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Dark matter halos of dwarf spheroidal galaxies (dSphs) play important roles in dark matter detection.
Generally we estimate the halo profile using a kinematical equation of dSphs but the halo profile has a
large uncertainty because we have only a limited number of kinematical datasets. In this paper, we utilize
cosmological models of dark matter subhalos to obtain better constraints on halo profile of dSphs. The
constraints are realized as two cosmological priors: satellite prior, based on a semianalytic model of the
accretion history of subhalos and their tidal stripping effect, and stellar-to-halo mass relation prior, which
estimates halo mass of a galaxy from its stellar mass using empirical correlations. In addition, we adopt a
radial dependent likelihood function by considering the velocity dispersion profile, which allows us to
mitigate the parameter degeneracy in the previous analysis using a radial independent likelihood function
with averaged dispersion. Using these priors, we estimate the squared dark matter density integrated
over the region of interest (so-called J factor) of eight classical and 27 ultrafaint dSphs. Our method
significantly decreases the uncertainty of J factors (up to about 20%) compared to the previous radial
independent analysis. We confirm the model dependence of J-factor estimates by evaluating Bayes
factors of different model setups and find that the estimates are still stable even when assuming different

cosmological models.

DOI: 10.1103/PhysRevD.108.083530

I. INTRODUCTION

The presence of dark matter in our Universe is one of the
most important open questions in the current physics. Even
though cosmological observations agree with predictions of
the A-cold dark matter model with surprising accuracy [1],
we still do not know what dark matter is. In order to answer
this question, many candidates and detection methods have
been proposed [2]. Among various detection methods,
those using dwarf spheroidal galaxies (dSphs) are interest-
ing. DSphs are a kind of satellite galaxy of the Milky Way
with large mass-to-light ratio, which implies that they are
dark matter rich objects. Such a large amount of dark matter
enables us to explore the nature of dark matter. In the
indirect detection method, we can constrain the annihilation
cross section by observing the signal flux of annihilation
products. This method is very useful to detect well-
motivated dark matter candidates such as the weakly
interacting massive particles [3,4], because they have a
large annihilation cross section thanks to a nonrelativistic
quantum effect, so-called the Sommerfeld effect [5,6]. The
sensitivity of the detection depends on the estimated
amount of signal flux. This amount is proportional to an
astrophysical quantity, so-called J factor:

2470-0010/2023/108(8)/083530(20)
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J(AQ) = / aQ / dip?(r), (1)

where Q is the solid angle, AQ is the region of interest, /
denotes the line-of-sight distance, r is the radius from the
center of a target dSph, and p(r) denotes the dark matter
density profile. In order to obtain reliable and useful results,
we need to know the accurate and precise value of the J
factor, that is, the shape of dark matter density profile p(r).

Although dSphs are useful tools to study the dark matter,
their dark matter density profiles have large astrophysical
uncertainty compared to other uncertainties from particle
physics models. Generally, the dark matter density profile
is estimated by fitting the spectroscopic dataset of dSph
member stars using the Jeans equation [7]. However, the
stellar dataset cannot completely determine the dark matter
profile because we generally use empirical models of the
dark matter profile through the fitting and their parameters
are degenerated. Fortunately, from the viewpoint of cos-
mology, structure formation models predict the distribution
of dSph profiles in the Universe, which is useful to select
theoretically favored density profile model parameters and
mitigate the problematic degeneracy. For instance, Ref. [8]

© 2023 American Physical Society
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uses the conventional theory of spherical collapse to
roughly constrain the parameter space of the dark matter
density profile.

Recently, semianalytic models of the tidal mass stripping
effect on the cold dark matter halo were developed [9,10],
which allows us to construct a multivariate distribution of
dSph mass and its tidal truncation radius. This probability
distribution was applied as a prior (called satellite prior)
for the J-factor estimation of dSphs by fitting their averaged
velocity dispersion [11] and it was shown that the satellite
prior has a potential to break the degeneracy among
parameters of the Navarro—Frenk—White (NFW) profile [12].

While the satellite prior gives a statistical trend for the
whole dSph, cosmology offers us another way to constrain
the dark matter mass of an individual dSph. Since the dark
matter plays an essential role in forming the structure of the
Universe including dSphs, the stellar components of dSphs
have a strong relation to their dark matter halo, known as
the stellar-to-halo mass relation (SHMR) [13]. The dark
matter halo mass in each dSph can be therefore constrained
by its stellar mass by using this relation.

In this paper, we perform a more detailed analysis of the
satellite prior in Ref. [11] (hereafter SA20) by considering
the radial dependence of the velocity dispersion to optimize
given kinematical datasets. The radial dependency weakens
the degeneracy among dark matter halo parameters and
gives more precise estimation than the radial independent
analysis. Moreover, we consider some SHMR models to
obtain more reasonable estimation results from the view-
point of cosmology. These models help us to obtain
more accurate constraints of the halo parameters than the
previous satellite prior only analysis. From the other point
of view, our analysis also provides a method for evaluating
the credibility of each SHMR model using dark matter
halos of dSphs. This paper is organized as follows: In
Sec. II, we discuss our analysis method. In Sec. IT A, we
describe our model setups and assumptions on the dSph
system and introduce our likelihood function. In Sec. II B,
we explain the construction of the satellite prior and the
stellar-to-halo mass relation prior. We set up several choices
of these priors reflecting the uncertainty of cosmological
models. In Sec. II C, we show the table of dSphs including
their half-light radii and distances. The kinematical dataset
and preanalysis method for each dSph is also described.
In Sec. III, we show results of the analysis and estimated
J-factor values. Here we compare results of different priors
to verify the stability of the estimated J factor by changing
cosmological models. In Sec. V, we discuss and summarize
our results.

II. METHOD

A. Models and likelihood

We assume that dSphs are spherical and steady
systems according to conventional analyses [8,14,16].

Their velocity dispersions are determined by the spherical
Jeans equation,

L OWR) | o GM()
2B = =T ()

where G is the gravitational constant, r denotes the distance
from the dSph center, v(r) is the stellar number density and
M(r) denotes the dark matter mass enclosed within the
radius r. The anisotropy of the stellar motion f(r) is
defined by the ratio of the velocity dispersions 62(r), 65(r)

2 2
and o (r) as j(r) =1 - ﬂ”;; £, By definition, 3(r) satisfies
—o00 < f(r) < 1. In this paper, we assume that f(r) =
Pani(const) for simplicity.

We describe the stellar profile v(r) as the Plummer
profile, a widely used fitting function of the stellar number
density of dSphs [17,18]. Its stellar number density v(r)

and surface density X(R) are given by

g w)) o

2(R) _HLR%<1 +§—§)_2, (4)

where R denotes the radius projected on the celestial sphere
and R, is the half-light radius of the surface density profile.

For the dark matter density profile, there are many
discussions and no consensus exists yet. This is known
as the core-cusp problem [21]; N-body simulation shows
the cuspy dark matter density profile (p(r) « r~' around
the center), while observations suggest the cored profile
[p(r) o const]. In this paper, we assume the cold dark
matter model, then the dark matter density profile can be
well described by the truncated NFW profile [12], whose
mass density p(r) and enclosed mass M(r) = [drdzr’p(r)
are respectively written as

N\ -1 -2
0 (r,<r),
B drpsrifaew(r/rs)  (0<r<r,)
MO ={ ) e ©

where p, and r, is scale density and radius of the profile,
respectively, r, denotes the truncation radius, and an
auxiliary function fypw(x) is defined as follows:

Snew (%) = In(1 + x) — (7)

I+x
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Using these quantities, we define our likelihood function
as follows:

L£(®) = H/\/[Ui; Vdsph» Ores (R;) + 867, (8)

where wvgsp, is the systemic velocity of each dSph,
O =R,, 1, Py, Tty Panis Vaspn Tepresents the parameter set
in our model, N[x;u,6?] denotes the normal (Gaussian)
distribution with the mean u and the variance 62, v; is the
observed velocity of the ith star and do; is its observational
error. The function of (R) is the projected velocity
dispersion along the line of sight at projected radius R,
given by the following formula:

v(r)e(r)

Tios(R) _%Amdro —ﬁ(r)%z) N

When f(r) = Bai(const), Eq. (9) is simplified to [22]

©)

ul®) = g [0 P ks, (10
K(u)=VvV1-u?

X |:M2<%_ﬁzmi>2Fl(L%_ﬂani;%;l —142> —%]

(1)

where ,F(a,b;c;z) is the Gaussian hypergeometric
function.

We note that our likelihood function has R dependence in
contrast with that SA20 used the averaged (R-independent)

velocity dispersion o7, = #2¢ [ drru(r)M(r). The advan-

tage of the our R-dependent analysis is that it weakens the
degeneracy between parameters by probing the shape of

2 5.
oios(R) even when oy, is not changed.

B. Priors

1. Photometry prior

The half-light radius R, is constrained by the result of
photometric observations, which is realized as a photo-
metric prior. We adopt a log-normal distribution for the
half-light radius to construct the prior as follows:

ﬂphoto(logIORe/(pC»
= N(logIORe/(pC)|10g10re,circ/(pc)’ 510g10re,circ/(pc))1
(12)

where we calculate the mean logqr, . and standard
deviation o6logy ... based on the error propagation

TABLE 1. The half-light radius, distance from Earth, stellar
mass and reference list for the 27 ultrafaint dSphs analyzed in this
paper. We derive the half-light radius and its error based on the
value in SA20. The values of distance and stellar mass are from
SA20 and Ref. [24], respectively (see text for more details). The
last column shows the source of kinematical dataset.

Name lOgIORe/(pC) D* (kPC) M* (MG)) Refs.
Aquarius 2 2.09 £+ 0.08 108 47x 10> [25]
Bootes 1 2.20 +0.02 66 29x 10 [26]
Bodtes 2 1.52 +0.07 42 1.0 x 10° [27,28]

2.534+0.02 218
1.73 £0.09 160

23x 105 [29]
79x10° [29]

CanesVenatici 1
CanesVenatici 2

Carina 2 1.87 £0.05 36 54 %10 [30]
ComaBerenices  1.76 £ 0.03 44 3.7x 10 [29]
Draco 2 1.12 £ 0.18 20 1.0 x 10° [31]
Eridanus 2 2.20 +0.05 380 6.5 x 10*  [32]
Grus 1 1.27 £0.46 120 2.1 x 103 [33]
Hercules 2.08 +0.04 132 3.7 x10*  [29]
Horologium 1 1.49 +£0.10 79 2.2 x 103 [34]
Hydrus 1 1.73 £0.03 28 6.5x10°  [35]
Leo 4 2.01 £0.05 154 1.9 x 10* [29,36]
Leo T 2.134+0.05 417 1.4x10°  [29]
Leo 5 1.57 £0.18 178 LI x10*  [36]
Pegasus 3 1.62 £0.16 215 3.6 x 10° [37]
Pisces 2 1.68 £0.07 182 8.6 x10°  [38]
Reticulum 2 1.49 £ 0.02 30 3.0x10°  [39]
Segue 1 1.30 4+ 0.06 23 34x10>  [40]
Segue 2 1.53 +£0.04 35 8.6 x 102 [41]
Triangulum 2 1.10+£0.13 30 45x 10> [42]
Tucana 2 221+0.07 57 28 x10°  [33]
Tucana 3 1.64 + 0.06 25 7.9 x 102 [43]
UrsaMajor 1 2.18 £0.02 97 14 x10*  [29]
UrsaMajor 2 1.93 £0.02 32 4.1 x 103 [29]
Willman 1 1.30 £0.05 38 1.0x 103 [44]

law by using 0 listed in Table I on the supplement material
of SA20 [23].

2. Satellite prior

Structure formation models of subhalos in the
Milky Way predict structural parameters of subhalo profile
p(r): ry, ps and r,. In this paper we use the satellite prior
proposed in SA20, briefly reviewed in the following: The
formation of subhalos is well described by the extended
Press-Schechter formalism [45], which gives the differ-

dzN sh
T Here N, denotes

the number of the subhalo, and z, and m, are the redshift
and mass of a subhalo when the subhalo accreted onto its
host. Here m, can be reinterpreted as halo parameters p, ,,
7y o and ry by considering two conditions: (i) The subhalo
is virialized m, = 47rpcm(za)200rgoo/ 3, where the virial
radius r,gg is calculated from r, by using the concen-
tration parameter ¢, = r, /0, Whose probability density

ential number of accreted subhalos
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distribution P(c,) is given by the log-normal distribution
with mean c,qy(m,, z,) [46] and standard deviation oy, . =
0.13 [47]. (i1) The dark matter distribution of the subhalo is
given by the NFW profile may = 42p; .73 frw (200/ T5.a)»
where fypw 1s the same as defined in Eq. (7).

After the accretion, the tidal force of the Milky Way
starts stripping subhalo mass. In a semianalytic strategy,
the mass-loss rate through this process is modeled as

dm — m(z) [m(z)]¢
@ T ® [M@]’ 13)

where 74,(z) denote the dynamical timescale [48], m(z)
and M(z) are subhalo and host halo mass at redshift z,
respectively. [Here we assume that M(z = 0) = 102M
according to SA20. We discuss the impact of the host halo
mass dependence on the prior distribution in Appendix A.]
The two parameters A and ( are calibrated by the results
of N-body simulations. The solution of this equation with
the initial condition m(z,) = m, gives current (z = 0)
subhalo mass my = m(0). As the subhalo mass evolves,
structural parameters p;, and r;, also evolve to p;
and r, (or simply p, and r) according to the empirical
fitting formula [47]. Finally, current truncation radius r,
(or simply r;) is determined by the NFW condition
mo = 4zpgors of new (Fe0/750)-

We combine the two distributions of parameters at

. 2 . .
accretion - and P(c,) with the parameter evolution
dz,dm, a

model to obtain the distribution of parameters at present [49].
Instead of calculating the distribution of current parameters
directly by using the Jacobian of the evolution formula,
we obtain finite samples of the parameters. We subdivide
(Inmy, z,, c,) linearly and calculate the weight of the ith
grid according to

dzNGh
= : Az,);(Am,);
Wi = N za:za.,-.m[,:ml,,,»( Za)i(Bmy);
X P(ca)|cd:cm-(Aca)i’ (14)
where N is a normalization factor to satisfy the
condition >, w; = Ngy o0 = [[dz,dm, dfg’;‘; . Each point

(Inmy;, 2z, c,;) is interpreted to (py,, ry;, ¢;;) according
to the stripping model, then we obtain finite samples of
(ps» 1g, ¢,) with its weight [50].

Some subhalos do not host any stars because baryons
in too small of a halo cannot lose their energy due to
its ionizing background, known as reionization
suppression [51,52]. In order to consider the effect, we
multiply w; by the formation probability of a satellite for
the given subhalo Py, as follows:

1 Vieak =V
Pform(vpeak) = 5 |:1 +€ﬁ<%):| ’ (15)

where V., denotes the maximum circular velocity of
the satellite at accretion time, given by Vi =

(47Gp; ,/4.625)"?r,, for a NFW subhalo and it is
calculated for each parameter grid (p;;, ry;. ¢, ;). For the
lower bound parameter Vs,, we have two choices: Vs, =
18 km/s, motivated by conventional theory of reionization
[53-56], and V55 = 10.5 km/s, based on the result of more
resent analysis [52]. For o, we adopt ¢ = 2.5 kms™!,
following Ref. [52]. For classical dSphs, we adopt Vs, =
25 km/s according to [57]. Here we assume ¢ = 0 kms™!
for simplicity. In this case Py (Vpear) is equivalent to a
step function O(V pea — Vsp)-

Using these quantities, the probability density distribu-
tion of the three profile parameters is then given by

dBNsh

& mpform(vpeak)’ (16)

”sat(rsvpm rt)

where 7. should be properly normalized to be a prob-
ability density distribution function. For the discrete sample
points generated above, it is realized as

Winorm(V eak,i)
Tsati — L . (17)
Ziwipform(vpeak.i)

Finally we smooth these samples {7, ,} to reconstruct a
prior function 7z (ry,ps, r,) by using weighted kernel
density estimation implemented in SciPy [58].

3. SHMR prior

In addition to the satellite prior, we use another prior
motivated by the stellar-to-halo mass relation (SHMR)
(see [59] for a review). This relation is obtained by fitting
the structure formation model by using observed cosmo-
logical datasets with a simple assumption; the larger the
halo becomes, the more stars it hosts. Stellar mass m, is
then written as a monotonic function of halo mass m, for
given redshift z. We identify m(z) with the subhalo mass at
the accretion time and relate it to the current subhalo mass
using the semianalytic approach mentioned in Sec. I B 2.
Here, for the simplicity, we assume that the stellar mass
does not change after accretion and identify m, as the
current stellar mass [60]. The schematic figure of this
procedure is shown in Fig. 1.

In order to check model dependence, we adopt four
SHMR models [61-64] (hereafter PB13, BM13, PB19
and BM18, respectively). These models have the following
features:

(i) PB13: calibrated by the Bolshoi simulation, using

a multipower law fitting function for the SHMR
and fitting the SHMR intrinsic parameters with other
systematic parameters.

083530-4
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semi-analytic

m(0)

model

const.
M Ms

FIG. 1. A schematic picture to illustrate how to construct our
SHMR prior. Horizontal one-side arrows indicate time evolution.
Shapes with bold edges are values at present (z = 0), which
appeared in the definition of the SHMR prior in Eq. (18).

(ii) BMI13: calibrated by the Millennium simulation,
using a double-power law fitting function for the
SHMR and simply fitting SHMR parameters.

(ii1) PB19: updated datasets from PB13, cosmological
models calibrated by the Bolshoi-Planck simulation,
using a double-power law fitting function for the
SHMR and simply fitting SHMR parameters.

(iv) BM18: updated datasets from BM13, cosmological
models assuming double-power law for the evolu-
tion of baryon conversion efficiency calibrated by an
independent simulation, using double-power law for
the SHMR and simply fitting SHMR parameters.

The probability density distribution of stellar mass m, is
given by the log-normal distribution as follows:

P(m.|m(z)) = (1/m,In10)N{logo(m./[Mo));

logyo(m.(m(z),2)/[Mo)),6logio(m./[Mg])],
(18)

where m,(M,,z) is expected stellar mass for given
halo mass M, at accretion redshift z, shown in Fig. 2
for each model. §log;o(m,/[My]) denotes the model
uncertainty of each SHMR model from each literature.

10-2 4

10-3 P

m s /Mnao

107 5

10'10 lolx 1 lolu 10'13 1(;14 161 s
Mhao

FIG. 2. SHMR function m,(M,,z) normalized by the halo
mass M. Here we fix z = 0.1 for illustration purposes.

We discuss the impact of varying the uncertainty in
Appendix B since, in this analysis, we refer the low-mass
end of the relation where we have few datasets to
determine SHMR uncertainties.

In terms of the Bayesian statistics, we can compare
credibility of a model (model 1) to a reference model
(model 0) by using Bayes factor BF, defined as the ratio of
Bayesian evidences &:

gp &1 _ J401L1(61)m(6))
50 fd@oﬁo(@o)”o((ao) .

(19)

Here the minus logarithm of the Bayesian evidence —In £ is
approximated by the widely applicable Bayesian informa-
tion criterion (WBIC) [65]:

N ~ [dO(InL(©))L(0) z(0)
—In& ~WBIC = — RO ORR (20)
B = 1/In(#data). (21)

In this work, we calculate WBIC of each model using
the Markov chain Monte Carlo algorithm and evaluate the
Bayes factor according to

InBF =In&; —In&y ~ —WBIC, + WBIC,. (22)

Here BF > 1 or InBF > 0 means that model 1 is more
credible than model 0. According to Ref. [66], there
is a scale for interpreting InBF into the strength of
evidence as follows: Decisive for InBF 2 4, very strong
for 3 <InBF <4, strong for 2 <InBF < 3, substantial
for 1 <InBF <2, and barely worth mentioning for
0<InBF < 1.

C. Data

We analyze the dSphs listed in Tables I and II according
to SA20, where we show the half-light radius, distance,
and stellar mass of each dSph. The half-light radius and
distances are from SA20 and also we use the values in

TABLE II. Same as Table I, but for classical dSphs.

Name logoR./(pc) D, (kpc) M,(Mgy)  Refs.
Carina 2.392 £0.005 105 3.8 x10° [67]
Draco 2.256 4 0.005 76 29x10°  [68]
Fornax 2.849 +0.003 147 2.0 x 107 [67]
Leo 1 2.353 £ 0.004 254 5.5 x 10° [69]
Leo 2 2.217 £0.005 233 7.4 % 10° [70]
Sculptor 2.359 £+ 0.004 86 2.3 x 10° [67]
Sextans 1 2.538 +0.004 86 4.4 x10° [67]
UrsaMinor  2.434 4+ 0.006 76 2.9 % 10° [71]

083530-5
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Ref. [24] for the stellar masses. For dSphs without stellar
mass values in Ref. [24], we calculate their stellar
masses from apparent magnitudes and distances, assuming
M/L = 1 according to Ref. [24]. The last column in Table I
and II indicates references of the kinematical dataset. In
general, the kinematical dataset includes member stars and
foreground stars. For datasets having a membership flag,
we extract stars identified as members. For those containing
membership probability P,;, we choose memberlike stars
(Py; > 0.95). For the other datasets having no membership
information, we adopt the selection criteria illustrated and
described in the reference. In addition, we remove member
stars identified as binary stars in order to avoid accidental
increase of the velocity dispersion.

D. Analysis

Based on the likelihood and priors defined above, we can
calculate the posterior probability density distribution (or
simply posterior) P(®|D) by using the Bayes’ theorem:

L(©)x(0)
PO|D)=——~——"—, 23
(@ID) JdOL(©)x(0) (23)
where
Tphoto (without any cosmological priors)
= { TphotoTsat (satellite prior only)

TphotoTsartsuvr  (satellite and SHMR prior).

(24)

Here, as mentioned in Sec. II B, the satellite prior 7y, is
selected from two candidates sat;ys and sat;g, and the
SHMR model for 7y, symr 18 chosen from PB13, BM13,
PB19 and BM18.

Instead of calculating Eq. (23) straightforwardly, we
obtain samples from the posterior by using the Markov
chain Monte Carlo methods. In this paper, we use the Affine
invariant ensemble sampler implemented in EMCEE [72]. We
scan the parameter region as shown in Table III. For R,, 7y,

TABLE III.  Scanning region of each parameter.

Parameter Minimum Maximum
logoR./(pc) 1.0 35
log o7,/ (pc) 0.0 5.0
logio ps/ (Mope™) 4.0 4.0
log o7,/ (pc) 0.0 5.0
_logIO(l _ﬂani) -1.0 1.0
Dasph/ (kms™") —1000 1000

Seguel
2
~—— likelihood
~— Satios
1- ~—— Sat1os+PB13
- Satjos+BM13
~— Sat1o5+PB19
% 0 - satio s+BM18
G
=
<
2 1
g
-2
R
-3 T T T T T
10 15 20 25 30 35 40
log1or:/[pc]
Seguel
2 =
~— |ikelihood
——— Satig
1. — Sat1g+PB13
- sat13+BM13
~— Sat1s+PB19
A 0 —— sat;s+BM18
0
.
<
2
g
-2
-3 E 3 5 3 [ T T 1
10 15 20 25 30 35 40
logors/[pc]
FIG. 3. Posterior probability density function projected onto

the r;-p, plane for the case of Segue 1. The top and bottom panels
show results assuming the sat;,s and sat;g model, respectively.
Blue dots are distributed according to likelihood only analysis
(without any cosmological priors), while colored contours show
posteriors with cosmological priors. The gray shaded area shows
the cosmological constraint adopted in Ref. [8]. For the other
dSphs, see Fig. 9-12.

ps and r, we adopt the logarithmic scale, reflecting that they
are positive. The range for the anisotropy f,; is set to include
both of the radial and tangential cases. Since v gy, is strongly
constrained by the likelihood function, we choose its limits
large enough to include the estimated value.
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III. RESULTS

Figure 3 shows the posterior projected onto the ry-p;
plane. The value of the likelihood function is shown by
blue dots and contours. Colored contours denote posteriors
assuming the satellite and/or SHMR priors. The satellite
prior itself is shown by gray contours and the gray shaded
area shows the cosmological constraint adopted in Ref. [8].

ComaBerenices

-194

-196

-198

= -200
2

= -202
<

g -204

-206

e, -208

10 15 20 25 30 35 40
logars/[pc]

ComaBerenices

pc’)

10G 100/ [M

logars/[pc]

FIG. 4. Results of likelihood only (without any cosmological
priors) analyses. The top panel is for the R-dependent likelihood
function, [Eq. (8)], while the bottom panel is for the R-
independent likelihood (see text), respectively. The color of
the heat map corresponds to the value of profiled likelihood
function L, (ry, ps) = max,, L(r, py, r,). Gray contours denote
the 1o and 20 regions of the satellite prior and the gray shaded
region shows the rough cosmological prior adopted in Ref. [8].
For illustration purposes, we show only the Coma Berenices case.

For illustration purposes, we only show the result of
Segue 1. For other dSphs, see Fig. 9-12.

In order to clarify the advantage of R-dependent analysis,
we compare results of R-dependent and R-independent
likelihood analyses in Fig. 4, where R-independent like-
lihood is defined similarly to Eq. (8) but the velocity
dispersion o7 (R) is replaced by averaged dispersion o7
In Fig. 4 the color of the heat map corresponds to the value
of likelihood functions.

Tables IV and V show the median values of J-factor
posteriors with 68% (~10) credible intervals. The left three
columns show results without SHMR priors. In particular,
the “flat” column denotes those without any cosmological
priors (only with the likelihood and the photometry prior).
The following columns are those with SHMR priors, PB13,
BM13, PB19, and BM18, respectively. These results are
also shown in Fig. 5. In Fig. 5, we also show the results
of conventional analysis [11] as gray bars and the J-factor
values adopted in the Fermi-LAT analysis [73] for
comparison.

We show the Bayes factor of each model in Table VI.
Column 1 shows the Bayes factor of sat;g to a reference
model sat; 5 for each dSph. Columns 2—5 show the Bayes
factors of the satellite prior sat;ys and SHMR analyses to
the satellite prior only analysis as a reference. Columns 6-9
are the same as columns 2-5 but for sat;g cases. Here a
positive (negative) value indicates that the corresponding
model is more (less) credible than sat; s.

IV. DISCUSSION

A. Posterior

For Bootes 2, Draco 2, Leo 4, Pegesus 3, Pisces 2,
Segue 2, Triangulum 2 and Tucana 3, their posterior
distributions of r-p, without satellite priors (likelihood)
are broadly distributed (Fig. 9-12). This is because obser-
vational errors of spectroscopic dataset are too large to
exclude the small r¢-p, region (dSph without dark matter).
In such a case, the GS15-like cut excludes the heavier halo
mass region but the estimated J factor is still distributed
broadly towards the small r,-p, region, thus the choice of
scanning range of r,; and p, strongly affects the result of
estimation. This problem is solved by introducing the
satellite prior because it excludes the small r;-p; region
based on the formation history of dSphs.

For the other ultrafaint dSphs, posterior distribution
becomes more ridgy thanks to a large amount of kinemati-
cal data. In contrast with those obtained in SA20, the
likelihood edges become narrow towards the upper left
(compact) or lower right (faint) regions, which indicates
that the height of likelihood peak varies from the upper left
to the lower right. This is thanks to the radial dependence of
the velocity dispersion o(R); even though & can be constant
by varying r, and p, properly, ¢(R) cannot be kept to fit
observed stellar velocity distribution at all radii.
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TABLE V. Same as Table IV, but for classical dSphs.

w/o SHMR PB13 BMI3 PB19 BMI8
Name flat sat sat sat sat sat
Carina 17862057 17.8670 07 17.857008 17.857008 17.8620 00 17.875008
Draco 18.9270¢8 18.8970¢0 18.857008 18.857 008 18.857 008 18.8870¢0°
Fornax 17.931920 18.0371 18.025049 18.00°09? 18.02°0%9 17.96-3%7
Leol 17.8010% 17715989 17731008 1773104 17742012 1778101
Leo2 17.821033 17.705019 17.64301] 17.6910-13 17.7150-13 17.73:014
Sculptor 18.561 007 18.55- 004 18.55° 0% 18.55- 004 18.55093 18.56 004
Sextansl 18.09710 18.12°03 18.09°01} 18.09°013 18.121013 18.1970-3
UrsaMinor 18.4710:3 18.46705¢ 18.50705¢ 18.46705¢ 18.467 058 18.47104¢

Figure 4 shows that introducing R dependence in the
likelihood function mitigates the degeneracy between p,
and r; in SA20. Since certain combinations of p, and r,
give the same value of mean 01205, R-independent likelihood
as used in SA20 has a degeneracy problem. In contrast, the
function o7  is not equivalent even for such a combination,
hence it allows us to distinguish these parameter sets.
Introducing R dependence however causes another issue,
namely, arbitrariness of anisotropy function (), which is
just assumed to be constant for simplicity in this study. In
order to remove unexpected bias, this arbitrariness should
be carefully treated in the further study as well as other
arbitrariness such as the axisymmetricity.

B. J factor and Bayes factor

Figure 5 shows that, in the satellite prior only analysis,
our estimates of log-J factor are larger by ~(O(0.1) than
those estimated in SA20. This is because the R dependence
of our likelihood function weakens the p,-r, degeneracy, as
mentioned in the previous section, and excludes the too
compact (small r, large p,) or faint (large r,, small p,) dark
matter halo with small J-factor value.

Figure 5 also shows that SHMR priors decrease the
uncertainty of J factor by up to about 50%, but estimated
median values have SHMR model dependence and some
estimations are not consistent with each other. For instance,
the PB13 prior tends to predict smaller J factor than
other priors for dSphs with large J factors such as
Segue 1. Conversely, the BM18 prior gives larger J factor
than other priors for small J-factor dSphs such as Leo 4.
These features come from the difference of SHMR models.
As shown in Fig. 2, SHMR models have different slopes
for the small M, region around the mass scale of dSph
halos. In particular, the PB13 model has a large m,/M,,
ratio, while the BM18 one has a smaller m,/M, than
others. Once m, is fixed by observations, large m,/M,,
gives small M,, and vice versa. We note that Ref. [74]
reported M/L ~ 1.6, thus our estimates of stellar mass

obtained by assuming M/L =1 are potentially smaller
than actual values. However, this discrepancy has no
significant effect on our estimation because of the scatter
of SHMR models.

Bayes factors help us understand the model dependence
of the estimated J factors. Tables IV and VI show that
models whose estimate is deviated from the result of satellite
prior only analysis tend to have small Bayes factors. For
instance, the PB13 model shows In BF < —3 for Segue 1 and
Willman 1, and the BM18 shows In BF < —1 for Leo 4. It
means that, in terms of the Bayesian analysis, the results of
PB13 for Segue 1 and Willman 1 are very strongly less
reliable than those of the satellite prior only analysis, and the
results of BM18 for Leo 4 are substantially less reliable,
respectively. We can understand this feature through poste-
riors in Fig. 9-12. For these dSphs, posteriors obtained by
PB13 or BM18 are significantly deviated from the contour
of the satellite prior only analysis, which means that these
SHMR models and the satellite prior are incompatible. In
contrast, models having comparable J factors to the satellite
prior only analysis have Bayes factors almost equal to or
larger than the satellite prior only analysis. This tendency of
the Bayes factors indicates that the estimated J-factor values
with the satellite prior only analysis are stable even when
considering SHMRs.

We can utilize this tendency in the opposite direction;
not evaluating dark matter profiles by using SHMRs,
but evaluating SHMRs by using dark matter profiles.
The relation between J factors and Bayes factors suggest
some possibilities that there are some unknown biases in
the observation of these dSphs or that some SHMR models
having small Bayes factors are invalid for certain ultrafaint
dSphs. The latter possibility could originate from the
difference of the construction of these models; the PB13
model predicts larger m, /M, values than the others around
the small halo mass region, while those of the BM 18 model
are smaller than the others (see Fig. 2). In particular,
Ref. [63] indicated that PB13 assumed a strong surface-
brightness incompleteness correction for faint galaxies that
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bars are the results with satellite prior only analysis, while the gray ones show the results of conventional analysis [11]. The blue, orange, green
and red bars correspond to analyses with the satellite prior and PB13, BM13, PB19 and BM18 priors, respectively. The bars on the white
background area correspond to the results for Vs, = 10.5 km/s, while those on the gray-shaded area correspond to the results for
Vso = 18 km/s. The brown bars between white and shaded areas denote the J-factor values used in the Fermi-LAT analysis of the indirect

dark matter search [73].

is no longer observationally supported [75], which causes
the overestimate of the SHMR around the low halo mass
region. For BM18, Ref. [64] pointed out that the under-
estimate of the BM18 model around the low-halo mass
region occurs to compensate the overestimation of the
number of massive galaxies caused by the Eddington bias.
Further investigation of these features would help us to
improve and calibrate these SHMR models using dSph
observation or reveal some unknown nature of dSphs.
Since the J-factor values of the ultrafaint dSphs obtained
in this work are not significantly different from conven-
tional values, there are no significant updates for the current
dark matter constraints of the indirect detection experiment.

The detection sensitivity depends on the lower bounds of J
factors. Because J factors of dSphs with the largest J
factors such as Segue 1 and Ursa Major 2 do not change
significantly even when considering cosmological priors
having largest Bayes factors, constraints on dark matter
parameters do also not show significant difference. The
constraints however could be updated when we select only
a part of dSphs as detection targets, where the J factor
lower bound of each dSph matters.

In contrast, from Table V and Fig. 6, the J-factor
uncertainty of classical dSphs obtained in this work is
reduced up to about 20% of the results of SA20 due to the
consideration of R dependence of the velocity dispersion.
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TABLE VI

The natural logarithm of Bayes factors of each model calculated according to Eq. (22). Column 1 shows the Bayes factor

of sat;g to a reference model sat; 5 for each dSph. Columns 2-5 show the Bayes factors of the satellite prior and SHMR analyses to the
satellite prior only analysis sat;y 5 as a reference, so as columns 6-9 not for sat; s but sat;g cases. By definition, positive (negative)
values mean that the corresponding model is more (less) credible than the reference model.

satg/sat|o 5

(sat]0'5 + SHMR)/Satl()j

(sat;g + SHMR)/sat;g

Name w/o SHMR PB13 BM13 PB19 BM18 PB13 BM13 PB19 BM18
Aquarius2 0.77 -1.16 0.17 0.34 1.13 -2.16 -0.35 0.05 0.29
Bootes1 -0.01 0.34 0.20 0.17 0.09 0.12 0.10 0.21 0.11
Bootes2 -0.09 0.05 0.06 -0.05 -0.16 0.07 0.04 0.01 -0.01
CanesVenaticil 0.49 0.36 0.49 0.07 0.34 0.33 -0.01 -0.31 -0.03
CanesVenatici2 1.29 -0.70 0.64 0.92 2.08 -2.61 -0.70 0.15 0.71
Carina2 -0.14 0.65 0.44 0.03 -0.35 0.76 0.30 0.29 -0.19
ComaBerenices 1.06 -1.71 -0.09 0.35 1.75 -3.07 -0.52 0.07 0.64
Draco2 0.16 0.10 0.10 0.04 0.24 -0.07 -0.09 -0.05 -0.01
Eridanus2 0.79 -0.22 0.76 0.94 1.53 -0.62 -0.03 0.05 0.78
Grusl -0.30 0.34 0.14 -0.07 -0.40 0.27 0.19 0.10 -0.07
Hercules 0.88 0.58 0.96 0.59 1.06 -0.04 —0.06 -0.07 0.15
Horologium1 1.12 -3.87 -0.78 -0.44 1.25 —-4.13 -0.58 -0.03 0.25
Hydrus1 -0.17 0.30 0.23 -0.20 —0.89 0.38 0.09 -0.03 —0.85
Leo4 -0.16 0.34 0.02 -0.05 -0.93 0.44 0.15 0.01 -0.72
Leo5 -0.03 0.34 0.51 0.04 0.24 -0.47 —0.15 0.31 0.45
LeoT 1.39 0.65 1.85 1.43 0.84 -0.01 0.47 0.08 -0.61
Pegasus3 1.28 -0.19 0.37 0.11 1.62 —-1.65 -0.98 -0.06 0.25
Pisces2 0.27 0.49 0.26 -0.04 -0.07 0.29 —0.01 —0.11 —-0.28
Reticulum? 0.96 -1.08 0.03 0.17 1.13 —1.85 -0.82 -0.12 0.13
Seguel 1.89 -2.63 -1.00 -0.27 1.36 —4.29 -1.01 -0.05 —-0.41
Segue2 0.08 0.11 0.12 0.21 0.26 -0.17 -0.20 0.04 -0.10
Triangulum?2 —0.65 -0.01 0.14 -0.02 -0.52 0.57 0.37 0.08 0.16
Tucana2 -0.13 -0.23 0.16 0.11 -0.09 -0.54 0.12 0.16 -0.06
Tucana3 =2.75 0.56 0.18 -0.01 -2.82 3.39 2.68 —0.08 0.08
UrsaMajorl 1.06 -5.26 -0.16 0.61 1.84 -5.30 —-0.45 -0.08 0.80
UrsaMajor2 1.25 —4.98 -1.11 0.05 1.67 -5.93 —-0.63 -0.21 0.37
Willman1 2.07 -3.05 -1.05 -0.62 1.71 —-4.90 -1.26 -0.37 -0.29
19.0
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In particular, the Draco dSph, having one of the largest J
factors, has larger lower bound by about 0.25 in logarithmic
scale than SA20. Since indirect detection sensitivity reflects
the lower bound of the J factor, the sensitivity might be
stronger than the results of SA20. Here we should note that
our results have an implicit bias of dSph model construc-
tion. In other conventional works such as Ref. [8] the
uncertainty of the dark matter profile is taken into account
by introducing more general dark matter profile models and
they indicate the deviation of dark matter profile from the
simple NFW profile. In this paper, however, we neglect the
uncertainty of dark matter profile by fixing it to be the NFW
profile and also that of the anisotropy profile by assuming
constant model, thus our results have an implicit bias based
on the model construction. In order to calculate more
reliable J-factor values, we need further investigation to
implement the flexibility of the dark matter profile into the
cosmological prior analysis.

V. SUMMARY AND CONCLUSION

In this paper, we utilized two cosmological priors
(satellite and SHMR) and a likelihood function with radial
dependence to obtain better constraints on the dark matter
halo profile of dSphs through the kinematical fitting using
the spherical Jeans equation. We prepared some different
setups for the cosmological priors and estimate the pos-
terior probability density function and J factor. We com-
pared these models and showed that our J-factor estimates
obtained by using the satellite prior are stable in terms of
their Bayes factors even when considering another cosmo-
logical prior, the SHMR prior. Cosmological priors and the
R dependence of the likelihood mitigate the degeneracy
between parameters and decrease the uncertainty of
J-factor values up to about 50% for ultrafaint dSphs and
about 20% for classical dSphs. These estimates would
be updated by introducing the flexibility of dSph models
(e.g., anisotropy, halo profile and nonsphericity).
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FIG. 7. Satellite priors assuming different Milky Way masses

0.5, 1.0, and 2.0 x 10'>2M, by the blue, orange, and green lines,
respectively.

APPENDIX A: ASSUMPTION ON MILKY WAY

In this study we assume that the Milky Way profile is the
NFW profile with mass 10'>M . In order to investigate the
impact of Milky Way models, we calculate the satellite
priors 7z, under different assumptions on the Milky Way
mass in Fig. 7. Here we compare the priors whose host halo
mass are set to 0.5, 1.0, and 2.0 x 1012M®, shown by the
blue, orange, and green lines, respectively. The figure
shows that Milky Way mass does not affect the prior
distribution more than SMHR models as the mass-loss rate
[Eq. (13)] only weakly depends on the host halo mass as
mentioned in SA20, which allows us to ignore this effect in
this study when considering various SHMR models.

APPENDIX B: IMPACT OF SHMR
UNCERTAINTY

As SHMR models are mainly calibrated for heavier
galaxies than (ultrafaint) dSphs, the actual uncertainty for
low-mass galaxies such as (ultrafaint) dSphs could be
inaccurate compared with those expected by extrapolation
due to the limited available data. In Fig. 8, we demonstrate
the impact of model uncertainty levels by setting them to
fixed values. The gray lines depict the cosmological priors
(7o sumr) adopted in this study, while the colored lines
correspond to those with manually fixed uncertainty level.
The light gray lines correspond to the satellite prior without
any SHMRSs (7). As shown in the figures, increasing the
uncertainty leads to broader probability distributions, as
expected by the definition of cosmological priors:

Tsat+SHMR — ”sat(éloglO(m*/[MO]) - 00) (Bl)
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FIG. 8. Probability density distributions of satellite and SHMR priors 7, sgyvr are shown with varying levels of uncertainty
in each SHRM model. The gray lines depict the distribution with default uncertainties obtained from the literature, while the
light gray lines correspond to the satellite prior without any SHMRS (7zg,.). The colored (blue, orange, green, and red) lines

represent the probability density distributions with manually fixed uncertainty levels [§logo(m./[Mg]) = 0.15, 0.3, 0.6, and
1.25, respectively].

Therefore, even when the actual uncertainty of SHMR models is larger than those expected by extrapolation and the prior
Tsersumr could be inaccurate, our analysis using g, gives robust estimation of J factors.

APPENDIX C: POSTERIORS

Posterior probability density distribution projected onto the r¢-p, plane are shown in Fig. 9-13. Here Fig. 9-12 are for
ultrafaint dSphs, while Fig. 13 is for classical dSphs.

083530-13



HORIGOME, HAYASHI, and ANDO PHYS. REV. D 108, 083530 (2023)

Aquarius2 Bootesl Bootes2
2 2
—— likelihood —— likelihood —— likelihood
—— satws —— satis ~— Satiws
) —— satis+PB13 1 —— satios+PB13 1 —— satins+PB13
—— satis+BM13 —— satios+BM13 —— satis+BM13
—— satios+PB19 —— satios+PB19 ~—— satins+PB19
%0 satios+BM18 2 0 satio s +BM18 %0 —— Satus+BM18
g 3 g
£ B £ £
4 g € |
5 -1 -1 5 -1
£ g g -
-2 -2 -2
-3 v v -3 . T = -
10 15 20 25 30 35 10 15 20 25 30 35 40
logors/pc] logori/pc] logor:/pc]
CanesVenaticil CanesVenatici2 Carina2
2 2 2
—— likelihood 3 —— likelihood —— likelihood
— satys 5 —— satis —— satis
N —— satu3+PB13 1 —— satys+PB13 1 —— satus+PB13
— satyos+BM13 . — satios+BM13 — satys+BM13
—— satios+PB19 ; —— satins+PB19 ) —— satins+PB19
20 satios+BM18 2 0 satio s +BM18 %0 —— satis+BM18
¥ [ ; 4
£ B z £
3 1 3 1 3 1
g g g
-2 -2 -2
3 _ o 3 J
10 15 20 25 30 35 40 10 15 20 25 30 35 40 10 20 25 30 35 40
logora/fpc] logors/[pc] logors/pc]
ComaBerenices Draco2 Eridanus2
2 2
— likelihood —— likelihood —— likelihood
—— Satis —— satis —— satus
1 —— satis+PB13 1 —— satins+PB13 1 —— satys+PB13
— satios+BM13 — satins+BM13 —— satins+BM13
- —— satios+PB19 —— satins+PB19 —— satins+PB19
T o0 satios+BM18 2 0 | —— satis+BM18 %0 —— satis+BM18
K k] g
£ z £
-1 -1 > -1
g g g
-2 -2
-3 34 -3 —
10 15 20 25 30 35 40 10 15 20 25 30 35 40 10 15 20 25 30 35 40
logorsfpc] logors/pc] logor:/pc]
Grusl Hercules Horologium1
2
—— likelihood —— likelihood —— likelihood
—— satis —— satis —— satus
—— satins+PB13 1 —— satins+PB13 1 —— satins+PB13
—— satis+BM13 —— satins+BM13 —— satys+BM13
—— satios+PB19 —— satios+PB19 _ —— satis+PB19
%0 satio s+BM18 2 0 —— satins+BM18 %0 3 —— satins+BM18
4 : g ¥
£ £ £
3 < 3
5 -1 5 -1 > -1
g g g
-2 -2 -2
= v Mo -3 — -3 v
10 15 20 25 30 35 . 10 15 20 25 30 35 40 10 15 20 25 30 35 40
logor=/lpc] bogors/pc] logor=/lpc]
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