with an equal probability of 50%. For more details on the task, 
see Appendix G.  

Each trial started with a fixation cross, after which the gamble was shown for a 
maximum of 6 seconds or until the participant made their choice. Feedback indicated 
the chosen option, and after each choice subjects rated their confidence on a 7-point 
scale (Figure 1A). Each combination of gains and losses was shown twice to 
counterbalance the location of gains/losses. Gains or losses never appeared on the 
same side for more than three times in a row. All subjects performed a training session 
and the task consisted of 160 trials (in 4 blocks). For details on the set-up of the EyeLink 
eyetracker, see Appendix G. 

Before the start of the experimental tasks, subjects filled in questionnaires measuring 
gambling problem severity (Problem Gamblers Severity Index, PGSI) (Ferris & Wynne, 
2001), depressive symptoms (Hamilton Depression Rating Scale, HDRS) (Hamilton, 
1960), behavioral inhibition and activation system (BIS/BAS) (Carver & White, 1994) and 
gambling beliefs (Gamblers Beliefs Questionnaire, GBQ, GD only) (Steenbergh et al., 
2002). 
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A 

B 

Figure 1: Sequence and timing of events in mixed gambles task and Areas of Interest (AOI). 
(A) At the beginning of each trial a fixation cross was shown, jittered between 300 and 1100 ms. 
Then the gamble was shown (i.e. gain and loss value stimuli; left stimulus centered on 480x540, 
right stimulus centered on 1440x540) for the duration of the decision with a maximum of 6000 
ms. Subjects were asked to accept or reject the gamble using the up or down key, respectively, 
after which a brief feedback message was shown indicating and confirming their choice 
(1000ms. L = lottery option, X = safe option, ‘Respond Faster’ = if failed to respond within 6000 
ms). After each choice participants rated their confidence on a scale from 1 (not sure) to 7 (very 
sure) (unlimited time). Subjects did not receive any feedback about the outcome of their choices 
(win or loss outcomes) until after completion of the experiment to avoid history and learning 
effects. (B) This figure represents the rectangular areas of interest centered on the  gambling 
stimuli (in red) with margins of 150 pixels in each direction (approx 4 visual degrees). Since the 
areas of interest are widely separated in space and show no overlap, using a wide AOI margin is 
encouraged to minimalize false negatives. 

 

Exclusions 

Exclusions (see Appendix G for details on exclusion criteria) led to a final sample of 26 
GD and 29 HC participants, with a total of 8295 trials. The quality of the eye-tracking 
data was checked and blocks or trials with poor data quality were excluded (see 
Appendix G). 

 

Data Preparation 

The EyeLink 1000 online parser was used to classify the raw eye movement data into 
events: saccades, fixations and blinks, using default settings. This parsed data was 
further analyzed using the eyelinker package in R (Barthelmé & Hurst, 2021). We 
constructed areas of interest (AOIs, Figure 1B) and excluded poor quality trials (see 
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Appendix G for details). Analyses focused on the period from gamble onset until choice 
and fixations that did not strictly fall within this period were trimmed.  

 

Measures 

Gamble propensity was measured as the percentage of accepted gambles per subject. 
For each trial we computed the total dwell time (i.e. the total fixation time on a specific 
AOI, Figure 1B) separately for the loss and gain AOIs. A relative dwell time on gains 
versus losses was calculated by subtracting the dwell time on losses from that on gains.  

 

Analyses 

For all analyses we used R (version 1.4.1106) in combination with the packages 
eyelinker (Barthelmé & Hurst, 2021), emmeans (Lenth et al., 2018), lme4 (Bates et al., 
2015) and lmerTest (Kuznetsova et al., 2017). 

Demographics 

Age, sex, education level, gambling severity and depression levels were compared 
between groups using two-sample t-tests in case of continuous variables or chi-square 
tests in case of categorical variables. 

Control Analyses 

Due to exclusion of trials we could not analyze the full set of 160 trials for every subject. 
However, when comparing the average gain values, average loss values and expected 
values of the included trials between the groups, we found no differences (average gain 
values: t53 = -1.01, p = 0.32, average loss values: t53 = 0.87, p = 0.39, average EV: t53 = -
0.22, p = 0.83). 

Gambling Propensity, Loss Aversion and Choice Behavior 

As a first step, we compared gambling propensity between the two groups using a two-
sample t-test. Choice data were further analyzed by fitting mixed-effects models with a 
binomial family and logit link function on our trial-by-trial data (8295 observation in 55 
subjects). All models used the binary choice to gamble as dependent variable (coded 
as a dummy with 0(1) for rejecting(accepting) the lottery). For this basic choice model 
we used the maximum possible random-effects structure (Barr et al., 2013). See 
Appendix G, Table G1A for the specification of the fixed and random effects. For further 
analyses, mixed-effect models were run using additional and/or different fixed and 
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random effects, described in detail in Appendix G, Table G1. For all mixed models 
continuous independent variables were z-scored (gain value, loss value, confidence, 
dwell times) and a deviation coding scheme was used for the categorical group variable 
(Singmann & Kellen, 2019). All models were run on a trial-by-trial basis and post-hoc 
tests were performed to quantify significant interaction. 
  
Models of differing complexity (see Appendix G, Table G1 for full model specifications) 
were used to first evaluate the effect of value, confidence and their interaction with 
group on choice to gamble (Appendix G, Table G1B). Second, to test for group 
differences in the effects of value on confidence a linear mixed-effects model was run 
with confidence as dependent variable (Appendix G, Table G1C).  

To compute loss aversion, we extracted random slopes for the effects of gains and 
losses per subject from the basic choice model (Appendix G, Table G1A) , in which the 
predictors were not z-scored in order to preserve the interpretation of the loss aversion 
parameter. Slopes represent the size of the contribution of the potential gain and loss 
values to each subject’s choice. The ratio of the individual beta-weights was taken as a 
measure of loss aversion: λ = | βloss / βgain |. A λ of 1 indicates that losses and gains are 
weighted equally when choosing to gamble, whereas a λ > 1 indicates that losses are 
weighted stronger than gains, illustrating loss aversion. Group differences were 
assessed with a two-sample t-test. Moreover, to test whether GD and HC subjects 
showed loss aversion (i.e., λ > 1), we performed two separate one sample t-tests against 
1. For analyses on expected value (EV), see Appendix G. 
 
Attention 

Dwell times reflect attentional focus, which we recorded separately for gains and 
losses (see AOIs in Figure 1B). To evaluate the effect of value, group and their interaction 
on dwell times, separate linear mixed-models with (1) dwell times on gains (Appendix 
G, Table G1D); (2) dwell times on losses (Appendix G, Table G1E) and (3) relative dwell 
time on gains versus losses (Appendix G, Table G1F) were estimated using linear mixed-
models.  

Influence of attention on choices 

Finally, to explore the extent to which attention influences risky decision-making in GD 
compared to HC we explored the joint influence of attentional processes, gain/loss 
values, group and their interactions on choice to gamble. A logistic mixed-effects 
model was constructed with choice as dependent variable (Appendix G, Table G1G).  
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Exploratory Eye-tracking Analyses 

As exploratory analyses we leveraged a newly developed attention-based decision-
making model that discerns (1) average attention (i.e. average dwell time on 
gains/losses) and (2) trial-by-trial deviations around average attention (J. Engelmann et 
al., 2021). These measures, respectively, reflect a subject’s average attentional strategy 
in solving a task (akin to goal-directed or ‘top-down’) and trial-based or contextual (akin 
to salience-based or ‘bottom-up’) attentional processes. Separating these two 
attentional processes has been shown to lead to significantly improved model fits in 
prior work (J. Engelmann et al., 2021), and enables further analyses of the underlying 
attentional differences between GD and HC during choice.  

We aimed to explore the relative importance of these attentional processes, how they 
interact with values, and whether there are group differences in these interactions. 
Following our approach above, we used a logistic mixed model to predict choices 
(Appendix G, Table G1H).  

 

Results 

Demographics 

No group differences were found for age, sex and education level. PGSI, HDRS and BIS 
scores were significantly higher in GD subjects (Table 1). 

Table 1: Demographic and clinical variables 

 Age Sex Education 
level 

PGSI HDRS BIS BAS GBQ 

GD 37.4 
(12.1) 

21 
males, 5 
females 

3.08 (0.89) 15.3 
(3.94) 

2.5 
(3.51) 

19.3 
(3.87) 

32.0 
(10.8) 

59.3 
(23.2) 

HC 34.8 
(8.61) 

23 
males, 6 
females 

3.31 (1.17) 0 (0) 16.9 
(4.54) 

16.9 
(4.54) 

32.6 
(8.30) 

NA 

Test 
Statistic 

t53 = 
0.921 

X2 = 
2.877·10-

31 

t53 = 0.826 Welch’s 
t25 =  
-19.866 

Welch’s 
t29 =  
-2.906 

t53 = -
2.099 

t53 = 
0.233 

NA 

p-value 0.361 1 0.413 <0.001 0.007 0.041 0.817 NA 
Shown are descriptive statistics of demographic and clinical variables for both groups, together 
with test statistics and p-values reflecting differences between the groups. 
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Choice Behavior 

Gambling propensity was higher for gamblers (60.7% ± 4.22%) than for HCs (42.7% ± 
3.81%) (t53=3.175, p=0.002) (Figure 2A). Loss aversion was significantly lower in GD 
(1.063 ± 0.069) compared to HC (1.728 ± 0.227) (t53=-2.673, p=0.009) (Figure 2B). Note 
that a confirmatory analysis, removing statistical outliers in loss aversion, still showed 
lower loss aversion in GD compared to HC (t48=-2.473, p=0.017). Moreover, one sample 
t-tests showed that loss aversion was significantly higher than 1 in HC (t28=-3.205, 
p=0.003), but not in GD (t25=0.913, p=0.37), indicating that GD patients did not show 
loss aversion. 

 

 

 

 

 

 

 

 

 

Figure 2: Choice behavior. A) Shown is the proportion of accepted gambles per group. 
Horizontal bars correspond to the means per group, dots represent individual gambling 
propensities. GD subjects showed a significantly higher gambling propensity than control 
subjects. B) Shown is the loss aversion (λ) value per group. Dots represent individual values. GD 
subjects have significantly lower loss aversion than control subjects. 

 

We followed up on these initial results by conducting a trial-by-trial analysis 
investigating the influence of gain value, loss value and confidence on choice to 
gamble, and whether these effects differed between groups. Results showed a main 
effect of group, with higher gambling propensity in GD (Table 2). Moreover, strong 
significant main effects of both gain value and loss value were found; when there is 
more to gain and less to lose subjects gambled more (Figure 3A, 3B). No significant 
evidence was found for interactions with group or for effects of confidence on gambling 
choices.  

When predicting confidence, a significant interaction effect between gain value and 
group was found (Table 2). Post-hoc tests indicated a significant positive slope of gain 
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value on confidence in GD (Z=2.24, p=0.025), whereas the gain slope did not differ from 
0 in HC (Z=-0.62, p>0.5) (Figure 3C). This result agrees with our previous work, showing 
increased confidence in reaction to potential gain in patients with GD (Hoven, de Boer, 
et al., 2022). 

 

Attention 

First, we tested our hypothesis that attention to gains is enhanced in GD. To this end we 
regressed group and gain value on dwell times on gains and tested whether GD 
attended longer to gains of increasing size compared to HC. Interestingly, results 
revealed a significant main effect of gains, indicating higher dwell times with higher gain 
values. A significant interaction effect between gain value and group and post-hoc 
testing indicated, however, that the positive effect of gain value on dwell time was only 
significant in HC (post-hoc; HC: Z=3.33, p<0.001, GD: Z=0.31, p>0.75) (Table 2, Figure 
4A). GD subjects thus did not increase their attention on gains when there was more to 
win. This was in contrast to dwell time on losses, where both groups showed an equal 
increase in dwell time on losses when there was more to lose, as confirmed by a 
significant main effect of loss value (Table 2, Figure 4B). In both models, we did not find 
evidence for a main effect of group, which indicates that groups did not differ in their 
average dwell times. 

We also inspected the influence of values on the relative dwell time on gains versus 
losses. Results showed a significant effect of loss value, indicating that with increasing 
loss values, subjects’ relative dwell time toward gains decreased in favor of dwell time 
on losses (Table 2). A positive trend effect of gain value was found, but no group 
differences or interactions. 

Dwell times were strongly correlated to reaction times (RT). As a check, an additional 
mixed-model confirmed that there were no differences in reaction times (log-
transformed due to skew) between groups (p>0.2) that could have impacted our results 
on dwell times. 

  

9



 

224 
 

 

Ta
bl

e 
2:

 R
es

ul
ts

 o
f m

ix
ed

-e
ff

ec
ts

 m
od

el
s 

on
 c

ho
ic

e 
be

ha
vi

or
 (M

od
el

 B
), 

co
nf

id
en

ce
 (M

od
el

 C
), 

dw
el

l t
im

e 
on

 g
ai

ns
 (M

od
el

 D
), 

dw
el

l t
im

e 
on

 lo
ss

es
 (M

od
el

 E
), 

re
la

tiv
e 

dw
el

l t
im

e 
on

 g
ai

ns
 (M

od
el

 F
) 

  
M

od
el

 B
 

C
ho

ic
e 

M
od

el
 C

 
C

on
fid

en
ce

 
M

od
el

 D
 

D
w

el
l T

im
e 

on
 G

ai
ns

 
M

od
el

 E
 

D
w

el
l T

im
e 

on
 L

os
se

s 
M

od
el

 F
 

Re
la

tiv
e 

D
w

el
l T

im
e 

on
 G

ai
ns

 
Pa

ra
m

et
er

 
Es

tim
at

e 
(S

E)
  

p-
va

lu
e 

Es
tim

at
e 

(S
E)

 
p-

va
lu

e 
Es

tim
at

e 
(S

E)
 

p-
va

lu
e 

Es
tim

at
e 

(S
E)

 
p-

va
lu

e 
Es

tim
at

e 
(S

E)
 

p-
va

lu
e 

In
te

rc
ep

t 
0.

45
 (0

.3
9)

 
 

0.
25

2 
5.

47
 (0

.1
0)

 
<0

.0
01

 
0.

58
 (0

.0
3)

 
<0

.0
01

 
0.

53
 (0

.0
2)

 
<0

.0
01

 
0.

06
 (0

.0
1)

 
0.

00
2 

G
ai

n 
Va

lu
e 

2.
57

 (0
.2

0)
 

 
<0

.0
01

 
0.

04
 (0

.0
4)

 
0.

23
5 

0.
02

 (0
.0

1)
 

0.
02

8 
 

 
0.

01
 (0

.0
1)

 
0.

07
1 

Lo
ss

 V
al

ue
 

-2
.3

7 
(0

.1
8)

 
 

<0
.0

01
 

-0
.0

3 
(0

.0
4)

 
0.

50
7 

 
 

0.
04

 (0
.0

1)
 

<0
.0

01
 

-0
.0

6 
(0

.0
2)

 
0.

00
3 

G
ro

up
 (G

D
) 

2.
25

 (0
.7

8)
 

 
0.

00
4 

0.
14

 (0
.2

0)
 

0.
47

3 
-0

.0
8 

(0
.0

5)
 

0.
14

2 
-0

.0
7 

(0
.0

5)
 

0.
17

9 
-0

.0
2 

(0
.0

3)
 

0.
55

4 

C
on

fid
en

ce
 

-0
.0

3 
(0

.1
2)

 
 

0.
80

2 
 

 
 

 
 

 
 

 

G
ai

n 
Va

lu
e 

x G
ro

up
 (G

D
) 

0.
66

 (0
.3

9)
 

 
0.

09
2 

0.
15

 (0
.0

7)
 

0.
04

6 
-0

.0
3 

(0
.0

1)
 

0.
04

5 
 

 
-0

.0
0 

(0
.0

1)
 

0.
76

9 

Lo
ss

 V
al

ue
 x 

G
ro

up
 (G

D
) 

0.
09

 (0
.3

6)
 

 
0.

79
6 

-0
.1

1 
(0

.0
8)

 
0.

19
4 

 
 

0.
03

 (0
.0

2)
 

0.
15

3 
-0

.0
1 

(0
.0

3)
 

0.
64

9 

C
on

fid
en

ce
 x 

G
ro

up
 (G

D
) 

-0
.0

3 
(0

.2
4)

 
0.

88
6 

 
 

 
 

 
 

 
 

AI
C

 
51

30
.2

    
26

14
9.

35
 

82
16

.2
23

 
64

02
.4

45
 

12
95

0.
5 

R2 
0.

88
5 

0.
34

5 
0.

21
9 

0.
23

2 
0.

08
0 

 
 

 
 

 
 

Re
su

lts
 o

f m
ix

ed
-m

od
el

s 
sp

ec
ifi

ed
 in

 d
et

ai
l i

n 
Ap

pe
nd

ix
 G

, T
ab

le
 G

1B
, G

1C
, G

1D
, G

1E
, G

1F
, r

es
pe

ct
iv

el
y.

 S
ho

w
n 

ar
e 

th
e 

es
tim

at
es

, t
he

ir 
st

an
da

rd
 e

rr
or

s 
(S

E)
 a

nd
 9

5%
 c

on
fid

en
ce

 in
te

rv
al

s 
(C

I),
 s

ta
tis

tic
 a

nd
 p

-v
al

ue
s.

 L
os

s 
va

lu
es

 w
er

e 
en

te
re

d 
as

 a
bs

ol
ut

e 
va

lu
es

 f
or

 e
as

ie
r 

in
te

rp
re

ta
tio

n.
 N

 =
 5

5 
su

bj
ec

ts
 w

ith
 a

 to
ta

l o
f 8

29
5 

ob
se

rv
at

io
ns

. *
p<

0.
05

, *
*p

<0
.0

1,
 *

**
p<

0.
00

1.
 

 



Chapter 9 

225 
 

Figure 3: Behavioral results of gambling decision-making and confidence. All graphs show 
regression curves and 95% CI in grey, together with individual datapoints. Red lines represent 
model predictions for GD subjects, blue lines represent model predictions for HC subjects. Dots 
represent the average (A) acceptance rate per participant at each level of gain value, (B) 
acceptance rate per participant at each level of loss value, (C) confidence level at each level of 
gain value. Red dots represent GD subjects, whereas blue dots represent HC subjects. A) The 
logistic curve shows that participants from both groups accepted gambles more as the gain value 
increased, and shows an overal increased gamble acceptance rate in GD compared with control 
subjects. B) The logistic curve shows that participants from both groups accepted gambles less 
as the loss value increased, and shows an overal increased gamble acceptance rate in GD 
compared with control subjects. C) The linear regression line shows that an interaction between 
gain value and group on confidence level exists, where confidence increases as the gain value 
increased in GD subjects, but not in control subjects.  
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Figure 4: Effect of gain value, loss value and group on dwell times. All graphs show regression 
lines and 95% CI in grey, together with individual datapoints. Red lines represent models 
estimates for GD subjects, blue lines represent model estimates for HC subjects. Dots represent 
the average (A) dwell time on gains per participant at each level of gain value, (B) dwell time on 
losses per participant at each level of loss value. Red dots represent GD subjects, whereas blue 
dots represent HC subjects. A) The interaction effect between gain value and group on dwell time 
on gains shows that dwell time on gains increases with increases in gain value in control subjects, 
but not in GD subjects. B) The regression lines show that dwell time on losses increases as loss 
value increases, which did not differ between the groups.  

 

Influence of attention on choices 

Lastly, we turned to investigating the joint influence of attention and values on choice. 
We tested the hypothesis that GD subjects relative to HCs display an increased 
influence of their attention on gains and away from losses during decisions to gamble. 
We analyzed whether choices could be predicted by attentional measures and values, 
and whether these relationships differed between groups. Results replicate many of our 
previous results (Table 3A), including the strong influence of gain and loss values on 
choice, and increased gambling in GD. Results also showed a main effect of dwell time 
to losses such that all subjects gambled less when they had increased attention on 
losses, which effect was strongest when attending to losses relatively longer. No 
interactions between group and attention were found, however, indicating no evidence 
for an increased influence of attention on gambling choices in GD in this trial-by-trial 
analysis.  
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Exploratory analyses inspecting group effects on separate attention channels 

One possibility for this null result is that different channels of attention are differentially 
affected in GD, which cannot be identified using the average. We address this in 
exploratory analyses that split the attentional data into average goal-directed and trial-
based salience-based attentional processes. Results indicate that average attention 
largely drives the results reported in Table 3A, such that subjects gambled more when 
their average attention to gains was higher (at trend level) and gambled less when their 
average attention to losses was higher (Table 3B). Trial-by-trial increases in attention to 
losses (e.g. due to salience) also resulted in less gambling, while there was no effect of 
trial-by-trial increases in attention to gains. A trend level interaction effect between gain 
value and group was found, suggesting that the influence of gains on choices was 
stronger in GD compared to HC.  

Interestingly, results showed that the relationship between gain value and average 
attention to gains on choices significantly differed per group. Post-hoc tests indicated 
that GD subjects with high average attention for gains showed a stronger effect of gain 
value on their choice to gamble than GD subjects with low average attention for gains 
(post-hoc: Z=2.85, p=0.012), whereas this was not the case in HCs (post-hoc: Z=0.03, 
p>0.9) (Figure 5A). This specifically resulted in significantly increased effects of gain on 
choice in GD compared to HC at average and high levels of dwell time to gains (average: 
Z=1.95, p=0.051, high: Z=2.96, p=0.003). In other words, GD subjects that had high 
attention for gains tended to accept gambles with lower gain values compared to GD 
subjects that had low attention for gains. 

The three-way interaction between loss value, attention to losses and group showed a 
trend effect (p=0.07). Exploratory post-hoc tests indicated that GD subjects with high 
average attention for losses showed a marginally stronger effect of loss value on their 
choice to gamble than GD subjects with low average attention for losses (post-hoc: 
Z=2.03, p=0.106), whereas this was not the case in HCs (post-hoc: Z=-0.26, p>0.9) 
(Figure 5B). Thus, a marginal effect was found showing that GD subjects that had high 
attention for losses stopped gambling sooner when loss values increased, whereas 
those with relatively low attention continued gambling even when there was much to 
lose.   
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Table 3: Results of the mixed-effects model on the influence of attentional measures on 
choice 

A) Model 1G 

Parameter Estimate (SE)  p-value 

Intercept 0.41 (0.38) 0.283 
Gain Value 2.64 (0.21) <0.001 
Loss Value -2.42 (0.19) <0.001 
Group (GD) 2.24 (0.76) 0.003 
Confidence -0.07 (0.13) 0.568 
Dwell Time on Gain 0.00 (0.08) 0.969 
Dwell Time on Loss -0.22 (0.08) 0.005 
Gain Value x Group (GD) 0.61 (0.41) 0.136 
Loss Value x Group (GD) 0.18 (0.37) 0.625 
Confidence x Group (GD) -0.06 (0.25) 0.819 
Dwell Time on Gain x Group (GD) -0.13 (0.15) 0.362 
Dwell Time on Gain x Gain Value -0.08 (0.05) 0.115 
Dwell Time on Loss x Group (GD) -0.13 (0.15) 0.380 
Dwell Time on Loss x Loss Value 0.13 (0.05) 0.006 
Dwell Time on Gain x Gain Value x Group (GD) 0.12 (0.10) 0.204 
Dwell Time on Loss x Loss Value x Group (GD) -0.08 (0.09) 0.377 
AIC: 5050.9    R2: 0.890 
B) Model 1H 

Parameter Estimate (SE)  p-value 

Intercept 0.41 (0.38) 0.281 
Gain Value 2.73 (0.21) <0.001 
Loss Value -2.47 (0.20) <0.001 
Average Dwell Time Gain 1.13 (0.69) 0.098 
Average Dwell Time Loss -1.58 (0.69) 0.021 
Trial-by-Trial Deviations Dwell Time Gain -0.00 (0.07) 0.967 
Trial-by-Trial Deviations Dwell Time Loss -0.18 (0.07) 0.007 
Group (GD) 2.20 (0.76) 0.004 
Confidence -0.07 (0.13) 0.561 
Gain Value x Group (GD) 0.80 (0.41) 0.051 
Gain Value x Average Dwell Time Gain 0.32 (0.16) 0.045 
Gain Value x Trial-by-Trial Deviations Dwell Time Gain -0.09 (0.05) 0.042 
Group (GD) x Average Dwell Time Gain 2.51 (1.39) 0.072 
Group (GD) x Trial-by-Trial Deviations Dwell Time Gain -0.15 (0.14) 0.258 
Loss Value x Group (GD) 0.05 (0.38) 0.890 
Loss Value x Average Dwell Time Loss -0.20 (0.13) 0.137 
Loss Value x Trial-by-Trial Deviations Dwell Time Loss 0.10 (0.04) 0.014 
Group (GD) x Average Dwell Time Loss -2.89 (1.43) 0.044 



Chapter 9 

229 
 

Group (GD) x Trial-by-Trial Deviations Dwell Time Loss -0.10 (0.13) 0.453 
Confidence x Group (GD) -0.05 (0.25) 0.835 
Average Dwell Time Gain x Gain Value x Group (GD) 0.77 (0.31) 0.014 
Trial-by-Trial Deviations Dwell Time Gain x Gain Value x 
Group (GD) 

0.08 (0.09) 0.382 

Average Dwell Time Loss x Loss Value x Group (GD) -0.48 (0.27) 0.074 
Trial-by-Trial Deviations Dwell Time Loss x Loss Value x 
Group (GD) 

-0.08 (0.08) 0.323 

AIC: 5056.9    R2: 0.893 
A) Results of mixed-model model specified in detail in Appendix G Table G1G. B) Results of 
mixed-model model specified in detail in  Appendix G Table G1H. Shown are the beta estimates, 
their standard error (SE) and 95% confidence intervals (CI), statistics and p-values. Loss values 
were entered as absolute values for easier interpretation. N = 55 subjects with a total of 8295 
observations. **p<0.05, **p<0.01, ***p<0.001. 
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Figure 5: Interactions between group, values and attention on gambling choices. Plots of 
significant three-way interactions between group, average attention and values (either gains or 
losses) predicting gambling acceptance. Average dwell times on gains and losses were fixed at -
1 standard deviation (based on subjects with relatively low average attention for gains/losses), 
the mean (based on subjects with relatively average attention for gains/losses) and +1 standard 
deviation (based on subjects with relatively high average attention for gains/losses). For purpose 
of illustration, z-scored gain and loss values were transformed to real numbers by calculating the 
mean ± 1 SD.  A) The interaction effect between group, average attention toward gains and gain 
value. Regression curves show that when GD subjects have high average attention toward gains, 
they tend to accept gambles with lower gain values, compared to GD subjects with low average 
attention toward gains. This effect is not found in control subjects. B) The interaction effect 
between group, average attention toward losses and loss value. Regression curves show that 
when GD subjects have high average attention toward losses, they tend to reject gambles with 
lower loss values, compared to GD subjects with low average attention toward gains. This effect 
is not found in control subjects. 
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Discussion 

The current study investigated how attention toward potential gains and losses during 
risky decision-making influences choices using a mixed-gambles task in GD patients 
and HCs. In line with previous findings, GD patients displayed higher gambling 
propensity (i.e., are more risk-taking (Brand et al., 2005; Brevers et al., 2012; Goudriaan 
et al., 2005; Ligneul et al., 2013; Ochoa et al., 2013; Spurrier & Blaszczynski, 2014)), 
lower loss aversion (Gelskov et al., 2016; Giorgetta et al., 2014), and increased 
influence of gains on confidence than HCs (Hoven, de Boer, et al., 2022). Also 
replicating earlier work, overall gambling propensity increased when there was more to 
gain and less to lose (J. Engelmann et al., 2021; J. B. Engelmann et al., 2015; J. B. 
Engelmann & Tamir, 2009). However, there were no group differences in the influence 
of gain value on gambling propensity, suggesting no increased reward sensitivity in GD. 

We extend the current literature by investigating the role of attention in risky decision-
making using eye-tracking, which has been underexplored in GD thus far. Consistent 
with previous studies in HCs, subjects’ overall relative attention toward gains 
decreased in favor of attention toward losses when loss values increased (J. Engelmann 
et al., 2021; Gluth et al., 2018, 2020). We did not find group differences in attention to 
either gains or losses, suggesting no direct attentional biases in GD. However, while 
HCs increased their attention to gains with higher gain values, patients with GD did not. 
Moreover, while patients with GD displayed lower loss aversion, they did not show less 
attention to losses, rather, in both groups, increased trial-by-trial attention to losses 
resulted in less gambling. 

The question arises whether attention modulates the effect of gains and losses on 
choice behavior differently in GD relative to controls. Our exploratory analyses that 
differentiated between two different channels of attention indeed indicated that the 
effect of gain value on gambling choices was modulated by the amount of average 
attention on gains in GD only. In other words, patients with GD who focused more on 
gains exhibited a greater gambling propensity at relatively low gain values. Notably, the 
strength of the effect of gain value on choice only significantly differed between groups 
at average and high levels of attention to gains, while patients with GD and HCs with 
relatively low levels of average attention to gains did not differ. Moreover, patients with 
GD who had relatively more average attention to losses showed a reduction in gambling 
propensity at relatively lower loss values, but note that this was at trend level. Since 
average attention relates to goal-directed or top-down attention, this measure likely 
reflects one’s preferences and beliefs (Corbetta & Shulman, 2002; Pachur et al., 2018). 
Hence, the current results suggest that gambling choices in patients with GD, relative 
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to HCs are more influenced by their preferences for gains. Future studies are needed to 
verify if and how top-down attentional processes affect decision-making in GD. 

Our study has limitations to address. In the current paradigm we weren’t able to 
compute risk aversion (to compare against loss aversion), which could be an alternative 
explanation for increased gambling propensity (e.g.,(J. B. Engelmann et al., 2015; J. B. 
Engelmann & Tamir, 2009)). However, modeling both risk aversion and loss aversion in 
a mixed gamble task is difficult, as parameters are prohibitively correlated (Stewart et 
al., 2015). Moreover, it is possible that the relative unattractiveness of our task, relative 
to an actual gambling game, led to the relatively low reward sensitivity in GD, as 
suggested before (Leyton & Vezina, 2012, 2013; Van Holst, Veltman, Van Den Brink, et 
al., 2012). Eye-tracking during real-world gambling will likely be more sensitive and 
provide higher ecological validity and is needed to test whether similar cognitive 
processes are involved. Lastly, the current study population was recruited from therapy 
centers and thus included subjects who had received cognitive behavioral therapy 
(CBT) for their gambling disorder. Because CBT is partly focused on reducing irrational 
thoughts about gambling (Sylvain et al., 1997; Toneatto & Gunaratne, 2009) to dampen 
the influence of outcome salience on choice behavior, CBT might have reduced 
attentional biases towards gains, as well as gambling propensity in our sample. Such 
biases might be more pronounced in patients with untreated GD. Future studies on the 
role of attentional biases can address this by manipulating individuals’ preferences and 
valuation processes, e.g. via priming (Cohn et al., 2015), and assessing how this affects 
attentional and gambling behavior. Finally, since real-life gamble products exploit 
outcome salience, i.e. via increasing (decreasing) the salience of wins (losses) (Yücel 
et al., 2018), it could be that in an untreated GD population the influence bottom-up 
attention towards presented gambling stimuli is enhanced. 

 

Conclusions 

In sum, the current study points toward nuanced effects of attention on the strength of 
the effect of rewards on (increased) risky decision-making in GD. GD patients who have 
more attention for gains are more strongly affected by gain values in their choice to 
gamble. Since this study is one of the first investigating attentional processes during a 
decision-making task in GD, more research is needed to establish a more detailed 
understanding of the relationship between choice preferences, attention and eventual 
gambling behavior. In time, this knowledge may help to improve the treatment of GD, 
for example by personalizing attentional bias modification training. 
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Abstract 

Background and aims 

People with Gambling Disorder (GD) often make risky decisions and experience 
cognitive distortions about gambling. Moreover, people with GD have been shown to be 
overly confident in their decisions, especially when money can be won. Here we 
investigated if and how the act of making a risky choice with varying monetary stakes 
impacts confidence differently in patients with GD (n= 27) relative to healthy controls 
(HCs) (n=30).  

Methods 

We used data from our previous mixed-gamble study, in which participants were given 
the choice of a certain option or a 50/50 gamble with potential gains or losses, after 
which they rated their confidence.  

Results 

While HCs were more confident when making certain than risky choices, GD patients 
were specifically more confident when making risky choices than certain choices. 
Notably, relative to HCs, confidence of patients with GD decreased more strongly with 
higher gain values when making a certain choice, suggesting a stronger fear of missing 
out or “anticipated regret” of missing out on potential gains when rejecting the risky 
choice.  

Discussion 

The current findings highlight the potential relevance of confidence and “regret” as 
cognitive mechanisms feeding into excessive risk-taking as seen in GD. Moreover, this 
study adds to the limited previous work investigating how confidence is affected in 
value-based risky contexts. 
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Introduction 

Gambling involves taking risks, typically with a high probability of loss against a smaller 
probability of gain. While for most people gambling is a leisure activity, for some people 
it develops into a gambling disorder (GD), described as the continuation or escalation 
of gambling despite the occurrence of negative consequences (American Psychiatric 
Association, 2013). It is often hard to grasp why people continue to show irrational 
gambling behavior when it is clear that, in the long term, “the house always wins”.  

Research on risk-taking and gambling-related cognition finds that people with GD make 
more risky decisions (Brand et al., 2005; Brevers et al., 2012; Ligneul et al., 2013; Ochoa 
et al., 2013; Spurrier & Blaszczynski, 2014), are less loss averse (Gelskov et al., 2016; 
Giorgetta et al., 2014; Hoven, Hirmas, et al., 2023) and exhibit higher levels of cognitive 
distortions about gambling than people without GD (Joukhador et al., 2003; 
Ledgerwood et al., 2020). Cognitive distortions about gambling often involve cognitions 
that minimalize the perceived risk of gambling and encourage gambling (Goodie & 
Fortune, 2013) (i.e., “the illusion of control” (Langer, 1975). Moreover, people with GD 
have been shown to be overly confident in their decisions (Brevers et al., 2013, 2014; 
Goodie, 2005; Lakey et al., 2007), especially when money can be won (Hoven, de Boer, 
et al., 2022). We recently replicated our findings using a mixed gamble task showing 
that relative to controls, patients with GD gambled more, and that increasing amounts 
of potential gains increased confidence more strongly in patients than in controls 
(Hoven, Hirmas, et al., 2023). Since accurate confidence is important for monitoring 
errors (Boldt & Yeung, 2015; Yeung & Summerfield, 2012), learning (Meyniel, 
Schlunegger, et al., 2015) and planning subsequent actions (Desender et al., 2018), 
having too much confidence in one’s choices could contribute to risky decision-making 
(Hoven, de Boer, et al., 2022). While it has become clear that contextual cues, such as 
monetary incentives, can bias confidence, little is known about how the presence of 
risk and the act of making a risky choice impacts confidence and whether this interacts 
with incentive value.  

One prior study conducted in healthy subjects investigated the impact of risky choices 
on confidence judgments (da Silva Castanheira et al., 2021). Their results indicated that 
confidence was significantly higher when selecting a certain prospect compared with 
a risky one  - an intuitive finding that reflects the decision-makers feeling of uncertainty 
that comes with making a risky choice. Since there are little to no other studies that 
have investigated this in GD, it remains unknown whether risky choices and monetary 
incentives affect confidence of people with GD in the same way as healthy controls 
(HCs).  
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Based on previous findings (Brevers et al., 2013, 2014; Goodie, 2005; Lakey et al., 2007), 
we hypothesized that first, patients with GD relative to HCs are generally more 
confident in their choices made during an experiment where incentives can be won. 
Secondly, while HCs are relatively more confident in certain versus risky choices, 
patients with GD are relatively more confident in risky versus certain choices because 
of their experience with gambling. Finally, we hypothesized that confidence judgments 
of patients with GD compared to HCs are more sensitive to increases in potential gains, 
in line with the suggestion that gamblers might be more overconfident with greater 
potential gains (Hoven, de Boer, et al., 2022) such that increasing gain value 
increases(/decreases) confidence more strongly when making a risky(/certain) choice. 
We tested these hypotheses by utilizing data from our previous mixed-gamble study 
(Hoven, Hirmas, et al., 2023). 

 
Methods 

Participants 

As the current study used data from our previous mixed-gamble study (Hoven, Hirmas, 
et al., 2023), the description of the participants are the same as in our previous paper. 
27 patients with GD and 30 HCs were included, matched on age, sex and education, 
recruited online and via patient clinics in the Netherlands. All patients with GD had 
been in treatment and gambled regularly within the previous year and were diagnosed 
by a certified medical professional for gambling disorder using the DSM-5 criteria. All 
subjects did not currently or in the previous 6 months suffer from any psychiatric 
disorder, except for gambling disorder for the GD group, and did not use medication.  

 

Experimental Task and Procedure 

All subjects performed a mixed-gamble task including 160 trials (Figure 1A). Gambles 
were presented with an equal (50/50) chance of either gaining or losing a specific value 
and subjects chose between two options: rejecting (certain option) or accepting (risky 
option) the gamble. The certain option entailed opting for the initial endowment of €25 
without the possibility of bonuses. The risky option entailed potentially gaining or losing 
additional bonuses as presented by the gamble. After each choice, feedback indicated 
the chosen option (but no feedback about wins and losses was provided until the end 
of the experiment to prevent learning) and subjects were asked to rate their confidence 
on a 7-point scale. Each combination of gains and losses was shown twice for 
counterbalancing, and gains or losses never appeared on the same side for more than 
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three times in a row. All subjects performed a training session. For more details see 
Figure 1A and Hoven, Hirmas, et al., (2023). The same exclusion criteria as in our 
previous study were applied, leading to a final sample of 26 patients GD and 29 HCs 
(Hoven, Hirmas, et al., 2023). 

 

Analyses 

For all analyses we used R (version 1.4.1106) with the packages emmeans (Lenth et al., 
2018) , lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017). Age, sex, 
education level, gambling severity and percentage gambling choices were compared 
between groups using two-sample t-tests or chi-square tests. 

To test for group differences in the effects of choice type, value and their interaction on 
confidence, we fit two mixed-effects models on our trial-by-trial data. In the first model, 
the effects of choice, group and expected value (0.5*loss value + 0.5*gain value), and 
their three-way interaction on confidence were investigated. Moreover, a covariate of 
the log of the reaction time (logRT, due to skewness), random intercepts and random 
slopes of EV and choice were included. In the second model, instead of using expected 
value, we investigated the separate effects of gain and loss value and their interactions 
with choice and group (choice*gain*group and choice*loss*group) on confidence. In 
both models, LogRT, EV, gain and loss values were z-scored and an effects coding 
scheme was used for the categorical group and choice variables. Post-hoc tests were 
performed to quantify significant interactions.  
 
 

Ethics 

The experiment was conducted in accordance with the Declaration of Helsinki and was 
approved by the Ethics Board of the University of Amsterdam.  

 
 
Results 
No group differences were found in age (GD: 37.4 ± 12.1; HC: 34.8 ± 8.61; t53 = 0.92, p = 
0.36), sex (GD: 21 males, 5 females; HC: 23 males, 6 females; X2 = 2.8*10-31, p = 1) or 
education level (GD: 3.08 ± 0.89; HC: 3.31 ± 1.17; t53=0.83, p = 0.41). Problem Gambling 
severity index (PGSI (Ferris & Wynne, 2001)) scores were significantly higher in patients 
with GD (15.3 ± 3.94) than in HCs (0) (Welch’s t25=-19.87, p<.001). Patients with GD 
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scored 59.3 ± 23.2 on the Gamblers Beliefs Questionnaire (GBQ (Steenbergh et al., 
2002)), a self-report measure of gamblers' cognitive distortions, where a higher score 
indicates more cognitive distortions. In general, patients with GD made more risky 
choices (60.7% ± 4.22%) than HCs (42.7% ± 3.81%) (t53=3.175, p=0.002), and previous 
work using this dataset indicated less loss aversion in patients with GD compared to 
HCs (Hoven, Hirmas, et al., 2023). 

The first mixed-effects model showed a significant main effect of reaction time on 
confidence, indicating increased confidence for choices with faster reaction times 
(Table 1A). A significant interaction between choice and group showed that GD patients 
were more confident in risky than certain choices (post-hoc: Z=2.781, p=.005), and a 
trend effect for the opposite pattern for HCs (post-hoc: Z-ratio=-1.772, p=.076)  (Figure 
1B). The significant interaction between choice and EV indicated that confidence 
increased with increasing EV for risky choices (slope = 0.583), but decreased for certain 
choices (slope = -0.587).  The significant three-way interaction between choice, EV and 
group indicated that GD patients, compared to HC, showed even lower confidence 
rates when rejecting high EV gambles (Figure 1C). Post-hoc analyses confirmed that the 
negative effect of EV on confidence when making a certain choice was stronger in GD 
(slope: -0.734) than in HC (slope -0.439; Z=-3.573, p<.001) 

Model 2 (Table 1B) separated the effects of gain and loss value, which were 
orthogonalized, allowing us to inspect whether the interaction effects observed in 
model 1 are driven by either gain or loss values. We find a similar three-way interaction 
effect between choice, gain value and group (Figure 1D), but not with loss value. Indeed, 
confidence of the GD group declined more strongly with increasing gain value when 
chosing the certain option, relative to HCs (GD slope:-0.513, HC slope:-0.276, post-
hoc Z=-3.628 p<.001). Moreover, a significant interaction between loss value and 
choice indicated that with increasing loss value, all subjects became more confident 
when they chose the certain option (slope: 0.448), but became less confident when 
they chose the risky option (slope: -0.438). A significant interaction between loss value 
and group showed that the GD group was less sensitive to loss value (slope: 0.08) than 
the HC group (slope: -0.07) in terms of decreasing their confidence.  Finally, neither 
PGSI nor GBQ score within the GD group correlated significantly with mean confidence 
(both p>.25) or confidence for risky choices (both p>.5). 
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Figure 1: Mixed gambles task and results. (A) At the beginning of each trial a fixation cross was 
shown, jittered between 300 and 1100 ms. Then the gamble was shown (i.e., gain and loss value 
stimuli; left stimulus centered on 480x540, right stimulus centered on 1440x540) for the duration 
of the decision with a maximum of 6000 ms. Subjects were asked to accept or reject the gamble 
using the up or down key, respectively, after which a brief feedback message was shown 
indicating and confirming their choice (1000ms. L = lottery (risky) option, X = certain option, 
‘Respond Faster’ = if failed to respond within 6000 ms). After each choice participants rated their 
confidence on a scale from 1 (not sure) to 7 (very sure) (unlimited time). Subjects did not receive 
any feedback about the outcome of their choices (win or loss outcomes) until after completion 
of the experiment to avoid history and learning effects. (B) The significant interaction effect 
between choice type and group shows that the GD group were more confident while making risky 
choices, while the HC group were more confidenct when making certain choices. Large dots and 
error bars signify means and standard errors, smaller dots represent individual subject data 
points (Table 1A). (C) A significant three-way interaction between expected value, choice type 
and group shows that increasing expected value of the gamble has a stronger negative effect on 
confidence in the GD group when making certain choices (Table 1A). (D) A significant three-way 
interaction between gain value, choice type and group shows that increasing gain value has a 
stronger negative effect on confidence in the GD group when making certain choices (see Table 
1B). Yellow color indicates GD, grey color indicates HC. 

 

  

10



 

242 
 

Table 1: Results of mixed-effects models on confidence 

A)  Model 1: expected 
value 

Parameter Estimate 
(SE)  

t-value p-value 

Intercept 5.00 (0.09) 58.49 <0.001 
Choice (Certain Option) -0.05 (0.06) -0.81 0.419 
Group (GD) -0.03 (0.09) -0.40 0.687 
Expected Value -0.001 (0.04) -0.05 0.960 
Reaction Time -0.37 (0.01) -25.86 <0.001 
Choice (Certain Option) x Group (GD) -0.21 (0.06) -3.24 0.002 
Choice (Certain Option) x Expected Value -0.58 (0.02) -32.62 <0.001 
Group (GD) x Expected Value -0.10 (0.04) -2.70 0.009 
Choice (Certain Option) x Group (GD) x Expected 
Value 

-0.05 (0.02) -2.80 0.005 

AIC: 24001.46   R2: 0.506   # observations: 8295 trials (of 55 subjects)  
B)  Model 2: gain and loss 

value 

Parameter Estimate 
(SE)  

t-value p-value 

Intercept 4.99 (0.08) 58.81 <0.001 
Choice (Certain Option) -0.04 (0.06) -0.69 0.491 
Group (GD) -0.02 (0.08) -0.29 0.774 
Gain Value 0.01 (0.03) 0.19 0.849 
Loss Value 0.01 (0.03) 0.17 0.862 
Reaction Time -0.36 (0.01) -25.65 <0.001 
Choice (Certain Option) x Group (GD) -0.21 (0.06) -3.20 0.002 
Choice (Certain Option) x Gain Value -0.40 (0.02) -25.62 <0.001 
Group (GD) x Gain Value -0.06 (0.03) -2.19 0.033 
Choice (Certain Option) x Loss Value 0.44 (0.01) 29.65 <0.001 
Group (GD) x Loss Value 0.08 (0.03) 2.57 0.013 
Choice (Certain Option) x Group (GD) x Gain Value -0.06 (0.02) -3.72 <0.001 
Choice (Certain Option) x Group (GD) x Loss Value -0.001 (0.01) -0.04 0.972 
AIC: 23912.11    R2: 0.514  # observations: 8295 trials (of 55 subjects) 

Shown are the estimates, their standard errors (SE), t-values and p-values. Loss values were 
entered as absolute values for easier interpretation. The value of the choice options was 
modeled as expected value in model 1 and, separately as (experimentally orthogonalized) gain 
and loss value in model 2. 
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As a sensitivity analyses to verify whether fatigue or time on task affected our results, 
we included trial number as a covariate and also tested for the trial*group interaction 
in the two described models. The results indicated no significant effect of trial number 
nor trail*group interactions on any of the results. Moreover, including this variable did 
not change any of our previously reported results. 

 

Discussion 

Why do patients with GD continue to gamble regardless of all the negative 
consequences? One answer may lie in overconfidence in their actions, specifically 
when risk and monetary incentives are involved. This study investigated how making a 
risky choice with varying monetary stakes impacts confidence and whether patients 
with GD are affected differently than HCs. 

There was some evidence for our first hypothesis of general increased confidence in 
GD compared with HCs. There was convincing support for our second hypothesis: 
relative to HCs (who have higher confidence when making a certain versus risky 
choice), patients with GD are more confident when making risky choices than certain 
choices. Notably, relative to HCs, confidence of patients with GD decreased more 
strongly with higher gain values when making a certain choice. Hence, these findings 
also partly support our third hypothesis of increased sensitivity to gain values in GD 
patients and point to our measure of confidence capturing a stronger fear of missing 
out or “anticipated regret” of missing out on potential gains when rejecting gambles.  

This fear of missing out on potential gains is recognized in the clinical presentation of 
GD (Ladouceur, 2004) and may be reflected in the higher willingness to gamble. 
Patients often describe that their only solution to solving their financial problems is 
taking excessive risks in the hope of obtaining high gains. Indeed, research has shown 
that scarcity creates “bandwidth taxes” that reduce mental resources, impairing 
cognitive ability and causing counterproductive behavior, such as risk-taking (Liang et 
al., 2021), which perpetuates poverty (Haushofer & Fehr, 2014; Ong et al., 2019). In the 
current study, as expected, more patients with GD (n=18) experienced debts than HCs 
(n=5). In that light, this stronger fear of missing out on potential gains may not only 
speak to patients with GD but also to people who experience financial debts. The lower 
confidence when selecting the certain option found in the GD group aligns well with 
recent findings by Wu et al. (2021). They computationally assessed an anticipatory 
regret parameter that captured the difference between the worst outcome in one 
gamble versus the best outcome in the other gamble and found that people with GD 
experience increased anticipatory regret relative to controls. While our findings and 
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those of Wu et al. (2021) should be considered preliminary, they highlight the relevance 
of regret and confidence as cognitive mechanisms in disordered gambling. Future 
studies on this topic are needed and can draw on extensive mathematical and 
experimental methods developed by behavioral economics. 

The current study adds to the limited previous work investigating how confidence is 
affected in value-based risky contexts. Da Silva Castanheira et al. (2021) found that 
healthy people are more confident when selecting certain options. Moreover, 
consistent with previous findings (De Martino et al., 2012; Folke et al., 2017), in the 
absence of risk, higher subjective values and faster RTs were associated with higher 
confidence ratings (da Silva Castanheira et al., 2021). We replicated these findings in 
our HCs and observed the weakening of these well-documented relations with risky 
decisions relative to certain decisions (see Appendix H). These findings fit the notion 
that risky choices are accompanied by an inherent uncertainty about the option’s value 
and that RTs are slower under greater uncertainty (D. G. Lee & Daunizeau, 2021; D. G. 
Lee & Hare, 2023).  

Our results should be interpreted with some limitations in mind. First, all included 
patients received treatment, and the task's relative unattractiveness and artificial 
nature may have attenuated natural risk-taking behavior in our patient sample. Future 
studies should assess whether the current findings generalize to more realistic 
gambling situations and to untreated patients. Additionally, longitudinal studies are 
needed to dissect whether alterations in confidence under risk are a cause or 
consequence of GD. Furthermore, the influence of financial debts on confidence and 
anticipated regret needs to be established.  Finally, the current results were secondary 
to our previous work (Hoven, Hirmas, et al., 2023) and can be considered exploratory. 
Nonetheless, these results provide an important initial demonstration of how 
subjective confidence during risky decision-making is differently affected in patients 
with GD relative to HCs.  

In sum, the current study points out that compared to HCs, patients with GD are 
generally more confident when taking risks versus playing it safe. Importantly, they 
become less confident about playing it safe when the potential winnings increase. This 
behavioral pattern matches anticipatory regret of missing out on potential gains, which 
may contribute to excessive risk-taking in GD patients. 
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In this thesis I investigated confidence judgments as a metacognitive construct, 
exploring its neurobiological foundations, biases, and its relationship with psychiatric 
symptoms and disorders. Through a series of comprehensive studies encompassing 
clinical samples of patients with OCD and/or GD, healthy controls and general 
population samples, I have investigated the disruptions in metacognitive abilities 
across different contexts. By employing a range of methodologies such as fMRI, eye-
tracking, cognitive computer tasks, questionnaires and computational modeling, we 
have gained a multifaceted understanding of confidence in psychiatry. Overall, our 
findings indicate that disturbances in confidence, and in a broader sense, 
metacognition, are a central aspect of mental health. 
 

Summary of the main findings 

Part I: Confidence and its Biases in Psychiatry 

Chapter 2 presents a literature review on confidence abnormalities across psychiatric 
disorders and symptoms in both clinical and subclinical populations. There was 
compelling evidence for an association between obsessive-compulsive 
symptoms/behavior and reduced confidence in (sub)clinical populations. In 
schizophrenia, we consistently found overconfidence, specifically in errors, leading to 
an impaired confidence discrimination in (sub)clinical samples. In GD, subclinical 
studies showed overconfidence, while studies in clinical substance-use dependency 
showed worsened metacognitive sensitivity. (Sub)clinical studies indicated lower 
confidence levels related to depression and anxiety. Our review highlighted confidence 
abnormalities across various (sub)clinical psychiatric conditions, with specific 
directions for different symptom presentations.  

In Chapter 3, we investigated the neural correlates of confidence and the biasing effect 
of incentives on confidence signals in healthy participants. We replicated the earlier 
found incentive confidence bias, where gains(/losses) increase(/decrease) confidence 
without affecting performance. The fMRI results showed that vmPFC activity was 
related to an early certainty signal and to incentive value, but not strongly to confidence 
during rating. Activity in the vmPFC correlated with confidence solely in the gain 
context, but not in the neutral or loss contexts. Overall, this study demonstrated that 
motivational processes can influence confidence and revealed that confidence signals 
in the vmPFC can undergo modulation by motivational signals.  

Chapter 4 reports an fMRI study investigated the neural correlates of confidence and 
the biasing effect of incentives in two clinical populations: OCD and GD. The fMRI 
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results showed positive relationships between vmPFC activity and confidence in all 
groups, and replicated that this relationship was strongest in the gain context. No group 
differences were found for confidence or motivational BOLD signals. Behaviorally, the 
incentive confidence bias was replicated. Moreover, confidence was 
significantly(/marginally) higher in GD patients compared to OCD patients(/controls). 
No differences in confidence were found between OCD and controls. A trend 
interaction effect indicated that GD patients were specifically more confident than 
OCD patients and controls in gain context. No evidence was found for lower confidence 
specifically in loss context in OCD patients. 

In Chapter 5 we explored confidence on multiple hierarchical levels (local confidence, 
global confidence and higher-order self-beliefs) across a wide range of 
psychopathology using a transdiagnostic approach. There were significant positive 
relationships between the hierarchical levels of confidence. Moreover, subjects scoring 
high on anxious-depressive (AD) symptoms showed significantly lower confidence 
(underconfidence), while subjects scoring high on compulsive-behavior-and-intrusive-
thought (CIT) symptoms showed significantly more overconfidence and more distorted 
coupling between the hierarchical confidence levels. Low self-beliefs were the 
strongest predictor of all transdiagnostic symptom dimensions, while higher local 
confidence positively predicted the severity of CIT symptoms. No relationships were 
found between transdiagnostic symptom dimensions and metacognitive efficiency.  

 

Part II: Confidence in OCD 

In Chapter 6 we tested confidence in various groups: clinical medication-free OCD 
patients, a healthy, and a highly compulsive general population sample. We tested the 
assumption that highly compulsive individuals from the general population (HComp, 
matched on the severity of OCD symptoms) resemble clinical OCD patients in terms of 
disturbances in (meta)cognitive processes. The results indicated that OCD patients 
exhibited significantly lower local and global confidence levels compared to healthy 
controls, indicating underconfidence relative to the control group. Conversely, the 
HComp group demonstrated significant overconfidence and poorer metacognitive 
sensitivity relative to the clinical patient group. Thus, clinical OCD patients have distinct 
metacognitive patterns compared to a highly compulsive group from the general 
population.  

In Chapter 7 we focused on exploring the relationship between learning and 
confidence under volatility in OCD, comparing medication-free OCD patients, healthy 
controls, and highly compulsive subjects from the general population. The findings 
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demonstrated that OCD patients had lower confidence and higher error-sensitivity (i.e., 
higher learning rates for small prediction errors) compared to both healthy and highly 
compulsive individuals. No evidence was found to support a decoupling between 
action and confidence in the OCD group. These results suggest that in unmedicated 
OCD, underconfidence, rather than a decoupling between action and confidence may 
underlie compulsive behaviors. Overall, these findings give way to the idea that 
obsessive-compulsive symptoms can go together with different (meta)cognitive and 
behavioral profiles, depending on the sample. 

 

Part III: Confidence in GD 

In Chapter 8, we explored the association between confidence and learning under 
volatility in GD compared to HC. We found no significant group differences in 
confidence or action updating. However, the coupling between confidence and action 
was weaker in the GD group compared to the control group, which might suggest that 
patients with GD may give less weight to their feelings of confidence when taking 
actions. Additionally, the GD group exhibited lower overall learning rates, indicating a 
reduced influence of the most recent outcome on subsequent action in GD. Since we 
did not find evidence for higher confidence ratings on this task, this may point to the 
notion of context-dependent (i.e., disorder-relevant context) increases of confidence in 
GD. Overall, the weaker coupling between confidence and action suggests that 
confidence judgments guide decisions less in GD. 

Chapter 9 reports on the study of the role of attention, value and confidence in risky 
decision-making within GD using eye-tracking. The GD group gambled more, was less 
loss averse and more confident in their gambles when gain value increased compared 
to the control group. No group differences in average attention to either gains or losses 
were found. Overall, participants gambled more(/less) when their average attention 
towards gains(/losses) was higher. A specific pattern emerged in the GD group, where 
GD patients with higher average attention towards gains were more strongly influenced 
by gain values in their decision to gamble compared to GD patients with lower average 
attention towards gains.  

Finally, Chapter 10 extended Chapter 9 by further testing the effects of risk-taking on 
confidence during gambling in GD patients. While the control group was more 
confident when making certain choices compared to risky choices, the GD group was 
more confident when making risky choices. While all participants demonstrated 
decreases in confidence when opting to forgo a gamble with increasing potential gain 
value, this effect was more pronounced in the GD group. The findings suggest that GD 
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is associated with a stronger anticipatory regret, we postulate that this strong 
anticipatory regret may fuel excessive gambling.  

 

General Discussion 

OCD patients generally have lower confidence, but intact metacognitive 
sensitivity 

Deficits in metacognitive ability are a central aspect of the phenomenology of OCD, 
including excessive doubting (Dar, 2004; Dar et al., 2000; Hermans et al., 2008), 
intolerance of uncertainty (Gentes & Ruscio, 2011; Jacoby et al., 2013; Pinciotti et al., 
2021) and, as we show, decreased confidence. Our findings of general decreases in 
confidence in OCD (Chapter 2) were substantiated in a recent meta-analysis (Dar et 
al., 2022) and across the chapters of this thesis. Specifically, our research 
demonstrated that OCD patients exhibited lower local and global confidence in a 
perceptual decision-making task (Chapter 6) and a predictive inference learning task 
(Chapter 7) compared to controls. In the incentivized confidence task (Chapter 4), 
however, neither evidence of decreased confidence nor specific sensitivity to loss was 
found. Additionally, across Chapters 4, 6 and 7, the ability to integrate local confidence 
into a global feeling of confidence was found to be intact, and no deviations in 
metacognitive sensitivity, as measured by discrimination, meta-d’ or meta-d’/d’, were 
found. Together, this points to a specific negative bias of confidence judgments in OCD, 
while patients have an intact ability to use their confidence to inform and discriminate 
their decisions. 

Several factors should be considered to interpret the lack of finding lower confidence 
in OCD in Chapter 4 compared to the other chapters. Importantly, Chapter 4 included 
a different clinical OCD sample compared to Chapters 6 and 7. Although the 
demographic and clinical descriptions indicated similar age ranges, symptom severity 
and sex distributions, many patients in Chapter 4 used medication for their OCD 
symptoms, while those in Chapter 6 and 7 did not. This may have influenced the 
results, as studies have suggested improvements in confidence abnormalities among 
medicated versus unmedicated patients (Marzuki et al., 2022). This could additionally 
partly explain our null results regarding loss sensitivity in confidence, as previous 
research demonstrated that medicated OCD patients exhibit less loss aversion 
compared to unmedicated OCD patients (Sip et al., 2018). Moreover, the incentivized 
confidence task (Chapter 4) was conducted inside an MRI scanner, which may 
influence neurocognitive task outcomes, particularly in clinical samples (Kolodny et 
al., 2022; van Maanen et al., 2016). Finally, the sample size was smaller in the 
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incentivized confidence study (N = 28) compared to the other studies (N~40), leading 
to reduced statistical power to detect group differences. Since we did find a trend effect 
of lower confidence in OCD compared to controls, a higher sample size could have 
resulted in significant differences. Overall, this thesis provides evidence for a negative 
confidence bias in OCD across various contexts, extending beyond local confidence in 
memory or perception, without abnormalities in metacognitive sensitivity or efficiency.  

 

GD patients have increased confidence in gambling-related context 

Metacognition has received less attention in GD, while clinical characteristics do 
suggest that patients with GD may struggle to critically evaluate their gambling beliefs 
and exhibit increased confidence in those beliefs (Armstrong et al., 2020). This thesis 
provides compelling evidence supporting these notions. Patients with GD, compared 
to controls, demonstrated increased levels of confidence, particularly in contexts 
involving potential gains (Chapter 4), high gain values (Chapter 9), and risk (Chapter 
10), but not in a neutral learning task (Chapter 8). Moreover, the coupling between 
confidence and action was distorted in GD patients, suggesting that their confidence 
informed their actions to a lesser extent (Chapter 8). These findings suggest that 
increased confidence specifically manifests within gambling-related contexts, tied to 
potential gains or risks. Research on global confidence measures in GD is scarce, 
although studies have consistently reported lower levels of self-esteem and self-
efficacy in this population (Casey et al., 2008; Choi & Kim, 2021; Hawker et al., 2021; 
Kaare et al., 2009; Park et al., 2019). Future studies are needed to clarify how increased 
local confidence judgements in gambling contexts go together with lower levels of 
higher-order self-beliefs, a pattern that we also observed in people scoring high on CIT 
symptoms (Chapter 5). 

The observation of context-specific overconfidence is supported by earlier research 
that also did not find confidence differences between problematic gamblers and 
controls in a neutral grammar task (Brevers et al., 2014). Additionally, it fits with work 
showing gambling-specific reward sensitivity over other natural rewards in GD, 
indicating a motivational hierarchy that may contribute to gambling-related 
overconfidence (Sescousse et al., 2013). The influential model by Leyton & Vezina 
(2013) underscores the role of addiction-related cues in addiction behaviors. For 
example, gambling acceptance in a gambling task has been found to be dependent on 
and sensitive to gambling cues (Genauck et al., 2020). Domain-specific compulsivity is 
considered a central mechanism in behavioral addictions (Perales et al., 2020), which 
could relate to gambling-specific overconfidence. However, testing context 
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dependency is challenging, and studies have not always found support for the 
hypothesis that gambling cues impact cognitive function in GD (Van Timmeren et al., 
2023). 

In our studies, all patients with GD were either currently in treatment or had recently 
received treatment, mostly through cognitive behavioral therapy (CBT). This therapy 
aims to tackle cognitive biases, which could have led to reduced general confidence 
biases and diminished our ability to find differences using neutral tasks that do not 
trigger gambling-related biases, such as overconfidence in winning a gamble. Directly 
comparing confidence and metacognitive ability between gambling irrelevant and 
gambling relevant environments will help us better understand these processes. 

 

Transdiagnostic and hierarchical approaches to study confidence in psychiatry 

An impactful shift in the field is the use of a transdiagnostic approach to the study of 
(meta)cognition in psychiatry (Dalgleish et al., 2020; Gillan et al., 2016). 
Transdiagnostic research especially seems to hold promise for understanding OCD, 
where obsessive-compulsive and anxiety symptoms often coexist. Rouault, Seow, et 
al. (2018) were among the first to demonstrate that transdiagnostic symptom 
dimensions better captured abnormalities in confidence than disorder-specific 
symptoms. Transdiagnostic anxious-depressive (AD) symptoms related negatively to 
local confidence (mirroring the effects shown in clinical OCD samples), while a 
dimension of compulsive behavior and intrusive thoughts (CIT) positively related to 
local confidence. These findings have been replicated in this thesis (Chapter 5), and in 
the general knowledge and predictive inference domain (Benwell et al., 2022; Seow & 
Gillan, 2020). 

Another recent shift has expanded the study of confidence beyond the local, trial-by-
trial assessments to incorporate higher-order levels within an interconnected 
hierarchical framework comprising global confidence and higher-order self-beliefs 
(Seow et al., 2021). Our findings are one of the first empirical confirmations of this 
theoretical framework, confirming the positive relationships between the different 
levels of the confidence hierarchy (Chapter 5), which has been replicated recently 
(Katyal et al., 2023). The field of metacognition research in psychiatry has for a long time 
solely focused on local confidence, with the idea that abnormalities in local confidence 
would relate to higher-order feelings about the self and pathological behavior in daily 
life (Rouault et al., 2022). Actually testing these relationships is crucial to bridge the gap 
between experimental studies and their implications for patients’ daily lives. In this 
thesis, we made an important step forward by showing that the same (negative) 
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abnormalities of local confidence indeed extend to higher-order levels of confidence, 
such as in symptoms of depression and apathy (Chapter 5), and clinical OCD patients 
(Chapter 6). This is not the case for every symptom dimension, however. In Chapter 5, 
we further provided crucial insights by merging the transdiagnostic and hierarchical 
approach to demonstrate that the hierarchical levels of confidence related differently 
to the symptom dimensions. While individuals with high AD symptoms showed 
negative biases across the hierarchy, individuals with high CIT symptoms showed a 
dissociation between the levels of the hierarchy. These findings highlight the 
importance of merging these approaches and call for a deeper investigation into 
underlying mechanisms, dynamics between levels of the hierarchy, and potential 
targets for treatment. 

Indeed, recent computational work has shown that distinct mechanisms may underlie 
the confidence abnormalities found for the different symptom dimensions (Katyal et 
al., 2023). The authors showed that individuals with high AD symptoms were overly 
sensitive to trials with low local confidence when forming their global confidence 
estimates that stretched longer periods of time, indicating that global underconfidence 
in AD, in part, arises from the bottom-up influence of low local confidence. 
Interestingly, individuals with high CIT symptoms demonstrated an even stronger 
weighting of trials with low versus high local confidence when forming their global 
confidence. This finding implies that while individuals with high CIT symptoms are 
generally quite confident about their trial-by-trial choices, when they are asked to 
reflect on their global task performance they mostly rely on those instances in which 
they were not so confident. This hypersensitivity to low local confidence could in turn 
be fueled by top-down influences of overly negative (prior) self-beliefs, both in 
individuals with high CIT and AD symptoms. This also fits with our finding of the 
coexistence of heightened local confidence and lowered global confidence in 
individuals scoring high on CIT symptoms (Chapter 5). Since we showed that self-
beliefs were more strongly affected in individuals with high AD compared to CIT 
symptoms (Chapter 5), it might be that these negative self-beliefs have a more direct 
and pronounced effect on the lower levels of the confidence hierarchy in individuals 
with high AD scores. On the other hand, in individuals with high CIT scores, negative 
self-beliefs may have an indirect influence, specifically affecting the integration of low 
local confidence to global confidence.  

While Katyal et al. (2023) focused on the bottom-up influence of local on global 
confidence, recent work has indeed indicated that manipulating top-down prior self-
beliefs about task ability causally and persistently influences local confidence 
measures, inducing biases of under- and overconfidence (Van Marcke et al., 2022). In 
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their model, prior beliefs shaped the mapping between accumulated evidence and 
confidence, where subjects with a very negative prior self-belief would never feel highly 
confident about their choices regardless of how much evidence they accumulated. 
Future work could benefit from applying these models to clinical data, exploring if the 
mapping between evidence and confidence is more tuned towards low confidence in 
individuals with high AD symptoms due to their stronger negative self-belief priors, than 
people with high CIT symptoms. Models incorporating both bottom-up and top-down 
influences across the hierarchy, where prior self-beliefs concurrently influence lower 
levels of confidence and are updated by these feelings of confidence could offer a more 
complete picture of the mechanisms underlying metacognitive dysfunction in 
psychiatric disorders. This could, in the long run, offer possible therapeutic entry points 
to restore accurate self-evaluation, that could have strong impact given the 
significance of self-beliefs for daily life. One potential therapeutic entry point is inspired 
by both studies (Katyal et al., 2023; Van Marcke et al., 2022), showing that positive trial-
by-trial feedback positively impacted local confidence persistently over blocks and 
cognitive domains, which was mediated by changes in global confidence (Katyal et al., 
2023). Strikingly, positive feedback also improved self-beliefs in the form of 
endorsement of positive vs. negative words (Katyal et al., 2023). This might be 
specifically promising for individuals suffering from underconfidence, such as patients 
with OCD or anxious and depressive symptoms.  

Next to deviations of confidence, another finding that has been consistently reported is 
that of lower task performance in individuals with high CIT symptoms (Benwell et al., 
2022; J. K. Lee et al., 2023). It has been suggested that high CIT symptoms are 
associated with an altered decision formation process, potentially linked to differences 
in the evidence accumulation process (Banca et al., 2015), or the formation of a higher-
order model of task structure (Voon et al., 2015). Convincingly, a recent study revealed 
a negative relationship between a variable called ‘decision acuity’ (a measure of 
decision-making ability across a wide variety of decision-making paradigms, 
independent of IQ) and a dimension encompassing symptoms of schizotypy, 
compulsivity and obsessionality, similar to our CIT symptom dimension (Moutoussis et 
al., 2021). This suggests that individuals with high CIT symptoms not only show 
distortions in the ability to reflect on their decisions, but also in the decision process 
itself. These processes are interlinked, as difficulty in evidence accumulation could 
bias confidence in these decisions. Importantly, we did not find evidence for lower task 
performance in clinical OCD patients, implying differences in cognitive decision-
making processes between clinical and sub-clinical groups suffering from obsessive-
compulsive symptoms. Our findings in GD, however, also point to less decision acuity, 
indicated by more risk taking (Chapter 9) and slower learning rates (Chapter 8), and 
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thus resemble individuals scoring high on symptoms of schizotypy, compulsivity and 
obsessionality (Moutoussis et al., 2021). However, currently, GD symptoms have not 
often been taken into account within transdiagnostic approaches, so it remains to be 
tested how symptoms of GD would relate to transdiagnostic dimensions. 

 

Generalizability of findings from the general population samples to clinical 
samples 

Neurocognitive research in psychiatry usually involves studying either clinical samples 
or analog samples from the general population with high scores on the symptom under 
consideration, with the assumption that the associations between symptoms and the 
neurocognitive process of interest are similar in clinical and non-clinical general 
population samples (Abramowitz et al., 2014). In this thesis we showed that clinical 
OCD patients generally have a negative confidence bias (Chapter 6,7), while 
individuals from the general population scoring high on CIT symptoms have increased 
local confidence (Chapter 5). Meanwhile, local confidence did not relate specifically 
to OCD symptoms in the general population (Chapter 5). Indeed, while directly 
comparing OCD patient groups to highly compulsive general population groups, we 
found evidence for different metacognitive profiles. The OCD patients exhibited local 
and global underconfidence relative to the healthy and highly compulsive groups 
(Chapter 6, 7), along with higher learning rates and higher error sensitivity (Chapter 7). 

These findings suggest that similar levels of obsessive-compulsive symptom severity 
relate to distinct behavioral profiles dependent on the nature of the sample. A recent 
model of OCD proposes that difficulty with processing state transitions may underlie 
obsessive-compulsive behaviors (Fradkin et al., 2020). On the one hand, OCD patients 
may have excessively low confidence in their actions because they have difficulty 
learning from past experiences to form an internal model of the world that guides their 
future actions. This could result in overreliance on immediate feedback (or obsessions) 
at the expense of accumulated knowledge, whilst the latter in theory is a more precise 
estimate of the state of the world. Due to the lack of confidence in their model of the 
world, patients’ behavior can become compulsive and habitual, constantly reacting to 
incoming feedback (or obsessions). This notion aligns with our findings of lower local 
and global confidence and increased learning rates in OCD patients (Chapter 6,7). On 
the other hand, rigid prior beliefs about the model of the world that are resistant to new 
sensory feedback can be held with high confidence. This can make behavior 
compulsive, habitual and inflexible, aligning with our findings of increased confidence 
and lower learning rates in the highly compulsive group (Chapter 7) and GD patients 
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(Chapter 8). In this way, different behavioral profiles may be associated with 
compulsivity. It is important to recognize that our findings come from a group-level 
analysis, and individual variations exist within the groups, likely lying along a behavioral 
spectrum rather than fitting precisely into one profile or the other. Additionally, our 
samples of OCD patients that were compared with high compulsive individuals, 
consisted of individuals without medication and comorbidities. It is possible that OCD 
patients with more severe symptoms and/or those using medication might show a 
distinct behavioral pattern. 

An important consideration that could separate clinical from highly compulsive general 
population samples is the extent to which symptoms affect daily life. In our papers, 
groups were matched on OCI-R score. The OCI-R assesses distress related to specific 
and select types of obsessions and compulsions, using three items per symptom type, 
which can confound severity with the type (and number) of symptoms that are present 
(Abramovitch et al., 2020). The Y-BOCS is likely more sensitive to heterogeneity of 
symptoms, as it first identifies the primary obsessions and compulsions before rating 
them on severity, frequency, duration and functional interference (i.e., impact on daily 
life). Therefore, it might be that functional impairments in daily life differ between the 
groups. Unfortunately, we do not have data for the non-clinical samples to directly test 
this, but we did find that our clinical group had a decreased feeling of autonomy in daily 
life compared to our highly compulsive group (Chapter 6). Corroborating this idea, 
recent studies have shown that students from the general population scoring high on 
OCD symptoms, compared to clinical OCD patients, indeed have identical OCI-R 
scores but lower Y-BOCS scores, indicating similar levels of distress but less impact on 
daily life in non-clinical samples (Abramovitch et al., 2023). To get a better 
understanding of the nature and impact of the obsessive-compulsive symptoms in 
these samples, future research should conduct a more comprehensive assessment of 
OCD symptoms using various different instruments in which severity is not influenced 
by the number of type of symptoms. 

Another consideration is that, even though our samples showed comparable severity 
of obsessive-compulsive, depressive and anxiety symptoms, it remains possible that 
the highly compulsive groups differ from the clinical OCD groups in terms of other 
(transdiagnostic) symptoms. The pattern of results observed in the highly compulsive 
general population samples more closely resembles that of individuals with high CIT 
symptoms rather than AD symptoms. Conversely, the pattern of our clinical OCD group 
more closely resembles the AD pattern. Indeed within the highly compulsive group, CIT 
symptoms were higher than the overall average of the entire general population sample 
from which it was drawn, while the AD symptoms were lower than the overall average 
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of the entire general population sample. This might suggest that symptoms of 
impulsivity, schizotypy, addiction or eating disorders are more prominent in the general 
population high compulsive groups than in the clinical groups, partially driving these 
results. Indeed, previous research has demonstrated that OCD symptoms can be 
mediated by different subgroups of compulsive-impulsive phenotypes (Prochazkova et 
al., 2018), and that specific compulsive symptom clusters are associated with either 
schizotypal and body dysmorphia symptoms, while other clusters are associated with 
mood-related symptoms (Fontenelle et al., 2022). It is important to disentangle these 
effects in future research by including a more diverse set of questionnaires in the 
clinical population.  

In light of our results, I would not directly advise against using analog samples 
altogether. I would, however, advise caution in bluntly generalizing these findings to 
clinical populations. This advice might be less urgent for some cognitive processes 
within OCD (e.g., attentional biases (Bar-Haim et al., 2007) or attachment problems 
(van Leeuwen et al., 2020)) or for disorders other than OCD (e.g., depression (Chapter 
2, Rouault, Seow, et al., 2018; Sax et al., 2023; Seow & Gillan, 2020)). An important step 
forward is to apply transdiagnostic approaches not only to analog samples, but also to 
clinical samples to investigate if transdiagnostic dimensions can better explain 
(meta)cognitive deficits in actual patients compared to diagnostic categories. Recent 
studies have indeed demonstrated that transdiagnostic compulsivity symptoms had 
better predictive power than a binary OCD (or GD) diagnosis in explaining goal-directed 
behavior and neurobiological connectivity (Gillan et al., 2020; Parkes et al., 2019). In 
general, I believe more effort should go into directly comparing clinical and highly 
symptomatic general population samples, not only to study generalizability of 
(meta)cognitive ability, but also to get a better idea of the differences between these 
groups that could relate to the transition to treatment seeking or significant functional 
impairment.  

 

Learning processes and confidence in OCD and GD 

Confidence is tightly coupled to our actions and decisions (Schulz et al., 2023). We 
observed a weaker action-confidence coupling for patients with GD, but not for patients 
with OCD (respectively Chapter 8, 7). Additionally, GD patients and highly compulsive 
individuals from the general population showed decreased learning rates compared to 
controls (i.e., more ‘sticky’ behavior), while OCD patients showed increased learning 
rates (i.e., more ‘volatile’ behavior).  
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These findings align with earlier work indicating that patients with OCD have higher 
levels of switching between choices, or reduced stickiness, in probabilistic learning 
tasks (Hauser, Iannaccone, et al., 2017; Kanen et al., 2019; Marzuki et al., 2021). 
Furthermore, OCD patients more often changed their responses even when receiving 
positive feedback, which was positively related to checking symptoms (Benzina et al., 
2021). Our findings in GD align with studies showing that patients with GD generally 
display greater behavioral inflexibility and more perseveration (Perandrés-Gómez et al., 
2021; van Timmeren et al., 2018). Moreover, they tend to engage less in directed 
exploration of the environment (Wiehler et al., 2021) and learn slower in stable 
conditions compared to controls (Perandrés-Gómez et al., 2021). These findings 
suggests that different learning mechanism may be at play in these disorders, that 
might also be related to confidence in a different manner.  

Our work indicates that patients with GD have difficulty using their confidence to inform 
their actions (Chapter 8). However, none of the discussed earlier studies have 
investigated the interplay between learning biases and confidence biases in GD. 
Recently, studies have started exploring the relationship between reinforcement 
learning and confidence in more detail, revealing a valence-induced confidence bias 
indicating higher confidence when learning to seek gains than to avoid losses, despite 
equal performance (Lebreton, Bacily, et al., 2019; C. C. Ting et al., 2020). A new 
computational model proposes that these confidence biases in reinforcement learning 
actually stem from learning biases (Salem-Garcia et al., 2023). In our ongoing work, not 
included in this thesis, we aim to explore the relationship between confidence and 
reinforcement learning biases in patients with GD. Based on computational work 
(Salem-Garcia et al., 2023), we expect to find increased confidence and a stronger 
value-induced confidence bias in GD patients compared to controls, which go together 
with more pronounced learning biases in GD patients. 

 

Compulsivity and confidence in OCD and GD 

Although our primary objective was not to directly compare confidence and 
metacognitive ability between OCD and GD patients, intriguing patterns worth 
discussing emerged. These disorders share a phenotype of compulsivity (Fineberg et 
al., 2016), but exhibit substantial symptomatic differences. As anticipated, patients 
with OCD and GD reside at opposite ends of the confidence spectrum (Chapter 4). This 
suggests that compulsivity can go together with both heightened confidence and 
reduced confidence, with the direction of the bias dependent on the type of compulsive 
behavior. A recent research line has focused on the transdiagnostic study of the 
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concept of compulsivity. Using psychological,  cognitive and neurobiological data, Den 
Ouden et al. (2022) uncovered three unique profiles relating to compulsivity (albeit with 
a small sample of patients, warranting replication). A compulsive non-avoidant profile 
was characterized by low-to-mild compulsivity without obvious emotional processing 
problems, a compulsive reactive profile was characterized by moderate compulsivity, 
a stronger reward bias and a tendency to avoid negative emotions, and a compulsive 
stressed profile related to high compulsivity, poor ability to manage stress and 
maladaptive emotion regulation. In addition, the latter profile showed significantly 
higher anxiety and depression levels than the former two profiles. Given these findings, 
I would expect that the compulsive reactive type resembles GD patients and individuals 
with high CIT symptoms, and would thus relate to overconfidence, while the 
compulsive stressed type would resemble OCD patients and individuals with high AD 
symptoms and would relate to underconfidence. Moving beyond OCD symptoms alone 
and specifically decomposing transdiagnostic compulsive behavior within diverse 
patient groups, shows promise in cognitive neuroscience (Albertella et al., 2020; Parkes 
et al., 2019), and could give more insight into how compulsivity and metacognition are 
related. 

Additionally, the findings of a stronger confidence bias in disorder-related context in GD 
raises the question of whether confidence biases are also magnified in a disorder-
related context in OCD, such as during symptom provocation, as also discussed in our 
review (Chapter 2). In our ongoing research, not presented in this thesis, we test this 
hypothesis. by investigating confidence in OCD patients during symptom provocation.  

 

Clinical implications 

Abnormalities in confidence have significant functional consequences for individuals. 
Negative confidence biases can be detrimental for self-esteem, motivation, and 
learning, while positive confidence biases could relate to risky behavior, rigid beliefs 
and dogmatism with harmful consequences. 

In recent years, metacognition has gained attention as a therapeutic target (Philipp et 
al., 2020). Metacognitive therapy focuses on addressing broader inflexible 
metacognitive beliefs and thoughts that patients may have (Wells, 2019), while 
metacognitive training aims to enhance awareness of disorder-specific (meta)cognitive 
biases to improve the ability to think about thinking (Philipp et al., 2020). For OCD 
specifically, the inference-based approach (IBA) therapy targets the distrust of sensory 
information, doubts and obsessive reasoning processes (Julien et al., 2016). In addition 
to these broader metacognitive interventions, our research provides evidence of a 
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disturbance in the general ability to construct an accurate reflection of reality across 
various psychiatric symptoms.  

While our research is primarily experimental, we have identified some potential 
avenues for improving therapies, which I will discuss below. However, first, I will 
address a few critical points regarding the clinical implications of our work. Importantly, 
while our work points to interesting windows of therapeutic opportunity, the field is still 
in its infancy in terms of direct clinical implications. First, our studies are of 
experimental nature. Whilst this allows for rigor of measurement, the tasks used remain 
distant from the day-to-day reality that patients encounter. I believe context is a very 
important variable for bridging this gap, and it is important to extend our type of 
experimental work to situations that are more ecologically valid and tap into disorder-
specific situations. Methods such as virtual reality and ecological momentary 
assessment could assist in these directions (Porras-Segovia et al., 2020; Shamay-
Tsoory & Mendelsohn, 2019). Second, there is quite some individual variability in 
metacognitive ability and confidence, also within patient groups, making it challenging 
to provide a one-fits-all therapy focusing on confidence. Computational modeling 
advances and transdiagnostic therapy might be valuable assets in addressing this 
challenge (Katyal et al., 2023; Vujanovic et al., 2017). Relatedly, I believe that the extent 
to which confidence abnormalities are a central characteristic differs between 
disorders and symptoms. While (local) confidence seem a central aspect for OCD and 
GD, this might be less so for schizotypy (Rouy et al., 2021), while for depression 
disturbances of higher-order levels of confidence might be more central to the disorder. 
As we have shown that different levels of confidence relate differently to symptom 
profiles, this has important implications for the focus of interventions. Additionally, the 
awareness of deficits in confidence about cognitive abilities might differ between 
patient groups, where patients with depressive symptoms might be very aware of their 
feeling of being incompetent, while patients with gambling disorder might be less aware 
of their miscalibrations in confidence. Finally, it is important to acknowledge that 
metacognitive ability is just one variable within the complex structure of psychiatric 
disorders, and multivariate approaches are likely necessary to fully understand and 
treat these conditions. 

The work in this thesis has also brought about insights regarding improving 
metacognitive ability in clinical populations. A potential avenue for therapy that I feel 
holds promise could involve the different hierarchical levels of metacognition. Recent 
insights have shown that positive feedback interventions can increase global 
confidence and improve affective self-beliefs in individuals with AD symptoms, which, 
in turn, may help ameliorate local confidence biases and symptom severity (Katyal et 
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al., 2023). Computational modeling approaches could assist by simulating expected 
improvements of metacognition under different feedback schemes, conditional on the 
symptomatology, which holds promise for personalized interventions. There are, 
however, other ways to break the self-perpetuating cycle of negative self-beliefs, which 
might also have an impact on confidence biases and learning biases (Müller-Pinzler et 
al., 2019). For example, CBT for OCD also addresses the tendency of patients to focus 
on their shortcomings or errors by deliberately cultivating global confidence and self-
esteem. Patients have to reflect on successful exposure experiences, redirecting their 
attention towards positive achievements. Research has shown that CBT indeed 
improves self-esteem in OCD patients (Toledano et al., 2020), and that positive self-
esteem and mastery experiences predicted decreases of Y-BOCS scores (Schwartz et 
al., 2017). It thus seems that improving global confidence in patients’ ability to perform 
certain (disorder-specific) tasks also bolsters self-esteem. Studying the temporal 
precedence of metacognition at various levels and their interaction with symptoms is 
an area of active research, still in its early stages. Large longitudinal studies 
incorporating continuous measures of metacognitive ability and confidence at different 
levels, together with over-time assessment of symptoms are needed to get a better 
understanding of these processes and will hopefully inspire more fruitful ways to 
improve therapies.  

Supplementing existing therapies (e.g., CBT or psycho-education) with interventions 
specifically centered on improving patients’ confidence calibration and metacognitive 
ability in disorder-relevant contexts could be effective in improving the ability to 
construct an accurate reflection of reality. Recent studies already indicated that CBT 
concurrently improves transdiagnostic AD symptoms and increases confidence, with 
the greatest improvements in symptoms observed in individuals who experienced the 
largest increase in confidence (Fox et al., 2023). Possibly, including a special focus on 
improving confidence could be even more effective in improving symptoms and 
confidence biases in the long term. 

This thesis also brings about new ideas for treatment of GD. First, we showed that 
patients with GD were more confident when taking a risk versus playing it safe (Chapter 
10), together with anticipatory regret, as confidence decreased more strongly when 
turning down gambles with potential increasing gain values. Recent computational 
work demonstrating heightened sensitivity to the anticipation of regret in GD patients 
chimes with these findings (Wu et al., 2021). Regret often stems from counterfactual 
thinking (i.e., ‘what could have been’) (Zeelenberg & Pieters, 2004). In the context of 
gambling, Petrocelli & Crysel (2009) revealed that counterfactual thinking leads to 
overconfidence in future gambles, subsequently increasing the likelihood of continued 
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gambling with larger bets (Petrocelli & Sherman, 2010). These findings speak to the 
pragmatic relevance of regret sensitivity in GD. Currently, CBT for GD focuses on 
challenging cognitive biases and erroneous beliefs (Bodor et al., 2021; Fortune & 
Goodie, 2012). Regret differs from typical cognitive gambling biases, however, as it 
deals with emotions of the outcome rather than with the probability of the outcome. A 
valuable approach could be to focus more directly on faulty perceptions about 
(anticipatory) regret within the CBT framework by emphasizing the emotional 
consequences (e.g., regret) of taking risks and counterfactual thinking (Tochkov, 2008). 
Second, patients with GD who exhibited higher average attention toward the potential 
gains of a gamble were more likely to engage in gambling with lower potential gains 
(Chapter 9). On the other hand, gamblers with higher average attention toward the 
potential loss tended to already stop gambling with lower potential losses and engage 
in gambling less frequently. These findings suggest that training GD patients to actively 
direct their attention away from gains and toward losses during gambling could help 
reduce gambling behavior. Currently, attentional bias training focuses on remedying 
attentional biases towards gambling stimuli (Boffo et al., 2017). Future attentional 
therapies could go beyond this, and instead focus on directly steering the attentional 
process during actual gambling. 

 

Strengths and limitations 

The main strength of this thesis lies in its comprehensive exploration. We employed a 
wide range of cognitive tasks, including perceptual decision-making tasks, with and 
without an incentivized element, inferential learning tasks and gambling tasks. 
Moreover, we used multiple methodologies, including behavioral measures, fMRI, 
computational modeling, and eye-tracking. Next, we incorporated hierarchal and 
transdiagnostic approaches to study confidence. Finally, we included different 
samples, among which healthy (control) samples, general population samples, highly 
compulsive samples from the general population, patients with GD and patients with 
OCD both taking medication and medication free. Overall, this broad perspective has 
yielded a deeper understanding of the intricate nature of confidence and its deviations 
in psychiatric disorders. 

However, this thesis and the research field are not without limitations, some of which I 
touched upon in the preceding discussion. First, as mentioned before, the tasks used 
are of artificial nature and it is not yet clear how metacognitive ability measured in these 
tasks translates to day-to-day functioning. Second, all our studies are cross-sectional, 
which limits our ability to establish causal relationships and to study temporal 
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precedence. Third, there are methodological limitations to measuring confidence. Over 
the past years, substantial efforts have been made to develop ‘pure’ metacognitive 
metrics and methods that offer better control over confounding factors, such as the 
development of the (hierarchical) meta-d’ framework (Fleming, 2017). A recent 
comprehensive examination of metacognitive measures showed that all measures are 
valid, show similar levels of precision, and high split-half reliabilities when using 100 or 
more trials (Rahnev, 2023). However, metacognitive sensitivity and efficiency as 
measured using meta-d’ and meta-d’/d’ exhibit lower stability with fewer than a couple 
of hundred trials (Rouault, McWilliams, et al., 2018). Additionally, many measures of 
metacognitive ability are not entirely independent of performance or confidence biases 
(Guggenmos, 2021; Rahnev, 2023). Numerous studies have used a staircase design to 
equalize performance across participants to specifically isolate changes in 
confidence. However, research has shown that using a continuous staircase inflates 
measures of metacognition, and the authors instead recommend using a single 
difficulty level to enhance precision (Rahnev & Fleming, 2019). As a result, it is likely 
that studies using a continuous staircase have underestimated their effect sizes 
(Rahnev & Fleming, 2019). Moreover, important for studies investigating individual 
differences and longitudinal designs, test-retest reliability of confidence judgments has 
been found to be relatively poor even with large numbers of trials (Rahnev, 2023). 
However, these test-retest reliability findings are based on a single dataset and require 
replication and cautious interpretation. Contrarily, test-retest reliability was found to be 
stronger for metacognitive efficiency or metacognitive bias (i.e., calibration) (Ais et al., 
2016). Overall, these studies emphasize the importance of using a large number of 
trials and awareness of the limitations that these measures hold. Fourth, relatedly, 
even though the replication of findings using the extensively used transdiagnostic 
factors (AD, CIT, SW) is meaningful, the questionnaires used for this approach do not 
exhaustively cover all psychiatric symptoms and should not be considered the 
definitive standard. For example, they do not include symptoms of GD. Although GD 
symptoms share similarities with the CIT dimension and also relate to increased 
confidence, these symptoms should be formally incorporated in a transdiagnostic 
framework. Lastly, while significant progress has been made in developing rigorous 
methodologies to investigate metacognition, this progress has come at the cost of 
ignoring the broader scope of metacognitive processes (Katyal & Fleming, 2023). An 
important step forward has been made by appreciating confidence at various 
hierarchical levels. As suggested by Katyal & Fleming (2023), further improvements can 
be made by studying the social aspect of metacognition, and broadening the field to 
explore metacognition in domains without an objective ground truth, such as affective 
states and value-based decision-making. 
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Future directions and ongoing research 

Looking ahead, I propose several key points for future research. First, there is a need for 
larger clinical samples with longitudinal approaches to establish a clearer 
understanding of the cause-and-effect structure and temporal dynamics of 
metacognition and symptoms, as well as to investigate the effects of treatment on 
metacognitive ability. Larger clinical samples would also facilitate transdiagnostic 
approaches that can be compared to findings from general population samples. 
Smartphone-based research methodologies hold great potential in achieving these 
goals (Gillan & Rutledge, 2021). Second, greater emphasis should be placed on 
examining the impact of contextual factors on metacognitive ability, especially in the 
light of disorder-related context, as those are likely the type of situations that provoke 
the strongest symptoms. Additionally, contextual factors might be especially potent 
modulators of higher-order levels of confidence, since these form over longer 
timescales. Indeed, these two important key points align with the recent compelling 
call for integrating time and context into (computational) psychiatry research 
(Hitchcock et al., 2022). 

Third, it is crucial to incorporate the broader scope of metacognition in our studies. A 
first step has been made by looking beyond local confidence, but most paradigms 
usually still focus on the metacognitive abilities of an individual in isolation, while all of 
us are embedded in a social context. Next to intrapersonal functions, metacognition 
also serves interpersonal functions simply because we communicate and share our 
private states of confidence (Pescetelli et al., 2016). In other words, ‘metacognition is 
tuned for social interaction by social interaction’ (Heyes et al., 2020). An intriguing path 
for future studies involves investigating whether intrapersonal confidence biases spill 
over into social communication. This idea gets support from a recent study showing 
that patients with schizophrenia displayed overconfidence in their advice to others 
when compared to a control group (Hertz et al., 2020). Moreover, the field could focus 
on further exploring how social information in turn impacts intrapersonal 
metacognition. Fourth, the development of more extensive computational models of 
confidence formation and biases will contribute to a better understanding of the 
underlying mechanisms and ways to treat them. These models could incorporate 
multiple levels of metacognition, contextual influences, and even biological 
information. Finally, it is important to acknowledge and consider the substantial 
variation in the manifestation, incidence, underlying mechanisms, and treatment 
response of psychiatric symptoms between sexes and gender (Bangasser & Cuarenta, 
2021; Holingue et al., 2020; LeGates et al., 2018; Mallorquí-Bagué et al., 2021; Raines 
et al., 2018), and their relation to metacognition, as research has revealed sex 
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differences in metacognitive ability (Chapter 4, Ariel et al., 2018; Moses-Payne et al., 
2021).  

Within our ongoing research not included in this thesis, we aim to build on some of 
these proposals. We are currently investigating the effects of disorder-specific context 
by way of symptom provocation on confidence judgments in OCD and the integration 
of post-decision evidence into confidence, particularly in relation to changes of mind. 
Moreover, we are studying the interplay between confidence biases and learning biases 
in reversal learning and contextual reinforcement learning in GD. On a neurobiological 
level, we are currently delving deeper into the relationship between confidence and the 
dopamine system in GD using 18F-DOPA PET imaging to assess dopamine synthesis 
capacity. With our research, I hope to have paved, and continue to pave the way for 
future studies further exploring the fascinating ‘mind’s mirror’ in health and disease. 
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Supplementary materials 
Appendix A 

Supplement to Chapter 3 

 

Full behavioral models  

To assess whether our main behavioral results on confidence still hold in a full model, 
considering various other factors, we performed a model selection procedure of 
various linear mixed effect models. We used linear mixed-effects models (LMEM) as 
implemented in the lmer function from the lme4 package in R (Version 1.1-12; (Bates et 
al., 2015)).  

We iteratively built several LMEMs (Table A1), and the final one was selected by model 
comparison, assessing model fit by using chi-square tests on the log-likelihood values, 
as well as comparison of the AIC and BIC model values. Model predictors were added 
whenever model fit was significantly improved. 

 The final model included fixed effects of incentive value (gain (1), neutral (0) or loss (-
1)), evidence, accuracy (correct (1) or incorrect (0)), the interaction of accuracy end 
evidence, reaction time, and difficulty level (easy (1), medium (2), difficult (3)), as well 
as a random intercept and slope for the effect of incentive on confidence (model 9, see 
Table A1). Satterthwaite approximations (Schaalje et al., 2002) were used to calculate 
degrees of freedom and p-value estimates for the fixed effects’ regression coefficients 
by using the ‘lmerTest’ package (Version 2.0-36 (Kuznetsova et al., 2017)). Visual 
inspection of residual plots did not reveal any obvious deviations from 
homoscedasticity or normality. 

Final model results revealed that the significant effect of net incentive value on 
confidence still holds, while considering all other factors (β = 0.88 ± 0.30, t32 = 2.94, P = 
0.006) (Table A2). Moreover, we found a significant effect of RT on confidence, showing 
that quicker choices lead to higher confidence levels (β = -5.24 ± 0.21, t4305 = -25.34, P 
< 2e-16) (Table A2). We also replicated that the link between confidence ratings and 
evidence is positive for correct and negative for incorrect responses.  
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Table A1: Model descriptions and comparison 

Model Model notation AIC BIC Model 
comp. χ2 P-

value 
Winning 
model 

1 Confidence ~ Incentive 
+ (1|Subject) 35083 34109     

2 Confidence ~ Incentive 
+ (1+Incentive|Subject) 34077 34115 1 vs. 2 10.64 0.005 2 

3 
Confidence ~ Incentive 
+ Accuracy + 
(1+Incentive|Subject) 

33920  
 

33964  
 2 vs. 3 158.78 <0.001 3 

4 
Confidence ~ Incentive 
+ Accuracy + Evidence + 
(1+Incentive|Subject) 

33817  33868  
 3 vs. 4 104.68 <0.001 4 

5 
Confidence ~ Incentive 
+ Accuracy*Evidence + 
(1+Incentive|Subject) 

33767 33824 4 vs. 5 51.92 <0.001 5 

6 

Confidence ~ Incentive 
+ Accuracy*Evidence + 
Gender + 
(1+Incentive|Subject) 

33769 33833 5 vs. 6 0.006 0.936 5 

7 

Confidence ~ Incentive 
+ Accuracy*Evidence + 
Age + 
(1+Incentive|Subject) 

33769 33833 5 vs. 7 0.16 0.687 5 

8 

Confidence ~ Incentive 
+ Accuracy*Evidence + 
Difficulty + 
(1+Incentive|Subject) 

33788 33808 5 vs. 8 33.11 <0.001 8 

9 

Confidence ~ Incentive 
+ RT + 
Accuracy*Evidence + 
Difficulty + 
(1+Incentive|Subject) 

33142 33218 8 vs. 9 598.25 <0.001 9 

Shown here are the model notations of all nine models with their respective AIC and BIC values, 
as well as model comparisons with corresponding χ2 and P-values, resulting in the winning model 
9.  
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Table A2: Results of linear mixed-effects model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Shown here are the results of the full linear mixed-effects model of the winning model. β: 
estimated regression coefficients for fixed effects ± estimated standard error of the regression 
coefficients, with corresponding t- and P-values. 
 
Explorative analyses VS 

We also applied our ROI analytical strategy to the VS. Like for the VMPFC and dACC 
analyses we built an independent anatomical ROI of the VS from the Brainnetome Atlas 
(Figure A1A) (Fan et al., 2016).  

We compared early certainty, incentive and confidence-related activations during both 
time-points in all available GLMs within the VS ROI (see Figure 4 in main text for 
comparable analysis in VMPFC). Thus, we extracted individual standardized regression 
coefficients (t-values) from the VS, corresponding to these respective activations and 
statistically compared them using repeated measure ANOVAs and post-hoc paired t-
tests (Figure A1, Table A3). Activations for early certainty during choice moment were 
similar for all GLMs (ANOVA F(4,29)= 0.43, P=0.787; Figure A1B), and was only positively 
related to early certainty in GLM2b (but marginally positively related in all other GLMs) 
(GLM1: t29= 2.01, P = 0.0541; GLM2a: t29= 2.01, P = 0.0536; GLM2b: t29= 2.12, P = 0.0428; 
GLM3: t29= 2.00, P = 0.0531; GLM4: t29= 2.00, P = 0.0547). GLM specification had an 
impact on the incentive activation (ANOVA, main effect of GLM; F(3,29) = 9.28, P < 

Full Behavioral Results 
Confidence ~ Incentive + RT + Accuracy*Evidence + Difficulty + (1+Incentive|Subject) 

Intercept (B0) 
β = 76.56 ± 1.27 

t45 = 60.36 
P  < 2e-16 

Incentive 
β = 0.88 ± 0.30 

t32 = 2.94 
P = 0.006 

RT 
β = -5.24 ± 0.21 

t4305 = -25.34 
P < 2e-16 

Accuracy 
β = 3.30 ± 0.42 

t4290 = 7.86 
P = 4.71e-15 

Accuracy * Evidence 
β = 2.83 ± 0.50 

t4275 = 5.69 
P = 1.38e-08 

Difficulty hard 
β = -2.22 ± 0.43 

t4258 = -5.20 
P = 2.07e-07 

Difficulty medium 
β = -1.53 ± 0.41 

t4256 = -3.71 
P = 0.0002 
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0.001; Figure A1C), but not on the confidence activations (ANOVA, main effect of GLM; 
F(3,29) = 1.37, P = 0.2561; Figure A1D) during incentive/rating moment. In the incentive 
case, post-hoc t-tests showed that T-values extracted from the GLM3 that related to the 
EV regressor were significantly higher than from other GLMs with a different coding of 
incentives (GLM1 versus GLM3: t29= -3.39, P = 0.002; GLM2b versus GLM3: t29= -3.62, P 
= 0.001; GLM4 versus GLM3: t29 = -3.75, P<0.001), but activity related to EV and 
confidence or certainty during rating moment were found to be similarly strong.  

Finally, we repeated the qualitative falsification exercise (see Figure 5 in the main text) 
for the VS ROI. We extracted the VS activations for all regressors in GLM5 using our ROI, 
and compared them with the theorized qualitative patterns (Figure A2, Table A4-5). At 
the stimulus/choice moment, we found no effect of incentive conditions on dACC 
baseline activity, nor on its correlation with confidence – “slope” (ANOVA baseline: P = 
0.9616; ANOVA slope: P = 0.2595). At rating moment, incentive conditions had an effect 
on VS baseline activity (ANOVA F(2,29)= 6.40, P= 0.0031). Post-hoc testing revealed that 
VS baseline activity was significantly positive in all incentive conditions (Loss: t29 = 5. 
26, P <0.001 ; Neutral: t29 = 3.37, P = 0.022; Gain: t29 = 6.17, P<0.001), but larger in gain 
versus loss (t29 = -2.20, P = 0.036) and in gain vs neutral conditions (t29 = -2.93, P = 0.006), 
but not in loss vs neutral condition (t29 = 1.87, P = 0.072) (see Table A4-5). Incentive 
conditions had a significant effect (ANOVA F(2,29)= 5.94 P = 0.005) on the slope of the 
correlation of VS activity with confidence, where only in the gain condition the slope 
was positive (t29 = 2.79, P = 0.009). Post-hoc testing showed that the correlation with 
confidence was significantly higher in gain versus loss (t29 = -3.16, P = 0.0036), and 
higher for gain versus neutral conditions (t29 = -2.72, P = 0.0109), whereas no difference 
was found for neutral versus loss condition (t29 = 0.41, P = 0.688). Again, similar to the 
results in the VMPFC and dACC, the observed pattern of VS activity was not featured in 
the EV model, nor in the confidence model, or any other model prediction, and thus 
points to a more complex picture of disruption of metacognitive signals due to 
motivational signals.  
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Figure A1: Activation in Ventral Striatum Across Mode. a) Anatomical VS region of interest 
(ROI). b-d) Comparison of dACC activations to different specifications of early certainty during 
choice moment (B), incentives during incentive/rating moment (C) and confidence during 
incentive/rating moment (D), as implemented in the different GLMs. Dots represent individual 
activations (N=30); bar and error bars indicate sample mean ± standard error of the mean. Grey 
lines highlight within subject variation across the different specifications. Cert: early certainty; 
Inc.: incentives; conf: confidence; EV: expected value; Diamond-ended horizontal bars indicate 
the results of repeated-measure ANOVAs. Dash-ended horizontal bars indicate the result of post-
hoc paired t-tests. ~ P < 0.10; * P<0.05; ** P<0.01; *** P < 0.001. For repeated-measure ANOVA 
results: ns P>0.05, for one-sample t-tests: ns P>0.1. 

 

Figure A2: Activation in Ventral Striatum across Incentives and Timepoints. a-b) VS ROI 
analysis. T-values corresponding to baseline and regression slope were extracted in the three 
incentive conditions, and at the two time-points of interest (A: stimulus/choice; B: 
incentive/rating). Dots represent individual activations (N=30); bar and error bars indicate sample 
mean ± standard error of the mean. Grey lines highlight within subject variation across the 
different incentive conditions. Diamond-ended horizontal bars indicate the results of repeated-
measure ANOVAs. Dash-ended horizontal bars indicate the result of post-hoc paired t-tests. ~ P 
< 0.10; * P<0.05; ** P<0.01; *** P < 0.001. For repeated-measure ANOVA results: ns P>0.05, for 
one-sample t-tests: ns P>0.1. 
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Table A3: Comparison of VS parametric activity (t-values) as a function of model 
specification (GLMs) 

The table reports descriptive and inferential statistics on VS ROI parametric activations with three 
different variables of interest: early certainty effects at choice moment, incentive effects at rating 
moment and confidence effects at rating moment (see Figure A5). Per effect of interest, results 
of one-sample t-tests against zero, repeated-measure (RM) ANOVAs on the main effect of GLMS, 
and post-hoc t-test results are shown. 
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GLM1 GLM2a GLM2b GLM3 GLM4 
0.30 ± 0.15 
t29 = 2.0075 
P = 0.0541 

0.30 ± 0.15 
t29 = 2.0120 
P = 0.0536 

0.31 ± 0.15 
t29 = 2.1190 
P = 0.0428  

0.31 ± 0.16 
t29 = 2.0162 
P = 0.0531 

0.31 ± 0.15 
t29 = 2.0025 
P = 0.0547 

ANOVA (Main 
effect of GLM)     

F(4,29)=0.43 
P=0.7870     

In
ce

nt
iv

e 

 GLM1 GLM2b GLM3 GLM4 

 
0.19 ± 0.09 
t29 = 2.0684 
P = 0.0476 

0.22 ± 0.10  
t29 = 2.0750 
P = 0.0470 

0.31 ± 0.11 
t29 = 2.7793 
P = 0.0095 

0.22 ± 0.10 
t29 = 2.1448 
P = 0.0405 

ANOVA (Main 
effect of GLM) 

T-Test 
(3 vs 1) 

T-Test 
(3 vs 2b)  T-Test 

(3 vs 4) 

F(3,29)= 9.28 
P=2.17206e-
05 

-0.12 ± 0.03 
t29 = -3.3930 
P = 0.0020 

-0.09 ± 0.03 
t29 = -3.6234 
P = 0.0011 

 

-0.09 ± 0.02 
t29 = -3.7459 
P = 7.9381e-
04 

C
on

fid
en

ce
 

 GLM1 GLM2a GLM2b GLM3 

 
0.07 ± 0.11 
t29 = 0. 6626 
P = 0. 5128 

0.11 ± 0.12 
t29 = 0. 8974 
P = 0. 3769 

0.08 ± 0.12 
t29 = 0. 6265 
P = 0. 5359 

 0.31 ± 0.11 
t29 = 2. 7793 
P = 0. 0095 

ANOVA (Main 
effect of GLM)     

F(3,29) = 1.37 
P = 0.2561     
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Table A4: Comparison of VS activity at choice moment (t-values), as a function of incentive 
condition 

The table reports descriptive and inferential statistics on VS ROI parametric activations in our 
three incentive conditions during choice moment, for both baseline activity as well as the 
correlation with early certainty (i.e., slope) (see Figure A6). Results of RM ANOVAs and one-
sample t-tests against 0 are shown. 

 

Table A5: Comparison of VS activity at rating moment (t-values), as a function of incentive 
condition 

The table reports descriptive and inferential statistics on VS ROI parametric activations in our 
three incentive conditions during rating moment, for both baseline activity as well as the 
correlation with confidence (i.e., slope) (see Figure A6). Results of one-sample t-tests against 0, 
RM ANOVAs and post-hoc t-tests are shown. 

Explorative analyses dACC 

C
ho

ic
e/

St
im

 

ba
se

lin
e 

Inc. -100 Inc. 0 Inc. +100 ANOVA 

-0.04 ± 0.17  
t29 = -0.2118 
P = 0. 8337 

-0.01 ± 0.19 
t29 = -0.0692 
P = 0. 9453 

-0.01 ± 0.17 
t29 = -0.0481 
P = 0. 9620 

F(2,29) = 0.04 
P = 0.9616 

sl
op

e 

Inc. -100 Inc 0 Inc. +100 ANOVA 
0.10 ± 0.13  
t29 = 0.8188 
P = 0.4196 

0.26 ± 0.09 
t29 = 2.9434 
P = 0.0063 

0.24 ± 0.09 
t29 = 2.6902 
P = 0.0117 

F(2,29) = 1.38 
P = 0.2595 

In
ce

nt
iv

e/
ra
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g 

ba
se

lin
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Inc -100 Inc 0 Inc +100 ANOVA 

0.80 ± 0.15 
t29 = 5.2603 
P = 1.2305e-05 

0.61 ± 0.18 
t29 = 3.3655 
P = 0.0022 

1.06 ± 0.17 
t29 = 6.1747 
P = 9.8752e-07 

F(2,29) = 6.40 
P = 0.0031 

T-Test 
[-100 vs 0] 

T-Test 
[0 vs 100] 

T-Test 
[-100 vs 100] 

 0.19 ± 0.10 
t29 = 1.8707 
P = 0.0715 

-0.45 ± 0.15  
t29 = -2.9268 
P = 0.0066 

-0.26 ± 0.12 
t29 = -2.1995 
P = 0.0360 

sl
op

e 

Inc -100 Inc 0 Inc +100 ANOVA 

-0.04 ± 0.08 
t29 = -0.4695 
P = 0.6422 

-0.08 ± 0.09 
t29 = -0.9138 
P = 0.3684 

0.28 ± 0.10 
t29 = 2.7922 
P = 0.0092 

F(2,29) = 5.94 
P = 0.0045 

T-Test 
[-100 vs 0] 

T-Test 
[0 vs 100] 

T-Test 
[-100 vs 100] 

 0.04 ± 0.11 
t29 = 0.41 
P = 0.6877 

-0.36 ± 0.13 
t29 = -2.7197 
P = 0.0109 

-0.32 ± 0.10 
t29 = -3.1642 
P = 0.0036 
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Explorative analysis of dACC results show overlap between confidence and EV 
signal 

While we did not find clear evidence for VMPFC activity correlating with confidence at 
our pre-specified statistical threshold, we did find a cluster of dACC activity positively 
correlating with both confidence (Figure 2A main text) and EV (Figure 2B main text). We 
therefore applied our ROI analytical strategy – originally designed for the VMPFC – to 
the dACC. Like for the VMPFC analyses we built an independent anatomical ROI of the 
dACC from the Brainnetome Atlas (Fan et al., 2016) (Figure A2A).  

We compared early certainty, incentive and confidence-related activations during both 
time-points in all available GLMs within the dACC ROI (see Figure 4 in main text for 
comparable analysis in VMPFC). Thus, we extracted individual standardized regression 
coefficients (t-values) from the dACC, corresponding to these respective activations 
and statistically compared them using repeated measure ANOVAs and post-hoc paired 
t-tests (Figure A2, Table A6). Activations for early certainty during choice moment were 
similar for all GLMs (ANOVA F(4,29)= 1.75, P=0.149; Figure A2B), and all were 
significantly negatively related to early certainty (GLM1: t29= -2.48, P = 0.019; GLM2a: 
t29= -2.48, P = 0.019; GLM2b: t29= -2.39, P = 0.024; GLM3: t29= -2.48, P = 0.019; GLM4: 
t29= -2.51, P = 0.018). GLM specification had an impact on the incentive activation 
(ANOVA, main effect of GLM; F(3,29) = 19.13, P < 0.001; Figure A3C), but not on the 
confidence activations (ANOVA, main effect of GLM; F(3,29) = 1.95, P = 0.127; Figure 
A3D) during incentive/rating moment. In the incentive case, post-hoc t-tests showed 
that T-values extracted from the GLM3 that related to the EV regressor were significantly 
higher than from other GLMs with a different coding of incentives (GLM1 versus GLM3: 
t29= -5.22, P < 0.001; GLM2b versus GLM3: t29= -4.45, P<0.001; GLM4 versus GLM3: t29 = 
-4.31, P<0.001), but activity related to EV and confidence or certainty during rating 
moment were found to be similarly strong.  

 

&
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 Figure A3: Activation in Dorsal Anterior Cingulate Cortex Across Models. a) Anatomical dACC 
region of interest (ROI). b-d) Comparison of dACC activations to different specifications of early 
certainty during choice moment (B), incentives during incentive/rating moment (C) and 
confidence during incentive/rating moment (D), as implemented in the different GLMs. Dots 
represent individual activations (N=30); bar and error bars indicate sample mean ± standard error 
of the mean. Grey lines highlight within subject variation across the different specifications. Cert: 
early certainty; Inc.: incentives; conf: confidence; EV: expected value; Diamond-ended 
horizontal bars indicate the results of repeated-measure ANOVAs. Dash-ended horizontal bars 
indicate the result of post-hoc paired t-tests. ~ P < 0.10; * P<0.05; ** P<0.01; *** P < 0.001. For 
repeated-measure ANOVA results: ns P>0.05, for one-sample t-tests: ns P>0.1. 

  

Finally, we repeated the qualitative falsification exercise (see Figure 5 in the main text) 
for the dACC ROI. We extracted the dACC activations for all regressors in GLM5 using 
our ROI, and compared them with the theorized qualitative patterns (Figure A3, Table 
A7-8). At the stimulus/choice moment, we found no effect of incentive conditions on 
dACC baseline activity, nor on its correlation with confidence – “slope” (ANOVA 
baseline: P = 0.952; ANOVA slope: P = 0.534). At rating moment, incentive conditions 
had an effect on dACC baseline activity (ANOVA F(2,29)= 12.30, P<0.001). Post-hoc 
testing revealed that dACC baseline activity was significantly positive in all incentive 
conditions (Loss: t29 = 3.96, P <0.001 ; Neutral: t29 = 2.69, P = 0.011; Gain: t29 = 6.31, 
P<0.001), but larger in gain versus loss (t29 = -3.63, P = 0.001) and in gain vs neutral 
conditions (t29 = -4.10, P < 0.001), but not in loss vs neutral condition (t29 = 1.71, P = 
0.098) (see Table A7-8). Incentive conditions had a marginally significant effect (ANOVA 
F(2,29)= 3.12 P = 0.052) on the slope of the correlation of dACC activity with confidence, 
where only in the gain condition the slope was positive (t29 = 3.35, P = 0.002). Post-hoc 
testing showed that the correlation with confidence was only significantly higher in gain 
versus loss (t29 = -2.37, P = 0.025), and marginally higher for gain versus neutral 
conditions (t29 = -1.95, P = 0.060), whereas no difference was found for neutral versus 
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loss condition (t29 = -0.18, P = 0.860). Again, similar to the results in the VMPFC, the 
observed pattern of dACC activity was not featured in the EV model, nor in the 
confidence model, or any other model prediction, and thus points to a more complex 
picture of disruption of metacognitive signals due to motivational signals. 

 

Figure A4: Activation in Dorsal Anterior Cingulate Cortex across Incentives and Timepoints. 
a-b) dACC ROI analysis. T-values corresponding to baseline and regression slope were extracted 
in the three incentive conditions, and at the two time-points of interest (A: stimulus/choice; B: 
incentive/rating). Dots represent individual activations (N=30); bar and error bars indicate sample 
mean ± standard error of the mean. Grey lines highlight within subject variation across the 
different incentive conditions. Diamond-ended horizontal bars indicate the results of repeated-
measure ANOVAs. Dash-ended horizontal bars indicate the result of post-hoc paired t-tests. ~ P 
< 0.10; * P<0.05; ** P<0.01; *** P < 0.001. For repeated-measure ANOVA results: ns P>0.05, for 
one-sample or two sample t-tests: ns P>0.1. 

  
&
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Table A6: Comparison of ACC parametric activity (t-values) as a function of model 
specification (GLMs) 

The table reports descriptive and inferential statistics on ACC ROI parametric activations with 
three different variables of interest: early certainty effects at choice moment, incentive effects at 
rating moment and confidence effects at rating moment (see Figure A3). Per effect of interest, 
results of one-sample t-tests against zero, repeated-measure (RM) ANOVAs on the main effect of 
GLMS, and post-hoc t-test results are shown. 
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GLM1 GLM2a GLM2b GLM3 GLM4 

-0.5 ± 0.2 
t29 = -2.48 
P = 0.019 

-0.51 ± 0.2 
t29 = -2.48 
P = 0.019 

-0.48 ± 0.2 
t29 = -2.39 
P = 0.024 

-0.51 ± 0.21 
t29 = -2.48 
P = 0.019 

-0.52 ± 0.21 
t29 = -2.51 
P = 0.018 

ANOVA (Main 
effect of GLM)     

F(4,29)=1.75 
P=0.1439     

In
ce
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 GLM1 GLM2b GLM3 GLM4 

 
0.34 ± 0.12 
t29 = 2. 82 
P = 0. 0085 

0.41 ± 0.12 
t29 = 3. 34 
P = 0. 0023 

0.57 ± 0.13 
t29 = 4. 25 
P = 0. 0002 

0.42 ± 0.12 
t29 = 3. 43 
P = 0. 0018 

ANOVA (Main 
effect of GLM) 

T-Test 
(3 vs 1) 

T-Test 
(3 vs 2b)  T-Test 

(3 vs 4) 

F(3,29)=19.13 
P= 1.0e-08 

-0.23 ± 0.09 
t29 = -5.22 
P =  1.378e-05 

-0.16 ± 0.07 
t29 = -4.45 
P =  1.16e-04 

 
-0.15 ± 0.07 
t29 = -4.3 
P = 1.71e-04 

C
on

fid
en
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 GLM1 GLM2a GLM2b GLM3 

 
0. 35 ± 0.13 
t29 = 2. 65 
P = 0. 0128 

0.37 ± 0.14 
t29 = 2. 75 
P = 0. 0102 

0.22 ± 0.12 
t29 = 1.82 
P = 0. 0795 

0.57 ± 0.13 
t29 = 4. 25 
P = 0. 0002 

ANOVA (Main 
effect of GLM) 

T-Test 
(3 vs 1) 

T-Test 
(3 vs 2a) 

T-Test 
(3 vs 2b) 

 

F(3,29) = 1.95 P 
= 0.1272 

-0.22 ± 0.36 
t29 = -1. 24 
P = 0. 2257 

-0.20 ± 0.35 
t29 = -1.15 
P =0.2583 

-0.35 ± 0.33 
t29 = -2.20 
P = 0. 036 
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Table A7: Comparison of ACC activity at choice moment (t-values), as a function of incentive 
condition 

The table reports descriptive and inferential statistics on ACC ROI parametric activations in our 
three incentive conditions during choice moment, for both baseline activity as well as the 
correlation with early certainty (i.e., slope) (see Figure A4). Results of RM ANOVAs and one-
sample t-tests against 0 are shown.  

Table A8: Comparison of ACC activity at rating moment (t-values), as a function of incentive 
condition 

The table reports descriptive and inferential statistics on ACC ROI parametric activations in our 
three incentive conditions during rating moment, for both baseline activity as well as the 
correlation with confidence (i.e., slope) (see Figure A4). Results of one-sample t-tests against 0, 
RM ANOVAs and post-hoc t-tests are shown. 
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Inc. -100 Inc. 0 Inc. +100 ANOVA 

-0.11 ± 0.26 
t29 = -0.43 
P = 0.67 

-0.07 ± 0.27 
t29 = -0.26 
P = 0.80 

-0.10 ± 0.21 
t29 = -0.49 
P = 0.63 

F(2,28) = 0.05 
P = 0.95 

sl
op

e 

Inc. -100 Inc 0 Inc. +100 ANOVA 

-0.33 ± 0.15 
t29 = -2.17 
P = 0.04 

-0.29 ± 0.15 
t29 = -1.98 
P = 0.06 

-0.16 ± 0.16 
t29 = -0.98 
P = 0.34 

F(2,28) = 0.63 
P = 0.53 

In
ce

nt
iv

e/
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tin
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e 

Inc -100 Inc 0 Inc +100 ANOVA 
1.01 ± 0.25 
t29 = 3.96 
P = 0.0004 

0.79 ± 0.29 
t29 = 2.69 
P = 0.0117 

1.50 ± 0.24 
t29 = 6.31 
P = 6.83×10-7 

F(2,28) = 12.30 
P = 3.52×10-5 

T-Test 
[-100 vs 0] 

T-Test 
[0 vs 100] 

T-Test 
[-100 vs 100] 

 0.22 ± 0.13 
t29 = 1.71 
P = 0.0984 

-0.71 ± 0.17 
t29 = -4.10 
P = 3.01×10-4 

-0.49 ± 0.14 
t29 = -3.63 
P = 0.0011 

sl
op

e 

Inc -100 Inc 0 Inc +100 ANOVA 
0.05 ± 0.12 
t29 = 0.41 
P = 0.68 

0.08 ± 0.15 
t29 = 0.22 
P = 0.58 

0.50 ± 0.15 
t29 = 3.35 
P = 0.0022 

F(2,28) = 3.12 
P = 0.0517 

T-Test 
[-100 vs 0] 

T-Test 
[0 vs 100] 

T-Test 
[-100 vs 100] 

 -0.04 ± 0.20 
t29 = -0.18 
P = 0.86 

-0.42 ± 0.21 
t29 = -1.95 
P = 0.06 

-0.45 ± 0.19 
t29 = -2.37 
P = 0.0246 

&



 

284 
 

Additional behavioral analyses: properties of confidence judgments 

Similarly to Lebreton et al. (2018), we performed additional behavioral analyses to 
confirm three main properties of confidence judgements, as theorized in a recent paper 
by Sanders and colleagues (Sanders et al., 2016). There, the authors outlined three 
main properties of confidence judgments, which should be observed if participants 
compute the probability of a choice being correct given some level of noisy evidence: 
(1) confidence ratings correlate with the probability of being correct; (2) the link 
between confidence ratings and evidence is positive for correct and negative for 
incorrect responses; (3) the link between evidence and performance differs between 
high and low confidence trials.  

To assess the first property, we sorted trials according to the confidence ratings at the 
individual level. Then, we averaged trials over 8 bins per participant, and computed the 
frequency of correct choices in each bin. Finally, the correlation between the bins’ 
confidence and performance was computed at the individual level. These measures 
were positively correlated (R = 0.59 ± 0.05; Figure A4A). 

To assess the second property, the following linear regression was estimated at the 
individual level, using all trials from the confidence elicitation task (Model 1): 

(1) Conf = β0 + β1×Correct×Evidence + β2×Incorrect×Evidence,  

where Incorrect is a dummy variable coding for incorrect answers, and Correct is a 
dummy variable coding for correct answers. Then, we tested the parameters of this 
model at the population level using one-sample t-tests. The results (Figure A4B), 
summarized in the table below (Table A9), demonstrate that confidence judgments are 
indeed positively associated with evidence for correct trials, and negatively for 
incorrect trials. 

To assess the third property, we proceeded similarly to the second: the following 
logistic regression was estimated at the individual level, using all trials (Model 2):  

(2) Correct = β0 + β1×High×Evidence + β2×Low×Evidence,  

where High is a dummy variable coding for high confidence trials (i.e., confidence > 
median(confidence)), and Low is a dummy variable coding for low confidence trials 
(i.e., confidence ≤ median(confidence)). Then, the parameters of this model were 
tested at the population level, using one-sample t-tests. The results (Figure A4C), 
summarized in the table below (Table A9), indeed demonstrate that the curve has a 
steeper slope in the high than in the low confidence trials, as was expected. 
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Figure A5: Properties of Confidence Judgments a) observed performance (% correct choices) 
as a function of reported confidence. b) reported confidence as function of evidence for correct 
(green) and incorrect (red) choices. c) observed performance (% correct choices) as a function 
of evidence, for high (gray) and low (black) confidence trials. The insets presented on the side of 
each graph depict the results of the population-level analyses on the correlation coefficients (a) 
or on the regression coefficients (b and c). Error bars indicate inter-subject standard errors of the 
mean. N = 32. *: P<.05; **: P<.01; ***P<.001 
 
 
Table A9: Results of linear mixed-effects models for properties of confidence judgments 

Model 1 (Figure A5B) 

Intercept (β0) 
β = 0.71 ± 0.01 
t31 = 53.06 
P = 5.3528e-32 

Confidence/Evidence 
Correct Answers (β1) 

β = 0.16 ± 0.03 
t31 = 5.86 
P = 1.8326e-06 

Confidence/Evidence 
Incorrect Answers (β2) 

β = -0.28 ± 0.05 
t31 = -5.36 
P = 7.7032e-06 

Model 2 (Figure A5C) 

Intercept (β0) 
β = 0.14 ± 0.07 
t31 = 2.04 
P = 0.0495 

Performance/Evidence 
High confidence (β1) 

β = 12.23 ± 1.49 
t31 = 8.21 
P = 2.8097e-09 

Performance/Evidence 
Low confidence (β2) 

β = 5.14 ± 0.93 
t31 = 5.50 
P = 5.1270e-06 

Difference (β1 - β2) t31 = 5.45 
P = 5.8544e-06 

  

&



 

286 
 

Early certainty 

In this section, we provide further details about the computation and properties of the 
early certainty variable. To verify that our model of early certainty is an appropriate proxy 
of confidence judgments, we performed similar behavioral analyses to confirm the 
three main properties of confidence judgments still hold for our early certainty variable. 
We performed identical analyses, substituting subjective confidence judgments for 
early certainty values. 

Our results show that the measures of early certainty and performance are highly 
correlated (R = 0.67 ± 0.07; Figure A5A, Table A10). Early certainty is also positively 
associated with evidence for correct trials, and negatively for incorrect trials (Figure 
A5B, Table A10). Finally, the relationship between performance and evidence is indeed 
higher in trials with high early certainty versus low early certainty (Figure A5C, Table 
A10).  

When inspecting the beta values for the second model (Figure A5C, Table A10), we 
observed three statistical outliers (i.e., >1.5 times the interquartile range away from the 
75th percentile) in the effect of evidence on performance in trials with high early 
certainty (β1). These outliers were caused by the median-split of the early certainty trials 
into high and low variants, as these subjects performed (almost) perfectly in the high 
early certainty trials, causing the betas to inflate. Importantly, when excluding these 
subjects from the analyses, we found identical results, albeit stronger (β0 = 0.09 ± 0.07, 
t28 = 1.26, P = 0.217; β1 = 17.99 ± 2.40, t28 = 7.49, P < 0.001; β2 = 3.83 ± 0.94, t28 = 4.06, P 
< 0.001; Difference (β1 - β2):  t28 = 5.87, P<0.001). 
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Figure A6: Properties of Early Certainty. a) observed performance (% correct choices) as a 
function of early certainty. b) early certainty as function of evidence for correct (green) and 
incorrect (red) choices. c) observed performance (% correct choices) as a function of evidence, 
for high (gray) and low (black) early certainty trials. The insets presented on the side of each graph 
depict the results of the population-level analyses on the correlation coefficients (a) or on the 
regression coefficients (b and c), where dots represent individual correlation coefficients (a), or 
regression coefficients (b and c) (N=32); bar and error bars indicate sample mean ± inter-subject 
standard error of the mean. Main plots and insets in plot a and b include the three statistical 
outliers. d): Shown here are the three statistical outliers for the individual regression coefficients 
for the high early certainty trials. For visibility we excluded those three outliers in the inset in plot 
c. *: P<.05; **: P<.01; ***P<.001  
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 Table A10: Results of linear mixed-effects models for properties of early certainty 

 
Moreover, to validate that our model of early certainty correlates highly with subjective 
confidence and choice and stimulus features, but does not show a statistical 
relationship with incentives, we built a linear mixed-effects model using the lme4 
package in R. We used early certainty as dependent variable and added RT, accuracy, 
evidence and the interaction between evidence and accuracy as predictors. Indeed, 
the results showed that RT, accuracy and the accuracy * evidence interaction all 
significantly contributed to early certainty, while no effect of incentive value on early 
certainty was found (Table A11). 

 

 

 

 

 

 

 

Model 1 (Figure A6B) 

Intercept (β0) 
β = 0.70 ± .01 

t31 = 53.91 
P = 3.3040e-32 

Confidence/Evidence 
Correct Answers (β1) 

β = 0.15 ± .03 
t31 = 5.45 

P = 5.9907e-06 

Confidence/Evidence 
Incorrect Answers (β2) 

β = -0.27 ± .05 
t31 = -5.16 

P = 1.3702e-05 
Model 2 (Figure A6C) 

Intercept (β0) 
β = 0.11 ± 0.07 

t31 = 1.51 
P = 0.14 

Performance/Evidence 
High confidence (β1) 

β = 41.95 ± 15.75 
t31 = 2.67 

P = 0.0122 

Performance/Evidence 
Low confidence (β2) 

β = 3.64 ± 0.90 
t31 = 4.06 

P = 0.0003 

Difference (β1 - β2) t31 = 2.40 
P = 0.0226 
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Table A11: Results of general linear mixed-effects model  

Early Certainty GLMER Results 
 
Early Certainty ~ Incentive + RT + Accuracy*Evidence + (1|Subject) 

Intercept (B0) 
β = 75.52 ± 1.15 

t33 = 65.63 
P=<2e-16 

Incentive 
β = 0.07 ± 0.08 

t4288 = 0.84 
P = 0.404 

RT 
β = -5.69 ± 0.08 

t4292 = -71.90 
P < 2e-16 

Accuracy 
β = 3.61 ± 0.16 

t4288 = 22.75 
P = <2e-16 

Accuracy * Evidence 
β = 2.50 ± 0.19 

t4288 = 13.16 
P = <2e-16 

Shown here are the results of the full linear mixed-effects model. β: estimated regression 
coefficients for fixed effects ± estimated standard error of the regression coefficients, with 
corresponding t- and P-values. 
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Table A12: Whole-brain activation GLM1 and GLM3 

GLM1 

Effect Brain Region k 
Peak 
z-
score 

P (cluster 
FWE 
corrected) 

Peak voxel 

MNI coordinates 

Early 
certainty + 

VMPFC 95 3.97 0.004 
3 29 -7 LR 
-9 65 -4 LR 
-3 38 -7 LR 

PPC 59 3.79 0.03 
-3 -43 32 LR 
6 -52 32 LR 
-3 -58 29 LR 

Early 
certainty - 

Insula 

873 5.92 <0.001 
33 20 8 R Inferior frontal 

gyrus 
RLPFC / DLPFC 45 14 2 R 
Putamen 45 38 -4 R 
DLPFC 

176 4.55 <0.001 
-42 26 35 L 

RLPFC -30 47 11 L 
  -36 29 26 L 
Supplementary 
motor area 

583 5.51 <0.001 

3 11 47 LR 

Mid cingulate 
cortex 6 23 35 LR 

Anterior cingulate 
cortex 9 17 41 LR 

Supramarginal 
gyrus 

76 4.45 0.011 
51 -19 20 R 

  42 -22 23 R 
Posterior Insula 36 -13 20 R 
Inferior Occipital 
Gyrus 57 4.33 0.034 

-48 -70 -1 L 
-42 -61 -7 L 

Inferior parietal 
lobe 

332 4.99 <0.001 
-48 -34 41 L 

  -30 -52 41 L 
Postcentral gyrus -57 -22 35 L 

Anterior insula 170 4.95 <0.001 
-33 17 5 L 
-33 26 -7 L 

Cerebellum 121 4.98 0.001 
-36 -55 -31 L 
-15 -43 -25 L 

Incentive + 

VMPFC 46 4.32 0.011 3 47 -4 LR 
Anterior medial 
prefrontal cortex / 
DMPFC 

36 4.14 0.032 0 56 11 LR 

DLPFC 39 4.01 0.023 
-27 38 55 L 
-6 
  

35 
  

32 
  

L 
  

Incentive - Angular gyrus 54 4.06 0.005 39 -55 41 R 
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  39 -58 50 R 
Superior occipital 
lobe 27 -61 38 R 

Confidence 
+ 

Cerebellum 

997 6.19 <0.001 

12 -52 -16 R 
Lingual gyrus 
(visual cortex) 18 -70 -13 R 

  21 -70 -4 R 

Putamen 328 4.83 <0.001 
-33 -10 -1 L 
-30 2 5 L 
-42 -8 11 L 

Primary motor 
cortex 244 4.88 <0.001 

-33 -28 59 L 
-42 -22 41 L 
-42 -19 56 L 

Anterior cingulate 
cortex 

90 4.55 0.001 

-6 23 29 L 

  3 20 26 R 
Mid cingulate 
cortex -6 2 38 LR 

Parahippocampal 
gyrus 64 4.01 0.008 

-24 -37 -13 L 

Fusiform gyrus -24 -46 -10 L 

Middle temporal 
gyrus 56 3.97 0.016 

48 -70 2 R 
48 -52 17 R 
51 -64 17 R 

Precuneus 75 4.29 0.004 
-15 -49 8 L 
-6 -58 23 L 
-9 -58 14 L 

Confidence 
- 

Lingual gyrus 
(visual cortex) 302 5.82 <0.001 

-15 -82 -4 L 

Cerebellum -15 -55 -16 L 

Primary motor 
cortex 55 4.26 0.018 

39 -19 59 R 
36 -19 44 R 
57 -16 44 R 

         
GLM 3 

Effect Brain Region k 
Peak 
z-
score 

P (cluster 
FWE 
corrected) 

Peak voxel 

MNI coordinates 

Expected 
Value + 

VMPFC 

336 4.93 <0.001 

0 47 -4 LR 
Anterior medial 
prefrontal cortex / 
DMPFC 

0 56 11 LR 

Anterior cingulate 
cortex (dorsal + 
ventral)  

0 32 11 LR 

Insula 37 4 0.038 
-36 5 1 L 
-36 -1 5 L 
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Brain activations (whole brain analyses) of GLM1 and GLM3, showing activity related to early 
certainty at choice moment, as well as activity related to incentive and confidence at 
incentive/rating moment, and expected value at incentive/rating moment. All whole-brain 
activation maps were thresholded using family-wise error correction for multiple correction 
(FWE) at cluster level (P FWE_clu < 0.05), with a voxel cluster-defining threshold of P<0.001 
uncorrected. Activity that positively correlates to given variable is denoted by ‘+’, whereas 
negative correlations are denoted by ‘-‘.  

Table A13: GLM1 activation with exclusive motor mask 

GLM1 

Effect Brain Region k 
Peak 
z-
score 

P (cluster 
FWE 
corrected) 

Peak voxel 

MNI coordinates 

Early 
certainty + 

VMPFC 95 3.97 0.004 
3 29 -7 LR 
-9 65 -4 LR 
-3 38 -7 LR 

PPC 59 3.79 0.03 
-3 -43 32 LR 
6 -52 32 LR 
-3 -58 29 LR 

Early 
certainty - 

Insula 

718 5.92 <0.001 
33 20 8 R Inferior frontal 

gyrus 
RLPFC / DLPFC 45 14 -1 R 
Putamen 45 38 -4 R 
DLPFC 

174 4.55 <0.001 
-42 26 35 L 

RLPFC -30 47 11 L 
  -36 29 26 L 
Mid cingulate 
cortex 

334 5.51 <0.001 

6 23 35 LR 

Anterior cingulate 
cortex 9 17 41 LR 

  -6 17 41 LR 
Supramarginal 
gyrus 

62 4.44 0.025 
42 -22 23 R 

  -30 47 11 R 
Posterior Insula 36 29 26 R 
Superior parietal 
lobe 

87 4.42 0.006 

-30 -52 41 L 

  -30 -40 38 L 
Inferior parietal 
lobe -39 -40 38 L 

Angular gyrus       
54 -46 35 R 
33 -43 41 R 
45 -43 44 R 

Anterior insula 167 4.95 <0.001 
-33 17 5 L 
-33 26 -7 L 

Incentive + VMPFC 46 4.32 0.011 
3 47 -4 LR 
-3 53 -7 LR 
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Anterior medial 
prefrontal cortex / 
DMPFC 

36 4.14 0.032 0 56 11 LR 

DLPFC 39 4.01 0.023 
-27 38 55 L 
-6 35 32 L 

Incentive - 

Angular gyrus 

54 4.06 0.005 

39 -55 41 R 
  39 -58 50 R 
Superior occipital 
lobe 27 -61 38 R 

Confidence 
+ 

Lingual gyrus 
(visual cortex) 689 6.07 <0.001 

18 -70 -13 R 
21 -70 -4 R 
24 -61 -10 R 

Putamen 91 4.83 0.001 
-33 -10 -1 L 
-30 -22 5 L 
-30 -22 14 L 

Anterior cingulate 
cortex 62 4.55 0.01 

-6 23 29 L 
3 20 26 R 

Parahippocampal 
gyrus 64 4.01 0.008 

-24 -37 -13 L 

Fusiform gyrus -24 -46 -10 L 

Middle temporal 
gyrus 56 3.97 0.016 

48 -52 17 R 
48 -70 2 R 
51 -64 17 R 

Precuneus 75 4.29 0.004 
-15 -49 8 L 
-6 -58 23 L 
-9 -58 14 L 

Confidence 
- 

Lingual gyrus 
(visual cortex) 217 5.82 <0.001 

-15 -82 -4 L 
-15 -55 -16 L 

Brain activations of GLM1 activation table with exclusive motor mask showing activity related to 
early certainty at choice moment, as well as activity related to incentive and confidence at 
incentive/rating moment, exclusively masked for motor-related activity patterns using a 
Neurosynth mask. All whole-brain activation maps were thresholded using family-wise error 
correction for multiple correction (FWE) at cluster level (P FWE_clu < 0.05), with a voxel cluster-
defining threshold of P<0.001 uncorrected. Activity that positively correlates to given variable is 
denoted by ‘+’, whereas negative correlations are denoted by ‘-‘. 
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Appendix B 

Supplement to Chapter 4 

 

Supplemental Methods 

Participants 

All subjects underwent screening with the MINI structured psychiatric interview to 
confirm the absence of any other psychiatric disorder (Sheehan et al., 1998). OCD 
symptom severity was measured using the Yale-Brown Obsessive Compulsive Scale 
(YBOCS) (Goodman et al., 1989), and GD symptom severity was measured using the 
Problem Gambling Severity Index (PGSI) (Ferris & Wynne, 2001). Anxiety symptoms 
were assessed using the Hamilton Anxiety Rating Scale (HAMA) (Hamilton, 1959) and 
depression symptoms using the Hamilton Rating Scale for Depression (HDRS) 
(Hamilton, 1960). We analyzed whether age, sex, IQ, Y-BOCS, PGSI, HAMA and HDRS 
score differed between the three groups using ANOVAs for all variables but sex, which 
was assessed using a Chi-square test. When appropriate, two-sample t-tests were 
executed post-hoc. 

 

Exclusion Criteria 

The exclusion criteria included having a diagnosis of major depressive disorder, bipolar 
disorder, psychotic disorders, substance-use disorders, using tricyclic antidepressants 
or antipsychotics, having any contraindications for MRI, and having a history of or 
current treatment for neurological disorders, major physical disorders or brain trauma. 

Moreover, session-level behavioral and fMRI data were excluded when task accuracy 
was below 50%, which would signal below chance level performance and would hinder 
our interpretation of the underlying cognitive processes. Also, when subjects did not 
show sufficient variation in their confidence reports (standard deviation of <5 
confidence points), which indicates careless responding, those data were excluded. 
Session-level fMRI data was additionally excluded when participants displayed more 
than 3.5 mm head movement in any direction. Overall, for the behavioral analyses, this 
led to the full exclusion of four GD patients and one OCD patient, as well as one out of 
two session exclusions for four GD patients, two OCD patients and two HCs. For the 
fMRI analyses, three additional GD patients, one OCD patient and two HCs were fully 
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excluded, as well as one out of two session exclusions for three additional GD patients 
and one OCD patient. 

 

Experimental Procedure 

After demographic and clinical interviews, all participants performed an initial 
calibration session (consisting of 144 trials) to tailor the difficulty level of the task to 
each individual. This was done to keep average performance similar across individuals. 
Following, all subjects performed two fMRI sessions, each consisting of 72 trials (24 per 
incentive condition), presented in a random order. After the fMRI task, six random trials 
were drawn (i.e., two of each incentive condition) on which the final payment was 
based, and the total amount of points was converted to money.  

 

Behavioral Analyses: Properties of Confidence Judgments 

Similarly to Lebreton et al. (2018), we performed additional behavioral analyses to 
confirm three main properties of confidence judgements, as theorized in a recent paper 
by Sanders and colleagues (Sanders et al., 2016). There, the authors outlined three 
main properties of confidence judgments, which should be observed if participants 
compute the probability of a choice being correct given some level of noisy evidence: 
(1) confidence ratings correlate with the probability of being correct; (2) the link 
between confidence ratings and evidence is positive for correct and negative for 
incorrect responses; (3) the link between evidence and performance differs between 
high and low confidence trials.  

• To assess the first property, we sorted trials according to the confidence ratings 
at the individual level. Then, we averaged trials over 8 bins per participant, and 
computed the frequency of correct choices in each bin. Finally, the correlation 
between the bins’ confidence and performance was computed at the 
individual level. These measures were positively correlated (R = 0.59 ± 0.03; 
Figure B1A). 

• To assess the second property, the following linear regression was estimated 
at the individual level, using all trials from the confidence elicitation task 
(Model 1): 
Conf = β0 + β1×Correct×Evidence + β2×Incorrect×Evidence, 
where Incorrect is a dummy variable coding for incorrect answers, and 
Correct is a dummy variable coding for correct answers. Then, we tested the 
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parameters of this model at the population level using one-sample t-tests. The 
results (Figure B1B), summarized in the table below (Table B1), demonstrate 
that confidence judgments are indeed positively associated with evidence for 
correct trials, and negatively for incorrect trials. 

• To assess the third property, we proceeded similarly to the second: the 
following logistic regression was estimated at the individual level, using all 
trials (Model 2).  
Correct = β0 + β1×High×Evidence + β2×Low×Evidence, where High is a dummy 
variable coding for high confidence trials (i.e., confidence > 
median(confidence)), and Low is a dummy variable coding for low confidence 
trials (i.e., confidence ≤ median(confidence)). Then, the parameters of this 
model were tested at the population level, using one-sample t-tests. The 
results (Figure B1C), summarized in the table below (Table B1), indeed 
demonstrate that the curve has a steeper slope in the high than in the low 
confidence trials, as was expected. Nota bene: when inspecting the data for 
the last model, we observed that the regression model was inestimable for two 
subjects. This was due to the median-split of the early certainty trials into high 
and low variants, since for both subjects the amount of low confidence trials 
was not sufficient (i.e., <nbins) to estimate the model, since the distribution of 
their confidence judgments was very skewed. This resulted in β2 being 
inestimable. Therefore, we excluded those two subjects (only) from the 
analyses of the last model when testing at the population level, whilst 
including them for the other models. 
 
 

Figure B1: Properties of Confidence Judgments. A: observed performance (% correct choices) 
as a function of reported confidence. B: reported confidence as function of evidence for correct 
(green) and incorrect (red) choices. C: observed performance (% correct choices) as a function 
of evidence, for high (gray) and low (black) confidence trials. The insets presented on the side of 
each graph depict the results of the population-level analyses on the correlation coefficients (A) 
or on the regression coefficients (B and C). Error bars indicate inter-subject standard errors of the 
mean. *: P<.05; **: P<.01; ***P<.001 
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Table B1: Results of properties of confidence judgments 

 

Behavioral Analyses: Properties of Early Certainty 

Here we provide further details about the computation and properties of the early 
certainty variable. To verify that our model of early certainty is an appropriate proxy of 
confidence judgments, we performed similar behavioral analyses to confirm the three 
main properties of confidence judgments still hold for our early certainty variable. We 
performed identical analyses, substituting subjective confidence judgments for early 
certainty values. 

Our results show that the measures of early certainty and performance are highly 
correlated (R = 0.73 ± 0.0362; Figure B2A, Table B2). Early certainty is also positively 
associated with evidence for correct trials, and negatively for incorrect trials (Figure 
B2B, Table B2). Finally, the relationship between performance and evidence is indeed 
higher in trials with high early certainty versus low early certainty (Figure B2C, Table B2). 
Nota bene: when inspecting the data for the last model, we observed that the 
regression model was inestimable for four subjects. This was due to the median-split 
of the early certainty trials into high and low variants, where these four subjects had an 
average performance of 100% in the high confidence trials, making β1 inestimable. 
Therefore, we excluded those four subjects from the analyses of the last model when 
testing at the population level, whilst including them for the other models. 

Model 1 (Figure B1B)  

Intercept (β0) 
β = 0.7366 ± 0.0085 
t109 = 86.9948 
P = 1.5197e-102 

Confidence/Evidence 
Correct Answers (β1) 

β = 0.1736 ± 0.0174 
t109 = 9.9870 
P = 4.5659e-17 

Confidence/Evidence 
Incorrect Answers (β2) 

β = -0.3184 ± 0.0335 
t109 = -9.5124 
P = 5.5456e-16 

Model 2 (Figure B1C)  

Intercept (β0) 
β = 0.0987 ± 0. 0446 
t107 = 2.2134 
P = 0.0290 

Performance/Evidence 
High confidence (β1) 

β = 12.2197 ± 0. 9019 
t107 = 13.5494 
P = 4.0743e-25 

Performance/Evidence 
Low confidence (β2) 

β = 4.3919 ± 0. 4810 
t107 = 9.1305 
P = 4.1081e-15 

Difference (β1 - β2) t107 = 10.7705 
P = 7.3768e-19 
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Figure B2: Properties of Early Certainty. A: observed performance (% correct choices) as a 
function of early certainty. B: early certainty as function of evidence for correct (green) and 
incorrect (red) choices. C: observed performance (% correct choices) as a function of evidence, 
for high (gray) and low (black) early certainty trials. The insets presented on the side of each graph 
depict the results of the population-level analyses on the correlation coefficients (A) or on the 
regression coefficients (B and C). Error bars indicate inter-subject standard errors of the mean. 
*: P<.05; **: P<.01; ***P<.001  

 

Table B2: Results of properties of early certainty 

 

Moreover, to validate that our model of early certainty correlates highly with subjective 
confidence and choice and stimulus features, but does not show a statistical 
relationship with incentives, we built a linear mixed-effects model using the afex 
package in R. We used early certainty as dependent variable and added RT, accuracy, 

 

Model 1 (Figure B2B)  

Intercept (β0) 
β = 0. 7364 ± .0084 

t109 =  87.1574 
P =  1.2434e-102 

Confidence/Evidence 
Correct Answers (β1) 

β = 0.1714 ± .00177 
t109 =  9.7058 

P =  2.0064e-16 

Confidence/Evidence 
Incorrect Answers (β2) 

β = -0.3266 ± .0355 
t109 = - 9.2108 

P =  2.6975e-15 
Model 2 (Figure B2C)  

Intercept (β0) 
β = 0. 0858 ±  0. 0484 

t105 = 1.7401 
P = 0.0848 

Performance/Evidence 
High confidence (β1) 

β =  27.5829 ±   4. 4499 
t105 = 6.0848 

P =  1.9264e-08 

Performance/Evidence 
Low confidence (β2) 

β = 2.5038±  0. 7493 
t105 = 3.2801 
P = 0. 0014 

Difference (β1 - β2) t105 =  5.5184 
P =  2.4830e-07 
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evidence and the interaction between evidence and accuracy as predictors. Indeed, 
the results showed that RT (F1, 15169 = 11622.7231, p<.001), accuracy (F1,15157 = 
1855.0251, p<.001) and the accuracy * evidence interaction (F1,15156 = 626.7032, p<.001) 
all significantly contributed to early certainty, while no effect of incentive value on early 
certainty was found (F1,15154 = 1.9232, p=.1462). 

 

Behavioral Analyses: Model Comparisons 

We iteratively built linear mixed effects models (LMEMs) and compared those by 
assessing model fit by using Chi-square tests on the log-likelihood values, and by 
comparing of the AIC and BIC model values. We started with a basic model with fixed 
effects of incentive, group and their interaction on confidence, together with a random 
subject intercept and slope of incentive per subject. Model predictors of accuracy and 
evidence, together with their interaction and the interaction with group were added 
whenever it significantly improved model fit. See Table 1 in the main text for the model 
comparison results. The final model (Model 1) consisted of fixed effects of incentive, 
group, accuracy and evidence (z-scored) and interactions between incentive and 
group, as well as two-way and three-way interactions between evidence, accuracy and 
group. All models included trial-by-trial data, and a random subject intercept as well as 
a random slope of incentive per subject. 

 

Behavioral Analyses: Integration of Evidence in Confidence Judgments 

Theoretical models of confidence formation suggest that confidence builds – at least 
partly - on the integration of noisy perceptual evidence used for decision-making 
(Fleming & Daw, 2017; Sanders et al., 2016). A resulting signature of confidence is its 
statistical dependence on an interaction of accuracy and perceptual evidence, which 
is typically illustrated as an ‘X-pattern’ where confidence increases/decreases with 
increasing evidence for correct/incorrect decisions, respectively. To study if GD and 
OCD patients show aberrant integration of evidence in confidence signals, we have 
included a three-way interaction term between evidence, accuracy and group in Model 
1. Post-hoc testing was performed by comparing the groups on the slopes of evidence 
integration in confidence separately for correct and incorrect trials using the 
emtrends() function. 
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Behavioral Analyses: Confidence Calibration 

Confidence calibration – also known as confidence bias – is the difference between 
average confidence and average performance per subject. If this measure is positive, 
this indicates overconfidence, whereas negative numbers indicate underconfidence. 
We calculated confidence calibration for each subject per incentive condition. We then 
performed a mixed ANOVA implemented in the afex package, to test for main effects of 
incentive conditions, groups, and their interaction. When a main effect was found 
significant, we performed post-hoc testing using the emmeans package, correcting for 
multiple comparisons using Tukey’s method. 

 

Behavioral Analyses: Metacognitive Sensitivity 

Metacognitive sensitivity is a measure that indicates how well one’s confidence 
judgments discriminate between one’s correct and incorrect answers. One of the 
metrics used to express metacognitive sensitivity is discrimination. Discrimination is 
calculated as the difference between one’s average confidence in their correct answers 
and their incorrect answers. The higher this metric, the more sensitive one’s 
metacognitive abilities are. Another metric for sensitivity is meta-d’, which represents 
how much information in signal-to-noise units is available for the formation of 
confidence judgments (Maniscalco & Lau, 2012). The higher meta-d’, the higher the 
metacognitive sensitivity. 

We calculated discrimination for each subject per incentive condition. Moreover, we 
computed meta-d’ per incentive and group using a hierarchical Bayesian framework 
(Fleming, 2017). We then performed two mixed ANOVA implemented in the afex 
package, to test for main effects of incentive conditions, groups, and their interaction 
on discrimination and meta-d’ separately. 

 

fMRI Analyses: Acquisition & Preprocessing 

All our analyses were performed using MATLAB with SPM12 software (Wellcome 
Department of Cognitive Neurology, London, UK). Raw multi-echo functional scans 
were weighed and combined into 570 single volumes per scan session, using the first 
30 dummy scans to calculate the optimal weighting of echo times for each voxel by 
applying a PAID-weight algorithm. During the combining process, realignment was 
performed on the functional data by using linear interpolation to the first volume. 
Subsequently, the functional images were co-registered, segmented for normalization 
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to MNI space and smoothed. To reduce motion-related artifacts, the Art-Repair toolbox 

(Mazaika et al., 2007) was used to detect large volume-to-volume movement and repair 
outlier volumes. Outliers were detected using a threshold for the variation of the mean 
intensity of the BOLD signal and a volume-to-volume motion threshold. A threshold of 
1.5% variation from the mean intensity was used to detect and repair volume outliers 
by interpolating from the adjacent volumes. 

 

fMRI Analyses: General Linear Models 

GLM 1 consisted of three regressors for each timepoint: ‘choice’, ‘incentive/rating’ and 
‘feedback’, to which parametric modulators (pmods) were added. All regressors were 
specified as stick functions time-locked to the onset of the respective events. The 
choice regressor was modulated by two pmods: early certainty (z-scored on subject 
level) and button press (left or right) to control for motor-related activation. The 
incentive/rating regressor was modulated by two pmods: incentive value ([-1,0,1]) and 
confidence rating (z-scored on subject level). The feedback regressor was additionally 
modulated by a pmod representing choice accuracy. 

GLM 2 consisted of regressors for each of two time points (choice moment and 
incentive/rating moment) and three incentive conditions, as well as a single regressor 
at feedback moment, resulting in a total of seven regressors. All regressors at choice 
moment were modulated by a pmod of button press (left/right) and signed evidence: a 
variable that signifies the interaction between evidence and accuracy. Signed evidence 
was calculated as the absolute value of evidence in case of correct answers and the 
negative absolute evidence (i.e. –abs(evidence)) in case of incorrect answers. All 
regressors at rating moment were modulated by a pmod of confidence, and the 
feedback regressor was modulated by a pmod of accuracy. Thus, for all these events 
we could examine both baseline activity and regression slopes relating to their 
respective pmod. 

For both GLMs pmods were not orthogonalized and thus competed to explain variance. 
We included six motion parameters as nuisance regressors. Regressors were modeled 
separately for each scanning session and constants were included to account for 
between-session differences in mean activation. All events were modeled by 
convolving a series of delta functions with the canonical hemodynamic response 
function (HRF) at the onset of each event and were linearly regressed onto the 
functional BOLD-response signal. Low frequency noise was filtered with a high pass 
filter with a cut off of 128 seconds. We controlled for the number of sessions while 
making the first-level contrasts. All contrasts were computed at subject level and then 
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taken to group level analyses. For GLM 1 we assessed group differences by performing 
a one-way ANOVA to our contrasts of interest, using an F-contrast test to test for any 
group differences (i.e. [1 -1 0; 0 1 -1]). In addition, to gain a complete picture of areas 
involved in our contrasts of interest, we grouped all subjects together and performed 
one-sample t-tests against 0. 

 

Supplemental Results 

Demographics 

Age was not significantly different between the three groups (F2,107 = 0.253, p > 0.75), 
but IQ was, (F2,107 = 3.222, p = 0.0438). Post-hoc t-tests showed that HC subjects had 
a significantly higher IQ score than GD patients (t = 2.53, p=0.014). As expected, Y-
BOCS scores and PGSI scores differed significantly between groups (F2,107 = 322.2, 
p<.001 ;F2,107 = 380.5, p<.001, respectively), with OCD patients having higher Y-BOCS 
scores than HCs (t = -16.97, p<.001) and GD patients (t = -36.67, p<.001), and GD 
patients having higher PGSI scores than HCs (t = -15.99, p<.001) and OCD patients (t = 
-14.32, p<.001). HAMA scores were significantly different between groups (F2,107 = 
48.02, p<.001), post-hoc tests revealed higher HAMA scores for OCD patients than HCs 
(t = -8.50, p<.001) and GD patients (t = 4.58, p<.001), and higher HAMA scores for GD 
patients compared to HCs (t = -2.44, p=.002). HDRS scores were significantly different 
between groups (F2,107 = 24.97, p<.001), with higher scores for OCD versus HC (t = -
7.76, p<.001), and higher scores for GD versus HC (t=-3.03, p=.005). Lastly, using a Chi-
square test we found a significant difference in sex distribution between the groups (X 
= 14.483, df = 2, p<.001), 
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Behavioral Descriptive Results 

Here we show the descriptive results that are depicted in Figure 2 main text. 

 Table B3: Descriptive behavioral results 

Shown here are the descriptive results of confidence, accuracy, reaction times (RT) and evidence 
per group and incentive condition. Shown are means ± sems.  

 

Behavioral Analyses: Integration of Evidence in Confidence Judgments 

The evidence integration effect differed per group, as signaled by a significant three-way 
interaction between accuracy, evidence and group (F2,15094 = 3.0533, p=0.04723) 
(Figure B3, Table B3). Post-hoc, we compared the groups on the slopes of evidence 
integration in confidence separately for correct and incorrect trials using the 
emtrends() function, and found that the slope for evidence integration into confidence 
was less steep for correct answers in GD patients compared to both HCs (GD - HC = -
1.712 ± 0.283, Z-ratio = -6.057, p<0.001) and OCD patients (GD - OCD = -2.110 ± 0.357, 
Z-ratio = -5.912, p<0.001). This indicates that GD patients’ confidence ratings were less 
influenced by the perceptual evidence when they made a correct choice. No 
differences between OCD patients and HC were found regarding evidence integration 
effects. 

Group Incentive Confidence Accuracy RT Evidence 
GD Loss 76.31 ± 1.91 71.22 ± 1.66 1175.57 ± 81.19 15.05 ± 1.00 
GD Neutral 78.56 ±1.64 73.07 ± 1.61 1135.56 ± 71.15 17.60 ± 1.14 
GD Gain 81.12 ±1.84 71.37 ± 1.69 1132.38 ± 79.91 16.97 ± 1.26 
OCD Loss 71.30 ± 1.85 72.62 ± 1.42 1215.41 ± 74.70 13.84 ± 0.79 
OCD Neutral 73.27 ± 1.70 73.14 ± 1.39 1219.32 ± 65.71 15.56 ± 0.94 
OCD Gain 73.70 ± 1.65 75.07 ± 1.78 1224.67 ± 68.70 14.69 ± 0.84 
HC Loss 73.02 ± 1.03 70.87 ± 1.27 1130.16 ± 44.63 14.87 ± 0.63 
HC Neutral 75.05 ± 1.01 71.86 ± 1.19 1142.39 ± 48.26 16.90 ± 0.79 
HC Gain 75.68 ± 1.07 72.35 ± 1.27 1149.16 ± 46.71 16.05 ± 0.76 
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Figure B3: Evidence integration per group and accuracy level in confidence. Linking evidence, 
accuracy and group. Triangles represent mean reported confidence as a function of evidence for 
correct answers, and dots for incorrect answers, with different colors for the three groups. The 
solid lines represent the best linear regression fit for each group separately at the population level 
for correct answers, and the dotted lines for incorrect answers. Error bars represent SEM per 
group, shaded areas represent 95% confidence interval. Insets represent slopes (estimated 
marginal means of trends, taken from emtrends() function, error bars represent SEM) of correct 
and incorrect answers per group. Results from post-hoc testing are shown, where the slope for 
correct answer is significantly lower for gambling disorder (GD) versus both healthy controls (HC) 
and obsessive-compulsive disorder (OCD) (* p<0.05, ** p<0.01, *** p<0.001). 

 

Behavioral Analyses: Confidence Calibration 

We found a significant main effect of group (F(2,107)=4.40, p = 0.015), but no effect of 
incentive, nor an interaction effect between group and incentive. Post-hoc tests 
showed that GD patients showed increased calibration compared to OCD patients (t107: 
-2.967, p = 0.0103), but no differences between GD or OCD patients and HC subjects. 
This indicated that GD patients are more overconfident 

 

Behavioral Analyses: Metacognitive Sensitivity 

We did not find a significant main effect of group or incentive, nor an interaction effect 
between group and incentive, both for discrimination and meta-d’. Average 
discrimination values were positive and average meta-d’ was close to 1, indicating 
sensitive metacognition. 
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Behavioral Analyses: Clinical Correlations 

We performed additional correlational analyses to explore whether subject’s mean 
confidence level correlates with various clinical questionnaires of interest, separately 
for OCD and GD patients. In OCD patients there were no significant correlations with 
severity of OCD symptoms as measured with the YBOCS (p>.5) or with obsessive 
beliefs measured with the OBQ-44 (p>.5). In GD patients there was also no significant 
correlation with symptom severity measured using PGSI (p>.4), but there was a 
significant positive correlation between confidence level and BAS (Behavioral 
Approach System) scores (r = 0.4608, p = 0.01784). 

 

Behavioral Analyses: Evidence Across Conditions 

Due to a technical bug, perceptual evidence was not equal across incentive conditions. 
We performed a mixed ANOVA with within-subject factor incentive and between-
subject factor group, which showed that evidence differed significantly over incentive 
conditions (F2,205=39.94 p<.001), but not over groups (F2,107=0.94 p>.3), and no 
interaction between incentive and group was found (F3.83,205=0.82 p>.5). Post-hoc 
testing using t-tests revealed that evidence was highest in neutral, followed by gain, 
followed by loss condition (neutral versus loss: t-ratio= 7.844, p<.001; neutral versus 
gain: t-ratio=3.306, p=0.001; gain versus loss: t-ratio: 5.537, p<.001). Since evidence 
did not differ between the groups, it cannot account for any group differences we find 
in our data. Importantly, there are no effects of incentive on performance. Moreover, the 
difference in evidence over incentive conditions does not drive our incentive-induced 
confidence bias, since we do find a parametrically increase in confidence over 
incentive value, with a significant difference between all pairs. This means that 
confidence is higher in gain versus neutral conditions, even though evidence was 
significantly higher in neutral versus gain conditions. This shows that even though trials 
were easier in the neutral condition, participants were still more confident when they 
could gain points. 

 

Behavioral Analyses: Clinical Groups With Their Own Control Group 

In order to explore whether the behavioral analyses as in the main results with better 
matched control groups to the demographics of the two clinical groups would reveal 
similar results, we selected two subsets from our bigger sample of HCs (OCD control 
group N = 31, GD control group N = 32, with a slight overlap of N=8) of control groups to 
compare them with the two clinical groups. 
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Even though the groups were better matched and did not significantly differ from the 
clinical groups on terms of age, sex or IQ, we found similar results. When comparing 
OCD patients to a matched HC group, using Model 4 as described in the methods, we 
only found a significant main effect of incentive (F2,111 = 9.5665, p<.001), accuracy 
(F1,8217 = 337.5033, p<.001), evidence (F1,8214 = 6.7033, p=.009), an interaction 
effect between accuracy and evidence (F1,8224 = 118.2244, p<.001) and an interaction 
effect between group and accuracy (F1,8227 = 7.9859, p=.004726). No group effects 
were found. 

When comparing GD patients to a matched HC group, using Model 4 from the main 
methods, we found significant main effects of incentive (F2,60 = 15.6065, p<.001), 
accuracy (F1,8033 = 365.6563, p<.001), evidence (F1,8029 = 7.7733, p=.0053), an 
interaction between accuracy and evidence (F1,8027 = 117.9345, p<.001), and 
between accuracy evidence and group (F1,8027 = 6.5439, p=.0105). No main group 
effect was found. Post-hoc analyses showed that that the slope for evidence integration 
into confidence is less steep for correct answers in GD patients compared to HCs (GD 
- HC = -1.329 ± 0.326, Z-ratio = -4.071, p<0.001).  

These additional analyses thus show that even when using a better matched control 
group, we find no evidence for abnormalities in confidence level for OCD nor GD 
patients. For GD patients, we do, however, replicate that GD patients have a lower slope 
of evidence integration in confidence for correct answers compared to HCs. 

 

fMRI: Interaction Between Metacognition and Incentives in VS (GLM 2) 

We performed an ROI analysis by leveraging our factorial design. We extracted VS 
activations for both time points (choice and rating), all incentives (loss, neutral and 
gain), all groups (HC, OCD and GD), for both baseline activity and a regression slope 
with (1) signed evidence and (2) confidence judgments for all these events. 

First, one-sample t-tests showed that, overall, VS baseline activations did not differ 
from 0 at choice moment (t100 = -0.317, p >0.75), while it was positive for baseline 
activations at rating moment (t100 = 8.238, p < 0.001). The correlations between VS 
activity and signed evidence at choice moment was significantly positive (t100 = 4.985, 
p < 0.001). However, the correlation between VS activity and confidence at rating 
moment did not differ from 0 (t100 = 1.664, p = 0.099) (Figure B4). This implies that 
activity in VS is related to incentive presentation, but also that it is related to signed 
evidence (i.e., the interaction between accuracy and evidence, showing that VS activity 
was lowest when one had high levels of evidence but was incorrect, and highest when 



Appendix B 

307 
 

one had a lot of evidence and was in fact correct). Then, we turned to see whether there 
were effects of incentive condition and group around this general signal. As expected, 
at choice moment there were no effects of incentive condition on VS baseline activity, 
nor on its correlation with the signed evidence signal (i.e., slope) (Figure B4, Table B4). 
Moreover, we did not find a group nor an interaction effect on both baseline VS activity 
and the correlation with signed evidence at choice moment. At rating moment, 
however, incentive condition had a significant effect on both the baseline VS activity, as 
well as its correlation with confidence. Post-hoc testing showed that the baseline VS 
activity was highest during gain, followed by loss, and lowest during neutral (loss versus 
gain: t196: -4.590, p < 0.001, neutral versus gain: t196: -7.710, p < 0.001, loss versus 
neutral: t196 = 3.119, p = 0.006). The correlation of VS activity with confidence was 
significantly higher (i.e., increased slope) in gain versus neutral (t196 = -2.607, p = 
0.0265), while no differences between gain and loss, or between neutral and loss were 
found. Moreover, there was a significant group effect on VS baseline activity during 
rating moment. This effect did not remain significant in the post-hoc tests, however, 
which showed that GD subjects had subthreshold decreased activity compared with 
HCs, averaged over incentive conditions (t98 = -2.272, p = 0.0646). No interaction 
effects between group and incentive were found on baseline activity or its correlation 
with confidence at rating moment. 

 

Table B4: Results of VS ROI analysis 

Shown here are the results of the mixed ANOVAs of t-statistics in the ventral striatum (VS) region 
of interest (ROI). Shown are the main effects of incentive condition, group and their interaction 
effect on the choice and rating time points, focusing on both the baseline activity as well as the 
slope of signed evidence and confidence judgments, respectively. F-values, with corresponding 
degrees of freedom and p-values are reported. 

 Incentive Group Incentive:Group 
Choice Baseline F(1.92, 188.46) = 0.16, 

p = 0.846 
F(2, 98) = 1.32, 
p = 0.271 

F(3.85, 188.46) = 0.66, 
p = 0.615 

Choice Slope 
‘Signed Evidence’ 

F(1.99, 195.35) = 1.63, 
p = 0.198 

F(2, 98) = 0.44, 
p=0.647 

F(3.98, 195.35) = 0.49, 
p = 0.741 

Rating Baseline F(1.85, 181.48) = 30.08, 
p<0.001 

F(2, 98) = 3.48, 
p = 0.035 

F(3.70, 181.48) = 0.90, 
p = 0.460 

Rating Slope  
‘Confidence 
Judgment’ 

F(1.92, 188.55) = 3.41, 
p = 0.037 

F(2, 98) = 1.68, 
p = 0.192 

F(3.83, 188.55) = 0.69, 
p = 0.593 
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Figure B4: Ventral striatum cortex region of interest (ROI) analysis. T-values corresponding to 
baseline and regression slopes were extracted for all three groups and three incentive conditions, 
at two time points of interest: choice and incentive/rating moment. Green dots and lines 
represent gambling disorder patients, blue dots and lines represent healthy controls and red dots 
and lines represent obsessive-compulsive disorder patients. Dots represent individual t-
statistics, and error bars represent sample mean ± SEM per group. Black bars represent 
significant post-hoc tests. Yellow bars represent average t-values, with corresponding 
significance level of one-sample t-tests against 0. (* p<0.05, ** p<0.01, *** p<0.001). GD = 
gambling disorder, HC = healthy control, OCD = obsessive-compulsive disorder. 
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Appendix C 

Supplement to Chapter 5 

Supplementary Methods 

Local and Global Confidence Task 

Participants performed short blocks with two randomly interleaved perceptual games 
indicated by two arbitrary color cues (Figure 1 main text). All games involved perceptual 
discrimination judgments. Each block had 12 trials, 6 trials from each game in pseudo-
randomized order. Participants were instructed and incentivized to learn about their 
performance on both games. In each trial, two black boxes with white dots were briefly 
shown, and participants indicated which box contained a higher number of dots using 
the Z (left) and M (right) keys. The perceptual evidence was governed by the difference 
in dot number between the boxes. Two task features were varied between games: 
games could either be easy or difficult (i.e., difficulty feature), and delivered veridical 
feedback or no feedback (i.e., feedback feature). These features resulted in six possible 
pairings of games in the learning blocks. Each possible pairing was repeated twice, in a 
randomized order.  

On all trials without feedback, participants were asked to provide a local confidence 
rating about the probability of their perceptual judgment being correct on a continuous 
scale from ‘50% correct (chance level)’ to ‘100% correct (perfect)’, with intermediate 
options of 60, 70, 80 and 90% correct. Confidence judgments were self-paced.  

After each block, participants were asked to choose the game for which they believed 
they performed best (global choice). Subjects were instructed that their payment 
bonus depended on their average performance in the chosen game, incentivizing 
subjects to truthfully pick the game they believed to have performed best at. To indicate 
their choice, participants responded with two keys that differed from the keys used in 
the perceptual decisions, to avoid carry-over effects. After providing their global 
choice, participants were asked to rate their overall performance on each of the two 
games in the block (global confidence). The scale ranged from ‘50% correct (chance 
level)’ to ‘100% correct (perfect)’, with intermediate options of 60, 70, 80 and 90% 
correct, and these ratings were self-paced. Afterwards, participants received a break 
after which a new block started with two new games, indicated by two new color cues. 
Both these measures (global choice and global confidence) are metrics of global 
metacognition. 
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Each block consisted of two games, and each trial started with the presentation of a 
central color cue (1200 ms), indicating which of the two games will be presented in the 
current trial. Following the cue, the two black boxes were presented (300 ms). The dot 
difference was constant for each difficulty condition, but the spatial configuration of 
the dots within the boxes varied across trials. One box was always filled halfway (313 
dots), the other box either contained 313 + 24 dots (difficult condition) or 313 + 60 dots 
(easy condition), based on earlier studies and targeting performance levels of around 
70% and 85% correct, respectively (Rouault et al., 2019). The location of the box 
(left/right) was pseudo-randomized so that half of the trials in each block had the box 
with the most dots on the left. After a choice was made, the chosen box was highlighted 
(300 ms), and, in the feedback condition, a colored rectangle with the corresponding 
cued color of the current trial was presented, showing feedback (Correct / Incorrect) 
(1500 ms). In the no-feedback condition, the confidence rating scale was presented, 
with the color cue on top of the screen. The ITI was 600 ms. All participants first 
completed a practice block with longer stimulus presentation times for one game at a 
time. 

 

Questionnaires 

The symptoms assessed included alcoholism (Alcohol Use Disorders Identification 
Test (AUDIT)) (Saunders et al., 1993), apathy (Apathy Evaluation Scale (AES)) (Marin et 
al., 1991), impulsivity (Barratt Impulsiveness Scale (BIS-11)) (Patton et al., 1995), eating 
disorders (Eating Attitudes Test (EAT-26)) (Garner et al., 1982), social anxiety (Liebowitz 
Social Phobia Scale) (Liebowitz, 1987), obsessive-compulsive disorder (Obsessive-
Compulsive Inventory Revised (OCI-R)) (Foa et al., 2002), schizotypy (Short Scales for 
Measuring Schizotypy) (Mason et al., 2005), depression (Zung Self-Rating Depression 
Scale) (Zung, 1965) and generalized anxiety (Generalized Anxiety Disorder 7-item scale 
(GAD-7)) (Spitzer et al., 2006). 

The self-belief constructs assessed were: autonomy (Amsterdam Autonomy Scale 
(AAS)) (Bergamin et al., 2023), self-efficacy (Generalized Self-Efficacy Scale) 
(Schwarzer & Jerusalem, 1995), mastery (Sense of Mastery Scale) (Pearlin & Schooler, 
1978) and self-esteem (Rosenberg Self-esteem Scale (RSE)) (Rosenberg, 1965) and 
Self-esteem Rating Scale Short Form (Lecomte et al., 2006). Self-esteem is a global 
construct concerned with one’s self-worth that spans many personal domains, and low 
self-esteem has been related to the development of depression and anxiety disorders 
(Quiles et al., 2015; Sowislo & Orth, 2013). Self-efficacy is defined as “people’s beliefs 
in their ability to influence events that affect their lives”, and is strongly related to 
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emotional wellbeing, motivation and mastery (Bandura, 1977). Autonomy is seen as 
one’s ability to live a meaningful life of their own making, which is undermined in many 
psychiatric disorders (Bergamin et al., 2022). Mastery is the degree to which one 
believes they can control various influences in their life, which is closely related to 
quality of life (Eklund et al., 2003; O’Kearney et al., 2020). Self-esteem is the broadest 
concept concerned with overall self-worth across all life domains (physical, academic, 
and social abilities, among others). All the above constructs are typically considered as 
trait characteristics, relatively stable for a given individual and only (currently) 
measurable by interview or questionnaire. 

 

Exclusion Criteria 

First, we excluded all participants who failed both of the two catch questions 
interspersed within the questionnaires (5 participants), who did not enter similar 
demographics details when asked twice (7 participants), and who failed 
comprehension tests about the usage of the confidence scale (91 participants). The 
comprehension test was passed when subjects rated perfect performance at least 10% 
higher than chance performance. This criterium is slightly different than what we pre-
registered (pass when perfect performance ≥ 60 and guess performance between 40% 
and 60%), because we wanted to adhere to the same exclusion criteria the original 
authors of the task had set (Rouault et al., 2019). 16 participants were excluded for 
responding at or below chance level (50%), and 60 participants were excluded for 
having too little variation in their confidence judgment (a standard deviation < 5%), 
signaling that they hardly changed their confidence from the default setting. Some 
subjects did not meet multiple of our criteria. In total, we excluded 135 subjects, an 
exclusion rate of ~21%, consistent with a meta-analysis showing that web-based 
experiments typically exclude between 3% and 37% of their sample (Chandler et al., 
2014). Our final sample consisted of 489 subjects with an average age of 27.2 years (± 
8.5 years), of which 318 were male. 

Moreover, for each participant, we excluded single trials when the choice reaction time 
(RT) was either > 10 seconds, < 200 ms or deviated more than 3 standard deviations 
from the participant average (median percentage of trials removed: 4.86%). We also 
reproduced all our analyses with either all RT < 100 ms removed, or with all subjects 
who had more than 50% of trials removed, for details see section ‘Behavioral analyses 
with different RT exclusion criteria’. We also originally planned to exclude subjects who 
showed an average reading time of the primary instruction page of <5 seconds; this 
could unfortunately not be traced back from our data. 
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Factor Analysis 

Even though our sample size is smaller than the original study (N=1413 versus N=489), 
we performed a de-novo factor analysis. This was for two reasons. First, recent work by 
Rouault, Seow, et al. (2018) using a comparable sample size (N=497) indicated that a 
de-novo factor analysis recovered similar symptom dimensions with high correlations 
between factor loadings. Second, our set of questionnaires did not fully match the 
original set of Gillan et al. (2016), since we included the GAD-7 instead of the STAI to 
measure general anxiety symptoms. Therefore, it was not possible to use the loadings 
derived from Gillan et al. (2016) to calculate factor scores for the current set of 
participants. However, for the overlapping items, our de-novo item loadings were very 
strongly correlated (all r > 0.85 and p<0.001) with the item loadings from (Rouault, 
Seow, et al., 2018), ensuring that our factor solution replicates previous factor solutions 
using this set of questionnaires, validating these results.  

Following Rouault, Seow, et al. (2018), we performed a factor analysis with Maximum 
Likelihood estimation using the fa() function within the psych package in R-studio. We 
used all 197 unique individual questionnaire items as variables for the factor analysis 
(Figure C1A). Oblique rotations were used since factors were expected to correlate (and 
indeed correlations between factors were > 0.3). The social anxiety questionnaire 
individual item scores were calculated as the average of the avoidance and fear 
subitems. Since some responses were binary (schizotypy scale), a heterogeneous 
correlation matrix was computed using the hetcor() function within the polycor 
package in R, which allowed for the calculation of Pearson correlation between 
numerical variables and polyserial correlations between numeric and binary variables 
and polychoric correlations between binary variables. Factor selection was based on 
earlier work (Gillan et al., 2016; Rouault, Seow, et al., 2018), and on Cattell’s criterion 
which states that an ‘elbow’ in the screeplot signifies the number of factors to retain. 
We used the Cattell-Nelson-Gorsuch test using the nCng() function within the nFactors 
package, which indicated that a 3-factor structure explained the item-level responses 
best and most parsimoniously, replicating previous studies. 

For consistency with earlier studies, factors were given the same labels according to 
the items that loaded the most strongly (even though these labels are somewhat 
arbitrary). The loadings of the items on factor 1 were dominated by apathy (M = 0.49 ± 
0.14) and depression (M=0.30 ± 0.23), whereas no other questionnaire on average 
reached a threshold of 0.25 (threshold taken from (Gillan et al., 2016)), even though 
general anxiety (M = 0.23 ± 0.07) was close. The highest loading items of the GAD-7 
questionnaire describe ‘not being able to stop worrying’, ‘feeling nervous, anxious or on 
edge’, and ‘having trouble relaxing’. Thus, factor 1 was labelled ‘Anxious-Depression’ 
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(AD). For factor 2, items pertaining to OCD (M=0.46 ±0.09), general anxiety (M=0.43 ± 
0.07) and alcoholism (M = 0.38 ± 0.10) showed the highest loadings. The top loading 
items of factor 2 pertain mostly to obsessive thoughts (i.e. obsessions) and compulsive 
behaviors for almost all items of the OCD and alcohol addiction questionnaires, which 
are both characterized as compulsive disorders (Figee et al., 2016). The top loading 
GAD-7 items interrogated feelings of ‘being so restless it is hard to sit still’, ‘becoming 
easily annoyed or irritable’ and ‘feeling afraid as if something awful might happen’. 
Therefore, factor 2 was labeled ‘Compulsive Behavior and Intrusive Thoughts’ (CIT). In 
factor 3, items of social anxiety dominated, showing the highest loadings (M = 0.54 ± 
0.13) without loading too strongly on general anxiety (M = 0.20 ±0.09). Therefore, factor 
3 was labeled as ‘Social Withdrawal’ (SW). See Figure C1 for the factor loadings. 

 

Figure C1: Factor analysis. Latent factors that underlie the psychiatry and psychology 
questionnaire items. (A) Correlation matrix of 197 questionnaire items pertaining to psychiatry, 
showing correlation coefficients between scores on all individual items across subjects. (B) 
Individual item loadings on each of the three factors, named ‘anxious-depression’ (AD), 
‘compulsive behavior and intrusive thought’ (CIT) and ‘social withdrawal’ (SW), according to 
content of the strongest item loadings and in concordance with earlier work. (C) Correlation 
matrix of the questionnaire items pertaining to psychological constructs, showing correlation 
coefficients between individual item scores across subjects. (D) Individual item loadings on the 
‘Self-Beliefs’ factor. 
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Statistical Analysis of the Local and Global Confidence Task  

First, we completed several control analyses to examine whether the effects of the task 
features (feedback and difficulty) on performance and metacognitive measures 
replicated (Rouault et al., 2019). We performed a 2x2 ANOVA with feedback and 
difficulty as factors on performance, reaction times, global choice and global 
confidence judgments. Since global choice are proportions, they were transformed 
with a classic arcsine square root transformation. To confirm that both global 
confidence and global choice consistently captured global metacognition, a paired t-
test was performed to compare global confidence for chosen and unchosen tasks.  

Moreover, to explore how participants compute local confidence, it was compared 
between easy and hard trials, and correct and incorrect trials using paired t-tests. 
Finally, to investigate whether internal fluctuations in local confidence predict global 
choices over and above differences in accuracy or reaction times, we performed a 
logistic regression in blocks where both tasks did not provide feedback and instead 
asked for local confidence judgments. Differences in local confidence level, accuracy 
and RT between the two tasks in a block were used as predictors:  

Global Choice ~ Δaccuracy + ΔRT + Δlocal confidence  

Similarly, using a linear regression, we sought to predict the difference in global 
confidence between tasks using the fluctuations in local confidence, accuracy and RT 
between tasks: 

Δ Global Confidence ~ Δaccuracy + ΔRT + Δlocal confidence  

In both models, predictors were standardized (z-scored). 

 

Relating Questionnaire Scores to Task Variables 

We studied the relationship between our task variables pertaining to both performance 
and metacognition (including performance, global confidence, local confidence, local 
calibration, global calibration, metacognitive efficiency and the correlation between 
local and global confidence) and scores on (1) psychiatric symptom questionnaires 
and (2) self-belief construct questionnaires, as predictors, using multiple linear 
regressions.  

All regressors were z-scored before entering the models to obtain standardized (i.e., 
comparable) regression coefficients. All questionnaire scores and metacognitive 
efficiency values were log-transformed and total scores were entered for each 
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questionnaire. Following Rouault, Seow, et al. (2018), due to high correlations between 
questionnaires, we ran a separate regression for each dependent variable and each 
symptom while controlling for demographic variables, as follows:  

Behavioral Variable ~ Questionnaire Score + Age + IQ + Gender 

To correct for multiple comparisons, a Bonferroni correction was applied that took the 
number of dependent variables into account, following Rouault, Seow, et al. (2018). 

 

Additional Analyses Comparing the Effects of the Confidence Levels on Symptoms 

Local confidence and global confidence correlate strongly together. In order to examine 
whether self-beliefs remained the strongest predictor of all three psychiatry factors 
when using a single predictor that was the average of local and global confidence, we 
performed additional regression analyses: 

AD/CIT/SW ~ Average of Local and Global Confidence + Self-Beliefs + Age + IQ + Gender 

Moreover, we also constructed separate analyses where only either local confidence or 
global confidence was used as a predictor alongside the predictor of self-beliefs. 

 

Additional Analyses on Behavioral Patterns 

In the main analyses, it was found that high scoring CIT individuals performed 
significantly worse, while high scoring AD individuals performed significantly better on 
the task. Please note that these analyses were not pre-registered and have been added 
as exploratory analyses to examine these behavioral patterns more in depth. 

First, we computed parameters that give information about careless responding to 
questionnaires using the careless package in R (Richard & Wilhelm, 2022). The 
parameters ‘long string index’ (i.e., the longest consecutive string of identical 
responses), and ‘intra-individual response variability’ (IRV, i.e., the standard deviation 
of responses across a set of consecutive item responses) were calculated. A higher 
long string index and a lower IRV indicated more careless responding. We calculated 
the average long string index and IRV per subject and regressed them against their AD, 
CIT and SW scores. 

Second, we performed analyses to examine whether AD, CIT and SW dimension scores 
related to the average RT on the task using a regression analysis, assuming that shorter 
RTs could be reflective of more impulsive response styles. 
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Third, we performed analyses to investigate whether there were differences in the 
relationships between the psychiatric dimensions and the manipulation of feedback on 
confidence/performance. To do so, we computed the difference in performance, global 
confidence and global calibration between feedback and no-feedback conditions for 
each subject, and regressed them separately against the AD, CIT and SW dimension 
scores. 

 

Supplementary Results 
Association Between Task Measures and Transdiagnostic Dimension Scores 

Regression analyses were performed to investigate the relationships between various 
task measures and the transdiagnostic dimension scores (Figure 2A main text), of 
which the exact statistical outcomes are shown in Table C1. 

 
Association Between Task Measures and Self-Beliefs 

Regression analyses were performed to investigate the relationships between various 
task measures and the scores on the Self-Beliefs dimension (Figure 2B main text), of 
which the exact statistical outcomes are shown in Table C2. 

 

Predicting Psychopathology with Levels of Confidence 

Regression analyses were performed to assess the influence and relative importance 
of the hierarchical levels in predicting transdiagnostic psychiatric symptom dimensions 
(Figure 3 main text), of which the exact statistical outcomes are shown in Table C3. 
Outcomes of post-hoc testing, comparing the influence of the various levels of 
confidence on the transdiagnostic symptoms is shown in Table C4. 
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Table C1: Associations between task measures and transdiagnostic dimension scores. 

Results of two-sided regression models testing the associations between various task measures 
and psychiatric factor scores (AD = ‘Anxious-Depression’, CIT = ‘Compulsive Behavior and 
Intrusive Thoughts’, SW = ‘Social Withdrawal’. Reported are the corresponding β-values, standard 
errors (SE), t-values and p-values. Results of post-hoc tests comparing the associations between 
the AD and CIT factors with each task variable are shown. The gray shaded squares represent 
significant effects. Puncor = uncorrected p-value, pcor = corrected p-value (p-valueuncor * 7). 

 

 

 Predictors  
AD CIT SW Post-hoc 

AD vs CIT 
Performance β = 0.180 

SE = 0.046 
t = 3.948 
puncor < 0.001 
pcor < 0.001 

β = -0.213 
SE = 0.046 
t = -4.588 
puncor < 0.001 
pcor < 0.001 

β = 0.018 
SE = 0.047 
t = 0.369 
puncor > 0.7 
pcor = 1 

t = -5.626 
puncor < 0.001 
pcor < 0.001 

Local Confidence β = -0.192 
SE = 0.046 
t = -4.165 
puncor < 0.001 
pcor < 0.001 

β = 0.095 
SE = 0.047 
t = 2.034 
puncor < 0.05 
pcor > 0.2 

β = -0.034 
SE = 0.048 
t = -0.719 
puncor > 0.4 
pcor = 1 

t = 4.071 
puncor < 0.001 
pcor < 0.001 

Global Confidence β = -0.125 
SE = 0.046 
t = -2.712 
puncor < 0.01 
pcor < 0.05 

β = 0.013 
SE = 0.047 
t = 0.287 
puncor > 0.7 
pcor = 1 

β = -0.048 
SE = 0.048 
t = -1.001 
puncor > 0.3 
pcor = 1 

t = 1.960 
puncor = 0.051 
pcor > 0.3 

Local Calibration β = -0.297 
SE = 0.046 
t = -6.491 
puncor < 0.001 
pcor < 0.001 

β = 0.231 
SE = 0.047 
t = 4.950 
puncor < 0.001 
pcor < 0.001 

β = -0.040 
SE = 0.048 
t = -0.835 
puncor > 0.4 
pcor = 1 

t = 7.527 
puncor < 0.001 
pcor < 0.001 

Global Calibration β = -0.309 
SE = 0.045 
t = -6.802 
puncor < 0.001 
pcor < 0.001 

β = 0.232 
SE = 0.046 
t = 5.027 
puncor < 0.001 
pcor < 0.001 

β = -0.066 
SE = 0.047 
t = - 1.395 
puncor > 0.1 
pcor = 1 

t = 7.781 
puncor < 0.001 
pcor < 0.001 

Metacognitive 
Efficiency 

β = 0.060 
SE = 0.050 
t = 1.188 
puncor > 0.2 
pcor = 1 

β = 0.097 
SE = 0.050 
t = 1.894 
puncor = 0.059 
pcor > 0.4 

β = -0.005 
SE = 0.052 
t = -0.091 
puncor > 0.9 
pcor = 1 

t = 0.483 
puncor > 0.6 
pcor = 1 

Correlation Local & 
Global Confidence 

β = 0.005 
SE = 0.047 
t = 0.095 
puncor > 0.9 
pcor = 1 

β = -0.199 
SE = 0.048 
t = -4.128 
puncor < 0.001 
pcor < 0.001 

β = 0.067 
SE = 0.049 
t = 1.370 
puncor > 0.1 
pcor = 1 

t = -2.807 
puncor < 0.01 
pcor < 0.05 
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Table C2: Associations between task variables and Self-Beliefs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Results of two-sided regression models testing the associations between various task measures 
and the self-beliefs factor. Reported are the corresponding β-values, standard errors (SE), t-
values and p-values. The gray shaded squares represent significant effects. Puncor = uncorrected 
p-value, pcor = corrected p-value (p-valueuncor * 7). 

 

 

 

 Predictor: 
Self-Beliefs  

Performance β = -0.062 
SE = 0.044 
t = -1.407 
puncor > 0.1 
pcor = 1 

Local Confidence β = 0.173 
SE = 0.043 
t = 3.977 
puncor < 0.001 
pcor < 0.001 

Global Confidence β = 0.149  
SE = 0.043 
t = 3.452 
puncor < 0.001 
pcor < 0.01 

Local Calibration β = 0.185 
SE = 0.045 
t = 4.133 
puncor < 0.001 
pcor < 0.001 

Global Calibration β = 0.211  
SE = 0.044 
t = 4.756 
puncor < 0.001 
pcor < 0.001 

Metacognitive Efficiency β = -0.086 
SE = 0.047 
t = -1.810 
puncor = 0.07  
pcor > 0.4 

Correlation Local & Global 
Confidence 

β = 0.080 
SE = 0.045 
t = 1.782 
puncor > 0.05 
pcor > 0.5 



Appendix C 

319 
 

Table C3: Predicting transdiagnostic dimensions with levels of confidence 

Results of two-sided regression models testing the associations between psychiatric factor 
scores and various hierarchical levels of confidence (i.e., local confidence, global confidence 
and Self-Beliefs (SB) factor score). Reported are the corresponding β-values, standard errors 
(SE), t-values and p-values. The gray shaded squares represent significant effects. 

Table C4: Post-hoc analyses of predicting transdiagnostic dimensions with levels of 
confidence 

 

 

 

 

 

 

 

 

 

 

 

 
Two-sided post-hoc tests comparing the associations between psychiatric factor scores and 
various hierarchical levels of confidence (i.e., local confidence, global confidence and Self-
Beliefs (SB) factor score) using the esticon() function in R, with Bonferroni correction applied (i.e., 
p-value*3). Reported are the corresponding t-values and p-values for one sample t-tests of each 
regression coefficient. For all three psychiatry factors, SB factor score (the highest hierarchical 
level), was the strongest predictor. 

 Predictors 
Local Confidence Global 

Confidence 
Self-Beliefs 

 
 
 
 
 

Dependent 
Variables 

AD β = -0.082 
SE = 0.045 
t = -1.840 
p = 0.066 

β = 0.051 
SE = 0.045 
t = 1.121 
p > 0.25 

β = -0.827  
SE = 0.026 
t = -31.889 
p < 0.001 

CIT β = 0.252 
SE = 0.071 
t = 3.555 
p < 0.001 

β = -0.174 
SE = 0.072 
t = -2.428 
p < 0.05 

β = -0.410 
SE = 0.042 
t = -9.941 
p < 0.001 

SW β = 0.088 
SE = 0.067 
t = 1.316 
p > 0.1 

β = -0.076 
SE = 0.067 
t = -1.134 
p > 0.25 

β = -0.532  
SE = 0.039 
t = -13.749 
p < 0.001 

Dependent 
Variable 

Post-hoc comparison  Statistics 

AD Local confidence vs. 
global confidence 

t = -1.558 
pcor > 0.3 

AD Local confidence vs. SB  t= 13.882   
pcor < 0.001 

AD Global confidence vs. SB t = 16.736  
pcor < 0.001 

CIT Local confidence vs. 
global confidence 

t = 3.149 
pcor < 0.01 

CIT Local confidence vs. SB t = 7.766 
pcor < 0.001 

CIT Global confidence vs. SB t = 2.830 
pcor < 0.05 

SW Local confidence vs. 
global confidence 

t = 1.290 
pcor > 0.5 

SW Local confidence vs. SB t = 7.742 
pcor < 0.001 

SW Global confidence vs. SB t = 5.826 
pcor < 0.001 

&



 

320 
 

Behavior on the Local and Global Confidence Task 

We studied how our task features of feedback and difficulty affected subjects' 
performance. Replicating Rouault et al. (2019), a 2x2 ANOVA showed a main effect of 
difficulty (F(1,488) = 1986.37, p = 3.75· 10-174), but no main effect of feedback (F(1,488) 
= 0.14, p = 0.71), nor an interaction effect (F(1,488) = 0.41, p = 0.52) on performance. 
Thus, performance was higher in the easy (85.4% correct ± 1.6%) versus the difficult 
(67.7% correct ± 2.1%) condition, while it was not different for no feedback (76.4% ± 
1.9%) or feedback (76.5% ± 1.9%) tasks (Figure C2A). This allowed us to study the 
influence of feedback on global confidence measures, irrespective of performance 
differences between feedback conditions. For reaction times (RTs), we similarly found 
a significant main effect of difficulty (F(1,488) = 246.85, p = 2.6· 10-45), but also a 
significant main effect of feedback (F(1,488) = 94.39, p = 1.62· 10-20) and no interaction 
(F(1,488) = 1.09, p = 0.30). RTs were significantly faster in easy (555.42 ms± 22.43 ms) 
versus difficult (618.54 ms ± 23.44 ms) tasks, and in tasks with feedback (563.62 ms ± 
21.41 ms) than without feedback (610.77 ms ± 24.40 ms) (Figure C2B). 

We then investigated how task features influenced global and local confidence, and 
examined whether subjects formed metacognitive judgments that accurately matched 
their performance. We first examined how our task features influenced (1) global 
choices, and (2) global confidence judgments. Consistent with previous findings 
(Rouault et al., 2019),  2x2 ANOVAs showed a significant main effect of both feedback 
(F(1,488) = 687.98, p = 2.95· 10-95) and difficulty (F(1,488) = 857.59, p = 1.49· 10-109) on 
global confidence judgments, as well as a significant interaction effect (F(1,488) = 
57.15, p = 2.01· 10-13). These results showed that tasks providing feedback were rated 
with higher global confidence than no-feedback tasks, and even more so for easy tasks 
(Figure C2D). This was mirrored in global choice (main effect of difficulty: (F(1,488) = 
638.74, p = 1.02· 10-90), main effect of feedback: (F(1,488) = 639.73, p = 8.24· 10-91), 
interaction effect: (F(1,488) = 36.94, p = 2.46· 10-9). Participants more often chose easy 
than difficult tasks, and more so in case they received feedback (Figure C2C). This 
result signals that, even though subjects’ performance is equal in the presence or 
absence of feedback, subjects rated their performance worse when no feedback was 
present. Notably, we also found consistency between the two measures of global 
metacognition, with global confidence ratings higher for tasks that were chosen versus 
those that were not (t488 = -45.158, p = 2.15· 10-176). 

Replicating Rouault et al. (2019)1, we showed that subjects gave higher local 
confidence ratings for easy (83.16 ± 0.67) versus hard (76.72 ± 0.69) tasks (t488 = -27.21, 
p = 7.32· 10-100 ), as well as for correct (81.90 ± 0.68) versus incorrect (73.49 ± 0.67) trials 
(t488 = -33.42, p = 2.97· 10-128), which signals metacognitive sensitivity (Figure C3A). We 
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also calculated M-Ratio as a measure of metacognitive efficiency, which indexes how 
well a subject can discriminate between correct and incorrect answers using their 
confidence. We found a mean posterior of 1.01, which is close to the ideal value of 1, 
and in line with previous studies on perceptual metacognition (e.g., (Faivre et al., 
2018)). 

Figure C2. Behavioral results on objective performance and global confidence measures. A) 
Accuracy (mean % correct) was higher for easy than hard tasks, but was similar for tasks with 
(“FB”) or without (“No FB”) feedback. B) Reaction times were faster for easy than hard tasks, and 
for tasks with feedback than without feedback. These patterns were dissociated from the 
metacognitive patterns, where both global choices (C) and global confidence judgments (D) were 
higher in the presence than in the absence of feedback. This difference was even more 
pronounced when tasks were easy, despite objective performance being equal between 
feedback conditions. Bars represent mean across subjects. Black error bars represent SEM 
across subjects (N=489). Dots represent individual data points; for task choice frequency the 
individual data points take discrete values due to the finite number of blocks per participant.  

 

After confirming that global and local confidence were indeed sensitive to our task 
features, we sought to examine whether fluctuations in local confidence affected both 
global confidence measures, over and above fluctuations in accuracy or RTs. A logistic 
regression showed that differences in local confidence ratings between tasks 
significantly predicted global choice (β = 0.12 (± 0.01), p < 0.0001) over and above 
differences in accuracy (β = 0.32 (± 0.31), p = 0.29) and RTs (β = -0.0002 (± 0.0004), p 
=0.69) (Figure C3B). This regression model was a better fit to subjects’ global choices 
compared to a reduced model without local confidence fluctuations (BIC = 1011 for the 
model with local confidence, BIC = 1144 for the reduced model), and a model with only 
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local confidence fluctuations as predictor was also a better fit (BIC = 999). Moreover, a 
linear regression demonstrated that differences in local confidence between tasks also 
significantly explained differences in global confidence between those tasks (β = 0.69 
(± 0.04), p < 0.0001), over and above differences in accuracy (β = 2.20 (± 1.28), p = 0.09) 
and RTs (β = 0.0008 (± 0.002), p = 0.62) (Figure C3C). 

 

Figure C3. The association between local confidence and global confidence measures. A) 
Local confidence was rated higher in correct than incorrect trials and even more so for easy tasks, 
thus showing that local confidence judgments are affected by objective performance. N = 489 
independent subjects. Bars and error bars represent mean and SEM over subjects. Dots 
represent individual data points. Significance stars represent two-sided ANOVA main effects of 
accuracy and feedback. Two-sided regressions on both (B) global choice and (C) global 
confidence judgments demonstrated that the difference in local confidence level between tasks 
(ConfDiff) explained subjects’ task choices and global confidence over and above differences in 
accuracy (AccDiff) and reaction times (RTDiff) between tasks. N = 489 independent subjects. 
Error bars represent SEM. *** p < 0.001 indicates the statistical significance of the regression 
coefficient. 
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Relating Questionnaire Scores to Task Variables 

Psychiatry Scores Regressions 

We investigated how self-reported symptom scores relate not only to performance and 
local metacognition, but also to global confidence measures, metacognitive sensitivity 
and the correlation between local and global confidence, using regression analyses 
(Supplementary Methods and Figure C4). 

Our regression analyses showed that self-reported OCD and alcoholism scores were 
significantly negatively related to performance (Alcoholism: β = -0.133 ± 0.045, t = -
2.959, p < 0.05; OCD: β = - 0.146 ± 0.044, t = -3.299, p < 0.01). In non-standardized 
terms, every 1 standard deviation increase in OCD symptom score, respectively 
alcoholism symptom score resulted in a 1.194%, respectively 1.085% decrease in 
performance. Regarding our metacognitive measures, we found that local confidence 
was negatively related to apathy scores (β = -0.143 ±0.043, t =-3.302, p<0.01), while 
global confidence was negatively related to both apathy and depression scores 
(apathy: β = -0.117 ±0.043, t = -2.713, p < 0.05; depression: β = -0.117 ±0.043, t = -2.720, 
p < 0.05). Local calibration was significantly higher (i.e., larger discrepancy between 
local confidence and actual performance) for subjects with higher OCD scores (β = 
0.131 ±0.046, t = 2.858, p < 0.05), which was presumably driven by lower performance 
levels because of the lack of association between OCD scores and local confidence. 
Contrarily, local calibration was significantly lower (i.e., more underconfident) for 
subjects with higher apathy scores (β = -0.171 ± 0.045, t = -3.837, p = 0.001). Global 
calibration was lower (i.e., more underconfident) for subjects with higher depression (β 
= -0.136 ±0.045, t = -3.036, p < 0.05) and apathy scores (β = -0.187 ±0.044, t =-4.227, p 
< 0.001). These findings of underconfidence in apathy and depression were presumably 
driven by decreases in local and global confidence rather than performance changes. 

Interestingly, we found a significant negative relationship between the correlation of 
local with global confidence and both impulsivity (β = -0.152 ±0.045, t =-3.351, p < 0.01) 
and alcoholism (β = -0.141 ± 0.046, t = -3.081, p < 0.05) scores, showing that the 
coupling between local and global confidence is more distorted in subjects with higher 
impulsivity and alcoholism scores. There were no significant associations between 
questionnaires and metacognitive efficiency that resisted correction for multiple 
comparisons, except for a small positive association between depression symptoms 
and metacognitive efficiency. 
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Figure C4: The association between task variables and symptoms.  Regression coefficients of 
the two-sided regressions of all self-reported psychiatric symptom scores and various 
dependent variables measuring aspects of performance and metacognition. Each psychiatry 
symptom score was assessed in a separate regression model whilst controlling for age, IQ and 
gender. Since all variables were z-scored, the y-axis corresponds to the change in the dependent 
variable for each change of 1 standard deviation of that particular symptom score. Results are 
corrected for multiple testing. N = 489 independent subjects. Alcoholism and OCD symptoms 
were related to lower performance. Apathy symptoms were related to lower local confidence and 
calibration, as well as global confidence and calibration. Depression symptoms were associated 
with lower global confidence and calibration. The correlation between local and global 
confidence was diminished with high impulsivity and alcoholism symptoms. Error bars represent 
SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, corrected for multiple comparisons over the number 
of dependent variables tested, ° p < 0.05 uncorrected. OCD = obsessive compulsive disorder, 
Corr Local Global = correlation between local confidence and global confidence. 

 

Psychological Construct Regressions 

We examined whether the higher-level psychological constructs were also related to 
performance and/or metacognitive measures (Figure C5). Our regressions revealed 
significant positive relationships between local confidence and autonomy (β = 0.156 
±0.043, t = 3.585, p < 0.01), mastery (β = 0.122 ± 0.044, t = 2.804, p <0.05) and self-
efficacy (β = 0.139 ±0.044, t = 3.193, p < 0.05) scores, while global confidence ratings 
were positively related to autonomy (β = 0.135 ± 0.043, t = 3.141, p <0.05) and mastery 
(β = 0.125 ± 0.043, t = 2.897, p < 0.05) scores. Moreover, both local and global 
calibration were found to be significantly higher (i.e. more overconfident) for subjects 
with higher autonomy (local: β = 0.157 ± 0.045, t = 3.492, p < 0.01; global: β = 0.168 ± 
0.045, t = 3.757, p = 0.001), self-esteem (Short-Form Questionnaire: local: β = 0.131 ± 
0.045, t = 2.889, p < 0.05; global: β = 0.163 ± 0.045, t = 3.617, p < 0.01 & Rosenberg’s 
Questionnaire: local: β = 0.141 ±0.045, t = 3.124, p < 0.05; global: β = 0.174 ±  0.045, t = 
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3.885, p = 0.001) and self-efficacy (local: β = 0.131 ± 0.045, t = 2.894, p < 0.05; global: β 
= 0.138 ± 0.045, t = 3.082, p < 0.05) scores. We found no significant associations 
between psychological questionnaire scores and metacognitive efficiency (M-Ratio), 
nor with the correlation between local and global confidence.  

Figure C5: The association between task variables and psychology questionnaires. 
Regression coefficients of the two-sided regressions of all self-reported psychology 
questionnaire scores and various dependent behavioral variables pertaining to performance and 
metacognitive variables. Each questionnaire score was assessed in a separate regression model 
whilst controlling for age, IQ and gender. Since all variables were z-scored, the y-axis corresponds 
to the change in the dependent variable for each change of 1 standard deviation of that particular 
questionnaire score. Results are corrected for multiple testing. N = 489 independent subjects. 
While no relationships with accuracy were found, these results indicate that all five psychology 
questionnaires were positively related to local and global confidence judgments and calibration 
levels (although not all findings survived correction for multiple comparisons and should thus be 
interpreted with caution). Error bars represent SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, 
corrected for multiple comparisons over the number of dependent variables tested, ° p < 0.05 
uncorrected. RB = Rosenberg’s, SF = short-form, Corr Local Global = correlation between local 
confidence and global confidence. 

 

Additional Analyses Comparing the Effects of the Confidence Levels on Symptoms 

Results from regression analyses with a predictor representing the average local and 
global confidence together with a predictor of self-beliefs showed similar results as 
reported in the main text. Here, we again found that self-beliefs remain the strongest 
predictor for AD (Effect of SB: β = -0.829 ± 0.026, t = -31.916, p < .001 & Effect of average 
local/global confidence: β = -0.031 ± 0.027, t = -1.162, p = 0.246), CIT (Effect of SB: β = - 
0.405± 0.042, t = - 9.750, p < .001 & Effect of average local/global confidence: β = 0.079± 
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0.043, t = 1.819, p = 0.070) and SW (Effect of SB: β = - 0.530± 0.039, t = - 13.703, p < .001 
& Effect of average local/global confidence: β = 0.012± 0.040, t = 0.308, p = 0.758).   

Moreover, when we constructed separate regression models where only either local or 
global confidence was a predictor alongside self-beliefs, we again get very similar 
results (Table C5). 

Table C5: Results from two-sided regression analyses using either local confidence or 
global confidence as predictor for AD, CIT or SW scores alongside the predictor of Self-
Beliefs 

AD / CIT / SW ~ Local Confidence + Self-Beliefs + Age + IQ + Gender 
 AD CIT SW 
Predictor    
Self-Beliefs β = -0.827 ± 0.026 

t = -31.864 
p < .001 

β = -0.412   ± 0.041 
t = -9.940 
p < .001 

β = -0.533± 0.039 
t = -13.770 
p < .001 

Local 
Confidence 

β =-0.042 ± 0.027 
t = -1.575 
p = 0.116 

β =0.114 ± 0.043 
t = 2.679 
p = 0.008 

β =0.027 ± 0.040 
t = 0.681 
p = 0.496 

    
AD / CIT / SW ~ Global Confidence + Self-Beliefs + Age + IQ + Gender 
 AD CIT SW 
Predictor    
Self-Beliefs β = -0.832 ± 0.026 

t = -32.108 
p < .001 

β = -0.396   ± 0.042 
t = -9.544 
p < .001 

β = -0.528± 0.039 
t = -13.676 
p < .001 

Global 
Confidence 

β =-0.016 ± 0.027 
t = -0.592 
p = 0.554 

β =0.030 ± 0.043 
t = 0.701 
p = 0.483 

β =-0.005 ± 0.040 
t = -0.130 
p = 0.896 

 

Additional Analyses on Behavioral Patterns 

First, we showed strong negative relationships between the long string index and all 
three symptom dimensions (AD: β = -0.208 ± 0.052, t = -4.013. p<.001; CIT: β = -0.648 ± 
0.051, t = -12.615. p<.001; SW: β = -0.254 ± 0.053, t = -4.8195. p<.001), indicating that 
subjects scoring higher on all symptom dimensions had lower scores on the long string 
index, and thus less careless responding. Post-hoc tests showed that this negative 
relationship was stronger with CIT than with AD scores (t = 5.614, corrected p < .001). 

IRV was negatively related to both CIT (β = -0.138 ± 0.012, t = -11.710. p<.001) and SW 
(β = -0.039 ± 0.012, t = -3.211. p=0.001), but not to AD (β = -0.017 ± 0.011, t = -1.412. p 
= 0.159). This contrarily points to more careless responding in high scoring CIT 
participants. However, since it is likely that subjects with high scores on CIT or SW 
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symptom dimensions have less variation in their answers, as most answers that will be 
selected will be on the high end of the spectrum. 

Critically, both IRV and long string index did not correlate significantly with mean 
performance on the task (long string index: r = -0.04, p = 0.349; IRV: r = -0.03, p = 0.450).  
Overall, there was no clear pattern of increased or decreased careless responses in 
high scoring CIT participants that could have impacted their task performance. 

With respect to reaction times, a weak positive relationship between CIT scores and RT 
was found (β = 0.102 ± 0.049, t = 2.092. p = 0.037), such that subjects with higher CIT 
scores were on average a bit slower, while we found a negative relationship between AD 
scores and RT (β = -0.094 ± 0.048, t = -1.966. p = 0.049), such that subjects with higher 
AD scores were on average a bit faster. These effects disappear when controlling for 
multiple testing. In sum, from the RTs on the task there are no evidence that the high 
scoring CIT subjects responded more impulsively. 

In addition, no significant relationships were found between any of the factor scores 
and the difference in performance between the feedback and no-feedback conditions 
(AD: p = 0.599; CIT: p = 0.713; SW: p = 0.919). We did find a significant positive 
relationship between AD scores and the difference in global confidence between 
feedback conditions (β = 0.700 ± 0.279, t = 2.668. p = 0.008), indicating that subjects 
with higher AD scores have a larger increase in global confidence when there is 
feedback versus no feedback (so a stronger effect of the feedback manipulation). This 
relationship was significantly negative for CIT scores (β = -0.745 ± 0.277, t = -2.527. p = 
0.012), indicating a weaker effect of the feedback manipulation. Next, looking at global 
calibration, we only found a significantly positive effect of AD score, such that higher 
scoring AD subjects had a stronger increase in calibration in the feedback versus no-
feedback condition (β = 0.936 ± 0.392, t = 2.389. p = 0.017). Overall, we only find that 
CIT subjects have a weaker effect of the feedback manipulation on their global 
confidence, but not on their performance, and thus it is unlikely that this has negatively 
influenced their overall performance. These results thus do not give reason to think that 
the lower performance in high scoring CIT individuals is due to a different reaction to 
the feedback manipulation. 
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Distributions of Questionnaire Scores 

Total scores of all questionnaires across subjects showed considerable spread, 
indicating that we had successfully sampled a large variability of symptoms in our 
general population sample (Figure C6A). 

Figure C6: Questionnaire scores. Distributions of scores on (A) psychiatry (left panels) and 
psychology (right panels) questionnaires and (B) demographics across subjects (N=489). The list 
of the questionnaires employed is provided in the Supplementary Methods section. 
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Distributions of Variables 
The distribution of all the task variables and transdiagnostic dimension scores were 
plotted (Figure C7), showing considerable spread and virtually normal distributions. 

Figure C7: Distribution of variables. Distributions of task variables and transdiagnostic 
symptom scores (N=489).  

 

Correlations Between Item Loadings 

We calculated correlations between the item loadings from the present study and the 
item loadings from Rouault, Seow, et al. (2018) for the three psychiatry factors. We 
excluded all questionnaire items from the GAD-7 and STAI, since those were only used 
in one of the two studies and then correlated the remaining item loadings. Loadings 
were strongly positively correlated, indicating a satisfactory recovery of similar latent 
factors in the current study (Figure C8). 
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Figure C8: Correlations between item loadings of transdiagnostic factors. Correlations 
between questionnaire items from the current study (N=489 participants) and Rouault et al. 
(2018) study (N=497 participants). Item loadings for all three transdiagnostic factors were 
strongly correlated (all rhos > 0.85, all two-sided p < 0.001). 

 

Item Loadings on Psychiatry and Psychology Factors 

We calculated correlations between total scores on all psychiatry (Figure C9A) and 
psychology (Figure C9C) questionnaires and illustrated the mean loadings of each 
questionnaire on the three psychiatry dimensions (Figure C9B) and on the Self-Beliefs 
factor (Figure C9D). 
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Figure C9: Factor analysis. A: Correlation matrix of the scores on the psychiatry questionnaires. 
B: Mean loadings of psychiatry questionnaire scores on the three latent psychiatry factors. C: 
Correlation matrix of the average scores on the psychology questionnaires. D: Mean loadings of 
the psychology questionnaire scores on the latent Self Beliefs factor. In B and D, error bars 
represent standard deviations over items within each questionnaire. 
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Relationships Between Demographics, Performance and Metacognition 

We evaluated the relationships between demographics and all dependent variables 
without entering questionnaire scores in the regression (Figure C10). In this first set of 
regressions, with only birthyear, IQ and gender as predictors, we found that younger 
subjects had a better performance score (β = 0.174 ± 0.045, t = 3.899, p < 0.001), as 
well as higher local and global confidence ratings (local: β = 0.211 ± 0.045, t = 4.723, p 
< 0.001; global: β = 0.267 ± 0.044, t = 6.062, p < 0.001). Moreover, higher performance 
scores (β = 0.323 ± 0.094, t = 3.443, p < 0.01) as well as higher local confidence ratings 
(β = 0.278 ± 0.094, t = 2.975, p < 0.05) were found for males versus females (Fig C10).  

Figure C10: Associations between task variables and demographics. Associations between 
performance, metacognitive variables, and demographics (birthyear, gender and IQ) assessed 
with two-sided regression analyses. Y-axis indicate the change in each dependent variable for 1 
standard deviation increase in birthyear or IQ. The reference group for gender is females, against 
which males are compared. N = 489 independent subjects. Results are corrected for multiple 
testing. Error bars represent SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, corrected for multiple 
comparisons over the number of dependent variables tested, ° p < 0.05 uncorrected. Corr Loc 
Glob means the correlation between local confidence and global confidence. 

 

Behavioral Analyses with Different RT Exclusion Criteria 

We reproduced all behavioral analyses with a sample in which we excluded all RTs < 
100 ms. Since subjects are already presented with the stimuli for 300 ms, after which 
they can start making a response, there are many quick button presses. Almost all 
results remained, except for some results that were significant, but did not survive 
Bonferroni correction, including: the negative relationship between global confidence 
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and both depression and apathy symptom scores, the positive relationship between 
local calibration and OCD symptom scores, the negative relationship between global 
calibration and depression symptom scores, the positive relationship between mastery 
and both local and global confidence and the negative relationship between AD 
dimension scores and global confidence. 

Moreover, we reproduced all behavioral analyses with a sample in which we excluded 
all subjects who had more than 50% of their trials removed when removing trials with 
an RT < 200 ms, in an attempt to remove outliers. Again, most results remained similar, 
except for some results that were significant, but did not survive Bonferroni correction, 
including: the negative relationship between alcoholism and performance, the negative 
relationship between global confidence and both apathy and depression symptom 
scores, the negative relationship between the correlation of local and global 
confidence and both alcoholism and impulsivity symptom scores, and the negative 
relationship between AD dimension scores and global confidence. In summary, our 
approach to treating RT outliers did not impact our conclusions. 

 

  

&



 

334 
 

Appendix D 

Supplement to Chapter 6 

Correlations between questionnaire scores 

Table D1: Correlations between questionnaire scores 

 RSES OCI-R MCQ-30 DASS ZUNGDEP GAD-7 
ASA .77*** -.47*** -.65*** -.75*** -.55*** -.58*** 
RSES  -.54*** -.66*** -.71*** -.60*** -.68*** 
OCI-R   .72*** .76*** .53*** .35* 
MCQ-30    .80*** - - 
DASS     - - 
ZUNGDEP      .66*** 

 
Spearman correlation coefficients between questionnaire scores. For the correlations between 
rSES, OCI-R and ASA, all 120 subjects were included. For the correlations including MCQ-30 and 
DASS, only the 80 participants in the OCD and HC group were included. For the correlations 
including the ZungDEP and GAD-7 questionnaires only the HComp group was included. 
Abbreviations: OCD = Obsessive-Compulsive Disorder, HCs = Healthy Controls, HComp = High-
Compulsive subjects, OCI-R: Obsessive-Compulsive Inventory-Revised, ASA: Autonomy Scale 
Amsterdam, rSES: Rosenberg Self-Esteem Scale, DASS: Depression Anxiety and Stress Scale, 
GAD-7: Generalized Anxiety Disorder-7 Questionnaire, ZungDEP: Zung’s Depression scale, * = 
p<.05, ** = p<.01, *** = p<.001.  

 
Comparing highly compulsive subjects to healthy controls 

The healthy control (HC) group performed significantly better on the task compared to 
the highly compulsive (HComp) group, and were also significantly more confident at 
both local and global levels (Table D2). Even though the HComp group had higher local 
and global calibration values, and both groups showed overconfidence, this did not 
differ significantly between the groups. Also, no group differences in discrimination or 
the correlation between local and global confidence were found. Together, this shows 
that the HComp group is just as overconfident in their abilities as the HC group, even 
though the HComp group performs worse and is less confident overall. 
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Table D2: Differences in demographics, clinical data and task performance between HC and 
HComp groups. 

 
 

HCs (N = 40) HComp (N=40) HC vs. 
HComp 

Age in years 38.58 (11.11) 36.53 (12.73) T = 0.77 
P = 0.45 

Females (%) 27 (67.5%) 28 (70%) X2 = 0.06 
P = 0.81 

Years of education 10.20 (3.13) 10.35 (2.64) T = -0.23 
P = 0.82 

OCI-R 2.90 (2.48) 23.35 (13.18) T = -9.65  
P < .001 

ASA 168.13 (19.18) 160.35 (33.99) T = 1.26 
P = 0.21 

rSES 23.48 (3.94) 18.53 (7.56) T = 3.67 
P < .001 

Accuracy (percent correct) 76.49 (7.76) 69.90 (8.64) F = 13.15 
P < 0.001 

Local Confidence (on 50-100 scale) 81.14 (8.11) 76.82 (9.58) F = 4.76 
P = 0.032 

Global Confidence 80.69 (7.27) 76.21 (8.83) F = 6.08 
P = 0.016 

Local Calibration 4.82 (8.92) 6.63 (11.22) T = 0.80 
P = 0.429 

Global Calibration 4.20 (6.98) 6.31  
(9.62) 

T = 1.13 
P = 0.264 

Correlation Local & Global 
Confidence 

0.56 0.52 T = -0.60 
P = 0.552 

Discrimination 8.34 (4.77) 6.73  
(4.66) 

T = -1.53 
P = 0.130 

Abbreviations: HCs = Healthy Controls, HComp = High-Compulsive subjects, OCI-R: Obsessive-
Compulsive Inventory-Revised, ASA: Autonomy Scale Amsterdam, rSES: Rosenberg Self-Esteem 
Scale, T = T-value from two-sample t-test, F = F-value from ANOVA, P = P-value. Data are reported 
as mean (standard deviation). 
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Comparing OCD and HC groups while controlling for anxiety and depression 
symptoms 

Table D3: Regression results from models comparing OCD and HC groups while controlling 
for anxiety and depression symptoms. 

Dependent Variable Intercept DASS score Group (OCD) 
Local confidence β = 82.193 

SE = 1.659 
T = 49.533 
P < .001 

β = 1.391 
SE = 1.401 
T = 0.993 
P = 0.324 

β = -8.508 
SE = 2.785 
T = -3.055 
P = 0.003 

Global confidence β = 81.480      
SE = 1.505 
T = 54.141 
P < .001 

β = 1.041 
SE = 1.271 
T = 0.819 
P = 0.415 

β = -6.027 
SE = 2.526 
T = -2.386 
P = 0.020 

Local calibration β = 7.872 
SE = 2.098 
T = 3.753 
P < .001 

β = 4.030 
SE = 1.772 
T = 2.275 
P = 0.026 

β = -11.091 
SE = 3.521 
T = -3.150 
P = 0.002 

Global calibration β = 6.315 
SE = 1.604 
T = 3.938 
P < .001 

β = 2.798 
SE = 1.354 
T = 2.066 
P = 0.042 

β = -7.234 
SE = 2.691 
T = -2.688 
P = 0.009 

Abbreviations: HC = Healthy Controls, OCD = Obsessive compulsive disorder, DASS: Depression 
Anxiety Stress Scale, SE = Standard Error, T = T-value, P = P-value.  

 

Comparing the effect of OCI-R score on local confidence between OCD and 
HComp groups 

Table D4: Regression results from model comparing the effects of OCI-R score on local 
confidence between OCD and HComp groups.  

Local Confidence ~  Intercept OCI-R score Group (HComp) Group (HComp) x 
OCI-R score 

β 74.724 -2.508 2.086 4.034 
SE 1.388 1.698 1.963 2.087 
T 53.830 - 1.477 1.063 1.933 
P <.001 0.144 0.291 0.057 

Abbreviations: HComp = Highly compulsive subjects, OCD = Obsessive compulsive disorder, 
OCI-R: Obsessive-Compulsive Inventory-Revised, SE = Standard Error, T = T-value, P = P-value.  
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Comparing M-Ratio (metacognitive efficiency) between groups 

For the sake of completeness, we calculated metacognitive efficiency for each 
participant. The signal detection theory framework assumes constant signal strength, 
and therefore metacognitive efficiency (i.e., M-Ratio) was calculated separately for the 
easy and hard trials (36 trials per subject per M-Ratio calculation). The M-Ratio was 
taken as the average M-Ratio over the easy and hard condition, and compared between 
groups using two-sample t-tests. Some subjects (8 OCD, 2 HC, 6 HComp) with a 
negative M-Ratio likely due to the low number of trials to estimate M-Ratio, were 
excluded for these analyses.  

The average M-Ratio for OCD patients was 0.859, for HC it was 0.927, and for Hcomp it 
was 1.11. There were no differences in M-Ratio between the OCD and HC groups (t68 = 
0.487, p = 0.628), and neither between the OCD and HComp groups (t64 = 1.136, p = 
0.260).  
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Appendix E 

Supplement to Chapter 7 

Supplementary Methods 

Quasi-optimal Bayesian Observer Model 

The quasi-optimal Bayesian observer model uses trial-by-trial feedback to form a point-
estimate of its belief about the mean of the Gaussian distribution that generates the 
particle’s landing locations. This current belief B� is updated on each trial in proportion 
to the prediction error δ�, using a delta-rule: 

B��� =  B� + α� × δ� 

The degree to which prediction errors drive learning depends on the trial-by-trial 
learning rate α�. Model prediction error is the difference between the estimated mean 
of the distribution B and the actual landing location of the particle X on each trial t. 

δ� =  X� – B� 

In contrast to the fixed learning rates commonly used in reinforcement learning models, 
the strength of Bayesian belief updating is its dynamic updating. For the reduced 
Bayesian model, this means that the model learning rate α� is updated on each trial in 
proportion to the surprise induced by the new evidence (Ω�) and the confidence the 
model has in its own belief estimate (υ�). 

α� =  Ω� + (1 − Ω�)(1 − υ�) 

Surprise is quantified by change-point probability (CPP, Ω�), and refers to the estimated 
probability that the mean of the sampling distribution has changed, given the current 
evidence. Model confidence (MC, υ�), in turn, is a measure of the estimated reliability 
of the model’s beliefs about the mean. When model confidence is low, even small 
prediction errors will be strongly weighted. The values of CPP and MC interact in such 
a way that when new evidence is surprising (a change-point), the learning rate will 
increase even when model confidence is high. 

CPP is calculated as the relative likelihood that the current evidence X is generated by 
a uniform generative distribution over all possible locations 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (i.e., during a 
change-point), as opposed to being drawn from the Gaussian (𝑁𝑁) that generated the 
current belief B�: 
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Ω� =  𝑈𝑈(𝑋𝑋� | 1,360)𝐻𝐻
𝑈𝑈(𝑋𝑋� | 1,360)𝐻𝐻 𝐻 𝐻𝐻(𝑋𝑋� | 𝐵𝐵�, 𝜎𝜎��)(1 − 𝐻𝐻𝐻 

To calculate the CPP, the model takes into account three variables. First, the current 
evidence (i.e., landing location) X�. Second, the hazard rate (𝐻𝐻), referring to the degree 
of unexpected (transition) uncertainty intrinsic to the task. When H is maximal (𝐻𝐻~ 1), 
each new observation is completely independent from previous observations. CPP is 
necessarily increased when 𝐻𝐻 is maintained at a higher value. In our task, 𝐻𝐻 is a 
constant at a value of 0.125. In contrast to the model, participants have no prior 
knowledge about the value of 𝐻𝐻 and must infer it from the data. Third, the variance of 
the predicted distribution 𝜎𝜎��. This term describes the estimated noise in the generative 
Gaussian distribution, by modulating known noise constant 𝜎𝜎�   by the current MC υ�. 
The noise constant is a measure of expected uncertainty, and is inserted into the model 
as the true value of the generative variance (𝜎𝜎�   = 12). Participants must also infer this 
from the data. 

𝜎𝜎�� =  𝜎𝜎�  � + (1 − υ�)𝜎𝜎�  �

υ�
 

Model confidence (υ) interacts in a precision-weighting manner with the variance of the 
generative Gaussian 𝜎𝜎�  . When model confidence is low (e.g., right after a change-
point), estimated noise over the predictive distribution 𝜎𝜎�� will be higher, and as the 
model gains more evidence and becomes more confident of its predictions, the 
estimated noise 𝜎𝜎�� will decrease and approach the true value of 𝜎𝜎�  . Because the value 
of 𝜎𝜎�� is used in the calculation of the CPP, the model will be less likely to attribute new 
evidence to the occurrence of a change-point when model confidence is low. Unlike 
the other model variables, model confidence does not depend on the current location 
of the particle X�  and is calculated at the end of trial t for the subsequent trial. υ��� 
represents the inverse of the fraction of total uncertainty about the next location of the 
particle that is due to imprecise estimation of the mean, relative to the known 
uncertainty due to noise 𝜎𝜎�  �. 

υ��� =  Ω�𝜎𝜎�  � + (1 − Ω�)(1 − υ�)𝜎𝜎�  � + Ω�(1 − Ω�)(δ�υ�)�

Ω�𝜎𝜎�  � + (1 − Ω�)(1 − υ�)𝜎𝜎�  � +  Ω�(1 − Ω�)(δ�υ�)� + 𝜎𝜎�  �   

The numerator consists of three terms. The first term represents the uncertainty of the 
generative distribution 𝜎𝜎�  � weighted by the estimated probability that a change-point 
has occurred. In the second term, this uncertainty 𝜎𝜎�  � is weighted by the estimated 
probability that no change-point occurred. The third term reflects the model’s 
uncertainty about whether or not a change-point occurred. These terms are repeated 
in the denominator, so that the value of this uncertainty can be calculated relative to 
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the uncertainty that is due to noise. If a change-point occurred on the current trial (Ω�  = 
1), model confidence is automatically set to 0.5 (its minimum value) for trial t+1. Due 
to interdependencies intrinsic to the calculation of the parameters, they are expected 
to correlate.  

 

Figure E1: Human and model behavior. Colored dots represent the landing positions of the 
particle, per block (1-4).The black line represents the participants bucket position per trial, and 
the orange line represents the prediction of the quasi-optimal Bayesian model (Bt). Data are 
shown for a sample HC subject. 
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Control Analyses 

To compare various control variables between our groups, we used two sample t-tests. 
When variances were not equal between groups, Welch t-tests were used to 
approximate the degrees of freedom.  

First, we checked whether accuracy (i.e., % hits) was equal between the groups. 
Indeed, accuracy was equal between the OCD and HC group (t71.4=-0.08, p=0.94) and 
between the OCD and HComp group (t112=1.57, p=0.12) (Table E1). The percentage of 
excluded trials relative to the total number of trials per subject did not differ between 
OCD and HC groups (t73=0.11, p=0.92), and neither between OCD and HComp groups 
(t73=0.09, p=0.93). Next, the percentage of trials per subject in which no action update 
was performed did not differ between OCD and HC groups (t73=1.51, p=0.14). It was 
higher, however, in the HComp group compared to the OCD group (t112=3.96, p<0.001; 
HComp = 43.9 %, OCD = 27.2 %). The percentage of trials in which no confidence 
update was performed was equal between OCD and HC groups (t73=0.34, p=0.73), and 
between OCD and HComp groups (t112=0.37, p=0.71). Similarly, the percentage of trials 
in which confidence was kept at the default rating did not differ between OCD and HC 
groups (t73=-0.10, p=0.92), and neither between OCD and HComp groups (t112=0.70, 
p=0.49). 

Then, we calculated the percentage of change-point trials per subject relative to their 
total number of trials and compared between groups. This did not differ between the 
OCD and HC groups (t73=-0.18, p =0.86), but there was a small difference with slightly 
lower percentage of change-points for the HComp group (t112=-2.59, p =0.01; HComp = 
12.7 %, OCD = 13.1 %). Moreover, we calculated the number of trials between 
consecutive change-points, since change-points could occur at any moment in the 
task. This did not differ between the OCD and HC groups (t40.9=1.10, p =0.28), and 
neither between the OCD and HComp groups (t37.6=-1.61, p=0.012). Since the landing 
location of the particle was drawn from a uniform distribution during a change-point, 
we calculated the average difference between the position of the particle preceding a 
change-point and at change-point per subject. This did not differ between the OCD and 
HC groups (t73=-1.55, p=0.13), and neither between the OCD and HComp groups (t73=-
0.34, p=0.73). 
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Hazard Rate Analyses 

The hazard rate 𝐻𝐻 in our task is a constant of 0.125. However, it is possible that 
participants inferred a different value of 𝐻𝐻 from the evidence, since they have no prior 
knowledge about the value of 𝐻𝐻. Our main analyses were carried out using a constant 
𝐻𝐻 of 0.125. In addition, for each participant (OCD, HC and HComp), we carried out an 
exhaustive search for the best fitting 𝐻𝐻 parameter between 0 and 1. The best fitting 
value was determined by using a minimum least squares fit between the bucket 
positions (i.e., participant behavior) and model belief B� about the landing positions. As 
per the model, higher hazard rates result in higher values of CPP (Ω) and learning rate 
(α�). When hazard rate equals 1, learning rate also equals 1, such that each new 
observation is independent from previous observations and consequently, the model 
belief is completely determined by the prediction error. When hazard rate become 
smaller, the model belief gradually is less influences by the prediction error, and mostly 
influenced by the belief in the previous trial. 

Overall, the perceived hazard rates were higher than the constant of 0.125 (Figure E2). 
No significant differences were found between the OCD (0.79 ± 0.22) and HC (0.70 ± 
0.27) groups (t73 = -1.61, p = 0.112), but hazard rate was higher for the OCD group than 
the HComp group (0.50 ± 0.30, t96.5 = -5.74, p < .001). Hazard rate was strongly positively 
correlated with action update (clinical sample: r = 0.65, p<.001, analogue sample: r = 
0.74, p<.001) and learning rate (clinical sample: r = 0.68, p<.001, analogue sample: r = 
0.77, p<.001), and negatively correlated with accuracy (clinical sample: r = -0.42, 
p<.001, analogue sample: r = -0.35, p<.001). No significant correlations were found 
within the OCD and HComp groups between hazard rate and OCI-R score.  

Sensitivity analyses were performed using the individually fitted hazard rate parameter 
as covariate to control for potential effects of hazard rate on our group differences. We 
included hazard rate as a fixed effect in our mixed-effects models investigating (1) group 
differences on confidence, (2) group differences on action update, (3) interaction 
between group and prediction error bin on learning rate, (4) group differences in the 
effects of the Bayesian parameters on action, and (5) on confidence. 

In the clinical and analogue sample, the group effect of lower confidence in OCD 
compared with HC or HComp remained significant (clinical: β = -16.87 ± 4.89, t = -3.45, 
p < .001, analogue: β = -12.53 ± 5.02, t = -2.49, p = 0.014). This implies that the difference 
in confidence between the groups was not driven by a difference in hazard rates 
between the groups. Moreover, the main effect of group on action update remained 
non-significant in the clinical sample (β = -0.73 ± 1.13, t = -0.64, p = 0.523), with a strong 
main effect of hazard rate on action update (β = 17.25 ± 2.31, t = 7.48, p < .001). The 
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significant group effect of higher action update in OCD compared with HComp 
disappeared (β = 0.76 ± 0.90, t = 0.84, p = 0.401), and a strong main effect of hazard rate 
on action update was found (β = 14.07 ± 1.45, t = 9.71, p < .001). This implies that the 
difference in action update between the OCD and HComp groups was driven by a 
difference in perceived hazard rate between the groups. Just as our main analyses, our 
sensitivity analyses did not show a group difference in action-confidence coupling in 
both samples (clinical: β = 1.06 ± 1.19, t = 0.89, p = 0.379, analogue: β = 0.65 ± 1.25, t = 
0.52, p = 0.603). Next, the effect of a higher learning rate in OCD compared to HC 
specifically for small prediction errors remained significant (Z-ratio: -1.99, p = 0.046). 
Overall, the main effect of higher learning rate in the OCD group compared to the 
HComp group remained significant (β = 0.20 ± 0.04, t = 5.73, p<.001). When zooming in 
on different prediction error bins, this effect only remained significant for low and 
medium prediction errors (low: Z-ratio: -5.729, p < .001, medium: Z-ratio: -4.193, 
p<.001), but not for high prediction errors (Z-ratio: 0.12, p = 0.905). 

In terms of the model-based analyses, when adding hazard rate as a covariate in the 
clinical sample all of the original results remained. In the analogue sample, all of the 
original results remained, except that the main effect of group on action disappeared (β 
= 1.17 ± 0.83, t = 1.40, p = 0.164). 

Taken together, these sensitivity analyses indicate that all group differences between 
OCD patients and HCs were not influenced by differences in perceived hazard rate 
between groups. While the difference in perceived hazard rate between OCD patients 
and HComp participants explained their difference in action updating, but not their 
differences in confidence and learning rate. 
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Figure E2: Hazard rate per group. Dots show data from individual participants, boxplots show 
median and upper/lower quantile with whiskers indicating the 1.5 interquartile range, 
distributions show the probability density function of all data points per group. Significance starts 
represent the main effects of group in the respective mixed-effects models. ***p<.001. HC = 
healthy control subjects, OCD = obsessive-compulsive disorder patients, HComp= highly 
compulsive subjects from the general population. 

 

Table E1: Mean and standard deviation of task variables per group. 

 

 

 

 

 

 

 

 OCD HC HComp 
Accuracy (%) 56.39 (8.57) 56.23 (9.66) 59.04 (8.51) 
Confidence 40.64 (20.93) 59.56 (21.85) 55.07 (23.51) 
Confidence Update 13.95 (6.65) 14.50 (6.21) 15.45 (7.17) 
Learning Rate 0.73 (0.27) 0.65 (0.29) 0.45 (0.21) 
Action Update 23.30 (6.54) 22.49 (6.30) 18.52 (4.96) 
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Table E2: Results of linear mixed-effects models predicting the effects of computational 
variables and group on action and confidence. 

OCD versus HC 
 Dependent Variable: Action Dependent Variable: Confidence 

Predictors Beta (SE) t p Beta (SE) t p 
PE 20.01 (2.00) 9.99 <.001 -0.96 (0.61) -1.58 0.117 
CPP 9.44 (2.02) 4.67 <.001 -3.22 (0.80) -4.04 <.001 
(1-MC)*(1-
CPP) 

1.72 (0.44) 3.92 <.001 -3.15 (0.61) -5.12 <.001 

Hit -6.36 (0.48) -13.28 <.001 5.84 (0.69) 8.45 <.001 
 
PE * Group 
(OCD) 

0.60 (2.82) 0.21 0.831 0.53 (0.85) 0.62 0.534 

CPP * Group 
(OCD) 

-0.52 (2.84) -0.18 0.831 -1.04 (1.11) -0.93 0.356 

(1-MC)*(1-
CPP) * Group 
(OCD) 

0.10 (0.62) 0.17 0.867 -0.26 (0.86) -0.31 0.761 

Hit * Group 
(OCD) 

0.09 (0.67) 0.14 0.890 -1.14 (0.97) -1.17 0.245 

OCD versus HComp 

 Dependent Variable: Action Dependent Variable: Confidence 

Predictors Beta (SE) t p Beta (SE) t p 
PE 6.42 (1.96) 3.28 0.001 -1.06 (0.57) -1.88 0.062 
CPP 21.08 (1.79) 11.77 <.001 -4.82 (0.80) -6.02 <.001 
(1-MC)*(1-
CPP) 

4.70 (0.49) 9.59 <.001 -4.42 (0.57) -7.74 <.001 

Hit -5.47 (0.32) -17.21 <.001 4.59 (0.51) 8.93 <.001 
 
PE * Group 
(OCD) 

14.35 (3.13) 4.59 <.001 0.59 (0.84) 0.70 0.484 

CPP * Group 
(OCD) 

-12.32 (2.79) -4.42 <.001 0.56 (1.26) 0.45 0.657 

(1-MC)*(1-
CPP) * Group 
(OCD) 

-2.91 (0.79) -3.68 <.001 0.98 (0.95) 1.04 0.302 

Hit * Group 
(OCD) 

-0.79 (0.52) -1.53 0.129 0.08 (0.85) 0.10 0.923 
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Appendix F 

Supplement to Chapter 8 

Quasi-optimal Bayesian Observer Model 

The same model as used in previous studies (Hoven, Mulder, et al., 2023; Seow & Gillan, 
2020; Vaghi et al., 2017)has been employed for the current study. The quasi-optimal 
Bayesian observer model uses trial-by-trial feedback to form a point-estimate of its 
belief about the mean of the Gaussian distribution that generates the particle’s landing 
locations. This current belief B� is updated on each trial in proportion to the prediction 
error δ�, using a delta-rule: 

B��� =  B� + α� × δ� 

The degree to which prediction errors drive learning depends on the trial-by-trial 
learning rate α�. Model prediction error is the difference between the estimated mean 
of the distribution B and the actual landing location of the particle X on each trial t. 

δ� =  X� – B� 

In contrast to the fixed learning rates commonly used in reinforcement learning models, 
the strength of Bayesian belief updating is its dynamic updating. For the reduced 
Bayesian model, this means that the model learning rate α� is updated on each trial in 
proportion to the surprise induced by the new evidence (Ω�) and the confidence the 
model has in its own belief estimate (υ�). 

α� =  Ω� + (1 − Ω�)(1 − υ�) 

Surprise is quantified by change-point probability (CPP, Ω�), and refers to the estimated 
probability that the mean of the sampling distribution has changed, given the current 
evidence. Model confidence (MC, υ�), in turn, is a measure of the estimated reliability 
of the model’s beliefs about the mean. When model confidence is low, even small 
prediction errors will be strongly weighted. The values of CPP and MC interact in such 
a way that when new evidence is surprising (a change-point), the learning rate will 
increase even when model confidence is high. 

CPP is calculated as the relative likelihood that the current evidence X is generated by 
a uniform generative distribution over all possible locations 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (i.e. during a 
change-point), as opposed to being drawn from the Gaussian (𝑁𝑁) that generated the 
current belief B�: 



Appendix F 

347 
 

Ω� =  𝑈𝑈(𝑋𝑋� | 1,360)𝐻𝐻
𝑈𝑈(𝑋𝑋� | 1,360)𝐻𝐻 𝐻 𝐻𝐻(𝑋𝑋� | 𝐵𝐵�, 𝜎𝜎��)(1 − 𝐻𝐻𝐻 

To calculate the CPP, the model takes into account three variables. First, the current 
evidence (i.e. landing location) X�. Second, the hazard rate (𝐻𝐻), referring to the degree 
of unexpected (transition) uncertainty intrinsic to the task. When H is maximal (𝐻𝐻~ 1), 
each new observation is completely independent from previous observations. CPP is 
necessarily increased when 𝐻𝐻 is maintained at a higher value. In our task, 𝐻𝐻 is a 
constant at a value of 0.125. In contrast to the model, participants have no prior 
knowledge about the value of 𝐻𝐻 and must infer it from the data. Third, the variance of 
the predicted distribution 𝜎𝜎��. This term describes the estimated noise in the generative 
Gaussian distribution, by modulating known noise constant 𝜎𝜎�   by the current MC υ�. 
The noise constant is a measure of expected uncertainty, and is inserted into the model 
as the true value of the generative variance (𝜎𝜎�   = 12). Participants must also infer this 
from the data. 

𝜎𝜎�� =  𝜎𝜎�  � + (1 − υ�)𝜎𝜎�  �

υ�
 

Model confidence (υ) interacts in a precision-weighting manner with the variance of the 
generative Gaussian 𝜎𝜎�  . When model confidence is low (e.g. right after a change-point), 
estimated noise over the predictive distribution 𝜎𝜎�� will be higher, and as the model 
gains more evidence and becomes more confident of its predictions, the estimated 
noise 𝜎𝜎�� will decrease and approach the true value of 𝜎𝜎�  . Because the value of 𝜎𝜎�� is 
used in the calculation of the CPP, the model will be less likely to attribute new evidence 
to the occurrence of a change-point when model confidence is low. Unlike the other 
model variables, model confidence does not depend on the current location of the 
particle X�  and is calculated at the end of trial t for the subsequent trial. υ��� represents 
the inverse of the fraction of total uncertainty about the next location of the particle that 
is due to imprecise estimation of the mean, relative to the known uncertainty due to 
noise 𝜎𝜎�  �. 

υ��� =  Ω�𝜎𝜎�  � + (1 − Ω�)(1 − υ�)𝜎𝜎�  � + Ω�(1 − Ω�)(δ�υ�)�

Ω�𝜎𝜎�  � + (1 − Ω�)(1 − υ�)𝜎𝜎�  � +  Ω�(1 − Ω�)(δ�υ�)� + 𝜎𝜎�  �   

The numerator consists of three terms. The first term represents the uncertainty of the 
generative distribution 𝜎𝜎�  � weighted by the estimated probability that a change-point 
has occurred. In the second term, this uncertainty 𝜎𝜎�  � is weighted by the estimated 
probability that no change-point occurred. The third term reflects the model’s 
uncertainty about whether or not a change-point occurred. These terms are repeated 
in the denominator, so that the value of this uncertainty can be calculated relative to 
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the uncertainty that is due to noise. If a change-point occurred on the current trial (Ω�  = 
1), model confidence is automatically set to 0.5 (its minimum value) for trial t+1. Due 
to interdependencies intrinsic to the calculation of the parameters, they are expected 
to correlate.  

 

Control Analyses 

To compare various control variables between our groups, we used two sample t-tests. 
When variances were not equal between groups, Welch t-tests were used to 
approximate the degrees of freedom.  

Accuracy (i.e. % hits) was equal between the groups (t49=-0.95, p=0.345), as well as the 
average prediction error (t49=-1.18, p=0.242). The percentage of excluded trials relative 
to the total number of trials per subject did not differ between groups (t49=0.02, 
p=0.981). The percentage of trials per subject in which no action update was performed 
was higher in GD (t49=2.48, p=0.017; GD = 60.1 %, HC = 50.5 %). The percentage of trials 
in which no confidence update was performed was equal between groups (t49=1.29, 
p=0.202). The percentage of change-point trials per subject relative to their total 
number of trials did not differ between the groups (t49=-0.58, p =0.566). Moreover, we 
calculated the number of trials between consecutive change-points, since change-
points could occur at any moment in the task, which did differ between the groups, with 
a slightly higher number of trials in GD compared to HC (t27.07=5.66, p<0.01; GD = 6.9 
trials, HC = 6.7 trials). Since the landing location of the particle was drawn from a 
uniform distribution during a change-point, we calculated the average difference 
between the position of the particle preceding a change-point and at change-point per 
subject. This did not differ between the groups (t49=0.60, p=0.55). 

 

Results Excluding Outlier Participant Based on Task Accuracy 

We did not use accuracy-based exclusion criteria in our analyses. However, the average 
accuracy of one GD participant was characterized as an outlier, being 18.2%. When 
removing this participant from our main analyses all results remained similar, however, 
the effect of a weaker action-confidence coupling in GD turned non-significant, but still 
indicated a trend effect (β = 3.07 +-1.65, t = 1.86, p = 0.063). 
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Hazard Rate Analyses 

The hazard rate 𝐻𝐻 in our task is a constant of 0.125. However, it is possible that 
participants inferred a different value of 𝐻𝐻 from the evidence, since they have no prior 
knowledge about the value of 𝐻𝐻. Our main analyses were carried out using a constant 
𝐻𝐻 of 0.125. In addition, for each participant, we carried out an exhaustive search for the 
best fitting 𝐻𝐻 parameter between 0 and 1. The best fitting value was determined by 
using a minimum least squares fit between the bucket positions (i.e. participant 
behavior) and model belief B� about the landing positions. As per the model, higher 
hazard rates result in higher values of CPP (Ω) and learning rate (α�). When hazard rate 
equals 1, learning rate also equals 1, such that each new observation is independent 
from previous observations and consequently, the model belief is completely 
determined by the prediction error. When hazard rate become smaller, the model belief 
gradually is less influences by the prediction error, and mostly influenced by the belief 
in the previous trial. 

Overall, the perceived hazard rates were higher than the constant of 0.125 (Figure F1). 
No significant differences were found between the GD (mean: 0.54, sd: 0.30) and HC 
(mean: 0.59, sd: 0.31) groups (t49 = -0.61, p=0.542). Hazard rate was strongly positively 
correlated with action update (r = 0.72, p<.001) and learning rate (r = 0.74, p<.001), but 
not with accuracy (r = -0.03, p=0.85). No significant correlations were found within the 
GD group between hazard rate and PGSI or GBQ score.  

Sensitivity analyses were performed using the individually fitted hazard rate parameter 
as covariate to control for potential effects of hazard rate on our group differences. We 
included hazard rate as a fixed effect in our mixed-effects models investigating (1) group 
differences on confidence, (2) group differences on action update, (3) interaction 
between group and prediction error bin on learning rate, (4) group differences in the 
effects of the Bayesian parameters on action and (5) on confidence. This did not change 
any of the effects reported in the main manuscript. In fact, including hazard rate as a 
covariate in the learning rate analyses strengthened the group effect of lower learning 
rates in GD compared to HC (general mixed-model: β = -0.10 (0.04), t = -2.89, p = 
0.0056). When zooming in on different prediction error bins, the effect of lower learning 
rates for low and medium prediction errors strengthened as well (low: Z-ratio: 3.143, p 
= 0.002, medium: Z-ratio: 4.879, p<.001). 
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Figure F1: Hazard rate per group. Dots show data from individual participants, boxplots show 
median and upper/lower quantile with whiskers indicating the 1.5 interquartile range, 
distributions show the probability density function of all data points per group. HC = healthy 
control subjects, GD = gambling disorder. 

 

High Volatility Analyses 

A subset of our sample additionally performed the predictive inference task using a 
higher hazard rate 𝐻𝐻 of 0.20, for which we performed similar exclusion criteria and 
analyses as were developed in the main manuscript. The final sample consisted of 24 
GD and 15 HC participants. 

First, no group differences were found in the perceived hazard rate (Mean HC: 0.68, 
mean GD: 0.71, t37 = 0.33, p=0.741). Again, no effects of group on confidence (β = -1.86 
(6.13), t = -0.30, p=0.764) or action update (β = 0.44 (1.96), t = 0.23, p=0.822) were 
found. Here, no evidence was found of a weaker action-confidence coupling in GD 
(interaction effect: β = 2.85 (1.84), t = 1.55, p=0.122), and again no correlations were 
found between action-confidence coupling and PGSI score (r = 0.14, p = 0.503) or GBQ 
score (r = 0.14, p=0.507) in the GD sample.  

No evidence was found for an overall group difference in learning rate (β = -0.10 (0.09), 
t = -1.10, p=0.278), however in post-hoc analyses it was shown that GD patients have 
higher learning rate particularly when prediction error was low (HC-GD Z-ratio = 2.307, 
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p = 0.021). Regarding the Bayesian model-based analyses, no group differences were 
found on the effects of the latent parameters on either action or confidence.  

 

Comparing High to Low Volatility 

Using the subset of our sample that completed the original predictive inference task 
(termed here: low volatility task), as well as the high volatility task, we aimed to 
compare behavior between the groups on the two different variations of the task. After 
applying similar exclusion criteria, the final sample consisted of 23 GD and 14 HC 
participants.  

First of all we compared perceived hazard rates between groups and between task type 
using a mixed ANOVA. As expected, perceived hazard rate was higher was higher in the 
high volatility versus low volatility task (F1,35 = 18.66, p<.001), but this did not differ 
between groups (F1,35 = 0.0008, p = 0.978), and no interaction between group and task 
type was found (F1,35 = 1.75, p = 0.195). 

Then, using mixed-models, the effects of group and task type and their interaction on 
confidence, action update and learning rate were tested. The models showed 
significant effects of task type on confidence (β = 1.33 (0.48), t = 2.79, p=0.005),on 
action update (β = -8.51 (0.89), t = -9.56, p<.001), and on learning rate (β = -0.16 (0.01), 
t = -12.34, p<.001) with lower confidence, higher action update and higher learning rates 
in the high volatility task. However, no interactions between group and task type were 
found on confidence (β = 0.26 (0.60), t = 0.43, p=0.671), on action update (β = -1.31 
(1.13), t = -1.16, p=0.246), or on learning rate (β = -0.03 (0.02), t = -1.58, p=0.115). 

Using a mixed-model with action update as dependent variable and fixed effects of 
confidence, group, task type and their interactions, we again showed a significant main 
effect of confidence (β = -9.20 (1.29), t = -7.15, p<.001), indicating the c0upling of action 
and confidence. Moreover, a significant main effect of task type was found, with more 
action updating in the high versus low volatility task (β = -8.51 (0.87), t = -9.77, p<.001). 
A significant interaction between group and confidence showed a weaker confidence 
coupling in GD (β = 3.29 (1.63), t = 2.01, p=0.044), however there was no evidence for a 
three-way interaction between group, confidence and task type, indicating that the 
weaker coupling of action and confidence in GD was not exaggerated further in a high 
volatility context (β = -0.05 (1.10), t = -0.04, p=0.965). 

For the model-based analyses we used mixed-models to test the interaction between 
group, task type and the various latent parameters from the model on action and 
confidence. For the action model, no significant interactions were found. For the 
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confidence model, a significant interaction between group, task type and the hit 
parameter was found (β = -3.39 (0.74), t = -4.56, p<.001), which indicated that the effect 
of a hit on the previous trial on confidence was stronger in HC compared to GD when 
task volatility was low, but contrarily was stronger in GD compared to HC when the task 
volatility was high. 

Overall, while increasing the volatility of the task directly impacts the amount of action 
updating, confidence and learning rates, there is little evidence that higher volatility of 
the task had different effects on task behavior in the GD versus the HC group. 

 

Table F1: Results of linear mixed-effects models predicting the effects of computational 
variables and group on action and confidence in the original predictive inference task. 

GD versus HC 

 Dependent Variable: Action Dependent Variable: Confidence 

Predictors Beta (SE) t p Beta (SE) t p 

PE 19.27 (2.82) 6.83 <.001 -0.75 (0.55) -1.38 0.167 

CPP 11.31 (2.58) 4.38 <.001 -2.21 (1.06) -2.09 0.042 

(1-CPP)* (1-MC) 2.09 (0.51) 4.14 <.001 -1.81 (0.74) -2.43 0.019 

Hit -5.57 (0.50) -11.13 <.001 3.91 (0.73) 5.32 <.001 

 

PE * Group (GD) -5.52 (4.04) -1.37 0.178 0.40 (0.80) 0.50 0.619 

CPP * Group 
(GD) 

3.74 (3.69) 1.01 0.316 1.07 (1.52) 0.70 0.484 

((1-CPP)* (1-
MC)) * Group 
(GD) 

1.72 (0.72) 2.37 0.022 0.59 (1.06) 0.56 0.581 

Hit * Group (GD) -1.16 (0.72) -1.62 0.111 -0.96 (1.05) -0.92 0.364 
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Appendix G 

Supplement to Chapter 9 

 

Supplementary Methods 

Participants 

HCs were recruited from our participant database that exists of HCs that participated 
in previous studies conducted in our lab. Participants were recruited online and tested 
in the lab. In line with the medical ethics committee approval and procedures, all 
invited participants received an information sheet describing what to expect from 
participating and explaining that the research concerned eye-tracking during a 
gambling game. Please note that all participants were naive to the mixed-gamble task 
before entering this study. 

 

Task design 

The mixed-gamble task consisted of mixed gambles that were always presented as a 
50/50 chance of gaining or losing a specific value. Subjects were asked to decide 
between two options: rejecting (sure option) or accepting (gambling option) the 
gamble. The sure option always entailed opting for the initial endowment of €25 without 
the possibility of gaining or losing additional bonuses. The gambling option always 
entailed potentially gaining or losing additional bonuses, both with an equal probability 
of 50%. The amounts that participants chose over varied as follows: gain values ranged 
from 20 to 38 credits in steps of 2, and losses ranged from -13 to -27 credits in steps of 
2. Each gamble constituted a combination of one gain value and one loss value. Gains 
and losses were orthogonalized, as all possible combinations were presented, 
resulting in independency between gains and losses. To incentivize participants, one of 
160 trials would be chosen at random at the end of the experiment. If the gamble was 
rejected in this trial, subjects received the initial endowment. If the gamble was 
accepted on this trial, the outcome of the lottery was determined via a virtual coin flip. 
The outcome was converted to euros (1 credit = €0.185), and consequently added to 
the initial endowment if it was a gain, or subtracted if it was a loss. 
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Eye tracker set-up 

The task was run using Presentation software (Version 18.0, Neurobehavioral Systems 
Inc, Berkeley, CA). Eye movement data was collected using the EyeLink 1000 desk-
mounted eye-gaze tracking system (SR Research Ltd., Ottowa, Ontario), which uses 
infrared and corneal reflection techniques. The sampling rate was 500 Hz, and head 
position was kept stable using a head-chin rest. Participants’ eyes were positioned 60 
cm away from the monitor. The stimuli were presented on a Iiyama monitor 
(1920x1080). At the start of the experiment and before the start of each new block a 9-
point calibration and validation was performed to ensure proper validity of the eye-
tracking data throughout the experiment. 

 

Data preparation and exclusions 

Behavioral data 

Data preparation and analyses were performed using Rstudio (RStudio version 
1.4.1106). Subjects who did not show any variation in their choices were excluded 
(N=2). Moreover, all trials in which participants failed to make a decision within the time 
limit were excluded (41 trials in total). Three subjects experienced some technical 
issues, as a result of which their data was collected in two separate runs of 80 trials 
each. 

Eye-tracking data 

First, the quality of the validation was checked per block by inspecting the visual 
degrees in the central (960x540), left (115x540) and right (1804x540) calibration points, 
since the gamble stimuli only covered the central horizontal area of the monitor. Note 
that our experimental design separated gain and loss stimuli widely on the screen (by 
ca. 1700 pixels), allowing for a higher degree of error tolerance than with closely spaced 
areas of interest (AOIs) commonly used (Dalrymple et al., 2018). We therefore excluded 
blocks only when their average validation accuracy of a single calibration point 
exceeded 2°, or when the average of the validation accuracy of the three calibration 
points exceeded 1.5° (10 blocks in total, 8 subjects for 1 block and 1 subject for 2 
blocks) . 

The wide separation of stimuli together with high calibration accuracy allowed us to 
select large margins for our AOIs, reducing false negatives without the risk of increasing 
false positives since the AOIs by no means overlap (Kennedy, 2016; Orquin et al., 2016). 
Two rectangular AOIs with a margin of 150 pixels in each direction (approx. 4° visual 
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angle) were established around the gamble stimuli of 100x100 pixels. The AOIs were 
centered on (480,540) and (1440,540) for the left and right stimulus, respectively (Figure 
1B). Moreover, an AOI was created for the fixation cross, centered on (960x540) with a 
margin of 100 pixels in each direction. 

Finally, trials in which subjects made no fixations to the gain or loss AOIs were removed 
from further analyses (52 trials). Moreover, some trials did not contain eye-tracking data 
due to temporary data loss or closed eyes (12 trials). 

 

Mixed-model specifications 

For the analyses explained in the main text, we have built several mixed-models, of 
which detailed specifications can be found in Table G1. 

Table G1: Specification of all mixed-effect models.  

 Dependent 
Variable 

Fixed Effects Random Effects (per 
subject) 

(A) Basic 
Choice 
Model 

 
Choice   • Gain Value * 

Group 
• Loss Value * 

Group   

• Intercept  
• Slope of Gain 

Value 
• Slope of Loss 

Value  

(B) Extended 
Choice 
Model 

 
Choice   • Gain Value * 

Group 
• Loss Value * 

Group 
• Confidence * 

Group 

• Intercept  
• Slope of Gain 

Value 
• Slope of Loss 

Value 
• Slope of 

Confidence 

(C) Confidence 
Model 

 
Confidence   • Gain Value * 

Group  
• Loss Value * 

Group 

• Intercept  
• Slope of Gain 

Value 
• Slope of Loss 

Value 

(D) Dwell Time 
Gain Model 

 
Dwell time on 
gains   

• Gain Value * 
Group  

• Intercept  
• Slope of Gain 

Value 

(E) Dwell Time 
Loss Model 

 
Dwell time on 
losses  

• Loss Value * 
Group  

• Intercept  
• Slope of Loss 

Value 
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(F) Relative 
Dwell Time 
Model 

 
Relative dwell 
time on gains 
versus losses  

• Gain Value * 
Group  

• Loss Value * 
Group 

• Intercept  
• Slope of Gain 

Value 
• Slope of Loss 

Value 

(G) Choice x 
Attention 
Model 

 
Choice   • Dwell Time Gain * 

Gain Value * 
Group 

• Dwell Time Loss * 
Loss Value * 
Group 

• Confidence * 
Group  

• Intercept 
• Slope of dwell 

time gain 
• Slope of Gain 

Value 
• Slope of dwell 

time loss 
• Slope of Loss 

Value 
• Slope of 

Confidence 

(H) Choice x 
Attention 
Channels 
Model  

 
Choice   • Average Dwell 

Time Gain * Gain 
Value * Group 

• Trial-by-Trial 
Deviations Dwell 
Time Gain * Gain 
Value * Group 

• Average Dwell 
Time Loss * Loss 
Value * Group 

• Trial-by-Trial 
Deviations Dwell 
Time Loss * Loss 
Value * Group 

• Confidence * 
Group 

• Intercept 
• Slope of Gain 

Value 
• Slope of Loss 

Value 
• Slope of Trial-

by-Trial 
Deviations 
Dwell Time 
Gain 

• Slope of Trial-
by-Trial 
Deviations 
Dwell Time 
Loss 

• Slope of 
Confidence 

Presented are detailed specifications of all mixed-effect models used in the analyses. Reported 
are the dependent variable, fixed effects including interaction terms (all main effects of the 
variables in an interaction term were included as well) and random effects per subject that were 
specified in each model. 

 

Correlational analyses 

Exporatory correlations 

Pearson’s correlation tests were performed between various variables of interest. 
Gambling propensity and dwell time on gains/losses were correlated to gambling 
severity (in GD only), GBQ score (in GD only), BIS score and BAS score, and subscores 
where relevant.  
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Expected value 

Expected value (EV) was calculated for each trial:  

EV = gv*p1 + lv*p2 

Where gv and lv represent the size of the potential gain and loss values, respectively, 
and p1 and p2 represent the probabilities of gain and loss (0.5 for both).  

First, we investigated whether the EV of a gamble, taking in both loss and gain value and 
their 50% probability, would predict gambling choices, and whether this relationship 
differed between the groups. We used mixed-effects models were fit. For all further 
mixed models continuous independent variables were z-scored (EV, confidence, dwell 
times). 

Second, to test for group differences in the effects of expected value on confidence a 
mixed-effects model was run with confidence as dependent variable, and fixed factors 
of expected value in interaction with group, random intercepts and random slopes of 
EV. 

Third, to test for group differences in the effects of expected value on the relative dwell 
time towards gains versus losses, a mixed-effects model was run with relative dwell 
times as dependent variable, and fixed factors of expected value in interaction with 
group, random intercepts and random slopes of EV. 

Finally, to test the influence of relative dwell times and EV on choice to gamble, and to 
test whether these effects differed per group, a final mixed-effects model was run with 
choice as dependent variable, and fixed factors of relative dwell time toward gains, EV 
and group and all interactions, together with random slopes and random effects of 
relative dwell times and EV per subject. 

 

Supplementary Results 

Correlational analyses 

Gambling severity or gambling beliefs did not significantly correlate with gambling 
propensity or dwell times in GD. Across the whole sample, there was a significant 
negative correlation between BAS scores and top-down dwell time on gains (r = -0.34, 
p = 0.01) and between BAS scores and top-down dwell time on losses (r = -0.36, p = 
0.007). When splitting up the groups, only correlations between BAS scores and dwell 
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time on gains (r = -0.46, p = 0.01) and dwell time on losses (r = -0.60 , p = 0.0008) stayed 
significant for the HC group, but not for the GD group. 

 

Expected value analyses 

First, results showed a strong significant effect of EV on choice to gamble, with higher 
EV leading to more gambling (Table G2A).  

Our second model did not show a main effect of EV on confidence level (Table G2B). A 
trend-level interaction effect was found, which showed that patients with GD showed a 
more positive relationship between EV and confidence. 

Table G2: Results of the mixed-effects model on choice behavior (A) and confidence (B).  

 

 

 

 

 

 

 

A) Results of mixed-model: Choice ~ Expected Value x Group  + (1 + Expected Value | Subject). B) 
Results of mixed-model: Confidence ~ Expected Value x Group  + (1 + Expected Value | Subject). 
Shown are the estimates, their standard errors (SE) and 95% confidence intervals (CI), statistic 
and p-values. *p<0.05, **p<0.01, ***p<0.001. 

With regards to relative dwell times to gains, we found a significant main effect of EV 
showing that subjects in general focus more attention towards gains versus losses 
during gambles with a higher EV (Table G3). No interaction effect with group was found. 

Table G3: Results of the mixed-effects model on relative dwell times.  

Parameter Estimate (SE) p-value 
Intercept 0.06 (0.01) 0.002 
Expected Value 0.04 (0.01) 0.001 
Group (GD) -0.02 (0.03) 0.572 
Expected Value x Group (GD) 0.01 (0.02) 0.750 

Results of model: Relative Dwell Time To Gains Versus Losses ~ Expected Value x Group  + (1 + 
Expected Value | Subject). Shown are the beta estimates, their standard error (SE) and 95% 
confidence intervals (CI), statistic and p-values. *p<0.05, **p<0.01, ***p<0.001. 

A)   
Parameter Estimate (SE) p-value 
Intercept 0.55 (0.37) 0.141 
Expected Value 3.26 (0.24) <0.001 
Group (GD) 2.05 (0.74) 0.005 
Expected Value x Group (GD) 0.67 (0.47) 0.151 
B)   
Parameter Estimate (SE) p-value 
Intercept 5.47 (0.10) <0.001 
Expected Value 0.05 (0.05) 0.315 
Group (GD) 0.14 (0.20) 0.474 
Expected Value x Group (GD) 0.18 (0.10) 0.068 
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Finally, looking in to the effects of expected value, relative dwell time to gains, group 
and their interactions on choice behavior, results showed only main effects of expected 
value and group, but no interaction effects (Table G4). 

 

Table G4: Results of the mixed-effects model on the influence of attentional measures on 
choice.  

Results of model: Choice ~ Expected Value x Relative Dwell Time x Group + (1 + Expected Value 
+ Relative Dwell Time | Subject). Shown are the beta estimates, their standard error (SE) and 95% 
confidence intervals (CI), statistic and p-values. *p<0.05, **p<0.01, ***p<0.001. 

Parameter Estimate (SE)  p-value 
Intercept 0.50 (0.36) 0.168 
Expected Value 3.26 (0.23) <0.001 
Group (GD) 2.04 (0.72) 0.005 
Expected Value x Group (GD) 0.56 (0.46) 0.223 
Relative Dwell Time x Expected Value -0.10 (0.06) 0.092 
Relative Dwell Time x Group (GD) -0.10 (0.10) 0.339 
Relative Dwell Time x Expected Value x Group (GD) 0.06 (0.11) 0.582 
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Appendix H 

Supplement to Chapter 10 

 

Supplementary Analyses 

Previous work on the influence of value and risk-taking on confidence indicated that the 
well-documented negative relationship between confidence and reaction times was 
less strong when healthy subjects made risky versus certain choices (da Silva 
Castanheira et al., 2021). In our current work we tested these same relationships using 
mixed-effects models. 

First, we tested these relationships within our sample of healthy controls. We adjusted 
the first model of our main paper to test whether the relationship between reaction 
times and confidence was different for the two choice types. To do so, we included an 
interaction between log reaction time and choice type: 

Confidence ~ Choice Type * Expected Value + Choice Type * Reaction Time + (1 + 
Choice Type + Expected Value + Reaction Time | Subject) 

Here we found trend level evidence for an interaction effect between reaction times and 
choice type (β = -0.04 +- 0.02, t = -1.89, p = 0.058), which indicated that the negative 
relationship between reaction time and confidence was less strong during risky 
choices (β = - 0.335 +- 0.077) than during certain choices (β = -0.408 +- 0.075). 

Second, we also adjusted the second model of our main paper to include an interaction 
between reaction time and choice type within our sample of healthy controls: 

Confidence ~ Choice Type * Gain Value + Choice Type * Loss Value + Choice Type * 
Reaction Time + (1 + Choice Type + Gain Value + Loss Value + Reaction Time | Subject) 

We found evidence for a significant interaction effect between reaction times and 
choice type (β = -0.06 +- 0.02, t = -3.01, p = 0.003), indicating that the negative 
relationship between reaction time and confidence was less strong during risky 
choices (β = - 0.300 +- 0.077) than during certain choices (β = -0.413 +- 0.075). 

Finally, we included the GD sample to explore whether the difference between choice 
types in the confidence-reaction time relationship was expressed differently in the 
groups by adding three-way interactions between choice type, reaction time and group. 
We did not find evidence for a significant three-way interaction. 
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Nederlandse samenvatting 

De Innerlijke Spiegel: Een Neurocognitieve Benadering 
van Zekerheid en Metacognitie in de Psychiatrie 

 

Introductie 

Stel je voor dat je aan de kant van een donkere, mistige weg staat en je naar de overkant 
moet. Je vraagt je af of er een auto aankomt of niet. Komt het licht dat je ziet van de 
straatlantaarns, of toch van een naderende auto? Bij het maken van deze beslissing zul 
je af gaan op je gevoel van zekerheid over je overtuiging dat het licht van de 
straatlantaarns komt. Dit gevoel van zekerheid (ook wel ‘confidence’) ontstaat bij 
vrijwel elke keuze die je maakt. Het is erg belangrijk dat de mate van zekerheid die je 
voelt in je beslissingen of overtuigingen overeenkomt met wat er daadwerkelijk gebeurt. 
Als je namelijk té zeker bent en de weg op stapt terwijl er eigenlijk een auto nadert, 
kunnen de gevolgen fataal zijn. Maar als je blijft aarzelen terwijl de kust veilig is, kom je 
nooit aan de overkant. Dit proces waarbij mensen nadenken over en reflecteren op hun 
eigen beslissingen, overtuigingen, acties en ideeën wordt metacognitie genoemd.  

Metacognitie en zekerheid 

Metacognitie wordt gedefinieerd als 'het denken over je eigen denken' (Flavell, 1979). 
Dit is iets wat we voortdurend doen (zowel bewust als onbewust) en vervolgens 
gebruiken om ons gedrag bij te sturen. Een vorm van metacognitie is ‘confidence’, wat 
wordt gedefinieerd als het subjectieve gevoel van zekerheid dat je een correcte keuze 
hebt gemaakt of dat je idee juist is (Pouget et al., 2016). Hierbij wordt onderscheid 
gemaakt tussen ‘metacognitieve monitoring’, wat het vermogen is om je gedrag te 
monitoren m.b.v. zekerheidsinschattingen, en ‘metacognitieve controle’, wat het 
vermogen is om je zekerheid vervolgens te gebruiken om je gedrag te sturen.  

Een goed werkend metacognitief systeem is van groot belang om je gedrag en keuzes 
zo goed mogelijk aan te passen in een wereld die vaak onvoorspelbaar is en 
voortdurend verandert. Als je ergens minder zeker over bent, zul je geneigd zijn om meer 
informatie te verzamelen, sta je open voor nieuwe ideeën, leer je sneller en verander je 
misschien zelfs van strategie en gedachten.  Aan de andere kant, als je erg zeker bent 
van je zaak, sta je minder open voor feedback, stop je met informatie vergaren, en houd 
je vast aan je initiële keuze. Het gevoel van zekerheid fungeert dus eigenlijk als een 
innerlijke maatstaf die je gedrag beïnvloedt wanneer er geen externe feedback is, wat 



  Dutch Summary 

363 
 

vaak het geval is in het echte leven. Op deze manier speelt het een essentiële rol bij het 
sturen van optimaal gedrag. 

Zekerheid in de psychiatrie 

Wanneer je gevoel van zekerheid over de juistheid van je beslissingen niet overeenkomt 
met wat daadwerkelijk juist is, kan dit in extreme gevallen leiden tot problematisch 
gedrag zoals dwangmatig (ook wel: compulsief) gedrag. Compulsief gedrag kan 
verschillende vormen aannemen en wordt omschreven als het uitvoeren van herhaalde 
handelingen waarbij iemand het gevoel heeft dat ze 'moeten' worden uitgevoerd, terwijl 
ze zich er tegelijkertijd van bewust zijn dat deze handelingen niet in lijn zijn met hun 
overkoepelende doelen (Luigjes et al., 2019). Compulsiviteit is een karakteristiek van 
verschillende psychiatrische stoornissen, waaronder obsessieve-compulsieve 
stoornis (OCS) en verslaving (Figee et al., 2016). Je kan je voorstellen dat iemand die te 
weinig zekerheid (‘underconfidence’) heeft in het goed op slot doen van de deur, de deur 
obsessief blijft controleren, zoals voorkomt bij patiënten met OCS. Aan de andere kant 
kan te veel vertrouwen hebben (‘overconfidence’), bijvoorbeeld denken dat je veel vaker 
zult winnen bij roulette dan je eigenlijk zal, gepaard gaan met dwangmatig gokgedrag bij 
mensen met een gokverslaving. 

Dit proefschrift onderzoekt de vraag of en hoe het gevoel van zekerheid verstoord kan 
zijn in relatie tot verschillende psychiatrische symptomen en aandoeningen. Hiervoor 
heb ik gebruik gemaakt van een neurocognitieve benadering. In essentie houdt deze 
benadering in dat ik kwantitatief experimenteel onderzoek heb uitgevoerd met 
verschillende groepen mensen, zowel psychiatrische patiënten als controle 
proefpersonen zonder psychiatrische symptomen. Hierbij heb ik zekerheid bestudeerd 
met behulp van cognitieve gedragstaken die metacognitieve vaardigheden meten, 'eye-
tracking'-technologie om aandacht te meten, en medische beeldvormingstechnieken 
zoals functionele MRI om het functioneren van de hersenen in kaart te brengen. 

Het meten van zekerheid 

Er bestaan verschillende methodes om zekerheid te meten. Meestal wordt de 
deelnemer gevraagd om een keuze te maken, bijvoorbeeld: ‘in welk van deze twee 
vierkanten zag je de meeste stippen, links of rechts?’, waarna de deelnemer op een 
schaal moet aangeven hoe zeker ze is dat die specifieke keuze goed is. Dit wordt ‘lokale 
zekerheid’ genoemd. Hiermee kunnen we zien hoe zeker iemand gemiddeld is over haar 
keuzes, en of die zekerheid overeenkomt met hoe juist haar keuzes eigenlijk waren. 
‘Overconfidence’ (te zeker zijn) treedt op wanneer iemand gemiddeld veel zekerder is 
van haar keuzes dan dat haar werkelijke prestaties rechtvaardigt. ‘Underconfidence’ (te 
onzeker zijn) daarentegen gebeurt wanneer iemand juist minder zekerheid toont in haar 
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keuzes, terwijl ze eigenlijk beter presteert dan ze denkt. We kunnen ook ‘metacognitieve 
sensitiviteit’ meten, wat aangeeft hoe goed iemand kan beoordelen of ze goed of fout 
zaten op basis van hun zekerheidsinschattingen. Normaal gesproken zouden mensen 
minder zeker moeten zijn wanneer ze een fout maken en zekerder wanneer ze correcte 
keuzes maken. Hoe groter het verschil is tussen de zekerheid die je hebt bij foute en 
correcte keuzes, des te beter is de metacognitieve sensitiviteit. 

Naast ‘lokale’ zekerheid over specifieke keuzes, bestaat zekerheid ook op hogere 
niveaus in een hiërarchie. Zo kun je ook zekerheid voelen over hoe goed je bent in een 
bepaalde taak, of bijvoorbeeld over hoe sterk je geheugen is – dit noemen we ‘globale 
zekerheid’. Daarnaast is er een nog hogere vorm van zekerheid die zich uitstrekt over 
verschillende aspecten van je leven en betrekking heeft op jezelf, zoals zelfvertrouwen, 
zelfwaardering en autonomie. Tezamen noemen we dit hoogste niveau ‘self-beliefs’.  

 

Resultaten 

Zekerheidsafwijkingen in de psychiatrie 

Toen ik aan mijn promotieonderzoek begon, heb ik eerst systematisch al het onderzoek 
in kaart gebracht dat zich bezighield met zekerheid in de psychiatrie, beschreven in 
Hoofdstuk 2. Ik vond overtuigend bewijs voor verbanden tussen specifieke 
psychiatrische symptomen en afwijkingen in zekerheid. Er werd een verband gevonden 
tussen obsessieve-compulsieve symptomen en verminderde zekerheid. Daarentegen 
bleek bij schizofrenie een neiging naar overmatige zekerheid te bestaan, vooral 
wanneer patiënten eigenlijk fouten maakten. Mensen met een  gokverslaving bleken 
een te hoge mate van zekerheid te hebben, terwijl bij depressie en angststoornissen 
een lager niveau van zekerheid werd waargenomen. 

De neurobiologische basis van zekerheid en de rol van financiële prikkels 

Er is veel onderzoek gedaan naar de neurobiologische basis van zekerheid en er is een 
sterke consensus dat twee gebieden van de hersenen, de ventromediale prefrontale 
cortex (vmPFC) en het ventrale striatum (VS), een belangrijke rol spelen (Fleming & 
Dolan, 2012; Vaccaro & Fleming, 2018). Precies dezelfde gebieden zijn ook betrokken 
bij het verwerken van beloningen en de waarde die dingen hebben (Bartra et al., 2013; 
Lebreton et al., 2009). De mate van zekerheid die je ervaart kan ook worden beïnvloed 
door externe factoren, zoals het vooruitzicht om geld te winnen or verliezen (Lebreton 
et al., 2018). In Hoofdstuk 3 bouwde ik voort op deze eerdere bevindingen en toonde ik 
aan dat mensen doorgaans zekerder zijn als ze iets kunnen winnen dan als ze iets 
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kunnen verliezen, terwijl hun daadwerkelijke prestaties hetzelfde zijn. Verder ontdekte 
ik dat de activiteit in de vmPFC alleen gerelateerd was aan het gevoel van zekerheid in 
situaties waarin mogelijk iets gewonnen kon worden, maar niet wanneer er mogelijk iets 
te verliezen was of als er niks op het spel stond. Hiermee toonde ik aan dat 
motivatieprocessen, zoals de kans om geld te winnen/verliezen, invloed hebben op het 
gevoel van zekerheid, en op de hersensignalen die hiermee te maken hebben.  

Vervolgens heb ik deze processen onderzocht bij patiënten met OCS en patiënten met 
een gokverslaving. OCS wordt gekenmerkt door verontrustende dwanggedachten 
(obsessies) en repetitieve handelingen (compulsies), en treft ongeveer 2-3% van de 
bevolking (American Psychiatric Association, 2013). Gokverslaving wordt gekenmerkt 
door dwangmatig gokgedrag wat tot ernstige problemen leidt, en treft tot wel 5.8% van 
de wereldbevolking (American Psychiatric Association, 2013). Hoewel beide 
stoornissen gekenmerkt worden door compulsief gedrag, zijn er ook grote verschillen. 
Terwijl OCS gepaard gaat met gevoeligheid voor verlies en risicomijdend gedrag, wordt 
gokverslaving juist gekenmerkt door gevoeligheid voor winst en risico zoekend gedrag 
(Clark et al., 2019; Shephard et al., 2021). In Hoofdstuk 4 testte ik onze hypothese dat 
patiënten met gokverslaving extra zeker zouden zijn, maar vooral wanneer er iets te 
winnen viel, terwijl patiënten met OCS juist extra onzeker zouden zijn, en vooral 
wanneer er iets te verliezen viel. Ik vond dat zekerheid significant hoger was bij 
patiënten met een gokverslaving vergeleken met patiënten met OCS en gezonde 
controles, vooral wanneer er iets te winnen was. Ik vond geen bewijs voor lagere 
zekerheid in patiënten met OCS vergeleken met gezonde controles. Ook waren er geen 
verschillen tussen de groepen in hersenactiviteit gerelateerd aan zekerheid. 

Transdiagnostische benadering van zekerheid 

Twee patiënten met dezelfde diagnose kunnen heel verschillende symptomen vertonen 
doordat er veel variabiliteit is in symptomen, en co-morbiditeit (het hebben van meer 
dan één diagnose) veel voorkomt. Er wordt hierdoor steeds meer gepleit voor een 
‘transdiagnostische’ benadering. Bij deze benadering worden neurocognitieve 
processen gekoppeld aan symptomen die over diagnosegrenzen heen gaan, in plaats 
van te focussen op specifieke stoornissen. In Hoofdstuk 5 heb ik deze benadering 
gebruikt om de verschillende niveaus van zekerheid (lokale zekerheid, globale 
zekerheid en ‘self-beliefs’) te onderzoeken. Ik heb gevonden dat de verschillende 
niveaus van zekerheid onderling positief samenhangen. Ook hadden degenen die hoog 
scoren op een transdiagnostische symptoomdimensie van angst en depressie een 
significant lagere zekerheid (‘underconfidence’). Degenen die hoog scoorden op 
transdiagnostische symptomen van compulsief gedrag en indringende gedachten 
toonden juist te hoge zekerheid (‘overconfidence’). Deze patronen waren minder 
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duidelijk wanneer ik specifieke diagnoses in plaats van transdiagnostische symptomen 
gebruikte. Dit wijst erop dat verschillende transdiagnostische symptoomdimensies 
samen gaan met specifieke afwijkingen in zekerheid. 

Het vergelijken van zekerheid tussen patiënten en de algemene populatie 

In de psychiatrie wordt vaak onderzoek gedaan door ofwel patiëntengroepen te 
vergelijken met gezonde mensen, ofwel met behulp van grootschalig onderzoek met 
grote groepen mensen uit de algemene bevolking die een hoge score hebben op 
bepaalde symptomen. Bij dit soort ‘algemene populatie’ onderzoeken wordt 
aangenomen dat mensen in de algemene bevolking met hoge scores op bijvoorbeeld 
OCS-symptomen vergelijkbaar zijn met klinische OCS-patiënten, zowel qua 
symptomen als cognitieve processen (Abramowitz et al., 2014). Maar in feite worden 
deze groepen bijna nooit direct met elkaar vergeleken. In Hoofdstuk 6 heb ik daarom 
onderzocht hoe zekerheid op verschillende niveaus verschilt tussen klinische OCS-
patiënten, een hoog-compulsieve groep uit de algemene bevolking (met even hoge 
OCS-scores als de patiënten maar zonder officiële diagnose), en mensen zonder 
psychische symptomen. Hierbij zou je op basis van de aanname verwachten dat de 
zekerheid van de patiëntengroep met een officiële diagnose en de hoog-compulsieve 
groep erg op elkaar lijkt. Ik heb daarentegen gevonden dat klinische OCS patiënten en 
de hoog-compulsieve groep juist verschillende patronen van zekerheid vertonen. 
Patiënten hadden significant lagere lokale en globale zekerheid dan de 
controlepersonen, terwijl de hoog-compulsieve groep juist significant méér zekerheid 
toonde vergeleken met de patiëntengroep. Dit benadrukt dat voorzichtigheid is 
gebonden bij het generaliseren van conclusies over (meta)cognitie en zekerheid van de 
hoog-compulsieve groep naar klinische patiënten, omdat ze niet één-op-één 
vergelijkbaar zijn. 

De koppeling tussen zekerheid en leren 

In Hoofdstuk 7 heb ik onderzocht hoe zekerheid invloed heeft op leergedrag in een 
veranderlijke omgeving bij klinische OCS-patiënten, een hoog-compulsieve groep uit 
de algemene bevolking, en mensen zonder psychische symptomen. Gewoonlijk is 
iemand die erg zeker is van haar keuze minder ontvankelijk voor het leren van nieuwe 
informatie en minder geneigd zich aan te passen. Dit wijst op een sterke koppeling 
tussen zekerheid en acties die iemand onderneemt. Opnieuw toonden de resultaten 
dat de patiëntengroep en de hoog-compulsieve groep verschillende 
zekerheidspatronen laten zien. OCS patiënten hadden lagere zekerheid en waren 
gevoeliger voor fouten in vergelijking met zowel de controlegroep als de hoog-
compulsieve groep. Er was geen bewijs voor een verstoring in de koppeling tussen 
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zekerheid en acties in OCS. Deze bevindingen tonen aan dat OCS symptomen samen 
kunnen gaan met diverse patronen van zekerheid en leergedrag, afhankelijk van de 
onderzochte groep mensen (klinisch of algemene bevolking). 

In Hoofdstuk 8 heb ik opnieuw de relatie tussen zekerheid en leren onderzocht, maar 
nu bij patiënten met een gokverslaving vergeleken met controlepersonen. De zekerheid 
verschilde niet tussen de groepen, maar er was wel een verzwakte koppeling tussen 
zekerheid en acties in patiënten met een gokverslaving. Dit wijst erop dat de 
patiëntengroep hun gevoel van zekerheid minder in beschouwing nemen bij het 
uitvoeren van hun acties. Bovendien toonde de patiëntengroep een lager leertempo, 
wat suggereert dat ze minder vatbaar zijn voor nieuwe informatie vergeleken met de 
controlegroep. 

Aandacht en zekerheid 

Bij het nemen van beslissingen speelt naast metacognitie ook aandacht een rol (Orquin 
& Mueller Loose, 2013). Patiënten met gokverslaving vertonen vaak een 
‘aandachtsbias’, waarbij hun aandacht sterker getrokken wordt door gokgerelateerde 
zaken. In Hoofdstuk 9 heb ik de rol van aandacht en zekerheid bij beslissingen om te 
gokken onderzocht met behulp van eye-tracking. Hiermee kunnen we nauwkeurig 
volgen waar mensen naar kijken, en dus waar hun aandacht naartoe gaat. Mijn 
bevindingen toonden aan dat de patiënten met gokverslaving vaker gokken, minder 
gevoelig zijn voor mogelijke verliezen en meer zekerheid hebben in hun gokkeuzes 
naarmate er meer geld te winnen valt. Hoewel ik geen bewijs heb gevonden voor een 
specifieke aandachtsbias gericht op mogelijke winst of verlies bij gokkeuzes in de 
gokgroep, ontdekte ik wel dat specifiek diegenen in de gokgroep die een hogere 
aandacht voor potentiële winst hadden ook sterker beïnvloed werden door de hoogte 
van die winst en daardoor eerder geneigd waren om te gaan gokken.  

Risico en zekerheid 

Risico en zekerheid werden in Hoofdstuk 10  onderzocht bij patiënten met 
gokverslaving. De controlegroep toonde meer zekerheid bij het maken van veilige 
keuzes dan bij risicovolle gokkeuzes, terwijl dit bij de gokgroep andersom was. Terwijl 
iedereen minder zeker werd over hun keuze niet te gokken naarmate de hoogte van de 
potentiële winst toenam, was dit effect extra sterk bij de gokgroep. Dit suggereert dat 
de gokgroep een sterker gevoel heeft van ‘spijt’ dat ze een kans om te gokken voorbij 
hebben laten gaan naarmate er meer te winnen viel, doordat hun zekerheid in deze 
keuzes sterker achteruit ging. Dit zou de neiging tot excessief gokken kunnen 
versterken. 
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Discussie 

In Hoofdstuk 11 heb ik de bevindingen van dit proefschrift in de bredere context van de 
literatuur beschreven en een aantal kanttekeningen, limitaties en klinische implicaties 
benoemd. Samenvattend heb ik in dit proefschrift bewijs gevonden dat verstoringen in 
zekerheid een centraal aspect zijn binnen de geestelijke gezondheid.  

Overkoepelende bevindingen 

Specifiek bleek uit mijn onderzoek dat patiënten met OCS een lagere zekerheid en 
‘underconfidence’ ervaren, zowel op lokaal als globaal niveau, vooral bij patiënten die 
geen medicatie gebruikten. Tegelijkertijd heb ik bewijs gevonden voor verhoogde 
zekerheid en ‘overconfidence’ in patiënten met gokverslaving, vooral in situaties 
gerelateerd aan gokken, winstmogelijkheden en risico. Deze bevinding sluit aan bij 
theorieën die benadrukken dat context en prikkels die met verslaving te maken hebben 
een grote invloed hebben op pathologisch gedrag bij gokverslaving (Genauck et al., 
2020; Leyton & Vezina, 2012; Perales et al., 2020) 

De transdiagnostische en hiërarchische benadering van zekerheid 

Ik heb ook de relevantie van zowel de transdiagnostische als de hiërarchische 
benadering van zekerheid besproken. Mijn resultaat van de positieve verbanden tussen 
de verschillende niveaus van zekerheid bekrachtigen recente theorieën (Seow et al., 
2021). De hiërarchische benadering van zekerheid is belangrijk aangezien het de kloof 
tussen experimenteel onderzoek (dat vooral lokale zekerheid m.b.v. cognitieve taken 
bestudeert) en het dagelijks leven van patiënten (waar hogere zekerheidsniveaus 
relevanter zijn) kan overbruggen. Door de hiërarchische en transdiagnostische 
benadering te combineren, heb ik laten zien dat de zekerheidsniveaus verschillend 
gerelateerd zijn aan de transdiagnostische symptoomdimensies. Dit heeft belangrijke 
implicaties voor mogelijke therapieën, aangezien recent onderzoek heeft aangetoond 
dat verschillende onderliggende mechanismen ten grondslag liggen aan de specifieke 
verstoringen van zekerheid die we zien bij de transdiagnostische symptomen (Katyal et 
al., 2023). 

Zekerheid in klinische patiënten versus compulsiviteit in de algemene bevolking 

Ook heb ik de vergelijkbaarheid en generaliseerbaarheid van zekerheidsverstoringen 
tussen patiëntgroepen met OCS en hoog-compulsieve groepen in de algemene 
bevolking besproken. Dit proefschrift heeft verschillende gedragsprofielen onthuld wat 
betreft zekerheid en leergedrag in deze groepen, ondanks de gelijke ernst van OCS 
symptomen tussen de groepen. Ik heb deze resultaten in het licht van een recent 
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theoretisch model besproken (Fradkin et al., 2020), dat suggereert dat obsessief-
compulsief gedrag enerzijds kan ontstaan door een gebrek aan zekerheid, leidend tot 
overactieve reacties op feedback en compulsief inflexibel gedrag, en anderzijds door 
een teveel aan zekerheid in rigide ideeën en te weinig invloed van feedback, resulterend 
in habitueel inflexibel gedrag. 

Het is erg aannemelijk dat deze groepen, ondanks de vergelijkbare psychologische 
onrust als gevolg van de symptomen, verschillen in de mate waarin de symptomen 
functionele beperkingen veroorzaken en impact hebben op het dagelijks leven, wat 
waarschijnlijk ernstiger is in klinische patiënten (Abramovitch et al., 2023). Daarnaast 
kunnen de groepen verschillen in de mate waarin ze andere symptomen buiten OCS 
ervaren. De hoog-compulsieve groep kan bijvoorbeeld meer symptomen van 
impulsiviteit, schizotypie en verslaving ervaren, terwijl de OCS groep wellicht meer last 
heeft van angst en depressie symptomen. 

Klinische implicaties 

Afwijkingen in zekerheid hebben aanzienlijke implicaties. Als je onterecht te weinig 
zekerheid hebt in je eigen vermogen, kan dat ook je zelfvertrouwen, motivatie en 
leervermogen schaden. Aan de andere kant, onterecht hoge zekerheid in je eigen 
vermogen kan samen gaan met risicovol gedrag, rigide overtuigingen en dogmatisme.  

Hoewel mijn onderzoek interessante mogelijkheden voor therapie oplevert, staan de 
directe klinische toepassingen binnen dit veld nog in de kinderschoenen. Dit komt 
onder andere door de experimentele aard van het onderzoek dat nog ver verwijderd is 
van de dagelijkse realiteit, maar ook door grote individuele variabiliteit in 
metacognitieve vaardigheden wat een universele therapie lastig maakt. Daarnaast zijn 
er verschillen tussen stoornissen in de mate waarin afwijkingen in zekerheid centraal 
staan. Bovenal is zekerheid slechts één puzzelstukje in de multifactoriële complexe 
structuur van psychiatrische stoornissen. Ook is mijn onderzoek niet zonder limitaties. 
De gebruikte taken zijn kunstmatig en mijn onderzoek is cross-sectioneel (dat wil 
zeggen, op één moment in de tijd gemeten) waardoor ik weinig kan zeggen over oorzaak-
gevolg relaties over de tijd heen. Ook zijn er methodologische limitaties wat betreft het 
meten van zekerheid, en heeft dit onderzoek ook een beperkte focus. 

Potentiële klinische implicaties worden besproken, zoals positieve feedback 
interventies gefocust op hogere niveaus van zekerheid (Katyal et al., 2023; Van Marcke 
et al., 2022), en interventies die specifiek gericht zijn op het kalibreren van zekerheid in 
stoornis-specifieke context. Voor gokverslaving worden implicaties besproken die zich 
focussen op spijtgevoeligheid en aandachtstraining. 
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De toekomst van het veld 

Ook heb ik diverse suggesties en aandachtspunten voor toekomstig onderzoek 
voorgesteld. Er is behoefte aan grootschaligere klinische studies met een longitudinale 
aanpak (over de tijd heen) om de temporele dynamiek van zekerheid en 
(transdiagnostische) symptomen beter te begrijpen. Daarnaast moeten we zekerheid 
beter bestuderen in specifieke symptoomcontext. Ook is het cruciaal om dit onderzoek 
in te bedden in het bredere perspectief van metacognitie, zoals de sociale en 
interpersoonlijke functies van zekerheid. Verder zouden uitgebreidere computationele 
modellen ons begrip van de onderliggende processen van zekerheidsvorming en 
verstoringen verfijnen. 

In ons lopende onderzoek, dat niet in dit proefschrift is opgenomen, bouw ik voort op 
enkele van deze ideeën. Ik doe momenteel onderzoek naar het effect van stoornis-
specifieke context op zekerheid en naar het proces van ‘changes of mind’ in OCS. 
Daarnaast onderzoek ik hoe afwijkingen in leerprocessen samenhangen met 
afwijkingen in zekerheid bij gokverslaving, en duik ik dieper in de relatie tussen 
zekerheid en dopamine in het brein met behulp van PET (positron emissie topografie) 
scans. Met mijn werk hoop ik een waardevolle bijdrage te hebben geleverd aan een 
dieper begrip van onze 'innerlijke spiegel', zowel in de context van gezondheid als in de 
psychiatrie. 
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combineert met je open en warme persoonlijkheid. Ook bij jou was het meteen een 
warm bad en herkende ik de oneindige nieuwsgierigheid naar hoe dingen nou werken 
en in elkaar zitten. En wat een voorrecht is het geweest om deze jaren samen een stukje 
van de puzzel te leggen. Ik heb zoveel van je geleerd, binnen de academie op inhoudelijk 
vlak en  interpersoonlijk vlak, als buiten de academie met de altijd wijze levenslessen. 
Met zijn drieën zijn we een super confidence team. Onze meetings met z’n drieën, vaak 
onder het genot van thee, koffie, chocola of ijsjes, begonnen steevast met de vraag “hoe 
is het met je?”. Ik heb dat enorm gewaardeerd, en ik heb me daardoor altijd gehoord en 
begrepen gevoeld. Ik wil jullie ontzettend bedanken voor de kans om dit avontuur met 
jullie aan te gaan, het luisterend oor, het enorme vertrouwen dat jullie al die jaren in mij 
hebben gehad, de vrijheid om dit pad zelf te bewandelen en alle steun als het even wat 
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minder ging. Jullie mentorschap heeft me deze jaren op zowel professioneel als 
persoonlijk vlak gevormd, en ik realiseer me dat dit erg bijzonder is. Ik had me geen 
betere begeleiders kunnen wensen. Bedankt voor alles. 

Beste leden van de promotie commissie, beste prof. dr. Ridderinkhof, prof. dr. de Bruijn, 
dr. van Gaal, dr. de Wit, dr. Visser, hartelijk bedankt voor het lezen en beoordelen van 
mijn proefschrift en het opponeren tijdens de verdediging. Ik kijk er naar uit! Prof. dr. 
Goudriaan, beste Anneke, hartelijk dank voor de fijne samenwerking. Ik ben blij dat ik 
een bijdrage heb kunnen leveren aan het rTMS project, en met onze samenwerking op 
een aantal confidence projecten. Ik kijk met een glimlach terug op ons congres in 
Nottingham, al duurde de terugweg wel wat lang! Dr. Rouault, dear Marion, I am 
honored that you are part of my committee and very grateful for our collaboration over 
the past years. Your intelligence and kindness, along with your infectious enthusiasm 
for our research field have been a big source of inspiration for me and it has been a 
privilege to learn from you. 

Dear Sofia Bonati, thank you for creating beautiful works of art and allowing me to use 
your work on the cover of my thesis. Right before I started this PhD journey I was in Sri 
Lanka where your Eudoxia was hanging in my hotel room. Ever since I returned from that 
trip she has been hanging on the wall in my small home office.  

Wetenschap is een teamsport, en zonder de hulp van ontzettend veel mensen was dit 
proefschrift dan ook niet tot stand gekomen. Bas Brons, ontzettend bedankt voor je 
tomeloze inzet voor de werving van deelnemers voor onze studies, zonder welke het 
nooit was gelukt. Ook wil ik de Jellinek, en in het bijzonder Loes Marquenie bedanken 
voor de hulp bij het opzetten van de werving. Hervitas, AGOG en OCDnet: bedankt voor 
de hulp met werving van onze deelnemers. 

Team Spinoza: bedankt voor de hulp en assistentie bij onze MRI onderzoeken. Voor het 
PET onderzoek, waar helaas geen artikel van in mijn proefschrift staat, maar waar ik wel 
een groot deel van mijn promotie aan besteed heb, zijn er ook veel mensen te 
bedanken. Dank aan de radiologie afdeling, Sandra, Paul, voor jullie hulp bij het leren 
scannen en het opzetten van de data structuren. Prof. dr. Booij, beste Jan, dr. van 
Giessen, beste Elsmarieke en prof. dr. Cools, beste Roshan, bedankt voor het delen 
van jullie schat aan kennis en de hulp bij het opzetten van de PET studie. Marieke, 
bedankt dat je me hebt ingewijd in het reilen en zeilen van PET in de praktijk en 
inmiddels alle gezelligheid op de psychiatrie. Het PET team: Meng-Fong, Ehsan en 
Martijn, enorm bedankt voor jullie hulp, expertise, inzet en flexibiliteit tijdens het 
scannen van onze deelnemers. Martijn, bedankt voor alle gezellige anderhalf uurtjes bij 
de scanner, ik heb er van genoten: het ga je goed in Delft! 
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Dear prof. dr. Engelmann, dear Jan, thank you for the great collaboration over these past 
years. As external supervisor, you have graded my first masters thesis and we now co-
author several papers! It has been a great pleasure working with you, and I want to thank 
you for creating a welcoming atmosphere. Dear Alejandro, thank you for all the help 
and collaboration. It has been a pleasure to work with you these past years, and I’m 
sure you will have a wonderful scientific career ahead of you. 

Dear dr. Lebreton, dear Maël, I would like to thank you for these past years. Back in 
2017, when I started my internship in Amsterdam, I was lucky enough that you had just 
started collaborating with my supervisors on this very interesting topic of ‘confidence’, 
on which I have now written an entire thesis! You have been a great inspiration in terms 
of critical thinking and scientific mindset, but I’d also like to thank you for all the 
practical help with analyses and writing, without which the first chapters of this thesis 
would not have been as they are now. My visit to Paris towards the end of my PhD was 
a wonderful experience, marked by your and your team’s warm welcome. Thank you for 
teaching me all things computational modeling, but also which French beers and 
Vietnamese restaurants are the best, which of course are all equally important things 
in life. Dear dr. Palminteri, dear Stefano, thank you for your hospitality and sharing your 
knowledge with me during my stay in Paris. Your team and your work are truly an 
inspiration to me. 

To all the lovely people from room P3.68: Constance, Antonis, Clementine, Lily, Viv, 
Pascale, Craig, Aurelién, thank you for welcoming me at PSE and for the croissant 
Thursdays, lunches and drinks! I wish you all the best during your PhD journeys and 
beyond. 

Ook binnen de psychiatrie afdeling zijn er een hoop collega’s te bedanken voor de fijne 
tijd de afgelopen jaren. De mensen van de AIAR gang tijdens het prille begin van mijn 
academische carrière op de derde: Anne Marije, Marleen, Filipa, Anneke, Suzan, 
Masha, Tim, bedankt voor de gezellige etentjes, borrels en lunches op het AMC. 
Masha, ik hoop dat we elkaar snel weer tegen komen tijdens de Spaanse les, wie weet 
onder genot van een sangriaatje! Tim, bedankt voor alle gezelligheid, maar ook alle 
adviezen toen ik aan de wieg stond van mijn PhD. Ik denk met plezier terug op 
Nottingham, vooral toen we op de terugweg eindelijk ons blikje bier mochten openen 
toen de wielen van het vliegtuig van de grond kwamen! (Oud) collega’s van de andere 
gang(en): Gosse, Willem, Nadine, Dilan, Paul, Gabry, Melisse, Isidoor, Guido, 
Jorien, Junus, Joost, Martine, Merel, Marieke, dank voor alle gezellige koffie 
momentjes, lunches en borrels. Mijn oud-kamergenootjes: Dominika en David, dank 
voor de gezellige kletspraatjes op kantoor. Dear Karoline, it has been so much fun 
sharing an office with you at the AMC, on-and-off. I hope we still get to eat an oliebol 
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this winter together. Marian, Andrea, Ingeborg en Karin, ontzettend bedankt voor alle 
ondersteuning en hulp bij de bureaucratische rompslomp die komt kijken bij 
promoveren én post ontvangen op het AMC. Jessy, bedankt voor de fijne samenwerking 
bij het ontwikkelen van de autonomie vragenlijst, en vooral voor de gezelligheid en het 
kunnen delen van onze PhD struggles: you got this! 

Zonder de hulp van mijn stagiaires was dit proefschrift er ook niet geweest. Maura en 
Channah, jullie waren mijn eerste stagiaires. Bedankt voor jullie hulp met het opzetten 
van de COCON studie. Sabine, bedankt voor al je inzet, hulp en gezelligheid in de begin 
fase van mijn PhD. Hoe cool dat je nu zelf ook een PhD aan het doen bent, ik hoop dat 
onze paden elkaar nog zullen kruisen! Najoua, ondanks dat je maar een korte periode 
stage hebt gelopen heb je toch enorm veel geholpen met de opzet van de studies: dank 
daarvoor. Fabiënne, bedankt voor de ontzettend gezellige tijd en jouw aanstekelijke 
vrolijkheid. Ik heb genoten van jouw stage periode en ons Italiaanse afscheidsdinertje, 
en ik wil je graag bedanken voor je harde werk bij de werving en het testen van onze 
deelnemers voor de COCON studie. Tosca, jij bent van onschatbare waarde geweest 
bij zowel de werving, testen als het analyseren van data binnen het COCON project, en 
we staan dan ook gezellig samen op het artikel. Eva, bedankt voor al je hulp tijdens het 
DOPACON project. Mede dankzij jou waren de testdagen altijd een feestje, en ik heb 
met veel plezier samen gewerkt. Savina, voor jou geldt hetzelfde, zonder jou was het 
DOPACON project geen succes geworden. Dank voor je tomeloze inzet bij alle aspecten 
van de studie. Ik wens jullie allemaal enorm veel succes in jullie verdere studie en -wie 
weet- academische loopbaan! 

Lieve Katja, waar zou ik toch zijn zonder jou? Je begon als stagiair op het COCON 
project, waar je me hielp met de opzet en praktische uitvoering. Al snel wisten we dat 
we je moesten houden, en gelukkig wou je blijven als onderzoeksassistent voor het 
DOPACON project. Je was de spil in ons team en je was altijd van alles op de hoogte. Ik 
ben enorm trots dat je nu je eigen onderzoekspad in bent geslagen. Ik heb een super 
leuke tijd met je gehad op het AMC, waar we over van alles en nog wat konden kletsen 
en ik hoop dat we elkaar blijven zien. Je bent een topper! 

Het is een voorrecht om lieve mensen om je heen te hebben die weten wat het doen van 
een PhD inhoudt, en zo alle bijkomende struggles begrijpen. Lieve Carmen, je was mijn 
steun en toeverlaat wat betreft de PET studie en een baken op wie ik al mijn vragen kon 
afvuren. Ik vond het samen werken, maar vooral het samen koffie drinken, kletsen en 
hapjes eten enorm gezellig. Het was fijn om alle ups en downs die bij een 
promotietraject horen met jou te kunnen delen, en ik ben ontzettend benieuwd waar 
onze toekomsten ons zullen brengen. In ieder geval hoop ik dat we elkaar nog geregeld 
buiten het AMC om zullen zien en wie weet zelfs in Patagonië! Lieve Hélène, hoe leuk 
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dat ik jou heb ontmoet op congres in New York en dat we over van alles kunnen kletsen, 
en dan óók nog eens over het confidence werkveld. Ik hoop dat we elkaar vaak blijven 
citeren en blijven bezoeken in Gent en Amsterdam! 

Lieve Nina en Renée, liefste roomies: zonder jullie was ik misschien wel nooit aan m’n 
PhD begonnen, want wat maakten jullie mijn begintijd op het AMC toch onvergetelijk! 
Lieve Nina, vanaf het begin van onze stages op de AIAR gang waren we meteen matties. 
Wat een feest was het om samen als kersverse onderzoeksassistenten op hetzelfde 
project ons eerste grote-mensen kantoor te delen. Van paastakken met kuikens (en 
konijnenschaaltjes) tot kerstboompjes met ballen en weer terug. Het spijt me dat jij 
altijd mijn Jesus Christ Superstar vertolking hebt moeten aanhoren, maar volgens mij 
heeft het je wel overtuigd om samen in ‘t koor te gaan! Je bent zo’n ongelofelijk lieve 
schat, en ook nog eens een van de slimste en meest empathische mensen die ik ken. 
Ik hoop op nog veel koffies, paaseitjes, bitterballen, fiets-kampeer-vakanties en nog 
veel meer! Lieve Renée, vanaf de befaamde borrel waren wij ook grote matties. Zo groot 
dat we er eigenhandig voor hebben gezorgd dat ik snel bij jou op kantoor kwam te zitten. 
Wat hadden we het altijd mega gezellig, thee-advent-kalenders, domme filmpjes, 
Funda zoektochten in Friesland, koffiedates en natuurlijk de weekend nabespreking op 
maandag ochtend, en weekend voorbespreking op dinsdag ochtend. Jouw positieve 
energie sleepte me altijd de week door, en je relativeringsvermogen heeft me vaak uit 
de stress gehaald. Lieve roomies, wat was het een feestje om met z’n drieën een 
kantoor te delen en heerlijk dat we elkaar nog vaak buiten werk om zien. Wandel dates, 
privé trompet pizza concerten, festivals: laten we dat zeker zo houden!  

Lieve Laurens en Nora, mijn lieve paranimfen: zonder jullie was mijn promotietijd op 
het AMC een saaie boel geweest. Wat ben ik enórm blij dat jullie niet veel later dan ik 
ook van start gingen met jullie promotie. Lieve Lauri, wassup lil Goose! Vanaf onze 
eerste gezamenlijke borrel in de tuinen van het AMC, waar je meteen een ice in je schoot 
geworpen kreeg, zijn we maten. Wat ben ik blij met zo’n PhD maat die mijn humor 
begrijpt en waar ik dus altijd mee kan lachen. Onze reis naar Chicago en New Orleans 
is een van de meest memorabele uit mijn leven. Daar bleek dat je niet zo’n goede 
verliezer bent (wat was het ook alweer: 20-0?), en niet vies bent van een dansje. Onze 
fissa in New Orleans was een van de leukste avonden van mijn leven, vooral toen we de 
dag erna alle booty-shakers weer tegenkwamen op het congres. Bedankt voor alle leuke 
herinneringen, adviezen en grapjes. Ik weet zeker dat er nog vele zullen volgen. Lieve 
Nora, wij kenden elkaar van horen-zeggen, maar toen wij elkaar ontmoetten was het 
meteen dikke mik. We hebben zoveel leuke dingen meegemaakt de afgelopen jaren: DIY 
congressen toen we er niet fysiek heen konden, heerlijke etentjes, biertjes op het 
strand, wandelingen door de duinen, koffie & cake dates (met bladblazers en honden), 
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after-work sauna’s, met als kers op de taart ons reisje naar Parijs. Je bent zo’n lieverd, 
en ik ben je enorm dankbaar voor je luisterend oor, al je advies, je nuchtere blik, je 
support en alle gezellige momenten samen. Zonder had ik het niet gered. Ik ben heel 
trots op wat en hoe je alles doet, en ik ben benieuwd of onze 5-jaars voorspellingen uit 
gaan komen! Lieve paranimfen, ik hoop nog op ontzettend veel borrels, vunzige 
deuntjes, dansjes, ice-jes (voor jullie dan), domme accentjes en gekkigheid samen. You 
the best! 

Ik ben ook gezegend met de liefste vrienden die misschien iets minder snapten van het 
hele PhD gedoe, maar daardoor juist van onschatbare waarde zijn geweest voor mij 
gedurende deze periode. Lieve Thomas, inmiddels vieren we ons 18+ 
vriendschapsjubileum vanaf 1Gb. De basis was gelegd en wat een oneindige bron van 
herinneringen hebben we samen: van drie musketiers studerend aan de keukentafel 
van m’n moeder tot nu! Vele vakanties, feestjes, karaoke-avondjes, waarvan ik de 
details maar zal besparen. Je hebt een speciaal plekje in m’n hart, drie musketiers 
forever. Lieve Carline, wát een geluk dat jij in mijn leven bent gekomen. Je bent zo’n 
vrolijke, fijne, attente, gezellige, roze, lieve schat, en volgens mij komen wij er steeds 
meer achter dat we enorm op elkaar lijken. Bedankt voor alle fijne avonden, vakanties, 
etentjes, en alle ontspanning met jullie (en natuurlijk je werk aan het design van het 
boek)! Ik hoop dat we onze oud-en-nieuw, karaoke en gerechtigheid tradities er voor 
altijd inhouden.  

Allerliefste Hannah en Lynn. Woorden schieten tekort… Zonder jullie ben ik nergens. 
Jullie oneindige support, interesse, gezelligheid, en innige vriendschap betekent de 
wereld voor mij. Zonder alle leuke dingen die we samen de afgelopen jaren hebben 
gedaan was dit proefschrift er ook nooit geweest: van de bijzondere dingen (Mexico & 
Peru), tot de meest alledaagse, bij jullie kon ik altijd weer opladen. Lieve Hannah, vanaf 
die eerste geodriehoek tot hier: wie had dat gedacht? Jouw zorgzaamheid, loyaliteit en 
oprechtheid zijn van enorme betekenis voor mij, en er zijn weinig mensen die mij zo 
goed kennen als jij. Ik ben super trots op jou als mens, en jou meemaken als de liefste 
mama van de aller leukste jongen op aarde, kleine Finn, is enorm bijzonder. En hoe mooi 
dat onze meisjesdroom van het op 10 minuutjes afstand wonen van elkaar in 
Amsterdam toch is gelukt, ik ben gezegend met jou! Lieve Lynn, zonder jou was ik nu 
niet mij. Een van mijn favoriete plekjes op aarde is niet ergens midden in het Andes 
gebergte op 4750 meter hoogte, maar op de praatstoel bij jou! Misschien zijn we ook 
wel een beetje elkaars meubilair, zo vertrouwd voelt het. Ik ben zo trots op het pad dat 
je hebt gekozen, en ik vind het zó cool dat we nu over wetenschappelijke artikelen 
kunnen kletsen. Ik zou een boek over onze avonturen kunnen schrijven en ik hoop dat 
de boerderijdroom ooit werkelijkheid wordt. Lieverds, wat ben ik blij met jullie in mijn 
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leven, met als bijkomende kadootjes Thijs, Finn, Jouke en Pip. Ik wens jullie de wereld. 
En: het is nog steeds zo gek dat we ineens al zo “volwassen” zijn, terwijl onze puber 
capriolen voelen als de dag van gister. En zo blijft het waarschijnlijk voelen tot in onze 
rollators. Ik hou van jullie. 

Lieve Nick, vanaf de Kamperfoelie tot nu, mijn bonus broer en bamiknul. Wat hebben 
we een hoop meegemaakt, en wat een voorrecht om dat te mogen delen. Het is fijn om 
iemand te hebben die mij zo goed kent en begrijpt, en waarvan ik weet dat ik er altijd 
terecht kan, voor zowel ongein als problemen. En wat een geluk dat we Kana zijn 
tegengekomen tijdens een van onze kroegentochten. Lieve Kana, jij bent de allerliefste 
persoon die ik ken, en ik ben zo blij dat jij in Nick’s en mijn leven bent gekomen. Ik geniet 
enorm van onze tijd samen en onze gedeelde liefde voor eten. Het warmt mijn hart om 
jullie samen als ouders te zien van de allerliefste Yuna. あなたたちは最高です! 

Lieve Rowie en Richard, wat bof ik toch met de enorme bonk positiviteit en liefde die 
jullie uitstralen. Wat hebben we samen prachtige avonturen meegemaakt, van België 
tot Lloret, Servië en weer terug. Ik kan met niemand anders mijn liefde voor koken en 
etentjes beter delen dan met jullie. De oprechte interesse die jullie al die jaren hebben 
getoond in mijn promotie was hartverwarmend en bij jullie voel ik me altijd thuis. Ik heb 
oneindige bewondering voor hoe jullie in het leven staan.  

Lieve Frances, bedankt voor alle liefdevolle en gezellige tijden samen, je interesse, de 
wandelingen, etentjes, feestjes en gesprekken de afgelopen jaren. Ik hoop dat je nog zo 
lang mogelijk in Amsterdam blijft wonen zodat we elkaar zo vaak mogelijk kunnen zien. 
Je bent een schat en ik ben heel trots op jouw zelfstandigheid en doorzettingsvermogen. 

Lieve Pelle, ie bint mien breur! Wat ben je toch een prachtige vent: er is denk ik niemand 
met wie ik zo hard kan lachen als met jou, maar tegelijkertijd ook zo goed kan praten. 
Met jou is het altijd een feest en samen dom doen in de kroeg is mijn favoriete activiteit. 
Waar het leven ons ook brengt: ik weet dat jij er altijd bent. En dan krijg ik ook lieve Astrid 
er nog gratis bij, jij tovert altijd een glimlach op m’n gezicht. Jullie zijn lieverds, big loev! 

Lieve Miron en Agnes, ouwe begaaiers. Wat een mooie herinneringen hebben we, van 
Deventer tot EXIT en Mexico. Ik vind het tof om te zien hoe we allemaal zo ons eigen pad 
bewandelen en het is altijd een mega feest om samen te komen. Bedankt voor jullie 
tomeloze gezelligheid, interesse en geouwehoer, en ik hoop op nog veel meer van dat 
alles, bij voorkeur aan de Ijssel of op de Brink. 

Lieve Marc en Kim, echte wereldreizigers. Bedankt voor alle fijne tijden samen, de 
gezelligheid, interesse, en ongekende gastvrijheid tijdens onze talloze bezoekjes aan 
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Groningen (en zelfs in Peru!). Het is altijd een feestje met jullie. Jullie zijn een grote 
inspiratiebron en ik hoop dat we ooit een keer samen een verre reis kunnen maken! 

Lieve Amber, bedankt voor al het lachen, je spontaniteit en gezelligheid samen de 
afgelopen jaren, al dan niet onder het genot van een lekkere hamburger. Lieve Karel, 
bedankt voor het introduceren van de camembert en brie in mijn leven ten tijden van de 
B50 en voor alle fijne en leuke tijden die we samen hebben beleefd. Lieve Aron en 
Claudia, bedankt voor de fijne feestjes en de gezelligheid. Ik wens jullie het allerbeste 
toe in Schalkcity! 

Mijn lieve vriendengroep uit Deventer tezamen: Amber, Aron, Alexandra, Carline, 
Chelton, Claudia, Frances, Jeroen, Kana, Karel, Kim, Krystyna, Marc, Richard, 
Rowie, Samantha, Steven, Thanh, Thomas, Wout. Ik wil jullie allemaal bedanken voor 
de enorme steun die ik aan jullie allemaal heb gehad. Het is bijzonder om zo’n fijne 
groep mensen al zo lang in mijn leven te hebben. Zo lang we naast elkaar blijven staan 
kunnen we samen alles aan. Arie zou stuk voor stuk trots op jullie zijn. 

Mijn lieve schoonfamilie, wat is het fijn en bijzonder dat ik al zo veel jaren deel mag zijn 
van jullie gezin. Mijn lieve schoonouders, Tuan en Phuong, bedankt voor het warme 
welkom in jullie gezin al deze jaren. Ik heb me altijd thuis gevoeld bij jullie, en helemaal 
door al het ontzettend lekkere eten waar jullie ons altijd zo mee verwennen en alle 
goede zorgen. Bedankt voor alles. Lieve Hiëp & Alyssa, bedankt voor jullie liefdevolle 
gastvrijheid en natuurlijk voor de allerliefste en leukste nichtjes en neefjes ter wereld: 
Fiënna, Alaïna en Mason. Ik ben dol op jullie! Lieve schoonzus, lieve Huyen, bedankt 
voor de ontelbare fijne etentjes, drankjes, warmte en gezelligheid. Wij kunnen altijd bij 
je terecht en ik hoop dat je weet dat jij dat ook bij ons kan. Je bent een schat. 

Mijn allerliefste broer, lieve Jeroen. Ik heb warme herinneringen aan onze jeugd samen 
en al onze geintjes en avonturen. Van pingpongen op de keukentafel en skelteren toen 
we klein waren tot biertjes en feestjes nu we volwassen zijn. Vlak voor ik aan mijn 
promotie begon waren we nog samen weg naar Spanje, waar we bijna verdwaalden 
bovenop een berg (sorry mama), maar uiteindelijk heb je ons toch maar mooi gered. 
Het is heel fijn om te weten dat je er altijd voor me zult zijn en we altijd samen enorm 
kunnen lachen. Bedankt voor alles, voor altijd, alle liefde! En natuurlijk ook voor het in 
mijn leven brengen van Krystyna. Lieve schoonzus, bedankt voor alle gezelligheid en 
warmte. Hoe leuk dat ik iemand in de familie heb met wie ik over de wetenschap kan 
praten! Op naar nog ontelbaar veel mooie herinneringen samen. 

Lieve papa, ten eerste, bedankt voor het doorgeven van je doorzettingsvermogen en 
perfectionisme aan mij: ik heb er enorm veel aan gehad. Jouw vertrouwen in mij en je 
trots voor mij heeft me enorm gesteund in de afgelopen jaren. Ik kijk met enorm veel 
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warmte terug aan alle leuke herinneringen die we samen hebben gemaakt en ik hoop 
op nog veel meer mooie avonturen. Bedankt voor al je liefde! 

Lieve Jacob en allerliefste mama, wat moet ik zeggen? Zonder jullie onvoorwaardelijke 
liefde en aanmoedigende steun was ik nooit geworden tot de persoon die ik nu ben. 
Lieve Jacob, je rustige en geduldige karakter, betrokkenheid en behulpzaamheid zijn zo 
waardevol. Je bent de rots in onze branding. Mijn allerliefste mama, ik kan je niet genoeg 
bedanken voor alles wat jij voor mij hebt gedaan. Je hebt me altijd gesteund en alle 
ruimte gegeven om mijn dromen na te jagen. Je stond altijd achter me, welke kant ik ook 
op zou gaan. Bedankt voor de onvoorwaardelijke liefde, zorgen, en geborgenheid. Jouw 
kracht en positiviteit zijn ongeëvenaard. Wist je nog dat ik vroeger altijd schrijver wilde 
worden? Hier is mijn eerste boek dan! Alle liefde in de hele wereld is voor jullie. 

Liefste Hoang, mijn meest favoriete persoon op de wereld. Woorden beperken mijn 
gedachten. Bedankt dat ik al zo lang mijn lief en leed met je mag delen. Wat is het een 
bijzondere reis geweest tot nu toe, vanaf de middelbare school naar de grote stad, 
samen het levenspad bewandelen en volwassen worden. Ik kan nóg een boek vol 
schrijven met onze zelfbedachte woorden, koosnaampjes, inside jokes, herinneringen 
en avonturen. Het leven delen met jou is mijn grootste geluk en in jouw armen vind ik 
rust.  

En nu?  

Nu gaan we daar waar de wind waait. 
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