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Abstract

Climate change and technological advances are reshaping ecosystems and societies. Strategic choices that were best
yesterday may be sub-optimal tomorrow; and environmental conditions that were once taken for granted may soon
cease to exist. In dynamic settings, how people choose behavioral strategies has important consequences for en-
vironmental dynamics. Economic and evolutionary theories make similar predictions for strategic behavior in a static
environment, even though one approach assumes perfect rationality and the other assumes no cognition whatsoever;
but predictions differ in a dynamic environment. Here we explore a middle ground between economic rationality and
evolutionary myopia. Starting from a population of myopic agents, we study the evolutionary viability of a new type
that forms environmental forecasts when making strategic decisions. We show that forecasting types can have an
advantage in changing environments, even when the act of forecasting is costly. Forecasting types can invade but rarely
overtake the population, producing a stable coexistence with myopic types. Moreover, forecasting fosters collective
intelligence by providing a public good which reduces the amplitude of environmental oscillations and often increases
mean payoffs to forecasting and myopic types alike. We interpret our results for understanding the evolution of
different modes of decision-making such as forecasting. And we discuss implications for the management of envi-
ronmental systems of societal importance.
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Significance Statement

of common-pool resources.

Introduction

Social-ecological systems are characterized by feedbacks
that link ecological states and social decisions. These
linkages can induce complex and cyclical dynamics in both
human behavior and ecological states (Bieg et al., 2017;
Levin et al., 2013; Tilman et al., 2018), driving the dy-
namics in systems of great societal importance. Models of
social-ecological systems allow us to identify the key
features that determine qualitative outcomes (Schliiter et al.,
2012) and help us to guide management (Farahbakhsh et al.,
2022). How humans make decisions over time can have
important environmental implications. Individuals might
deliberate and reason about their alternatives or follow
heuristics and make rapid, automatic decisions (Evans,
2008; Kahneman, 2003, 2011). Different modes of
decision-making have significant population-level conse-
quences, and the interplay of automatic and deliberative
thinking can drive cyclical dynamics in behavior and the
environment (Rand et al., 2017; Tomlin et al., 2015).

The emerging field of eco-evolutionary game theory
provides natural tools to model decision-making in social-
ecological systems (Barfuss et al., 2020; Estrela et al., 2019;
Lin and Weitz, 2019; Tilman et al., 2020; Weitz et al., 2016;
Wang et al., 2020; Wang and Fu, 2020). Eco-evolutionary
games arise when the strategies adopted by individuals
influence the state of the environment, and the environment
in turn influences game payoffs and strategic behavior,
generating feedback. There is therefore a close relationship
between models of social-ecological systems and the theory
of eco-evolutionary games. In both cases, even simple
systems can generate persistent oscillations with an ever-
changing environment (Bieg et al., 2017; Tilman et al.,
2020; Weitz et al., 2016).

Climate change is the result of decades of individual,
corporate, and national decisions that have applied strong
forcing to our climate system, such that an overshoot of the
2°C warming target is now likely (Pachauri et al., 2014).
This overshoot is characteristic of the environmental

Humans and non-humans face changing environments as they make decisions about their own behavior. Their
actions influence one another, as well as the state of the environment, for example, by depleting resources or emitting
pollution, which can feedback to change future strategic settings. We study how individuals make decisions in the
context of environmental feedback—either as myopic agents, who consider only the present state of the environment,
or as forecasters, who consider projections about future environmental states. We find that forecasting types can
coexist with myopic types, dampen environmental oscillations, and increase the fitness of both types. These results
highlight the potential for environmental forecasting to foster collective intelligence in groups, provide a theoretical
explanation for multiple coexisting modes of decision-making, and have practical implications for sound stewardship

oscillations seen in the theory of eco-evolutionary games
(Menard et al.,, 2021; Tilman et al., 2020). The slow
timescale at which the environment responds to our strategic
behaviors sets the stage for this overshoot. Understanding
this system as an eco-evolutionary game may provide
important lessons for management and mitigation.

Cyclic dynamics also occur in fisheries, where harvester-
driven collapse is ubiquitous (Essington et al., 2015; Pauly
et al., 1998), which leads to reduced profitability of har-
vesting and sometimes eventual recovery of fish stocks
(Hutchings, 2000; Worm et al., 2009). Understanding how
modes of decision-making can aggravate or alleviate these
human-driven environmental changes has profound prac-
tical implications. When should managers expect human
behavior and decision-making to produce stable outcomes,
as opposed to an unstable or oscillating environment (Bieg
et al., 2017)?

Forest management can also be viewed as a social-
ecological system that undergoes cyclic dynamics of fire,
harvesting and regrowth (Luce et al., 2012; Steelman,
2016). In the United States, a decades-long management
emphasis on fire suppression led to increased tree density in
western forests (Fellows and Goulden, 2008), which then
contributed to increasing wildfire risk (Marlon et al., 2012).
This growing risk has been compounded by climate change,
which manifests as increased drought frequency and se-
verity, and greater peak summer temperatures (McKenzie
et al., 2004). The USDA Forest Service has developed a
strategy for confronting the wildfire crisis which relies
heavily on prescribed fire and other fuels treatments (US
Forest Service, 2022). However, shifting from a strategy of
fire suppression to a strategy of deploying fire to generate
fire-resilient landscapes poses major challenges given the
current high fuel loads, climatic conditions, and increased
extent of the wildland-urban interface (Radeloff et al.,
2018). While the local patterns of wildfire are inherently
stochastic, there may be predictable relationships at the
landscape and regional scales between management strat-
egies, forest ecosystem states, and wildfire risks. Here again,
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eco-evolutionary games may provide a useful tool to model
these interactions and inform management.

More generally, long-term outcomes in diverse social-
ecological systems depend on how individuals make de-
cisions. The psychology of decision-making integrates
experiences from the past, observations about the present,
and expectations for the future (Zimbardo and Boyd, 1999).
Time discounting measures individuals’ inter-temporal
preferences for rewards and costs, and it has been mea-
sured empirically in humans and other animals (Mischel
et al., 1989; Odum, 2011). Different discount rates imply
different degrees of future orientation in thinking and
decision-making. These differences in the weight placed on
expectations for the future is known to impact environ-
mental behaviors (Carmi, 2013; Carmi and Arnon, 2014;
Enzler et al., 2019). Theoretical work has also highlighted
the impact of foresight on cooperation (Perry and Gavrilets,
2020). And, yet, much of the work on social-ecological
modeling has assumed strategies and behaviors are based on
the current payofts alone, disregarding projections for the
future. In this paper, we will explore how individuals who
forecast future environmental states might emerge in a
population of myopic decision-makers, and how forecasters
then alter environmental dynamics.

Economic theory and evolutionary theory both address
the problem of decision-making in strategic settings. But
economic and evolutionary analyses make vastly different
assumptions about what information is available to indi-
viduals and how individuals use that information. In clas-
sical economic analyses, equilibrium strategies are
identified such that fully informed and perfectly rational
agents have no incentive to deviate unilaterally, that is, a
Nash equilibrium (Nash, 1950). On the other hand, evo-
lutionary game theory does not require individuals to know
much, if anything, about the game they are playing
(Maynard Smith, 1982) but, instead, considers individuals
who make strategic decisions through a myopic search
process. Such agents that lack cognition altogether none-
theless typically approach an equilibrium called an evolu-
tionary stable strategy (ESS) (Maynard Smith, 1982).
Remarkably, in static environments, these two concepts are
tightly coupled: all ESS’s are Nash equilibria, and all strict
Nash equilibria are ESS’s.

This remarkable concordance between the long-term
behavior of fully rational individuals versus the behavior
of simple myopic agents breaks down somewhat when
considering equilibrium selection, which depends critically
on the nature of the update process in evolutionary models
(Golman and Page, 2010), yet is a topic about which the
Nash equilibrium is agnostic. The divide deepens when
strategic interactions take place in a changing environment,
or when the strategies themselves generate environmental
feedback. In a changing environment, a strategy that is
favorable today may be detrimental tomorrow. In this

setting, there is a wide gulf between the behaviors predicted
by traditional game theory and bioeconomic theory (Clark,
2010) versus those that arise dynamically in an evolving
population of myopic agents.

Here, we explore a middle ground between myopic
agents and fully rational agents, that is, between evolu-
tionary and economic theories of decision-making. The goal
is not to determine which models of decision-making or
strategic behavior are correct. Rather, we take the myopic
setting as a starting point and ask when individuals will
emerge who use more information about their environment
and the game they are playing in making strategic decisions.
That is, we study how more sophisticated modes of
decision-making can arise in a population and what effects
this has on environmental dynamics. In particular, we study
the emergence of decision-making by individuals who
forecast the future state of the environment and account for
future payoffs based on their forecasts. Such individuals are
not strictly myopic but also not fully rational or perfectly
informed.

Our primary goal is to understand both the evolutionary
viability of forecasting types as well as their resulting
impact on strategic and environmental dynamics. Whereas a
population composed entirely of myopic individuals can
experience persistent cycles, we will show that one com-
posed entirely of forecasters can produce a stable equilib-
rium. Moreover, the average fitness in the population of
forecasters can be higher than it would be in the myopic
population, even when forecasters pay a fixed cost, rep-
resenting the cognitive or economic burden of making
environmental forecasts. This notion has parallels to studies
that consider a cost to complexity in decision-making
(Rubinstein, 1986). We will show that forecasting types
can invade a myopic population, but their invasion is self-
limiting. Once forecasters stabilize the environment, then
forecasting no longer has value (the future will be just like
the present), and myopic individuals outperform the fore-
casters by avoiding the cost of forecasting. As a result,
forecasters tend to increase when rare, dampening envi-
ronmental cycles, but if they can stabilize the environment
they cannot overtake a population.

We will also show that forecasters and myopic agents can
stably persist together and that this coexistence can generate
both public and private benefits. First, forecasting generates
public benefit because even a small sub-population of
forecasters serves to reduce the magnitude of environmental
variability, which often increases the average fitness of both
forecasting and myopic types when they coexist. Second,
forecasting also generates private benefits because fore-
casters anticipate environmental change and are better able
to deploy the right strategies at the right times. The private
benefits allow the evolutionary emergence of forecasters,
who then provide public benefits to all. Collective intelli-
gence can be measured by the relative performance of
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individuals and groups (Leonard and Levin, 2022). The
environmental stability and increased average payoffs that
forecasting types often provide can therefore be seen as a
form of collective intelligence.

Model

A broad class of eco-evolutionary games produces cyclic
dynamics (Tilman et al., 2020; Weitz et al., 2016). In most
models, the cycles are driven by actions of myopic agents.
Taking this setting as a starting point, we model the
emergence of decision-makers who use environmental
forecasting in a resident population of myopic agents.
Myopic types update their strategy following standard
replicator dynamics. They switch between strategies based
on the current payoffs they experience. In turn, their choices
also alter the state of the environment, generating a feed-
back. But myopic types do not know anything about the
underlying environment; they attend only to the strategies
that others employ and the resulting payoffs they receive.

In contrast to myopic types, forecasting types know and
collect more information when making their strategic
choices. Forecasting types make forecasts of the future
states of the environment, and they account for how the
changing environment will influence their future payoffs,
discounting the expected future payoffs in combination with
present value of each alternative strategy. We also model
this with replicator dynamics.

To model the emergence of forecasting, we must also con-
sider the process by which forecasting and myopic types
compete. We assume that the act of forecasting carries a cognitive
or economic cost. While forecasters may believe that their
current strategy will yield large payoffs in the future, this does not
give them an advantage over myopic types in the present. Thus,
we assume that forecasting and myopic types compete with each
other based solely on their instantaneous fitness. Figure 1 il-
lustrates these different types of updates.

With these assumptions, the deck is stacked against
forecasters. How could a population of forecasters emerge
when each forecaster is at an inherent fitness disadvantage
and must compete with myopic types based only on in-
stantaneous payoffs? We find that, nonetheless, environ-
mental forecasting allows individuals to anticipate when
environmental change will cause a different strategy to be
favored, leading to instantaneous advantages that allow
forecasters to invade.

Eco-evolutionary games

We assume that agents are engaged in a two-strategy eco-
evolutionary game, building on the framework developed
by Tilman et al. (2020). The two strategies are called the

“low-impact” L and “high-impact” H alternatives, to denote
the magnitude of their effects on the environmental state.
When all individuals follow the low-impact strategy, the
environmental state tends toward its highest value. But
when the high-impact strategy dominates in the population,
the state of the environment declines toward its lowest
possible value. The environmental state is described by a
normalized quantity, n, that is bounded between zero and
one. The payoffs for the eco-evolutionary game are assumed
to be linear in the state of the environment, 7, and in the
frequencies of the low- and high-impact strategies.
Therefore, the game can be represented by an environ-
mentally dependent payoff matrix:

H(n):(l—n){‘;z iﬂ—kn[f{ f;l} (1)

where the payoff to the low-impact strategy corresponds to the
first row of the matrix, and the payoff to the high-impact strategy
corresponds to the second row of the matrix. While this model
can be applied for any values in the payoff matrix, we focus on a
region of the parameter space where cyclic dynamics can arise,
givenbyTl —R1>0,P1 — S1>0,R0— TO>O,SO—P0>0,and
(Th — Ry) (Sop — Pp) <(P; — S1) (Ryg — Tp). The first conditions
imply that under high- and low-environmental states, the
strategy that will shift the environment toward the opposite state
is dominant. The final condition means that the incentives to
follow strategy change are stronger in aggregate than the in-
centives to lead strategy change.

Allowing for both forecasting and myopic types of
agents, there are in total four kinds of individuals in the
population: forecasting or myopic types that follow either
strategy L or strategy H. We use z]' to denote the frequency
of L-strategy myopic individuals, zj; the frequency of

H-strategy myopic individuals, z{ the frequency of
L-strategy forecasting individuals, and z’;[ the frequency of
H-strategy forecasting individuals. The overall frequency of
strategy L in the whole population is then z; = ZZ +z'. And

the overall frequency of forecasting types is 2/ = zz + z’,:,
The immediate payoffs to each strategy are

zr(n,zr) = (1 —n)(Rozr + So(1 —z1))
+n(Riz, + 8 (1 —z)), @
mg(n,zr) = (1 = n)(Tozr + Po(1 — z1))

+71(T12L +P1(1*ZL)) (3)

Myopic types consider only these immediate payoffs
when updating their strategies. In contrast, forecasting types
also account for their expectations of the future. These
expectations integrate both environmental forecasting and
payoff discounting.
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Figure I. Individuals interact in a changing environment, represented here by the level of the environmental resource shown in green.
At any point in time, a focal individual may update their strategy or their type. When a forecasting type (represented by a triangle)
updates their strategy, they account for expected future environmental changes. A focal individual may also switch types, from a
forecaster to a myopic agent, or vice versa. The environment responds to the frequency of high- and low-impact strategies (shown in
brown and cream, respectively) in the population. An individual’s type has no direct impact on environmental dynamics, but forecasting
and myopic types often adopt different strategies and so environmental dynamics respond indirectly to the composition of forecasting

and myopic types in the population. We study the emergence of decision-makers who use forecasting, and what effects they have on
environmental dynamics.

game forn =1

A
e Myopic type payoff
—_ 4 —
% (instantaneous) IL,(n(0))
£ i Environmental forecast, 7(t)
2 :
'g : Forecasting type >
= ' _ "
game forn=0 2 : payoff (forecast) ./o w(E)IL, ((t))dt
: o
0 : - discounting

t=0 Time

(present)
Figure 2. The game payoff matrix II for two alternative strategies depends on the state of the environment, n(t), which changes over
time in response to individuals’ actions. A myopic type individual chooses between two alternative strategies based only on the
instantaneous payoff of each strategy s in the current environment, I (n (0)). Whereas a more complex type forms a forecast about the
future environmental states, n(t) using linear extrapolation, and makes decisions that account for expected future payoffs, discounting the
future relative to the present. Starting from a population of purely myopic agents, we show that evolution can favor the emergence of
forecasting types, even when they pay a cost to produce forecasts.

Forecasting and discounting n(t) = n(0) + (0) 4)

where 71(2) is a forecast of the environmental state ¢ units of
time into the future, n(0) is the current state of the envi-
ronment, and dn/dt(0) = 7(0) is the current rate of change
of the environment. This linear forecast, illustrated in Figure
2, will be accurate in the short term, but it becomes

When forecasting the future state of the environment,
forecasting types form expectations about future payoffs.
We assume that forecasters observe the current rate of
environmental change and use linear extrapolation to
project future environmental states,
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increasingly unreliable over the long term. Forecasts are
continuously updated, so the accuracy of near-term pre-
dictions will remain high throughout the process.

A forecasting type must place some value on their future
payoffs for their forecast to have any effect on their be-
havior. We assume that forecasting individuals put greater
weight on their near-term payoffs than long-term payoffs.
We model this through a normalized discount function of
the form

o(t) =re™” Q)

where w(?) is the weight given to time ¢ into the future and
r € (0, ) is the discount rate. This discounting function is
normalized so that regardless of 7, w(¢) integrates to 1. Thus,
increasing 7 shifts an agent’s preferences toward the near
term without changing the total weight that they give to the
expected payoffs from the game being played.

Eco-evolutionary dynamics

We model strategic and environmental change based on
pairwise interactions among the four possible kinds of in-
dividuals in the population. We assume that the act of
forecasting is inherently costly.

For strategy change among forecasting types, dis-
counting and forecasting are integrated into their assessment
of the expected payoffs to the low- and high-impact
strategies. This leads to the expected payoff of the low-
impact strategy,

fi= [ omG). ) ©)
0
which can be solved exactly as
. nor
Sz nn) =mp(n,z) + P 8_nL (n,z1) @)

An equivalent expression holds for the high-impact
strategy.

For myopic individuals, the immediate payoff difference
drives strategy dynamics, that is

®)

For forecasting individuals, the payoff difference be-
tween the strategies is

”L(n,ZL) - ﬂH(n,ZL)

Jo—Ju = ”L(naZL) - ﬂH(n,ZL)

©

n o
+ - = \m(n,z) — TN,z
® = frnz) — 7, 20)
where a small value of the discount rate » means that agents
put a larger weight on future payoffs. Equation (9) shows
how forecasting and discounting alter the perception of
fitness differences between strategies for forecasters,

relative to myopic types. In particular, the first term in
equation (9) is the immediate difference in payoff between
the L and H strategies—which is the quantity that alone
determines myopic decision-making—whereas the second
term reflects how forecasting changes the decision-making
process. Note that in the special case that the environment is
not changing, that is, s#i= 0, then the payoff difference
perceived by forecasters equals the payoff difference per-
ceived by myopic types, because the environmental forecast
is constant and so forecasting and myopic types make the
same strategic decisions.

Now we develop dynamic equations that describe how
the frequencies of all four kinds of individuals change in the
population. First, we consider L-strategy myopic individ-
uals. These individuals can emulate H-strategy myopic
individuals, or they can choose to adopt either strategy of
forecasting individuals. This leads to three terms in the rate
of change of z}’, following mass-action:

2 = 2y (m — ) + e272,C

: 10
+ €22 (mp — 7y + C) (10
The first term corresponds to replicator dynamics among
myopic individuals. The second term corresponds to the
flux of L-strategy forecasters into the myopic L-strategists
caused by the cost of forecasting: all L-strategists receive the
same immediate payoff from the game at any point in time,
but those who are forecasters pay a fixed cost C for the
forecasting ability. Herein lies the dilemma of forecasting.
The last term represents the flux of H-strategy forecasters
to L-strategy myopic individuals, driven both by the (im-
mediate) payoff advantage of playing strategy L (7, — mp)
and by the cost of forecasting (C). The timescale of strategy
switching is likely to be faster than the timescale of type
switching. The parameter €, controls the relative timescale
of type switching as compared to strategy switching.
Next, we consider L-strategy forecasting individuals.
The dynamics of this sub-population of types follow

2 =27, — fu) — 7,7, C

. 11
+62ZfLZZ(7I'L—7I'H—C) ( )
The first term reflects that forecasters switch between
strategies L and H based on their perception of the net
present value of each strategy, given forecasting and dis-
counting. The second term reflects that forecasters are never
favored over myopic types within strategy L or H, because
they pay a cost to forecast, but the rate of switching types
(myopic or forecasting) may be slower than the rate of
switching strategies (L or H) if €, < 1. The last term shows
that L-strategy forecasters transition to H-strategy myopic
individuals according to the immediate payoff difference
between the strategies and the cost of forecasting.
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We can construct the other equations, for 2, and 2} in a
similar manner, leading to a dynamical system governed by
four equations for the four types/strategies, plus one
equation for the linked environmental dynamic:

=27 (m — my) + €27,C

(12)
+ EzZz,lZ;I (7Z'L — Ty + C)

Zy = —zZnz) (m, — ) + GZZZ’[ZZ(_HL + 7y + C)

(13)
+ 252, C

2 =22 (i —fn) — 22/ C+ ez z(m —my —C) (14)

2y = — 242, (o = fu) + €27 (—m + 7y — C)

— 2,2 C

(15)

no=e (2, +2 —n) (16)

The equation for the environmental dynamic describes a
decaying environmental variable (Tilman et al., 2020),
which can correspond to, for example, pollution levels. In
this case, the high- and low-impact strategies generate
emissions of the resource. Tilman et al. (2020) show that
systems with either decaying or renewing intrinsic envi-
ronmental dynamics (corresponding, for example, a har-
vested population) generate qualitatively similar eco-
evolutionary game dynamics. The timescale of environ-
mental dynamics can differ from the timescales of strategy
and type dynamics. Here, €, is the relative timescale of
environmental dynamics, compared to strategy dynamics.
In total, there are three timescales in the model. Without loss
of generality, we consider relative timescales, with the
timescale of strategy dynamics as the reference point. Thus,
there are only two timescale parameters in the model. We
summarize all model parameters and definitions in Table 1.

This formulation of the eco-evolutionary game rests on
the assumption of mass-action kinetics, where there must be
an encounter between any pair of types in order for a
transition to occur between them. The likelihood of en-
counters is proportional to relative abundance, and so en-
counters among forecasters with different strategies will be
rare when forecasting types are rare overall. We focus on the
case where type switching is slow relative to strategy
switching (€, < 1). We also assume that transitions between
forecasting types and myopic types are based on the im-
mediate payoff difference, not based on forecasters’ ex-
pectations of net present payoffs. In Supplementary
Material Section 4, we present an individual-based
micro-level model that converges to the system we study
in the large population, weak selection limit.

An alternative formulation of competitive dynamics
would consider a hierarchical form of strategy and type
imitation, where strategy dynamics within each type are

unaffected by the overall abundance of the type (forecaster
or myopic) and follow standard two-strategy replicator
dynamics. In this formulation, switching between types is
based on the mean fitness difference between forecasting
and myopic types. When a myopic individual becomes a
forecaster (and vice versa), they choose a strategy (L or H)
in proportion to the current frequency of each strategy
within that type. We analyze this alternative formulation in
Supplementary Material Section 1, whereas we focus on the
mass-action model across all four strategies/types in the
main text.

Results

Myopic types alone

We focus our analysis on eco-evolutionary games in which a
population of myopic individuals generates cyclical dy-
namics. These parameter regimes have been identified by
prior work on eco-evolutionary games with myopic agents
(Tilman et al., 2020). Figure 3 panel (a) shows the temporal
dynamics in such a population of myopic individuals, which
approaches a limit cycle where the state of the environment
and the frequencies of high- and low-environmental impact
strategies oscillate. These persistent cycles can directly
reduce the long-term average fitness of the population
compared to the fitness that could be achieved under a stable
environment, while also increasing temporal payoff vari-
ability which would reduce the utility of risk-averse agents.
There also exist cases where the cyclic dynamics driven by
myopic types can increase average payoffs (see
Supplementary Material, Section 3.3); however, we focus
our analysis on regimes environmental stability increases
payoffs, because this regime reflects the environmental
dilemmas we seek to address.

Forecasting types alone

In contrast to a myopic population, a population con-
sisting entirely of forecasters generates a qualitatively
different outcome. Provided forecasters care sufficiently
about the future (i.e., have a sufficiently small discount
rate), then forecasting types can produce a stable outcome
for the same eco-evolutionary game that would exhibit
cyclical dynamics in a myopic population. Figure 3 panel
(b) illustrates a case where a population of forecasters
produces a stable mixed equilibrium, with a fixed pro-
portion of high- versus low-impact strategies and a fixed
state of the environment. At this equilibrium, the average
fitness attained by the population of forecasting types
exceeds the average fitness that would arise in a pop-
ulation of myopic types. In other words, a population of
pure forecasters can stabilize the eco-evolutionary system
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Table I. Definitions of model notation.

Variable

Definition

h

m _m f _f
z" 20,2,z

State of the environment, normalized to fall within [0,1]
Frequencies of high-impact (H) and low-impact (L) strategies among myopic (m) and forecasting (f) types

z Frequency of the low-impact strategy

zf Frequency of forecasting types

Ro, So» To, Po Game payoffs under a poor environmental state (n = 0)

Ry, Sy, T\, P, Game payoffs under a rich environmental state (n = )

I1(n) Environmentally dependent payoff matrix

T Payoff of low-impact strategy

TH Payoff of high-impact strategy

n(t) Environmental forecast, t time units into the future

i(0) Observed current rate of environmental change

(t) Discounting function, which defines relative weight of short- and long-term payoffs in decision-making of forecasting types

r Discount rate, which must be positive.

fu fr Forecasting types expected payoff for following strategy L or H

€ Timescale of environmental dynamics relative to strategy dynamics

€ Timescale of type-switching dynamics relative to strategy dynamics

c Cognitive cost of being a forecasting type

Ai Myopic dynamics B . Forecasting dynamics c foexistence of myopic and forecasting types

Environmental state Environmental state Environmental state
L-strategy fraction, mypoic L-strategy fraction, forecaster L-strategy fraction, mypoic
H-strategy fraction, mypoic H-strategy fraction, forecaster H-strategy fraction, mypoic

L-strateqgy fraction, forecaster
H-strategy fraction, forecaster

T T T T 0 T T T T 0 T T T r
10 20 30 40 50 0 10 20 30 40 50 5000 5010 5020 5030 5040 5050

Time Time Time

Figure 3. (a) Eco-evolutionary game dynamics in a population of myopic types, who can each assume either the high-impact strategy (h)
or the low-impact strategy (L). The feedback between strategic choices and the environment creates persistent cycles, in which the L
strategy is advantageous when the environmental state is high and the H strategy is advantageous when environmental state is low. (b) If
all individuals are forecasting types who integrate environmental forecasts into their strategy updating, then the state of the environment
and the strategic frequencies reach a stable equilibrium. (c) Forecasting types can co-exist with myopic types. After a lengthy transient
(see Figure 4), both types co-exist in a stable limit cycle with reduced magnitudes of environmental and strategic variation compared to a
population of myopic types alone. (¢;= .3, e;=.1,r=.15,C=5/1000,Ro= 5,R|=0,5=2,5/=0,To=0,T;= 2,Po= 0,P,= 4).

and increase average public welfare, compared to myopic  Figure 3 panel (c) shows the long-run dynamics of forecasting
decision-makers. types and myopic types who can each assume either a high-

Coexistence of myopic and forecasting types

impact strategy or a low-impact strategy. Since forecasting is
costly, it is not possible for forecasters to displace the myopic
agents altogether—if they did, the environment would be

When forecasting types and myopic compete and interact, the  completely stabilized, in which case the myopic agents make
coupled system does not approach equilibrium as quickly. the same strategic choice as forecasters while avoiding the cost
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of forecasting. As a result, forecasting types and myopic types
both persist, and so do environmental oscillations; but the
amplitude of oscillations is diminished compared to what
occurs in a population of myopic agents alone.

These results show that both cognitive types can coexist
and that the presence of forecasting types, even when they
comprise only a small fraction of the population, can have a
significant impact on the dynamics of the system and the
fitness of both cognitive types. Despite the persistence of
some environmental oscillations when forecasting and
myopic types coexist, the resulting population mean fitness
over one environmental cycle can be greater than when only
myopic types are present, and it can even transiently exceed
the fitness when only forecasting types are present.

Invasion of forecasting types

We have shown that forecasters can coexist with myopic
types and have a large effect on strategic and environmental
dynamics. But the question remains: can the forecasting
type invade a population initially composed of myopic types
and reach a substantial frequency? To study the invasion of
forecasting, we initialize simulations with only myopic
individuals and let this system relax to its steady-state,
which features a stable limit cycle with large oscillations.
We then perturb the system by introducing forecasters at a
low frequency and simulate that invasion process.

For any particular set of parameters, we find that the
likelihood of a successful invasion is greater when the initial
frequency of forecasting types is greater. The success of
invasion also depends on the strategy composition among
the invading forecasters as well as the exact timing of the
introduction of forecasters within the environmental cycle.

Nonetheless, given sufficiently slow switching between
forecaster and myopic types (€, < 1), our simulations show
that a successful invasion results in system-level behavior that
always approaches the same limit cycle, regardless of invasion
timing and strategy mix. The long-run dynamics after fore-
casters successfully invade and coexist with myopic types are
relatively simple: both types persist in a stable limit cycle with
arelatively small amplitude of oscillation (Figure 3(c)). But the
invasion process itself is quite intricate.

The dynamics of a successful invasion occur at a much
slower timescale than the environmental oscillations
(Figure 4(a)), so that the invasion process takes many en-
vironmental cycles before the forecasters reach an appre-
ciable relative abundance. Figure 4(b) shows the dynamics
of fitness for forecasting and myopic types (averaged over
one environmental cycle). The dashed lines represent the
long-run average fitness attained by a population composed
entirely of myopic individuals or by a population of pure
forecasters. For these parameters, when only forecasting
types are present, the environment equilibrates to a fixed-
point and this leads to a greater long-run fitness. When only

myopic types are present, long-run average fitness is lower,
and the persistent environmental oscillations are substantial.
Forecasters can invade under highly variable environments
because forecasting allows them to foresee and predict the
best time to switch strategies (L or H). This mitigates en-
vironmental oscillations and leads to a decrease in the
magnitude of environmental variability. The reduction in
environmental variability that forecasters provide acts as a
rising tide that lifts all boats: when the environment is more
stable, both forecasters and myopic individuals achieve
payoffs as high as those that are attained when only fore-
casters are present. Since forecasting is individually costly
and its environmental benefits are shared by all, forecasting
is a public good. Despite serving as a public good, we see
that forecasting can nonetheless emerge via evolution and
increase the fitness of both myopic and forecasting indi-
viduals, even when forecasters comprise only a small
portion of the population over the long term (~ 15% in the
example of Figure 5).

We have focused on the region of the parameter space
where cyclic dynamics under myopic types are well un-
derstood analytically. In Supplementary Material Section 3.
4, we explore a different region of the parameter space
where cycles can also arise under limited circumstances
(Tilman et al., 2020), and we find qualitatively distinct
invasion outcomes, including cases where forecasting types
fail to invade a resident population of myopic types.

Successful and unsuccessful invasions

Whether or not forecasters will successfully invade and
reach a stable frequency depends on initial conditions, in
addition to game payoffs. In the simulations described
above, we assume that when forecasters arise, they have the
same mix of strategies as the resident myopic population.
Nonetheless, the timing of the invasion within the envi-
ronmental cycle and the initial frequency of invading
forecasters determine whether the invasion will ultimately
be successful and lead to coexistence.

Figure 5(a) shows invasion points that are evenly spaced in
time, within a phase plane plot. The outer black orbit represents
the long-run dynamics of a population of purely myopic in-
dividuals, with dynamics proceeding in a counter-clockwise
direction. Whether or not a small frequency of forecasters can
invade depends upon at what time point, within this periodic
cycle, the forecasters are introduced: successful timings are
shown as red dots and unsuccessful timings as brown dots. Even
a successful invasion requires many environmental cycles to
establish a stable frequency of forecasters (Figure 5(b)).

The inner black orbit in Figure 5(a) shows the long-run
population-level dynamic after a successful invasion of
forecasters. The magnitude of environmental and strategic
variability is decreased substantially after invasion, which is
reflected by a much smaller orbit in phase space.
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Successful invasion dynamics

K N

Environmental state
L-strategy fraction, mypoic
H-strategy fraction, mypoic
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Figure 4. (a) Environmental forecasting is assumed to be costly, but forecasting types can nonetheless invade a resident population of
myopic types and eventually reach coexistence, while reducing the amplitude of oscillations. As this example shows, a successful
invasion of forecasters takes orders of magnitude longer than a single environmental cycle. (b) Dashed lines indicate the long-run fitness
that would be attained by a population of purely myopic or purely forecasting types. Solid lines indicate the average fitness of forecasting
and myopic sub-populations during the invasion process with both types present. The amplitude of environmental variability is reduced
once forecasters reach appreciable frequency, which increases the fitness of forecasting and myopic types alike, eventually producing
fitness as high as when only forecasters are present. Forecasting is thus a public good: it is individually costly and beneficial for all.
(e1=.3,6,=.1,r=.15,C=5/1000,Ry= 5,R;= 0,So=2,5,= 0, To= 0, T|= 2,Po= 0,P,= 4) The initial frequency of forecasting

types is 1/70.

Whether or not forecasters can successfully invade also
depends on how much they value the present versus the
future. Our simulations suggest that when forecasters place
greater value on expected future payoffs (that is, a small
discount rate r), this tends to increase their probability of
successful invasion and establishment in a myopic resident
population (Supplementary Material, Figure 3). Whereas if
forecasters primarily value the present (large r), then they do
not differ much in their strategic behavior compared to the
myopic types, except they must pay a cost and so they
cannot invade (Supplementary Material, Figure 3). And so,
placing great value on the future always benefits forecasters,
even if they end up putting more decision-making weight on
predictions for the far-future that may prove false. These
results make intuitive sense considering that forecasters
types are continually updating their forecasts based on the
current trajectory of environmental change.

Discussion

Strategic interactions often play out in changing environ-
ments. But if the environment is always changing, will
individuals who account for environmental dynamics be
favored when making strategic decisions? We find that in
many circumstances environmental forecasters, who pay a
cost for their forecasting ability, can indeed invade other-
wise myopic populations engaged in eco-evolutionary
games. Although a population of pure forecasters can
produce a completely stable environment, forecasters
cannot, in these cases, entirely over-take a population of
myopic agents. Nonetheless, even when forecasters remain
at low abundance, they have a striking effect on the dy-
namics of the eco-evolutionary game, greatly mitigating the
amplitude of environmental variation and often increasing
fitness for all.
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Figure 5. While forecasters can invade and coexist with myopic types, a successful invasion is not assured and depends upon the timing
of introduction. () In a purely myopic population, eco-evolutionary game dynamics converge to the outer black orbit and proceed in a
counter-clockwise direction. We study the potential invasion of forecasting by introducing a small sub-population of forecasters at some
point along this orbit. We assume that the forecasting sub-population has the same mix of strategies as the resident myopic population at
the time of introduction. Points on the outer orbit indicate simulated introduction points that are evenly spaced in time. The color of
the point illustrates whether or not the invasion of forecasters is successful from this point. The inner black orbit shows the long-run
dynamics of the system for successful invasions, which are independent of the timing of the invasion. The purple and teal orbits illustrate
the corresponding long-run dynamics among forecasting and myopic sub-populations. (b) Invasions progress very slowly, so that many
environmental cycles pass before they approach the long-run dynamics illustrated in panel (a). The frequency of forecasters oscillates
rapidly throughout this slow invasion process, and it may take a long time before it is clear whether the invasion will succeed or fail.

(e1=3/10,6,=1/10,r=5/100,C=5/1000,T) — Rj=2,P; — S$;=4,S9 — Po= |,Ryg — To= 3) The initial frequency of forecasting

types is 1/550.

Whereas classical bioeconomic approaches to decision-
making assume that agents have complete information
about the dynamics of the environment (Clark, 2010),
evolutionary approaches often assume the opposite: indi-
viduals update their strategy based solely on present con-
ditions (Safarzynska and van Den Bergh, 2010). Here, we
analyze a middle ground and ask whether agents who act
slightly more like those studied in bioeconomic approaches
can emerge in a strictly myopic population. That this in-
vasion can be successful means that evolution by natural
selection, or myopic imitation, can promote the emergence
of more sophisticated cognition. A surprising and important
caveat is that forecasters tend not to replace myopic indi-
viduals; instead, both types coexist.

The invasion of forecasters in an eco-evolutionary game
can act as a rising tide that lifts all boats, increasing everyone’s
fitness. In our simulations, forecasting behaves like a public
good—providing benefits to forecasters and myopic types
alike—and, thus, the invasion of forecasters can be thought of
as a meta social dilemma, where both strategies (L or H) and
decision-making types (myopic or forecasting) exhibit features
of a social dilemma. When a myopic population experiences
cyclic dynamics, the long-run average payoffs can be even
lower than what would occur under the tragedy of the

commons. This phenomenon has been referred to as an os-
cillating tragedy of the commons (Weitz et al., 2016), but given
the damaging consequences for individuals’ average fitness
and the risk that arises due to payoff variability, the “catas-
trophe of the commons” may be more apt. The invasion of
forecasters resolves this catastrophe by ushering in greater
environmental stability and increased fitness for forecasting
and myopic types alike.

Rationality is a bedrock assumption that underlies much
of microeconomic theory. However, the extent to which
economic rationality applies to human decision-makers has
long been questioned. Bounded rationality is an alternative
model that acknowledges the limits of human cognition and
the role of heuristics in decision-making (Gigerenzer and
Selten, 2002; Simon, 1955), and it can arise as a result of
evolutionary dynamics in stochastic settings (Brennan and
Lo, 2012; Lo and Zhang, 2021). Similarly, prospect theory
accounts for decision-making heuristics that violate clas-
sical notions of rationality and alter behavior (Tversky and
Kahneman, 1974). These advances were central to the
formation of behavioral economics, which explores how
economic, social, and cultural factors affect decision-
making. More recent work has considered the potential
for multiple modes of decision-making to coexist in a
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population or within a single individual (Kahneman, 2011;
Rand et al., 2017). Models starting from an evolutionary
perspective have integrated foresight, where agents consider
how changes in their behavior may alter the choices of
others in the future (Perry et al., 2018; Perry and Gavrilets,
2020). However, little work has explicitly analyzed the
consequences of feedback among modes of decision-
making, dynamics of behavior, and the environmental
setting, with a few notable exceptions (Adamson and Hilker,
2020; Austrup, 2020).

The focus of our paper has been on human-
environmental systems, yet our modeling approach may
possibly be applied to non-human organisms that live in
variable environments. Flowering plants are most suc-
cessful when they time their blossoming to align with fa-
vorable environmental conditions, such as temperature,
pollinator abundance, and density of competitors. Ac-
counting for environmental cues, including environmental
change, may help plants achieve optimal flowering timing
(Vermeulen, 2015). Migratory species face a similar di-
lemma about when to leave one habitat and head for another
(Johansson and Jonzén, 2012); and some form of envi-
ronmental forecasting may be advantageous in this context.
Female Dusky Warblers modify their nest site choice in
response to changes in the density of predators (Forstmeier
and Weiss, 2004). This could generate feedback between the
birds’ nesting strategies and the predation environment that
the birds face. Likewise, Tengmalm’s owls in Western
Finland seem to adjust their clutch sizes in accordance to the
3-year population cycle of voles, their prey, in the area
(Korpimaki and Hakkarainen, 1991). In each of these
settings, our model suggests that individuals with the ability
to forecast environmental change, even if this capability
comes at a cost, may be favored by selection.

While we have studied the evolution of a mode of
decision-making that forms beliefs about future environ-
mental states, a closely related phenomenon called theory of
mind falls outside the scope of our analysis. Theory of mind
describes the ability to conceptualize the way in which
others make decisions (Apperly, 2012). Future work could
study forecasting of others’ strategy dynamics, in addition to
or in lieu of environmental forecasting. We expect that
strategic forecasting may have qualitatively distinct
population-level impacts than environmental forecasting,
and it may be favored in different settings.

Throughout our analysis we have assumed the dynamics
of the environment and decision-making are deterministic
and the cost of forecasting fixed. However, a substantial
body of research on what drives bounded rationality has
drawn on the finance literature and assumes stochastic
dynamics of the environment and payoffs, where the effi-
cacy of forecasting depends on the prevalence of forecasting
types (Lo, 2017). Stochastic payoffs that are correlated can
give rise to bounded rationality (Brennan and Lo, 2012).

This can occur even in the absence of cognitive costs, when
there is a risk of over-fitting predictions to noisy outcomes
(Lo and Zhang, 2021). Similar models have also shown
coexistence of multiple types (Lo and Zhang, 2022) and the
breakdown of collective intelligence. This breakdown of
collective intelligence is exemplified in interactions among
rational traders and noise traders, who respond to hype
rather than fundamentals. Such interactions can favor noise
traders despite their seemingly misguided behavior (De
Long et al., 1990a) and in some settings can generate de-
stabilizing feedback effects that resemble price bubbles (De
Long et al., 1990b). Future work that integrates stochastic
environmental dynamics and dynamic costs of forecasting
could help connect this study with theories of bounded
rationality in finance and economics.

We have analyzed a well-mixed model where all indi-
viduals of all types and strategies interact. But in some
contexts, a hierarchical model might be more realistic. In
Supplementary Material Section 1, we describe a hierar-
chical model where forecasting types and myopic types
form two distinct sub-populations that compete with each
other at the population level. The hierarchical model pro-
duces dynamics of greater complexity than the well-mixed
model presented in the main text.

Rather than predicting a steady advance in the sophis-
tication of cognition, our analysis suggests that a more likely
outcome is the coexistence of multiple modes of decision-
making. This finding aligns with results from psychology
that indicate most people have automatic modes of decision-
making as well as more deliberative, and mentally taxing,
modes (Kahneman, 2011; Rand et al., 2017). Our finding of
coexistence between forecasting and myopic types provides
theoretical support for behavioral-economic hypotheses
about how decisions are actually made. Our results help
explain why automatic decision-making persists, and they
describe a context in which higher-level cognition can be
favored evolutionarily while also bringing public benefits to
all cognitive types.
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