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ABSTRACT

Facial expressions play an important role in communication, espe-
cially in sign languages. Linguistic analysis of the exact contribu-
tion of facial expressions, as well as the creation of realistic conver-
sational avatars, especially sign language avatars, requires accurate
measurements of the facial expressions of humans while engaged
in linguistic interaction. Several recent projects have employed a
TrueDepth camera to make such measurements. The present paper
investigates how reliable this technique is. In particular, we consider
the extent to which the obtained measurements are affected by the
angle between the camera and the face. Overall, we find that there
are generally significant, and often rather substantial differences be-
tween measurements from different angles. However, when the mea-
sured facial features are highly activated, measurements from differ-
ent angles are generally strongly correlated.

1. INTRODUCTION

Facial expressions play an important role in communication. This
is especially clear in sign languages, where facial expressions can
contribute to lexical content, convey grammatical information (e.g.
whether a sentence is a statement or a question), and relay affective
content (e.g. whether the speaker is satisfied or not) [1, 2]. In spoken
languages, grammatical information and affective content can also
be conveyed by facial expressions, in tandem with prosody [3, 4, 5].

Analysis of the exact linguistic contribution of facial expressions
in signed and spoken languages, as well as the creation of realistic
conversational avatars, especially sign language avatars, requires ac-
curate measurements of the facial expressions of humans while en-
gaged in linguistic interaction.

Several recent projects have employed TrueDepth cameras to
make such measurements [6, 7, 8, 9, 10, 11]. TrueDepth cameras
are built into recent iPhone and iPad models, primarily for identifi-
cation purposes. They are able to automatically recognize the face
of the device’s owner, giving them access to the device without the
need to enter a passcode. Evidently, identification requires high fi-
delity. This means that the measurements made by TrueDepth cam-
eras are exceedingly precise and discriminative. In principle, this
makes them suitable to obtain fine-grained measurements of facial
expressions for the purpose of linguistic analysis and avatar synthe-
sis. Another attractive aspect of TrueDepth cameras is that they are
relatively affordable and highly portable compared to other depth-
sensing equipment.

We gratefully acknowledge financial support from the Netherlands Or-
ganization for Scientific Research (NWO, grant number VI.C.201.014).

However, this new technique to measure facial expressions for
the purpose of linguistic analysis and avatar synthesis also raises im-
portant methodological questions. How reliable are the measure-
ments? How reproducible are they? The present paper takes a first
step in addressing these questions. Specifically, we investigate to
what extent the measurements of a TrueDepth camera are affected
by the horizontal and vertical angle between the camera and the mea-
sured face.

The paper is organized as follows. Section 2 provides more elab-
orate background and motivation, Section 3 describes our method,
and Section 4 presents the results. Finally, Section 5 draws general
conclusions, highlights several limitations of the present study, and
suggests avenues for future work.

2. BACKGROUND AND MOTIVATION

2.1. Traditional methods based on video

Most research so far on the role of facial expressions in signed and
spoken languages is based on video data. Such data, however, is two-
dimensional and therefore never fully captures the actual physical
reality that it represents, which is three-dimensional. Furthermore,
important details are sometimes not visible on video footage because
of a limited frame rate, limited resolution, motion blur, or occlusion
(e.g. a hand in front of the face). Ideally, researchers would be able
to base their analysis on data that captures facial expressions in a
format that stays closer to the original, with less inherent transfor-
mation (3D to 2D), compression (frame rate, resolution), and noise
(blur, occlusion).

To enable linguistic analysis, video data is usually first anno-
tated. The annotation of facial expressions, making use of the Facial
Action Coding System (FACS) [12, 13] or similar coding schemes
[14, 15], is a notoriously laborious process. Moreover, even when
done with great care, manual annotation has some inescapable lim-
itations. It is inherently subjective (two annotators may disagree
as to whether an eyebrow is raised or neutral), not robustly repro-
ducible (a single annotator may label an eyebrow as raised one day,
and the same eyebrow as neutral six months later), and inherently
categorical (an eyebrow can be labeled as raised or neutral, perhaps
‘half raised’, but not ‘raised to degree 0.35’) while in reality eye-
brow raise and other facial features are quantitative/continuous vari-
ables, not categorical ones—so in the annotation phase the data is
further ‘compressed’, losing part of the original information. Ide-
ally, researchers would be able to obtain detailed representations of
facial expressions in a way that is less laborious, not subjective, re-
producible, and quantitative rather than categorical (meaningful cat-
egories may be identified in a later stage of analysis, but should not
be imposed on the researchers from the start).
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2.2. Recent approaches using keypoint detection

Recent work by Kimmelman et al. [16, 17, 18] partly addresses
the limitations of manual annotation of facial features, building on
[19, 20, 21]. Kimmelman et al. use OpenFace face recognition
software [22] to automatically detect a signer’s eyebrows and eye-
corners, and compute a degree of eyebrow raise/lowering in terms
of the distance between these. This method to extract degrees of
eyebrow raise/lowering from video data is automatic, objective, and
quantitative. However, there are still some limitations. First, mea-
surements of relevant facial features like brow raise are indirect and
not robustly reproducible. OpenFace detects facial keypoints. Fea-
tures have to be derived from distances between keypoints, but this
cannot be straightforwardly done in a reliable way because these dis-
tances depend on the distance and angle between the camera and the
signer’s face (as discussed in [17]), which are impossible to keep
constant across and even within recordings. Second, the proposed
method still takes 2D video data as its starting point. So, while this
body of work makes an important first step in addressing the limita-
tions of manual annotations, it does not address the issues of inherent
transformation, compression and noise associated with video data.

2.3. Recent approaches using a TrueDepth camera

Several recent projects [6, 7, 8, 9, 10, 11] aim to overcome these is-
sues by using a depth sensing camera instead of an ordinary video
camera to measure facial expressions. Specifically, they make use of
a TrueDepth camera, which is built into recent models of the iPhone
and the iPad, in combination with the Live Link Face application
by Epic Games. A TrueDepth camera projects 30, 000 infrared dots
on the face and measures the distances between these dots. Based
on these measurements, a detailed 3D representation of the face is
computed. From this 3D representation, 52 facial blendshapes are
derived, as well as 9 rotational features (3 for the head and 3 for
each eye). We focus here on the blendshapes, which include, for in-
stance, BROWDOWN, BROWOUTERUP, EYEWIDE, EYESQUINT,
CHEEKSQUINT, and MOUTHFROWN (in each case there is in fact
a separate blendshape for the left and the right side of the face).
Blendshape coefficients are measured at 60 frames per second. Each
blendshape coefficient is a value between 0 to 1, indicating the de-
gree of engagement of the facial feature at hand.

Unlike OpenFace, which detects keypoints based on video input,
this method bypasses the main issues associated with video data, and
moreover directly measures facial features that are of interest for
linguistic research as opposed to keypoint coordinates, which first
have to be translated into feature coefficients, something which, as
mentioned above, cannot always be done in a straightforward way.

Some of the recent projects cited above use TrueDepth measure-
ments primarily for the purpose of linguistic analysis [11]; others
use the measurements to drive speaking avatars [6, 7, 8] or signing
avatars [9, 10]. While these developments show much promise, both
for linguistic analysis and for avatar synthesis, it is important to in-
quire into the potential limitations of this new technique to measure
facial expressions. As a first step, we focus here on how sensitive
the measurements of a TrueDepth camera are to the angle between
the camera and the face.

3. METHOD

3.1. Data collection

Three participants (one male, two female) were instructed to display
a sequence of facial expressions. We simultaneously measured these

Fig. 1: Experimental setup

facial expressions with five TrueDepth cameras (C0,. . . ,C4). All five
cameras were placed at a horizontal distance of 63cm from the par-
ticipant’s face. C0, which we refer to as the ‘reference camera’, was
placed straight in front of the participant’s face. C1 was placed 23cm
above C0, C2 33cm below C0, C3 40cm to the right of C0 (from the
participant’s perspective), and C4 40cm to the left of C0. All data
was collected under the same lighting conditions.

The sequence of expressions that participants displayed con-
sisted of brow raises (3x), brow lowerings (3x), a scrunched up face
with intense cheek and eye squint (3x), eye blinks (3x), mouth shrugs
(3x), mouth frowns (3x), pressed lips (3x), and funneled lips (3x).
Finally, participants pronounced the sentence “The quick brown fox
jumps over the lazy dog”.

All recordings were made using the free Live Link Face app
made by Epic Games for the iPhone. Recordings were synchronised
using NTP-based timecodes (an option that is available in the app).

3.2. Data pre-processing

Data pre-processing was carried out in Python. Frames recorded by
different cameras were first matched according to their timecodes.
To ease interpretability of the results, all blendshape measurements
were multiplied by 100. The dataset was restricted to frames with
timecodes for which all cameras contributed a frame without NULL
blendshape values. We removed frames with ‘diverging values’ (de-
fined below) for one of the head rotation features, HeadPitch, Head-
Roll, and HeadYaw, because rotation of the head affects the angle
between the camera and the face, which is meant to be kept constant
during each recording. A value for a rotation feature x measured by
camera y in recording z was considered ‘diverging’ if it was more
than 2.5 standard deviations away from the mean of all values for x
measured by y in recording z. If a frame was removed for one cam-
era, corresponding frames from other cameras were also removed.
Finally, we excluded from the analysis blendshapes related to eye-
gaze direction (EYEIN, EYEOUT, EYEUP, EYEDOWN for both
eyes), the jaw (JAWLEFT, JAWRIGHT), the tongue (TONGUEOUT),
and some related to the mouth (MOUTHLEFT, MOUTHRIGHT), be-
cause these were not significantly engaged in the facial expressions
that participants displayed. The final dataset for analysis comprised
114.851 frames, each involving measurements for 39 blendshapes.

3.3. Data analysis

The analysis consisted of pairwise comparisons between measure-
ments of the reference camera, C0, with the other cameras (i.e., C0
vs C1, C0 vs C2, C0 vs C3, C0 vs C4).
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Table 1: Effects of vertical angle going up, C0 vs C1

(a) High Activation

Blendshape Intercept Effect %Effect Corr #Frames

EYESQUINTLEFT 43.7 16.9 * 39 0.76 2814
EYESQUINTRIGHT 43.8 16.9 * 39 0.75 2818
EYEWIDELEFT 51.1 5.9 * 12 0.92 2196
EYEWIDERIGHT 51.0 5.9 * 12 0.92 2204
MOUTHFROWNLEFT 51.4 −3.8 * 7 0.94 4050
MOUTHFROWNRIGHT 51.3 −6.2 * 12 0.94 3820
MOUTHSHRUGLOWER 58.1 −1.5 * 3 0.84 4048
MOUTHSHRUGUPPER 55.4 −6.2 * 11 0.88 3454
BROWDOWNLEFT 58.6 −0.6 1 0.94 2748
BROWDOWNRIGHT 58.6 −0.7 1 0.94 2746
BROWINNERUP 64.9 −8.9 * 14 0.91 2442
BROWOUTERUPLEFT 56.6 −5.0 * 9 0.93 2362
BROWOUTERUPRIGHT 56.6 −5.0 * 9 0.93 2366
CHEEKSQUINTLEFT 33.0 4.0 * 12 0.90 2922
CHEEKSQUINTRIGHT 36.5 5.8 * 16 0.91 2890

(b) Low Activation

Intercept Effect %Effect Corr #Frames

7.7 19.3 * 251 0.32 27578
7.7 19.3 * 251 0.32 27574
6.4 2.8 * 44 0.61 11416
6.4 2.9 * 45 0.60 11436
6.2 4.6 * 74 0.35 12166
7.8 0.2 3 0.33 11732

10.9 14.3 * 131 0.58 26344
7.3 9.9 * 136 0.67 26932
7.8 2.6 * 33 0.73 21200
7.7 2.5 * 32 0.73 21056
4.6 3.6 * 78 0.68 27196
9.2 −7.3 * 79 0.30 6590
9.2 −7.3 * 79 0.29 6710
5.0 7.2 * 144 0.64 27470
5.1 8.4 * 165 0.67 27502

Fig. 2: Activation level classification

For each blendshape b, each pair of cameras ci and cj , and each
recording r, we made a distinction between High Activation (HA),
Low Activation (LA), and No Activation (NA) frames. b was classi-
fied as activated at frame f in recording r according to camera ci if
the value of b as measured by ci exceeded a minimal threshold θmin

ci ,
which we set to 3. Similarly, b was classified as highly activated at
f according to ci if the value of b as measured by ci exceeded the
threshold θhigh

ci , defined as the mean of all values of b measured by ci
in r plus 0.5 times the standard deviation of these values.

When comparing measurements of a blendshape b by two cam-
eras c1 and c2, we classified a frame f as HA if b was highly acti-
vated at f according to both cameras, as LA if it was not HA but still
activated or highly activated according to at least one camera, and as
NA otherwise.

Only HA and LA frames were further analyzed, NA frames were
disregarded. Fig. 2 shows an example classification of the first 1500
frames in one recording for the comparison of measurements by C0
and C1 of the blendshape BROWDOWNRIGHT.

For each pair of cameras, each blendshape, and each activation
level (HA/LA), we built a linear mixed effects model using the lmer
function from the lme4 package in R [23]. For each model, we spec-

ified BLENDSHAPEVALUE as the independent variable, CAMERA as
a fixed effect (with the reference camera C0 coded as 0 and the other
camera coded as 1), and PARTICIPANT and RECORDING as random
effects. In cases where this resulted in a singular fit, we computed
a simplified model without RECORDING as random effect. Finally,
we calculated Pearson’s correlation coefficients for blendshape val-
ues measured by the two cameras.

The analyzed data set and all analysis scripts are publicly avail-
able as supplementary materials via Github [24].

4. RESULTS

4.1. Effects of vertical angle going up: C0 versus C1

We first consider the effects of vertical angle ‘going up’. That is, we
compare the measurements of our reference camera, C0, with those
of the upper camera, C1. The results are given in Table 1. For rea-
sons of space, we restrict ourselves here to 15 blendshapes, which
have been argued to be particularly relevant for linguistic analysis
and synthesis of facial expressions [11]. Results for the other blend-
shapes are given in the supplementary materials and show the same
overall pattern.

We first consider HA frames. The Intercept column reports, for
each blendshape, the Intercept of the fitted linear model, which cor-
responds to the mean of all measured values for that blendshape by
the reference camera C0. In the column Effect, we report the main
effect of CAMERA, which amounts to the mean difference between
the measurements for that blendshape by C0 and C1, respectively.
Stars (*) indicate that this difference is significant for all blendshapes
except BROWDOWNLEFT and BROWDOWNRIGHT.

Besides knowing whether the mean difference in measurement
between the two cameras is significant, it is also of interest to know
how large this mean difference is relative to the mean of all C0 mea-
surements for that blendshape. We express this as a percentage,
|Effect / Intercept ∗100|, in the column %Effect. We see that the
percentage differences are low for some blendshapes but quite high
for others, ranging between 1 and 39 (mean = 13.1; std = 11.4).

The column Corr provides Pearson’s correlation coefficients for
all blendshapes. These are generally very high, ranging between
0.75 and 0.94 (mean = 0.90; std = 0.06).
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Table 2: Effects of horizontal angle going right, C0 vs C3

(a) High Activation

Blendshape Intercept Effect %Effect Corr #Frames

EYESQUINTLEFT 45.7 15.0 * 33 0.77 5270
EYESQUINTRIGHT 46.8 9.1 * 19 0.87 5070
EYEWIDELEFT 56.6 −33.5 * 59 0.67 2518
EYEWIDERIGHT 57.9 −23.7 * 41 0.77 2678
MOUTHFROWNLEFT 54.8 −15.9 * 29 0.92 6060
MOUTHFROWNRIGHT 50.7 −11.3 * 22 0.94 7642
MOUTHSHRUGLOWER 59.7 −10.6 * 18 0.68 7796
MOUTHSHRUGUPPER 56.2 −14.8 * 26 0.63 6692
BROWDOWNLEFT 55.1 3.7 * 7 0.87 6254
BROWDOWNRIGHT 54.4 3.3 * 6 0.87 6344
BROWINNERUP 64.9 −10.9 * 17 0.91 3336
BROWOUTERUPLEFT 67.8 −14.1 * 21 0.80 2688
BROWOUTERUPRIGHT 66.8 −12.7 * 19 0.80 2754
CHEEKSQUINTLEFT 37.9 −14.3 * 38 0.81 4884
CHEEKSQUINTRIGHT 39.0 −9.0 * 23 0.88 4934

(b) Low Activation

Intercept Effect %Effect Corr #Frames

8.3 24.6 * 296 0.42 51036
8.2 18.4 * 224 0.45 51236

10.9 −10.2 * 94 0.35 17500
10.6 −9.7 * 92 0.37 17422
7.9 −2.2 * 28 0.30 35162
8.3 −1.5 * 18 0.41 31564

11.4 1.9 * 17 0.58 48510
7.6 0.7 * 9 0.52 49518
8.5 7.8 * 92 0.69 43688
8.5 7.1 * 84 0.66 43068
6.2 −2.4 * 39 0.59 35444

10.0 −9.6 * 96 0.47 13176
9.7 −9.6 * 99 0.46 13290
5.2 1.1 * 21 0.53 51278
5.2 2.6 * 50 0.56 51372

Finally, in the column #Frames we report the number of frames
that were taken into account. This number ranges from 2196 to 4048,
meaning that the analysis for each blendshape was based on a rea-
sonable number of frames.

We now turn to the results for LA frames, given in Table 1b.
There are a couple of striking differences between the results for
LA frames and those for HA frames. The percentage differences be-
tween the two cameras are much higher for LA frames, ranging from
3 to 251 (mean = 103.0; std = 75.9). The correlation coefficients, on
the other hand, are much lower for LA frames, ranging from 0.29 to
0.73 (mean = 0.52; std = 0.18).

4.2. Effects of vertical angle going down: C0 versus C2

Next, we consider the effects of vertical angle ‘going down’, com-
paring C0 with C2. Overall, the effects are similar to the effects of
vertical angle ‘going up’. For reasons of space, we defer detailed
tables with results per blendshape for the current Section and Sec-
tion 4.4 to the supplementary materials. For HA frames, the per-
centage difference between the two cameras ranges from 0 to 37
(mean = 16.7; std = 12.4). The correlation coefficients range be-
tween 0.80 and 0.95 (mean = 0.90; std = 0.05). For LA frames, per-
centage differences are again much higher, ranging from 11 to 198
(mean = 64.9; std = 49.9); and correlation coefficients much lower,
ranging between 0.06 and 0.75 (mean = 0.45; std = 0.21).

4.3. Effects of horizontal angle going right: C0 versus C3

To determine the effects of horizontal angle ‘going right’ we com-
pare C0 to C3. For HA frames, the percentage differences range
from 6 to 59 (mean = 25.2; std = 13.5), and the correlation coef-
ficients range from 0.63 to 0.94 (mean = 0.81; std = 0.10). For LA
frames, the percentage differences range from 9 to 296 (mean = 83.9;
std = 80.1), and the correlation coefficients range from 0.30 to 0.69
(mean = 0.49; std = 0.11); Table 2 provides detailed statistics per
blendshape.

4.4. Effects of horizontal angle going left: C0 versus 4

Finally, to determine the effects of horizontal angle ‘going left’,
we compare C0 to C4. For HA frames, the percentage differences
range from 7 to 41 (mean = 19.2; std = 10.4) and the correlation
coefficients range between 0.74 and 0.93 (mean = 0.82; std = 0.06).
For LA frames, the percentage differences range from 5 to 199
(mean = 58.9; std = 58.5) and the correlation coefficients range
between 0.05 and 0.49 (mean = 0.36; std = 0.14).

5. DISCUSSION AND CONCLUSION

Two general patterns emerge from our results. First, for HA frames,
while displacement of the camera in any direction (up, down, left,
right) generally has a significant and often substantial effect on mea-
sured blendshape values (with mean percentage differences between
13 and 25 percent), the different measurements are generally highly
correlated (mean correlation coefficients between 0.81 to 0.90).

Second, measurements for LA frames are generally much less
reliable than those for HA frames, exhibiting much higher percent-
age differences and lower correlation coefficients between cameras.

These findings are relevant for any work making use of TrueDepth
cameras for linguistic analysis or avatar synthesis. This work needs
to take into account that the angle between camera and face can sub-
stantially affect the measured blendshape values, although for HA
frames measurements from different angles are strongly correlated.

The present study is only a first step in a broader inquiry into
the prospects and pitfalls of TrueDepth measurements of facial ex-
pressions for linguistic analysis and avatar synthesis. It has several
methodological limitations which may be overcome in future work.
For instance, it is unknown whether the patterns we found general-
ize to a larger and more diverse set of participants. Moreover, while
participants were of different heights, they all sat on the same stool
while being recorded. The camera-tripods were not adjusted to dif-
ferent heights. Future studies may avoid this potential confound.

Besides methodological limitations, the present study evidently
has a limited scope as well. One particularly important question that
needs to be addressed in future work is to what extent the distance
between the camera and the face, as opposed to the angle, affects the
measured blendshape values.
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