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A B S T R A C T

Biopolymers and biopolymer networks that form via autoxidation, like in drying of oil paint or fat degradation
in food components, contain a large variety of monomeric building blocks. While the monomer variety
complicates the modeling itself, obtaining experimental validation of infinite polymer networks is inherently
difficult as well. A new model is developed, where an automated reaction network generation (ARNG)
procedure is used to automatically generate the monomer components, structures and masses, and their
reactions. This methodology is combined with random graph (RG) modeling to predict global polymer
properties: distributions of numbers of monomer units and molar masses, gel point and gel fraction. This
computational framework is applied to two model systems for linseed oil paint binder: the polymerization of
ethyl linoleate (EL) and methyl linoleate (ML). A novel method was constructed to deal with the variability of
monomer masses that complicates inferring molar mass from monomer number distribution. By modeling the
polymer as a weighted random graph where the nodes contain information about the monomer masses in the
system, the total weight of the finite connected components is computed. The predicted mass spectrum of finite
connected components is used for validation with experimental data. A size exclusion chromatography (SEC)
trace of ML is employed, which after calibration using the proposed framework, proves consistency between
model and SEC data. The model provides a practical approach to both characterize complex biopolymers as
polymers in terms of molar mass distribution and gel point, while preserving the information down to the
level of monomeric units.
. Introduction

The varying sources of complexity in polymer modeling make the
roperty prediction of non-linear polymers through their microstruc-
ure—molecular weight distribution, branching, tacticity, etc.—a chal-
enging problem. In the present paper, the complexity of the modeling
roblem arises from both the consideration of a polymer network
nd the extensive size of the reaction network of a biopolymer that
esults in thousands of different monomeric building blocks [1]. Poly-
er networks have been the subject of significant modeling efforts

ince the days of Gordon [2] and Dušek [3,4], but many problems
re left unresolved. Yet, in spite of the existence of various modeling
ethods [5–9], only few made an attempt of mathematically spanning

he full development of polymer networks; from the early stages of
ore tractable finite molecules, through the gel point, ending up with

he formation of one ‘giant component’ or a molecule of infinite size
10,11]. While properties of finite polymers are often experimentally
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accessible, obtaining similar validation data for properties of polymer
networks is much harder.

Additional problems arise due to the nature of biopolymers like oils
and proteins. Whereas industrial copolymers generally consist of a few
repeating monomers, biopolymers contain many more building blocks.
Especially autoxidative polymerization processes are characterized by
large and complex reaction schemes [12–15] producing many unique
‘monomeric’ units with different molecular formulae. This divergence
from Florys ‘repeated units’ idea [5] makes experimental validation
more complicated with differing molar masses and molecular struc-
tures. Hence, the prediction of molecular weight distributions or mass
spectra from models and their comparison with experimental data is
extremely problematic. In the present paper, this problem is addressed.

Ultimately, our models should deal with both monomer variety and
infinite polymer networks, and clarify the microstructure of biopoly-
mers in terms of both chemical details, presence and distribution of
functional groups, and the characterization of the polymer. The latter
vailable online 8 August 2023
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Nomenclature

ARNG Automated reaction network generation
EL Ethyl linoleate
ESI-MS Electrospray ionization-mass spectrometry
LO Linseed oil
ML Methyl linoleate
ODE Ordinary differential equation
RG Random graph
SEC Size exclusion chromatography
𝑐𝐤,𝐽 Concentration monomer species with degree vector

𝐤 and molar mass 𝛼𝐽
𝐞𝐢 Standard basis vector for half-edge type 𝑖
𝐹𝑚𝑎𝑥 Functionality
𝐤 Degree vector
𝑘𝑥 Degree half-edge type 𝑥
𝑚 Connected component weight
𝑚𝑚𝑜𝑛 Average monomer mass
𝑀 Number of unique molar masses
𝑁 Number of half-edge types
𝑁𝑥 Number of crosslinks
𝑂𝑎𝑑𝑑 Ether crosslinks produced via addition reactions
𝑂𝑡𝑒𝑟𝑚 Ether crosslinks produced via termination recombi-

nation reactions
𝑂𝑂𝑎𝑑𝑑 Peroxyl crosslinks produced via addition reactions
𝑂𝑂𝑡𝑒𝑟𝑚 Peroxyl crosslinks produced via termination recom-

bination reactions
𝐏 Permutation matrix
𝑠 Connected component size
𝑢(𝐤) Probability degree distribution
𝑢𝐽 (𝐤) Mass specific probability degree distribution
𝑢(𝐤, 𝐽 ) Two-dimensional probability degree/mass distribu-

tion
𝑢𝑖(𝐤, 𝐽 ) Excess two-dimensional probability degree distribu-

tion of edge-type 𝑖
𝑈𝐽 (𝐳) Weight specific generating function of 𝑢(𝐤, 𝐽 )
𝑈𝑖,𝐽 (𝐳) Weight specific generating function of 𝑢𝑖(𝐤, 𝐽 )
𝑤(𝑚) Weight distribution of finite connected components
𝑤𝑠𝑢(𝑚) Weight distribution of finite connected components

without size influences
𝑤(𝑠, 𝑚) Size-weight distribution on finite connected compo-

nents
𝑊 (𝑥, 𝑦) Generating function of size-weight distribution

𝑤(𝑠, 𝑚)
𝑊𝑖(𝑥, 𝑦) Generating function of the excess probability degree

distribution of edge-type 𝑖
𝜶 Mass vector
E[𝑘𝑖] First partial moment of degree distribution 𝑢(𝐤, 𝐽 )
𝝈𝑖,𝑥 Pairing rule for directed, in-coming half-edge for

crosslink type 𝑥
𝝈𝑜,𝑥 Pairing rule for directed, out-going half-edge for

crosslink type 𝑥
𝝈𝑢,𝑥 Pairing rule for undirected half-edge for crosslink

type 𝑥

pertains to not only typical microstructural properties such as molar
mass distribution and branching topology but also to network structural
aspects like cycles, dangling ends and glass transition temperature 𝑇𝑔 .
An important application of such a model is paint films. Recent research
2

reveals that old oil paintings suffer from degradation due to chemical
reactions between metals present in pigment, mainly zinc and lead, and
free fatty acids originating from the binding medium, or linseed oil
(LO) [16]. The autoxidation process produces reactive carboxylic acid
groups that turn out to be crucial in the degradation mechanism. Hence,
the ability to predict the generation, consumption and distribution of
these acid groups over long time scales in relation to network material
properties would be helpful from the perspective of art preservation.

In the present paper, we model polymer networks as random graphs
(RG), as initially introduced by Kryven [17] and later on applied to
various systems [1,11,18–21]. By defining the degree of a monomer
as the number of covalently connected monomers within the poly-
mer network, the RG approach generates networks of interconnected
monomers that assemble according to the ‘degree distribution’. Ef-
fectively, we assume that the connectivity of all monomeric species
captures the essential chemical properties of the system to predict
accurate material properties of the polymer.

The biopolymers we consider here are ethyl linoleate (EL) and
methyl linoleate (ML), which are mono-glycerides bonded via ethyl-
and methyl-ester groups to linoleic acid, a reactive fatty acid present
in LO and shown in Fig. 2. In both cases, light and oxygen induce
an autoxidative polymerization process by promoting the formation of
free-radicals in the system that cause a cascade of reactions. Among
the cascade are hydrogen abstraction of the reactive bis-allylic H-
atoms, oxidation reactions, and finally crosslink formation by radical–
radical recombination and addition to double bonds. There are various
types of crosslinks that form during the polymerization of EL and ML,
and some of them are directional in nature because of the reactions
involved. With crosslink formation oligomers and finally polymer net-
works emerge [12]. The polymerization in both EL and ML solely
involves the unsaturations of linoleic acid and the respective ethyl
and methyl group do not influence the reactivity. Hence the involved
chemistry is identical.

In previous work, Schamboeck and Kryven [11] were able to gen-
erate a ‘spectrum’ of polymer sizes for acrylates, counting the number
of monomeric units in oligomers and polymers using the RG approach.
Here, we expand the pre-existing RG approach to include information
about the molecular mass of the monomers and present a method to
compute the molecular weight distribution and mass spectrum at a
given time, which opens the possibility to compare with measured data
of EL and ML. To achieve this, the random graph is first transformed
into a weighted graph where the nodes are weighted with the monomer
mass. Second, two-dimensional auxiliary distributions supplement the
equations used for polymer size distribution.

In addition to the expansion of the RG-methodology, this study
presents also a novel modeling framework that combines automated
reaction network generation (ARNG) with RG-modeling and applies it
to biopolymerization. The article discusses the chemical system and
main assumptions, along with an explanation of the weighted RG. In
the results section, the effect of graph edge directionality and mo-
lar mass weighting assumptions are shown, and chemical interpreta-
tions of resulting patterns in the weight distribution are discussed.
To validate the methodology, we compare the dimer concentrations
produced with the ARNG-model and with the RG-model. The ARNG-
model can predict the concentration of dimer species, but higher order
oligomer concentration prediction requires the extension of the RG-
model. Therefore, the RG-model is validated via comparison with the
ARNG-model. Additionally, the article compares an experimental size
exclusion chromatography-trace for ML with model predictions using
model-supported calibration.

2. Modeling approach

Autoxidative polymerization involves thousands of components and
millions reactions, yielding numerous unique monomer units. Con-
sequently, the assembly of monomer units into a polymer structure
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requires a new, dedicated modeling approach: a combination of auto-
mated reaction network generation (ARNG) and random graph (RG)
modeling. The ARNG-model generates a full reaction network with a
wide variety of monomer units from a starting conformation and the
reactions that apply during the autoxidation. We have used a version
of the ARNG-model, that was first published in [1,20,21] and later
updated with data from [22]. The pre-existing ARNG-model is extended
with RG-modeling to allow the prediction of the polymer material
properties. RG-modeling requires input pertaining to the connectivity
of all monomer species: concentrations through time of the unique
monomeric species that form the output of the ARNG-model. Since we
desire to compute the biopolymers’ weight distribution, we need to
include the variety of monomer units’ molar masses that are produced
by the autoxidation. This section discusses both models in depth.

2.1. Automated reaction network generating model

Prior to the RG-modeling, we need to obtain the concentration
profiles of all monomeric species that are involved in the process of
polymerization. For that we use the automated reaction network gener-
ation (ARNG) modeling methodology [23,24] that has been adapted for
the case of complex polymerization processes [1,20–22]. The method-
ology is briefly and schematically represented in Fig. 1. In the ARNG,
a monomer is represented as a molecular graph, and a reaction is
represented as a transformation applied to reactive sites of a molecular
graph called reactive patterns. The complete list of 49 reactive pattern
structures is displayed in Fig. 1 of the SI. This modeling method uncov-
ers reaction networks that are usually intractable by hand and involve
thousands of molecular species and millions of reactions. Considering
that by definition polymers are infinite in size, this methodology does
not uncover explicit polymeric structures but rather the structures of
their building blocks: monomeric species with their adjacent crosslinks.
In this way, the methodology uncovers a finite-sized network of reac-
tions that happen solely between the monomeric units that eventually
constitute to infinite in size polymers. The ARNG approach adapted
for polymers produces the concentration profiles of monomeric species
with their adjacent crosslinks, or half-edges, and aligns perfectly with
the proposed RG-modeling. Synergy between the ARNG- and the RG-
modeling methodologies has been demonstrated in [1,20], and in this
paper we show how including the bi-directional nature of crosslinks
helps to strengthen the results.

In this paper we use EL and ML, see the structural formulas in
Fig. 2, as two model systems of linseed oil. Since both molecules only
differ by their head group and have exactly the same reactive sites,
they share a library of reaction rules that capture their autoxidation
pathways. While most of the pathways have been explored in previous
papers [12,25–28], here we expand the library with the asymmetric
character of the present addition reactions of both alkoxy radical and
peroxy radical.

Starting with the initial structures of EL and ML monomers, the
ARNG subsequently applies reaction rules to their reactive sites and
generates a plethora of monomeric units that constitute resulting poly-
mers. The result of this step is a reaction network, which is a graph
with two types of nodes: monomeric species and reactions. By assigning
the weights to these nodes: initial concentration to monomers and rate
coefficients to reactions, the reaction network is then automatically
translated into a system of ordinary differential equations (ODEs).
The solution of the ODEs provides the concentration profiles of all
monomeric species present in a reaction network. These concentra-
tions are then lumped according to different types of crosslinks and
functional groups. Lumped concentrations provide valuable informa-
tion about the state of the system at every point of time. The model
generates monomeric units as unconnected components that require
assembly to describe polymer species.

Briefly summarizing some chemical features, both EL and ML poly-
3

merize around the unsaturations in the fatty acid tails [21]. Oxygen and t
light combined with trace amounts of an initiator induce accelerated
radical formation in the system that in turn initiate the polymerization
by H-abstraction of the bis-allylic H-atom [25,29,30]. In practice, in oil-
based paints, a dryer catalyzing the autoxidation reactions is often used
to accelerate drying and enhance the initiation. In the present model
we choose to dispense with a drying agent to avoid more complexity
in the already complex chemistry of the autoxidation process. After
initiation, the process proceeds by several elementary reactions that
include oxidation, hydroperoxide decomposition and addition reactions
[1,26,27,31]. Finally, the polymerization finishes with two types of ter-
mination reactions that remove radicals from the system by either the
production of oxygen (disproportionation, or Russell termination) [28]
or the creation of a crosslink (recombination) [32]. In experimental
setups, it is common to add a cobalt drier to the unreacted system to
accelerate the polymerization [1].

Within the polymerization of EL and ML, crosslinks form by ter-
mination as stated above, and by addition to monomers with conju-
gated double bonds. The crosslinks produced via addition reactions
are asymmetric crosslinks, as opposed to the symmetric crosslinks that
termination produces. The number of unsaturations and their position
in the fatty acid tail determines the maximum number of crosslinks or
degree a monomer forms and is defined as the functionality 𝐹𝑚𝑎𝑥 [1].
For polymerizing ML and EL, 𝐹𝑚𝑎𝑥 = 3.

The ARNG-model developed in our group [1] has been updated with
inetic rate parameters matching an EL polymerization experiment at
0 ◦C [22]. We modeled the system for 1000 h of drying, with a start-
ng concentration EL of 3.71 mol/L. Although during polymerization
he rates decrease as a result of solidification, we assume the rate
arameters to be constant [1]. This assumption significantly reduces
he complexity of the problem and allows to run the calculations in rea-
onable amount of time. The complexity of the algorithm is discussed
n the results section. Further information about initial conditions and
imulation details are discussed in Orlova et al. [21] and Harmon
22]. The reactions with their corresponding rate coefficients have been
isted in the SI in Table 1.

To reduce computational effort in ARNG, it employs simplified
tructural representations of the starting monomers EL and ML, see Fig.
in SI, where the unreactive chain on one side of the reactive part and

he unreactive ester on the other are not included in the ARNG graph
epresentation. The full structural formulas of EL and ML are displayed
n Fig. 2. They contain the bis-allylic H as the reactive part, which in
he ARNG representation is reactive pattern number 7 in Fig. 1 of the
I. When computing the mass spectrum from ARNG, the masses of these
wo different tails have to be accounted for. This situation is explained
n the SI in Fig. 2.

To further clarify the role of the reactive patterns in the ARNG,
hile discussing ARNG results we will refer to the relevant patterns that
re part of the many intermediate and final species for the remainder
f this paper.

.2. Random graph model with molar mass weighted nodes

In the RG approach, a polymer is represented as a graph, where
odes are monomers and edges are crosslinks between monomers. The
egree distribution of a polymer network describes the connectivity
atterns between monomers [17]. Although the degree distribution
nly describes local interactions, the assembly of the polymer as a
G allows for the computation of global properties of the polymer
etwork. A network may contain multiple types of edges, so an accurate
escription of the connectivity of the nodes requires a degree vector
ather than a singular degree. Degree vector 𝐤 of a monomer is defined
s the number of unique crosslinks by which it is bound to others.
his makes 𝐤 a vector with 𝐤 = (𝑘1,… , 𝑘𝑁 ) and 𝑁 the number of
nique half-edge types. Consequently, we define 𝑢(𝐤) as the probability
istribution depending on degree vector 𝐤. Fig. 3 shows on the LHS the

ranslation of a dimer species into a connected component in the RG
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Fig. 1. A schematic representation of the automated reaction network generation (ARNG) methodology. A: The transformation of the chemical structure of Ethyl Linoleate (i),
here the reactive site is highlighted (purple), into the molecular graph (ii) required for the ARNG. B: The key steps in ARNG [1]. All reactive patterns are listed in Fig. 1 of SI.
Fig. 2. The molecular structure of methyl linoleate and ethyl linoleate. The only reactive part of these monomers is the bis-allylic H, which is part of reactive pattern number 7,
see Fig. 1 in the SI.
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and an example node in a system with 𝑁 = 6 dimensions and degree
vector 𝐤 = [1, 0, 0, 1, 0, 1] on the RHS. The probability 𝑢(1, 0, 0, 1, 0, 1)
represents the probability of finding a node with 1 half-edge of type 1,
1 half-edge of type 4, etc. A graph can have two edge-types: directed
edges and undirected edges. The choice of considering a connection
between two nodes generally depends on the relation between the
depicted nodes.

In the case of polymerizing EL and ML, the ARNG-model [1] in-
cludes two types of crosslinking reactions, radical–radical termination
and addition reactions, that produce three types of chemical crosslinks:
peroxyl, ether and alkyl, see Table 1 in the SI. Alkyl crosslinking
happens to a negligible amount [1] and cross-termination between
alkoxy and peroxy radical containing species is chemically improbable.

The nature of the crosslink reactions dictates which type of edge
is needed for an accurate description. The crosslinks formed by two
equally reactive reactants, termination reactions, are symmetric and can
be represented by undirected edges, or two identical undirected half-
edges. This is in contrast with the crosslinks produced via addition
reactions, which are asymmetric and need to be depicted as directed
edges. Since the crosslink originates from the radical containing species,
the out-going half-edge is placed on the radical containing species
and the in-coming half-edge on the conjugated double bond contain-
ing species, similarly to acrylate polymerization [11]. In the case of
polymerizing EL/ML, both termination and addition produce ether and
peroxyl crosslinks, so for both crosslink types we require one undirected
and two directed half-edges, resulting in 𝑁 = 6 half-edge types. With
(𝐤) computed for every 𝑡, a graph constructed from 𝑢(𝐤, 𝑡) allows to
ompute the properties of macromolecules at time 𝑡, for example the
ize distribution of polymers [11,18]. However, a direct comparison
4

etween size distributions of biopolymers and experimental data is
ifficult [33].

To enable the computation of a molecular mass distribution with
he RG-model, the graph needs to contain information pertaining molar
ass distribution of the monomers. Therefore, we combine both the
egree vector and the molar mass of a monomer into a two-dimensional
egree distribution that produces a weighted graph after assembly. In
ontrast to a graph that is solely dependent on the connectivity of the
odes, in a weighted graph the nodes are weighted according to the
ass of the represented monomers. With mass vector 𝜶 = (𝛼1,… , 𝛼𝑀 ),
here 𝑀 denotes the number of unique molar masses present in the

ystem, the two-dimensional degree distribution 𝑢(𝐤, 𝐽 ) is given by:

(𝐤, 𝐽 ) =
𝑐𝐤,𝐽

∑

𝐤
∑

𝐽 𝑐𝐤,𝐽
, (1)

where 𝑐𝐤,𝐽 denotes the concentration of monomer species with
crosslinks matching degree vector 𝐤 and molar mass 𝛼𝐽 . Similarly,
𝑢(𝐤, 𝐽 ) provides the probability of a node in the graph with degree
vector 𝐤 and weighted with mass 𝛼𝐽 . Unlike the size of a monomer
building block, the mass typically assumes non-integer values and is
distributed in a non-equidistant manner, especially in biopolymers.
Although it is possible to include the molar masses at true chemical
resolution in mass vector 𝜶, it would result in a considerably long
vector. Hence, we apply a coarse-graining technique by assuming
integer molar mass values in an effort to reduce the computational cost.

A graph that accurately represents the polymer network is assem-
bled by matching half edges. Undirected peroxyl half-edges may only
connect to other undirected peroxyl half-edges and in-coming ether

half-edges only to out-going ether half-edges. We follow the same
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Fig. 3. A: The transformation from a dimer species connected via a peroxyl crosslink as result of an addition reaction. Each monomer is represented as a node, and the asymmetric
eroxyl crosslink as a directed edge built from an peroxyl-out half-edge and a peroxyl-in half-edge. On the right hand side (B), a possible node in a system with 𝑁 = 6, where

denotes the number of unique half-edge types and degree vector 𝐤 describes the connectivity of said node. Probability 𝑢(1, 0, 0, 1, 0, 1) gives the probability of finding nodes
ith connectivity 𝐤, i.e. 1 peroxyl in-edge, 1 ether out-edge, and 1 undirected ether half-edges. The six types of crosslinks correspond to the chemical structures of the ‘patterns’
isplayed in Fig. 1 in the SI: in order of appearance: reactive pattern numbers 43, 45, 14, 44, 46, 15.
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echnique to pair edges of identical colors to each other as in colored
raphs [19,34] and define permutation matrix 𝐏 as:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝝈𝑖,𝑂𝑂𝑎𝑑𝑑
𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝝈𝑜,𝑂𝑂𝑎𝑑𝑑
𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝝈𝑢,𝑂𝑂𝑡𝑒𝑟𝑚.
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝝈𝑖,𝑂𝑎𝑑𝑑
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝝈𝑜,𝑂𝑎𝑑𝑑
𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝝈𝑢,𝑂𝑡𝑒𝑟𝑚.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2)

ith 𝟎 being a zero matrix, and 𝝈𝑖,𝑥,𝝈𝑜,𝑥 and 𝝈𝑢,𝑥 denoting the pairing
ules for directed (𝑖, in-coming, 𝑜, out-going) and undirected (𝑢) half-
dges for crosslink type 𝑥 (𝑥 = 𝑂𝑂𝑎𝑑𝑑 , 𝑂𝑂𝑡𝑒𝑟𝑚., 𝑂𝑎𝑑𝑑 , 𝑂𝑡𝑒𝑟𝑚.). If 𝐏 denotes
he pairing matrix, 𝐏𝑖,𝑗 = 1 when half-edge types 𝑖 and 𝑗 form a bond,
hile when 𝐏𝑖,𝑗 = 0 no bond is formed. The pairing rules for both types
f edges are defined by:

𝑖,𝑥, 𝝈𝑜,𝑥 =
(

0 1
1 0

)

(3)

𝝈𝑢,𝑥 =
(

1 0
0 1

)

. (4)

Similarly as with the computation of the connected component size
istribution in colored graphs [34], we make use of the structure of the
raph to compute the weight distribution of the components. A random
alf-edge (including undirected, in-coming and out-going half-edges)
resent in the graph is chosen and followed through the connected
odes. The distribution of the nodes reached by following a randomly
elected edge 𝑖 defines the excess degree distribution of edge-type 𝑖:

𝑖(𝐤, 𝐽 ) = (𝑘𝑖 + 1)
𝑢(𝐤 + 𝐞𝐢, 𝐽 )

E[𝑘𝑖]
. (5)

Here 𝐞𝐢 is the standard basis vector for half-edge type 𝑖 and E[𝑘𝑖]
the first partial moment of the true degree distribution 𝑢(𝐤, 𝐽 ). With
the selection of edge-type 𝑖 comes an increased probability to reach
nodes with more 𝑖-edges, causing the necessity of multiplication factor
(𝑘𝑖 + 1) in the formulation of 𝑢𝑖. Random graph formalism makes use
of the generating functions of the true and excess degree distributions
that apply to a given system to compute its global properties. The com-
putation of the weight distribution of the finite connected components
requires the weight specific generating functions of 𝑢(𝐤, 𝐽 ) and 𝑢𝑖(𝐤, 𝐽 ),
𝑈𝐽 (𝐳) and 𝑈𝑖,𝐽 (𝐳) respectively, formulated as:

𝑈𝐽 (𝐳) =
∑

𝐤>0
𝐳𝐤𝑢𝐽 (𝐤), 𝐽 = 1,… ,𝑀, (6)

𝑖,𝐽 (𝐳) =
∑

𝐤>0
𝐳𝐤𝑢𝑖,𝐽 (𝐤), 𝐽 = 1,… ,𝑀 and 𝑖 = 1,… , 𝑁, (7)

here 𝐳 = (𝑧 ,… , 𝑧 ), |𝑧 | < 1, 𝑧 ∈ C and 𝑢 (𝐤) = 𝑢(𝐤, 𝐽 ).
5

1 𝑁 𝑖 𝑖 𝐽
To compute the total weight of the finite components, we randomly
elect an edge, rather than an entire component. This method inher-
ntly introduces a bias depending on the size of the components: larger
omponents contain more edges and are thus counted more frequently.
n contrast to previous work, this counting method introduces prob-
ems for the computation of the weight distribution. To remove the
nfluence of the component size, there needs to be some correlation
etween component size and mass to compute the true weight dis-
ribution of a polymer network. Unfortunately, this is generally not
he case for non-industrial polymers, which contain a large variety
f monomer building blocks and thus monomer masses. Particularly
n the case of biopolymers where the polymerization process often
ncludes scission reactions. Therefore, we propose the computation
f a bi-variate size-weight distribution, 𝑤(𝑠, 𝑚), to accurately predict
he weight distribution of the polymer network. Effectively, 𝑤(𝑠, 𝑚)

provides the probability of the system containing finite connected
components with size 𝑠 and total weight 𝑚. Although we continue to
count by selecting edges and therefore count to larger components
more frequently, distribution 𝑤(𝑠, 𝑚) now stores both the size and total
weight of the connected components. This allows us to determine the
correlation between the size and weight of the components.

The numerical computation of size-weight distribution 𝑤(𝑠, 𝑚) re-
quires weight specific generating functions of the biased weak com-
ponents, 𝑊𝑖(𝑥, 𝑦), that arise from the edge selection. They form along

ith the generating function of 𝑤(𝑠, 𝑚), 𝑊 (𝑥, 𝑦), a recursive set of
lgebraically solvable equations:

𝑊 (𝑥, 𝑦) =
𝑀
∑

𝐽=1
𝑥𝑦𝛼𝐽𝑈𝐽 (𝐏𝝎(𝑥, 𝑦)), (8)

𝑖(𝑥, 𝑦) =
𝑀
∑

𝐽=1
𝑥𝑦𝛼𝐽𝑈𝑖,𝐽 (𝐏𝝎(𝑥, 𝑦)), (9)

here 𝝎(𝑥, 𝑦) ∶= (𝑊1(𝑥, 𝑦),… ,𝑊𝑁 (𝑥, 𝑦))⊤ and both 𝑊 (𝑥, 𝑦) and
𝑖(𝑥, 𝑦) ∶ C → C. While progressing through the connected component,
e count both the size and weight of the node, as incorporated

n Eq. (8) as power values. Since the size of a node is by definition
qual to 1, no power value is needed size wise. In contrast, the mass of
nodes is generally larger than 1 and thus must be counted 𝛼𝐽 times
hen the weight of a particular node is 𝑚 = 𝛼𝐽 .

Finally, the computation of a bi-variate distribution requires a two-
tep Cauchy integral to solve the generating functions in Eqs. (8) and
9):

(𝑠, 𝑚) = 1
2𝜋𝑖 ∮

𝑊 (𝑥, 𝑦)
𝑥𝑠+1𝑦𝑚+1

𝑑𝑥𝑑𝑦, (10)

where we integrate 𝑊 (𝑥, 𝑦) subsequently over all component sizes and
all component weights. Although the resulting 𝑤(𝑠, 𝑚) is still weighted
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with component size, the distribution contains information pertain-
ing the relation between component size and weight. The correct,
component size-independent weight distribution is easily found by un-
weighting the values with their corresponding size, i.e. taking 𝑤(𝑠, 𝑚)∕𝑠.

3. Results

For the given set of reaction rules for EL/ML, the reactive patterns
(Fig. 1, SI) and the corresponding kinetic coefficients (Table 1, SI),
the ARNG-model (Fig. 1) generates 4012 species undergoing over 1.5
million reactions and provides concentration profiles over time for all
species [22]. This ARNG-output forms the input to compute the bivari-
ate degree-mass distribution as input to the RG-model. In this section
we will discuss the transition from concentration profiles to degree
distribution. Note that this transition implies a loss of information.
While the ARNG-results still contain and thus allow tracking of detailed
chemical information of species like structural formulas, the degree
distribution species are lumped together and only their molar mass,
concentration and the type and number of crosslinks are retained. We
will now first discuss the bivariate degree-weight distribution and then
present the full molar mass distribution computed with the extended
RG-model, allowing for directionality. These outcomes are validated in
two ways: by comparing to direct results concerning monomers and
dimers from ARNG and by comparing to size exclusion chromatography
(SEC) data for ML oligomer formation.

3.1. Bivariate degree-weight degree distribution

The bivariate degree-weight distribution is computed from the
ARNG concentration profiles. This implies the lumping of ARNG-
generated species, which are close together in molar mass. Table 1
shows a few examples of ARNG-generated species with varying num-
bers of crosslinks possessing a given degree (see Fig. 3) and molar mass.
The table displays structural formulas, weights and final concentrations
of four monomer species that are dominant in both the ESI spectrum
[22] and in the ARNG-model: a monomer without crosslinks and with
a molar mass 200 g/mol - ethyl-9-oxononanoate – and the three most
dominant species with one, two and three crosslinks determining their
connectivity – peroxyl crosslinks were the most abundant. Note that the
columns ‘degree’ and ‘molar mass’ determine its place in the bivariate
degree distribution. The last column of Table 1 also shows the total
amount of species with corresponding connectivity 𝑁𝑥. Here we did
not distinguish between molar mass and whether the species contained
radicals.

By lumping the species according to their connectivity and unique
molar mass, the species’ concentration profiles transform into a nor-
malized two-dimensional degree distribution 𝑢(𝐤, 𝐽 ), with degree vector
𝐤 and mass vector 𝛼𝐽 . The polymer system contains 16,192 unique
[𝐤, 𝛼𝐽 ] vectors. Focusing solely on the connectivity of the monomers,
the first dimension in 𝑢(𝐤, 𝐽 ), we find 64 unique degree vectors 𝐤
whose probability values are displayed in Fig. 4. For visualization
purposes, colors group the profiles according to the degree of ether
crosslink formation via termination recombination reactions. Regarding
the monomer weights present in the system, or the second dimension
in 𝑢(𝐤, 𝐽 ), a total of 253 unique monomer masses are present. Fig. 5
shows that the variation of masses at time point 𝑡 = 27.3 h ranges from
18 g/mol to 406 g/mol. We chose this particular time point as the
autoxidation progressed sufficiently to encompass scission reactions,
resulting in a large variety of monomer species. Note that Figs. 4 and
5 combined form the full two-dimensional degree distribution 𝑢(𝐤, 𝐽 )
and in fact show the partial summations

∑

𝐽 𝑐𝐤,𝛼𝐽
∑

𝐤
∑

𝐽 𝑐𝐤,𝛼𝐽
and

∑

𝐤 𝑐𝐤,𝛼𝐽
∑

𝐤
∑

𝐽 𝑐𝐤,𝛼𝐽
,

respectively.
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Fig. 4. Degree distribution 𝑢(𝐤) of ethyl linoleate, with 𝐤 =
[ 𝑘𝑖,𝑂𝑂 , 𝑘𝑜,𝑂𝑂 , 𝑘𝑢,𝑂𝑂 , 𝑘𝑖,𝑂 , 𝑘𝑜,𝑂 , 𝑘𝑢,𝑂 ] and 𝑖, in-coming, 𝑜, out-going, 𝑢, undirected edge for
crosslink type 𝑂𝑂 peroxyl and 𝑂 ether. The color-coding indicates profiles grouped
according to the degree of ether crosslink formation via termination recombination
reactions. Even without including molar mass as identifying characteristic, degree
distribution 𝑢(𝐤) contains many degree vectors with significant probability values.

Fig. 5. The probability distribution 𝑢(𝐽 ) of the unique monomeric masses present in
polymerizing ethyl linoleate at 𝑡 = 27.3 h. The monomer connectivity is not taken into
account. The figure shows large variation in prevalence of species with different mass.
The monomer mass varies from 18 g/mol to 406 g/mol.

3.2. Molar mass distribution of polymerized EL

To compute the true molar mass distribution, the new RG-algorithm
is used in combination with the unweighting procedure described
above. To this end we had to compute the bi-variate size-weight
distribution 𝑤(𝑠, 𝑚) to remove the influence of component size of the
component mass spectrum from Eqs. (8), (9), (10) in Section 2.2. To
indicate the effect of the size factor in the probabilities on long weight
ranges, Fig. 6 shows the double mass weighted distribution for weights
up to 10,000 g/mol. While 𝑤(𝑚) is the direct product of Eq. (10) after
summating over all component sizes, 𝑤𝑠𝑢(𝑚) is the size-unweighted
distribution. This upper limit corresponds to an average connected
component size of 30, taking 𝑚𝑚𝑜𝑛 = E[𝑚]. We observe that the error
between 𝑤𝑠𝑢(𝑚) and 𝑤(𝑚) increases with component weight. In the
range from 0 to 400 g/mol the values of both distributions do not
display significant differences, since these mass values relate solely to
unconnected nodes and thus a size of 1. At higher mass ranges the
probabilities diverge from each other with an approximate ratio of
𝑚∕𝑚𝑚𝑜𝑛.

Looking at Fig. 6, we observe a repeating pattern in the mass
distribution that corresponds to estimated component sizes obtainable
by dividing the mass by the average mass of a monomer unit 𝑚 .
𝑚𝑜𝑛
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Table 1
An overview of the number of crosslinks 𝑁𝑥, degree 𝐤 (see Fig. 3), molar mass, final concentration, and structural formulas of four species with highest concentrations from
ARNG: a monomer (zeros crosslinks) and species with one, two and three crosslinks that are indicated with broken lines. For each of the categories peroxyl crosslinks created via
termination recombination – the undirected peroxyl crosslink – are most abundant. The most important reactive patterns (Fig. 1, SI) present in the molecules are given in the
next column. The columns ‘degree’ and ‘molar mass’ determine the position of these species in the bivariate degree distribution as input to RG-model. Note that one node of the
bivariate degree input may contain several different species of similar weight, but entirely different structural formulas. The structural formulas contain Tails 𝑇1 and 𝑇2 that are
defined in Fig. 2 of SI. The final column shows the total amount of species with connectivity 𝑁𝑥, without taking mass, radical and type of crosslinks into account.

Number Degree 𝐤 Molar Final Structural formula Reactive Number of
of cross- mass (g/mol) concentration (mol/L) patterns species with
links, 𝑁𝑥 present 𝑁𝑥 from

ARNG

0 [0, 0, 0, 0, 0, 0] 200 0.322 18 403

1 [0, 0, 1, 0, 0, 0] 99 0.533 14, 27 1432

2 [0, 0, 2, 0, 0, 0] 324 0.283 13, 14, 14 1610

3 [0, 0, 3, 0, 0, 0] 307 0.635 14, 14, 14 567
a
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Doing so, the yellow curves approximately coincide with the purple
peaks. This demonstrates, in this particular case of EL polymerization,
that although the masses within the degree distribution vary signifi-
cantly (see Fig. 5), approximating the correct, size-unweighted mass
distribution by division of 𝑤(𝑚) with 𝑚𝑚𝑜𝑛 still produces accurate values
for 𝑤𝑠𝑢(𝑚). In other cases, where the monomer mass’ range is greater so
hat oligomer masses overlap more, approximating 𝑤𝑠𝑢(𝑚) in a similar

fashion will not produce sufficiently accurate values. For instance, in
the case of linseed oil polymerization, many different types of fatty
acid chains are present, one being linoleic acid, each with their own
autoxidation processes and subsequent monomeric species. This will
create a wealth of different masses of monomer units with greater
overlap, which indeed would prevent to infer sizes from masses as for
EL in Fig. 6.

To indicate the overlap of molar mass for polymer sizes, Fig. 7 shows
𝑤𝑠𝑢(𝑚) where we color code each component size. The molar mass
range of any polymer size is between a clear upper and lower bound.
Particularly when the upper limit is reached, distribution 𝑤𝑠𝑢(𝑚) falls
harply, while the minimal values show a slope that increases in length
ith component size. The peak pattern can be interpreted in chemical

erms. The highest peaks are at regular distances, corresponding to EL
utoxidation products, predominantly peroxidic species. The patterns
f peaks with low molecular weights are created by combination of EL
cission products. Even in smaller oligomers as dimers (red 154–778
/mol, Fig. 7) and trimers (yellow 241–1150 g/mol, Fig. 7), a spread
f peaks is discernible, rather than a few individual peaks. The spread
f these clusters increases with the oligomer order. Moreover, at higher
rder oligomers, these clusters start to overlap, making it impossi-
le to identify the peaks that are part of a specific oligomer size.
his is directly related to the large mass variety and the combining
f the monomer types into higher order structures. From literature,
his agrees with observations made from experimental mass spectra,
here hyphenated techniques are commonly used to provide extensive

haracterization [33,35].
The molar mass distribution computed here was based on the 6D

ormulation of the bivariate degree-weight distribution as shown in
ig. 3. If we would have ignored the distinction between directed and
ndirected edges, i.e. ignoring the difference between crosslinks made
7

y termination crosslinking and addition crosslinking, we end up with p
simpler 2D formulation requiring less computational effort. We have
ompared the 2D with the 6D approach and found clear but not very
arge difference in the results. This issue is dealt with in greater detail
n the SI with Fig. 3 in the SI showing both 6D and 2D concentrations.

.3. Model validation: comparing RG with ARNG

As a first validation method we compare both the RG-model results
nd the ARNG-model results for monomer and dimer species of EL. Al-
hough the ARNG-model solely generates the monomer building blocks
resent in the polymer network, combining monomer species with just
ne crosslink results in all possible dimers. Even though there are
nly three different crosslinking reactions (OO-termination, OO- and O-
ddition), the existence of 1432 different species with just one crosslink
lready leads to a combinatorial explosion in the number of different
imers, amounting to over 70,000. Hence, obtaining even higher order
ligomers from ARNG becomes an infeasible task. In contrast to the
G-model, the ARNG-model provides molar mass data with chemical
esolution. Hence, the data from ARNG requires coarse-graining to the
ass grid chosen for RG of 1 g/mol to enable the comparison between

he two models. After coarse-graining we observe an exact agreement
or monomers and dimers up to masses of 800 g/mol.

Reducing the resolution of the ARNG data involves arranging more
han 70,000 dimer species on a discrete range between 400 and 800
/mol with increments of 1 g/mol. This implies the overlap of mass
eaks of dimers with identical mass, isomers, or masses close to-
ether per data point. Harmon compares the ARNG spectrum with
spectrum recorded with electrospray ionization-mass spectrometry

ESI-MS), which are given in the SI in Fig. 4 . A direct quantitative
omparison turned out to be impossible, in part due to the complex
elationship between peak value and concentration of a species in
SI-MS. The ESI-MS signal of a species and its concentration are not
lways linearly proportional as consequence of the ionization method
nd the loss of volatile species that escape the system before detection.
owever, most of the monomer and dimer peaks that are dominant

n ESI-MS were found to be dominant in the ARNG-model, and vice
ersa, those dominant in the model were also found in ESI-MS. To
laborate on the overlap of dimer masses, Fig. 8 provides a detailed

art of the full spectrum from 690–720 g/mol and in particular the
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Fig. 6. Comparison of the weight distributions of ethyl linoleate at 70 ◦C after 144.2 h of polymerization, with the size-unweighted distribution 𝑤𝑠𝑢(𝑚) (purple, Eq. (8)) and the
size-weighted distribution 𝑤(𝑚) (yellow). The difference between the two increases with m/s. The mass peaks are at regular distances, allowing to discern the associated sizes.
The division of the yellow curves by 𝑚∕E[𝑚] coincides with the purple peaks. The highest peaks that appear with repeating mass intervals correspond to EL autoxidation products,
predominantly peroxidic species. The zoomed subsection of the spectrum displays repeating patterns of two (groups of) peaks that result of the combination of EL scission products,
see also Fig. 7.

Fig. 7. A disassembled weight distribution for ethyl linoleate polymerization after 25.7 h, where each oligomer size plotted with a different color. Blue curves are monomers, red
are dimers, yellow are trimers, etc. The mass peaks and the secondary peaks at lower molar mass (due to scission products) are now clearly visible with different colors (sizes).
It is also clear that mass distributions become broader and featuring considerably more overlap between curves of different sizes with increasing mass. Overlapping regions are at
very low concentrations (still above noise level) and do not interfere with the regular pattern of the highest peaks.
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Fig. 8. Detail of electrospray ionization-mass spectrometry spectrum (ESI-MS, Fig. 4 in SI) between 690–730 g/mol with ESI-MS data (yellow) and ARNG/RG-identified points
(purple circles) both coarse-grained to 1 g/mol. For comparison, ARNG/RG-identified points at model predicted molar fractions are inserted as purple dots. ESI-MS and model
points differ in absolute value, but are the most dominant dimers in both ESI-MS and model. The point at 712.5 g/mol is unraveled in its hundreds of real chemical (semi-)isomers
in the SI, Fig. 5 .
Fig. 9. Structural formulas of three dimer isomers with a molar mass of 712.5 g/mol. Each of the isomers are the most abundant species within their respective categories: dimers
connected via peroxyl crosslinks as a result of recombination termination (A, 4.64 ⋅ 10−4 mol/L), a peroxyl crosslinked dimer after addition reaction (B, 2.14 ⋅ 10−4 mol/L), and
dimers connected with an ether crosslink after addition reaction (C, 0.66 ⋅ 10−4 mol/L). They appear in the RG bin of dimers with molar mass 712.5 g/mol together with hundreds
of (semi-)isomers in the same mass bin, see Fig. 4 in the SI. The crosslinks shown correspond to different crosslink patterns, see Fig. 1 of SI. The undirected peroxyl crosslink in
dimer A corresponds to pattern 14, while the directed crosslink in dimer B requires an out-going and in-coming edges: pattern 43 and 45. Likewise, the directed ether crosslink
has the complementary pair of in- and outgoing edges, patterns 44 and 46.
binned point with an average mass of 712.5 g/mol. This one point
consists of hundreds of dimers, semi- or real isomers, with different
types of crosslinks. Fig. 9 shows the structural formulas of the three
most abundant dimer isomers with a mass of 712.5 g/mol that are
either connected with a peroxyl crosslink, created by both recombi-
nation termination and addition, or an ether crosslinks created by
addition. The consequences of decreasing the mass resolution become
relevant in practice when predicted mass spectra are compared with
data from mass spectrometry as in Harmon [22]. Further elucidation
of the unraveling of (semi-)isomers and the full spectrum are in the SI.
9

3.4. Model validation: comparison to SEC data

As the main comparison of RG to experimental data, we consider
a size exclusion chromatogram (SEC) up to 2000 g/mol of drying
methyl linoleate that was recorded by Marquez and Mourão [36,37].
Fig. 10 compares the values of the RG-predicted weight distribution
(colored curves) and the experimental SEC of ML oligomerization after
3 h of exposure to air at 80 ◦C. As activation energies for most
reactions are not yet available, it is not possible to run the ARNG model
for the higher temperature, so we had to employ the model results
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Fig. 10. Molar mass distribution of methyl linoleate from RG (colored curves for 1- to 5-mers after 16.5 h of simulated polymerization at 70 ◦C) and size exclusion chromatography
(SEC) elution trace of ML polymerized at 80 ◦C for 3 h, dashed black curve [36]. Calibration of the experimental SEC-curve (elution time in minutes) to molar mass values executed
using ARNG/RG-model. ML-peak corresponds to 98.5% conversion. Other peaks are 1- to 5-mers with high peroxide substitution. The shoulder at lower molar mass than unreacted
ML (right) correspond to oligomers with ML-scission products, see also Figs. 6 and 7.
as is, validated with experiments at 70 ◦C. Since the experimental
SEC trace shows significant amount of unreacted ML, we choose the
model curve that matches the ML conversion of 98.5% after 16.5 h.
The acceleration of the experimental ML oligomerization compared to
the simulated polymerization is mainly due to a higher temperature
than we use in the simulation, but also other experimental conditions
such as ML film thickness. While the RG-predicted weight distribution
produces a singular value for any mass weight, SEC produces a curve as
signal. Therefore, for the sake of comparison, the computed peaks are
smoothed using Gaussian distributions whose variance increase linearly
with molar mass. However, this far from accurate approach of SEC
peak broadening still generates narrower peaks for the higher oligomers
than is seen in the real SEC trace. Also, the predicted oligomer peak
height is consequently higher than the SEC peak heights. Apart from
different peak broadening, this may be because the higher oligomers
are generated at later stages during the polymerization. Then, oligomer
formation may be slower due to diffusion limitations that are not
accounted for in the model and thus result in lower peaks.

Marquez and Mourão [36,37] attribute the observed SEC peaks to
monomeric and oligomeric peroxides, or monomer units that connect
via peroxide crosslinks: unreacted ML (elution time 15.85 min), perox-
idic monomer (15.54 min), peroxidic dimer (14.75 min), and peroxidic
trimer (14.38 min). Now, the question arises as to exactly which
peroxidic species, or exact weights, should these peaks be attributed
to? In other words, how should the SEC be calibrated against molecular
weights of the peroxidic species? To perform this calibration, we use the
relative amounts of these species predicted for monomers and dimers
by the ARNG-model. Although ARNG predicts a range of monomeric
peroxides, it predominantly predicts ML-OH(OOH)2 and ML-(OOH)3
with the respective molar masses and concentrations: 376 g/mol and
0.033 mol/L, and 392 g/mol and 8.3 ⋅ 10−4 mol/L. The notation rep-
resents a monomer molecule, ML, with additional side groups. The
chemical pathway from ML to the monomer with 376 g/mol is displayed
in Fig. 11. Note that this pathway differs considerably from that to the
monomer of 392 g/mol, which is shown in the SI in Fig. 6.
10
Similarly, the ARNG-model predicts various peroxidic dimers, but
mainly (HOO)2ML-OO-ML(OH)OOH, 734 g/mol at 0.013 mol/L and
(HOO)2ML-OO-ML(OOH)2, 750 g/mol at 2.6⋅10−4 mol/L—the structural
formulas are in the SI (Fig. 7). Interestingly, the most abundantly
present monomers and dimers do not possess the maximum number
of peroxide groups; one hydroxide group remains. The trimer peak
used for calibration was obtained from the RG-model, as trimers and
higher order oligomers are not attainable from ARNG. The RG-model
predicts peaks of approximately equal concentration of 0.002 mol/L
at respective molar masses of 1076 and 1092 g/mol, which corre-
spond to two trimers: (HOO)2ML-OO-ML(OH)OOH-OO-ML(OH)OOH
and (HOO)2ML-OO-ML(OOH)2−OO-ML(OOH)2. In contrast to the
monomers and dimers, trimers do have in part the maximum sub-
stitution with peroxide groups. Thus considering ARNG/RG predicted
monomers, dimers and trimers for the given chemistry and kinetics, we
arrive at the following calibration points: unreacted ML 15.85 min/294
g/mol; peroxidic monomer 15.54 min/376 g/mol; peroxidic dimer
14.75 min/734 g/mol; and peroxidic trimer 14.38 min/1084 g/mol.
These calibration points appear to be the most plausible and consistent
in view of the mutual distance between peaks in the SEC-trace.

When using the set of calibration points, the model prediction and
experimental SEC curve agree well. This illustrates the usefulness of
the ARNG/RG-model for the validation of chemical mechanisms and
kinetic parameters by SEC-data. Additionally, it shows the indispens-
ability of the RG-model for the prediction of higher order oligomers
and polymers.

4. Conclusions

The prediction of important characteristics of biopolymers such
as the molar mass distribution using fundamental models is shown
to be a challenging task. Where industrial linear polymers consist
of one or few identical monomeric units, biopolymers contain many
different monomers. This leads to a combinatorial problem for mod-
eling that has, until recently, not been comprehensively treated in
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Fig. 11. Chemical pathway found in ARNG from ML to ML-OH(OOH)2, molar mass = 376 g/mol. Only the reactive part is shown, T-groups referring to Fig. 2 in SI. The structure
ith conjugated double bonds and one peroxy group is an intermediate formed after a few steps from ML. The conjugated bonds react with hydroxy radical forming an intermediate

adical with one double bond that reacts with O2 and subsequently abstracts hydrogen, ultimately yielding ML-OH(OOH)2.
polymer science. Our approach to the problem is to exploit an auto-
mated model generation technique that produces a refined and com-
prehensive kinetic model covering millions of reactions between thou-
sands of different components coupled with random graph modeling
to infer global polymer properties from the local connectivity of the
present monomers. The incorporation of monomer functionality and
molar mass enables rapid experimental model validation for complex
polymerizing systems.

Model validation was successful in two ways. First, we saw ex-
act agreement in monomer and dimer concentrations between ARNG-
model and RG-model results. Second and even more important, we
entered into the challenge of confronting modeling results with a
renown experimental technique: size exclusion chromatography. This
required us to solve the decoupling of the molar mass and number
of monomer units of a connected component. We successfully solved
a bi-variate number of monomer units/molar mass distribution. The
decoupling was less challenging than expected in view of the observed
regular patterns in the molar mass distribution of EL and ML that
were readily interpretable in terms of numbers of units per polymer.
In future, when dealing with cases with even more widely different
molar masses of the monomer units, we do expect more overlap, which
makes the decoupling using a two-dimensional number of monomer
units/molar mass distribution indispensable.

The experimental validation of our model using SEC on a double
mass weighted concentration base resulted in plausible outcome. The
model was required to calibrate the SEC trace against the molar mass
on a logarithmic scale. The most consistent calibration indeed produced
good agreement between model and experiments.

We conclude that the combination of ARNG with RG prove to be
a valuable instrument to predict important properties of biopolymers.
Comprehensive, integrated models sometimes disadvantageously re-
quire many input parameters with a diffuse impact on model outcomes.
In contrast, our model proved to be transparent in this respect, despite
its complexity. For instance, details of the chemical assumptions in the
ARNG-part of the model, such as the degree of substitution by peroxide-
and hydroxy-groups affects the predicted SEC-curve. The available SEC-
data of different biopolymer systems—autoxidation of model esters
11

in presence of driers, polymerization of linseed oil, etc.—could be
employed in combination with our model to investigate chemical mech-
anisms and kinetic rates. Subtle changes in the assumptions of the RG-
part of the model, types of crosslinks present and crosslink direction-
ality, also influence the results concerning experimentally accessible
quantities.
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