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A B S T R A C T   

Method development in comprehensive two-dimensional liquid chromatography (LC × LC) is a complicated 
endeavor. The dependency between the two dimensions and the possibility of incorporating complex gradient 
profiles, such as multi-segmented gradients or shifting gradients, renders method development by “trial-and- 
error” time-consuming and highly dependent on user experience. In this work, an open-source algorithm for the 
automated and interpretive method development of complex gradients in LC × LC-mass spectrometry (MS) was 
developed. A workflow was designed to operate within a closed-loop that allowed direct interaction between the 
LC × LC-MS system and a data-processing computer which ran in an unsupervised and automated fashion. 
Obtaining accurate retention models in LC × LC is difficult due to the challenges associated with the exact 
determination of retention times, curve fitting because of the use of gradient elution, and gradient deformation. 
Thus, retention models were compared in terms of repeatability of determination. Additionally, the design of 
shifting gradients in the second dimension and the prediction of peak widths were investigated. The algorithm 
was tested on separations of a tryptic digest of a monoclonal antibody using an objective function that included 
the sum of resolutions and analysis time as quality descriptors. The algorithm was able to improve the separation 
relative to a generic starting method using these complex gradient profiles after only four method-development 
iterations (i.e., sets of chromatographic conditions). Further iterations improved retention time and peak width 
predictions and thus the accuracy in the separations predicted by the algorithm.   

1. Introduction 

Comprehensive two-dimensional liquid chromatography (LC × LC) 
is a very powerful tool for the separation of complex samples [1,2]. 
When executed well, the addition of a second dimension (2D) separation 
can improve peak capacity and resolution significantly [3,4]. It is thus 
not surprising to see LC × LC being used for the analysis of a variety of 
different samples, for example, polymers [5], proteins [6,7], lipids [8], 
oil [9], bioactive compounds [10,11], etc. However, due to the 
complexity (i.e., number of compounds) of the samples and the required 
systems, method development is increasingly more complicated with 

every new advancement in the field of LC × LC [12,13]. First, the analyst 
must choose a suitable retention mechanism to use in the first dimension 
(1D) separation, and then a compatible, and preferably complementary, 
2D retention mechanism must be chosen [14,15]. Once the system pa
rameters have been chosen, the method can be optimized using different 
programmed gradients [16,17]. Optimizing the gradient settings by 
“trial & error” however, can take months. 

Optimization of elution conditions may be accelerated by computa
tional methods [18]. Neural networks can be used for retention time 
predictions and optimization [19–23]. Other methods rely on direct 
optimization of “wet” gradient conditions using black-box approaches, 
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such as evolutionary algorithms or Bayesian optimization in LC [24,25], 
in silico LC and LC × LC [26,27], and gas chromatography [28]. 
Although these methods are powerful, they do not incorporate any 
known relationships between mobile-phase modifier fraction and 
retention factor as is done in retention modeling, and typically require a 
significantly increasing number of wet measurements as the number of 
adjustable parameters increases. 

In contrast, empirical retention modeling allows the retention factor 
to be correlated to the mobile phase composition, and groups have 
investigated this for e.g., reversed-phase LC [29–31], normal-phase LC 
[32], ion-exchange chromatography [33], hydrophilic interaction LC 
[34–37], and supercritical-fluid chromatography [38–41]. The advan
tage of empirical retention modeling is that typically only a minimum of 
two or three measurements are required to build a model. This makes 
retention modeling attractive for computer-aided method development 
strategies that can be used to optimize separations [42,43]. Some ex
amples are Drylab [44,45] or PEWS [36] for one-dimensional (1D) LC, 
or PIOTR [46] and the recent open-access MOREPEAKS software [47] 
for LC and LC × LC. 

What most of the neural network and method development concepts 
have in common is that retention times must be known for each com
pound under different conditions. When optimizing a complex separa
tion involving a large number of compounds, it can be tedious to 
manually track compounds across each measurement, making such ap
proaches impractical if the acquisition and processing of data cannot be 
automated [48]. Consequently, peak-tracking algorithms have been 
developed for both 1D [49–54] and 2D chromatography [55–58]. 

Recently, our groups worked on the automation of pre-processing, 
peak detection, peak tracking, and consequently, the computer-driven 
gradient optimization for an LC separation of a complex mixture of 
peptides without human interaction [59]. However, this work was 
limited to LC-MS. For LC × LC-MS, automated method-development is 
more complex. The number of parameters is much larger and the 
dependence of the two dimensions on each other renders method 
development significantly more complicated. This is especially acute 
when sophisticated gradient assemblies (e.g., shifting gradients) are used 
in the second dimension [60]. Typically the slow speed of 2D separations 
compared to 1D peak widths results in a much lower number of data 
points in the first dimension compared to the second dimension. 
Consequently, retention prediction errors in the first dimension may 
cause an analyte to elute in a different 2D gradient than was expected, 
causing prediction errors in the second dimension to propagate. 
Furthermore, establishing accurate retention models is more chal
lenging in LC × LC. For example, fast gradients in the second dimension 
may induce gradient deformation, rendering the acquired retention 
models less accurate [61,62]. 

In this study, we developed an algorithm and workflow for the 
computer-driven optimization of mobile-phase gradients used in LC ×
LC-MS separations. Retention modeling, peak tracking, and optimiza
tion algorithms were developed to communicate with each other and the 
LC × LC-MS system directly. The repeatability of determining retention 
models is evaluated. To facilitate the efficacy of the methods proposed 
by the algorithm, equations for retention time modeling in shifting 
gradients and peak width predictions were derived. Finally, the work
flow is tested on a complex sample consisting of a tryptic digest of an 
IgG1 monoclonal antibody (mAb) where the gradient profiles of both 
dimensions were optimized simultaneously without the need for inter
vention by an analyst. 

2. Experimental 

2.1. Chemicals 

The sample consisted of a tryptic digest of an IgG1 mAb. Details 
related to the preparation of this sample were reported previously [63]. 
Ammonium hydroxide, ammonium bicarbonate, and acetonitrile were 

obtained from Sigma Aldrich (St. Louis, MO). Honeywell Research 
Chemicals (Muskegon, MI) was the supplier of formic acid. HPLC-grade 
water was obtained from an in-house Milli-Q system (Burlington, MA). 

2.2. Chromatographic system 

2.2.1. LC × LC-MS 
The LC instrument was an Agilent Infinity II 2D-LC system consisting 

of two binary pumps (G7120A) with Jet Weaver V35 mixers (G7120- 
68135), an autosampler (G4226A), and two column ovens (G7116B). 
The active solvent modulation (ASM) valve interface (p/n: 5067-4266) 
used to connect the two dimensions was set up with two nominally 
identical 40 μL sample loops and a restriction capillary (170 × 0.12 mm, 
1.9 μL) in order to obtain an ASM factor of 3. Dwell volumes were 
estimated at 0.225 mL in the first dimension and 0.070 mL plus 0.040 
mL loop volume in the second dimension. The 2D-LC instrument was 
controlled by Agilent OpenLab CDS ChemStation Edition (C.01.10 
[287]), with a 2D-LC add-on (rev. A.01.04 [033]). The mass spectrom
eter was a quadrupole time-of-flight (Q-TOF) instrument (G6545XT) 
from Agilent Technologies (Waldbronn, Germany) equipped with a Dual 
Agilent Jet Stream Electrospray Ionization (AJS ESI) source. A standard 
tuning compound mixture (Agilent, p/n: G1969-85000) was used to 
calibrate the mass analyzer. Hexakis (1H,1H,3H-perfluoropropoxy) 
phosphazene was used as a reference mass (m/z 922.0098) compound to 
calibrate mass spectra and was sprayed continuously into the electro
spray source via a secondary reference nebulizer. The Q-TOF was 
controlled by Agilent MassHunter Workstation Data Acquisition. 

2.2.2. LC columns 
The column in the first dimension was an Agilent Poroshell HPH-C18 

(2.1 × 150 mm, 1.9 µm), and the 2D column was an Agilent Zorbax SB- 
C18 (2.1 × 30 mm, 3.5 µm). Column dead volumes were estimated based 
on column dimensions and a porosity of 0.7 at 0.365 mL in the first 
dimension and 0.069 mL in the second dimension. 

2.3. Chromatographic conditions 

2.3.1. First Dimension 
Gradient elution was used with 10 mM ammonium bicarbonate pH 

9.5 (Solvent A) and ACN (Solvent B). Three scanning gradients were 
used where the gradient profile remained constant (2-100% B) but the 
gradient time (tG) was varied with times of 60, 45, and 30 min. The 1D 
column temperature was 40◦C, and the 1D flowrate was 0.08 mL۰min− 1. 
This flow rate was chosen to allow for an appropriate modulation time in 
the second dimension. For each analysis, 4 μL of mAb digest was injected 
(3 µg/mL). 

2.3.2. Second Dimension 
Gradient elution was used with 0.1% formic acid in water (Solvent A) 

and ACN (Solvent B). Three scanning gradients were used where the 
gradient profile remained constant (2-100% B), but the gradient time 
(tG) was varied with times of 24, 18, and 9 s. Towards the end of the 1D 
gradient, the modifier fraction might be high. Therefore, to improve 
efficiency, at the beginning of each 2D cycle, the mobile phase was held 
at 2% B for 5.4 s to act as the diluent during ASM [64]. When using the 
initial set of scanning gradients, a modulation time of 30 s was used; in 
subsequent methods, a modulation time of 45 s was used with a 37 s 
gradient time. All other gradient profiles were calculated by the algo
rithm and uploaded to the LC × LC by an in-house C++ script. The 2D 
column temperature was 60◦C, and the 2D flow rate was 2 mL۰min− 1. 
The 2D flow entering the MS nebulizer was reduced to approximately 0.3 
mL۰min− 1 using a simple tee split and short, narrow restriction capil
laries (75 µm i.d.) chosen to achieve the desired split ratio. 
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2.4. MS instrument and conditions 

For MS detection, the Q-TOF mass spectrometer was operated in 
positive ion mode. MS settings were as follows: gas temperature, 320◦C; 
drying gas, 8 L⋅min− 1; nebulizer, 35 psi; sheath gas temperature, 350◦C; 
sheath gas flow, 11 L⋅min− 1; VCap, 3500 V; nozzle voltage, 1000 V; mass 
range, 200-2500 m/z; acquisition rate, 4 spectra⋅s− 1. 

2.5. Software 

Peak tracking was performed with a previously developed algorithm 
[56,58]. Scripts for retention modeling with the LSS and quadratic 
models for multi-segmented gradients and shifting gradient profiles 
were written in-house. Retention parameters were estimated using the 
multistart function in combination with the fmincon function with an 
optimality tolerance of 10− 6 and 3000 maximum function evaluations. 
Optima were calculated using the ga (genetic algorithm) function within 
Matlab-software R2021b (Mathworks, Natick, MA, USA). Individual 
plate numbers per compound were estimated using the fminsearch 
function with an in-house script based on the peak compression model 
by Hao et al. [24] Overall system communications between the MS, LC 
× LC, and Matlab algorithms were performed using a script written in 
Python 3.8.12. Methods on the LC × LC were started using C++ code 
with Visual Studio 2022, similar to our previous work [59], as illustrated 
in Fig. 1. Raw MS data were converted into .mz5 format by ProteoWi
zard 3.0.22144 64-bit [65] using a threshold count most-intense (2000). 

3. Results & discussion 

3.1. Retention modeling 

3.1.1. Challenges in establishing retention models 
The methodology used in this study is based on the prediction of 

optimal separation conditions using retention models. These models 
relate retention with mobile phase conditions and theoretically enable 
the prediction of method conditions that will yield an optimal separa
tion. Within the scientific community, there is discussion on how to 
accurately establish such retention models using data obtained using 
gradient elution. Quarry et al. and later Vivó-Truyols et al. showed that 
retention models obtained from isocratic data are not easily transferred 
to gradient elution [66,67]. The authors recommended a linear model 
with a normalized mobile-phase polarity parameter (i.e., a parameter 
that incorporates the polarity of a mixture of mobile phases into one 
parameter) when switching between isocratic mode to gradient mode, 
and vice-versa [67]. However, this would require knowledge about the 
change in polarity by mixing the mobile phases. Based on their work, the 
authors recommended a non-linear model to construct retention models 
for isocratic elution and a linear model for gradient elution. 

Investigating how to construct these retention models, Den Uijl et al. 

recently studied the use of what is known as scouting or scanning gra
dients in LC [68]. These are typically linear gradients with different 
gradient slopes to probe retention coefficients. As expected, the authors 
found that retention time predictions made within the gradient slope 
domain probed are more accurate than predictions outside of this 
domain, although retention time predictions in gradient programs in a 
similar modifier-range of the scanning gradients generally provide the 
most accurate results. This is in agreement with the work of Nikitas et al. 
[69]. However, for our workflow, an estimate of the final gradient shape 
cannot be made at the start of the optimization. Therefore, after the 
scanning gradients, retention models are iteratively updated with new 
gradient information to improve the retention models. 

The determination of retention parameters is complicated by the 
indirect assessment of these parameters. In contrast to isocratic elution, 
the exact relationship between retention time and modifier fraction is 
not known. Therefore, fitting retention parameters to gradient elution 
data is dependent on curve fitting [70]. This is even more complicated 
by the physical characteristics of the system that are difficult to model. 
Especially for LC × LC separations, this may become problematic. The 
fast gradients in the second dimension can induce gradient deformation 
meaning that the difference between the solvent composition profile 
specified by the method is different from what is actually delivered to 
the column [61]. Thus, the fitted retention model may be inaccurate. 
Moreover, a limited number of data points are available in the 1D axis of 
the 2D chromatogram due to the infrequent modulation of 1D peaks. 
Consequently, the first peak-moment, or the retention time, of a peak 
may not be calculated accurately [71]. 

3.1.2. Selection of retention model 
Before starting the computer-driven optimization, the robustness of 

two commonly used retention models for reversed-phase LC was 
compared: the quadratic retention model (lnk = lnk0 − S1⋅ϕ+ S2⋅ϕ2) 
[29] and the linear solvent strength (LSS), or exponential, model (lnk =

lnk0 − S⋅ϕ) [72]. Where lnk is the natural logarithm of the retention 
factor, ϕ the used modifier fraction, k0 the retention factor in pure weak 
solvent and S the parameters of change due to the modifier fraction. The 
frequently used Neue-Kuss model has been left out of this study. Even 
though it has been shown to describe isocratic retention curves well [31, 
36], it also has been shown that the model doesn’t perform well when 
fitting retention parameters to a limited number of gradient separations 
[35]. The quadratic retention model describes the actual retention curve 
more accurately using isocratic measurements, but the model has three 
parameters and thus needs at least three data points to be estimated with 
more data points increasing the accuracy of the model. The LSS model is 
a simpler model with only two parameters and consequently only needs 
a minimum of two data points to approximate retention behavior. 

These points are important because the errors associated with 
incorrect retention models can propagate through the method devel
opment workflow, and thus it is important to investigate the robustness 

Fig. 1. Schematic overview of the workflow used for automation of method development.  
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of the retention models. Using eight 1D-LC chromatograms from previ
ous work [59], retention parameters for both models were fitted 1000 
times using a multistart fmincon fit with 20 different randomly selected 
starting points per iteration. Meaning that each of the 1000 iterations 
selects the best retention curve over 20 curve-fit routines that are 
initiated with different starting parameters. Fig. 2 shows results for the 
three analytes with the largest sum of standard deviations in the 1000 
established retention parameters using the quadratic model (i.e. σlnk0 +

σS1 + σS2 ), and are thus most difficult to fit. Both the 1000 determined 
retention curves of the quadratic model and the LSS model are plotted. 
Each retention curve is shown as slightly transparent. Thus, darker 
curves show more overlapping retention curves. The quadratic model 
(indicated with green) exhibits significant spread as shown in Figs. 2A 
and 2B, and it even features a bimodal distribution, centered around two 
local minima. This showed that the staring parameters for the quadratic 
model had a large impact on the determined retention curves. The LSS 
model (indicated in red) however, is more robust and shows all 1000 
determined retention curves as one line on all three plots. As described 
above (Section 3.1.1), it is expected that the accurate assessment of 
retention parameters may be more difficult in LC × LC. Therefore, it was 
decided to continue with the LSS model in the current work. 

3.2. Workflow in the computer-driven optimization of LC × LC 

The computer-driven optimization was performed using two sepa
rate modules: 1) the LC × LC-MS system and 2) a PC that (i) tracked 
peaks over all available chromatograms [58], (ii) estimated retention 
parameters, (iii) calculated the next gradient steps, and (iv) submitted 
the optimized gradient profiles to the LC × LC-MS system. Before 
retention modeling, the LC × LC-MS system was tasked to perform three 
scanning gradients from φ = 0.02 to φ = 1.00 in 60, 45, and 30 min in 
the first dimension and in the second dimension from φ = 0.02 to φ =
1.00 in 24, 18 and 9 s, respectively. 

As soon as data from two scanning gradients were recorded, suffi
cient data was available to approximate retention parameters using the 
LSS model and the algorithm was able to start an estimation for an 
optimal separation. Thus, after the second and all succeeding (scanning) 
measurements, the algorithm tracked peaks and fitted retention pa
rameters using all available retention times and gradient profiles with 
the fmincon function in combination with the multistart function at 20 
different randomly selected points. When retention models for all paired 
peaks were estimated, the column plate number per peak was estimated 
using the multilinear gradient peak compression model by Hao et al. 
[24] using the fminsearch function with the experimental peak widths 
and gradient conditions as inputs. 

After estimating retention parameters and individual plate numbers, 
the algorithm was directed to calculate favorable (i.e., maximizing res
olution and minimizing analysis time) gradient programs in both 

dimensions simultaneously. The system was allowed to calculate 1D 
gradient profiles with three gradient steps and in the second dimension 
the system calculated boundaries for a two-step shifting gradient (see 
Section 3.3). The resolution score (ORs ) was estimated by calculating the 
normalized sum of resolutions of all peaks (n) with their nearest 
neighbors. The resolution metric described by Schure et al. [73] was 
used to estimate the resolution (RS) (see Eq. 1) and the value was 
normalized using a maximum resolution (Ropt) of 2. Baseline-separated 
peaks are deemed optimal, thus the resolution score should not be 
increased for values above this baseline separation. Therefore, RS values 
above the optimal resolution were capped to Ropt. The resolution with 
only a peak’s nearest neighbor was chosen so as not to be biased toward 
peaks that were not in the vicinity of the peak. Afterward, the comple
ment to 1 of the normalized RS was used (ORS = 1 − RS

Ropt
), so that it could 

be minimized like the time score (Ot). 

RS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1t2 − 1t1)
2

4(1σ1 + 1σ2)
2 +

(2t2 − 2t1)
2

4(2σ1 + 2σ2)
2

√

(1)  

Where 1t1, 1t2, 2t1, and 2t2 are the retention times in the first dimension 
of peaks #1 and #2 and the second dimension of peaks #1 and #2, 
respectively. And 1σ1, 1σ2, 2σ1, and 2σ2 are the corresponding standard 
deviations of the peaks. 

The time score of a separation was calculated by normalizing the sum 
of the gradient times (

∑
tG) between 0 and the maximum allowed 

analysis time (tmax) (in our case a value of 90 min was selected). This 
means that the time score would be minimized if 

∑
tG = 0. This, how

ever, would result in no resolution (and thus a large ORs value). There is 
a trade-off between the two scores. This will theoretically result in a 
short analysis time with a high sum of resolutions if suitable weights are 
selected. The ga function was used to minimize a weighted performance 
score (Operf) where the mean normalized resolution received a weight 
(wRs ) of 0.8 and the time score received a weight (wt) of 0.05, as indi
cated in Eq. 2. There are exceptions to Eq. 1. If the algorithm predicts 
that an analyte elutes later than tmax in the first dimension or later than 
the sum of the modulation time and the column dead time in the second 
dimension and wrap-around occurs, a performance score of 1 is 
outputted, meaning that the conditions are not viable. 

Operf = ORs ∗ wRs + Ot ∗ wt =

(

1 −
∑

RS

Ropt ∗ n

)

∗ wRs +

∑
tG

tmax
∗ wt (2) 

Performing peak tracking, determining retention parameters, and 
calculating optimal gradient profiles is computationally intensive, 
especially when dealing with large numbers of peaks encountered in 
complex samples. Nine method parameters are used for the shifting 
gradient, plus an additional two parameters per 1D gradient, and a 
parameter for the initial mobile phase modifier fraction. This adds up to 

Fig. 2. Analysis of the spread of the three retention curves with the highest summed variance in the quadratic model over 1000 determinations of the retention 
parameters using a multistart fmincon fit with 20 different starting points on 1D-LC data. Plots A, B, and C are for the analytes with the highest, second highest, and 
third highest sum of standard deviations of the retention parameters in the quadratic model, respectively. 
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a total of 16 method parameters that need to be optimized. If all 16 
parameters are only allowed three different values, this would already 
result in 316 = 4.3⋅107 possible different combinations. In this work, a PC 
with 24 top-of-the-line commercially available Central Processing Units 
(CPU) was used. Although not all 24 CPUs could be used in parallel in 
each stage of the optimization protocol, an effort was made to perform 
calculations in parallel as often as possible. Despite this, the PC would 
often require one to two hours of calculation time before it determined a 
suitable gradient profile for a subsequent experiment. Thus, a crucial 
time-saving step was implemented. 

As the LSS model only has two parameters, retention models could be 
estimated using only two scanning gradients. Therefore, when the third 
scanning gradient was being performed, the PC could already begin 
calculating a favorable (i.e., minimizing Operf) gradient profile for 
measurement #4. Upon completion of the third scanning gradient, the 
retention models were updated with the new information and while 
measurement #4 was being performed, the gradient profile for mea
surement #5 was calculated and so on, as shown in Fig. 3A. This 
effectively means that all calculations were one measurement behind 
and not all information that could be available was utilized. However, 
the LC × LC-MS system did not have to wait for the calculations to be 
completed for the (n-1)th analysis to start the nth analysis. The total time 
required for method development is thus reduced significantly 
compared to the case where both parts (algorithm and LC × LC-MS in
strument) wait on each other (Fig. 3B). 

3.3. Two-step shifting gradients in two-dimensional chromatography 

In the simplest implementation of LC × LC, the gradient in the second 
dimension remains constant over the separation. In cases where the two 
separation mechanisms are not orthogonal, the 2D separations often 
benefit from a more advanced gradient that shifts over time to provide 
better usage of the 2D separation space [63,74,75]. The use of shifting 
gradients, however, will typically result in longer method-development 
times compared to conventional LC × LC [76]. Fig. 4 shows an example 
of a two-step shifting gradient in the second dimension. Retention 
modeling within a shifting gradient requires the knowledge of several 
parameters. Some of these parameters, such as the modulation time 
(tmod) strongly depend on the 1D parameters, and the maximum gradient 
time (2tG) is dependent on the modulation time. The algorithm can tune 
the 2D parameters; the initial and final mobile phase modifier fractions 
(φinit and φfinal) at the beginning, the intermediate points (tlow and thigh) 
and at the end of the shifting gradient program (tshift end). This effec
tively means that the algorithm needs to fit nine parameters used in the 
construction of the boundaries for the shifting gradient program. 

To determine the experimental retention times in LC × LC, there is a 
need to consider if the 2D retention times are before or after the 2D 
column dead time, as the retention time can be misaligned by folding the 
chromatogram. When determining retention parameters using 

experimental retention data, first the retention times were determined 
for both dimensions. Then, the 2D retention time was evaluated to see if 
it was smaller than the 2D column dead time. If this was the case, the 
modulation time was added to the experimental 2D retention time, and 
the retention time in the first dimension was reduced by the modulation 
time. Note that this does not mean that breakthrough had occurred, as 
the analyte still eluted during the programmed gradient and had not 
passed the dead time of the next modulation yet. Then the modulation 
time was subtracted from the 1D retention time if it was added to the 2D 
retention time. 

Retention modeling in the second dimension requires the determi
nation of the 1D retention time. The modulation number in which the 
peak appeared was determined using the 1D retention time. If the ana
lyte eluted from the first dimension after tshift end, the final 2D conditions 
were used for retention modeling in the second dimension. Otherwise, if 
the 1D retention time was in between the start and end of the shifting 
profile, the 2D gradient profile was determined using Eqs. 3 to 11: 

Nmod =

⌈ 1tR

tmod

⌉

(3)  

Slow 1 =
φinit 2 − φinit 1

tlow − t0
(4)  

Slow 2 =
φinit 3 − φinit 2

tshift end − t0
(5) 

Fig. 3. Illustration of different ways of organizing measurements and calculations over time. Scanning gradients and calculations that only use data from these 
analyses are shown in yellow. Optimized methods that are calculated and future calculations that take these measurements into account are shown in green. A) While 
the LC × LC-MS is acquiring data, the next gradient profile is already being calculated by the PC. B) The LC × LC-MS and PC calculations wait for each other. 

Fig. 4. Outline of a two-step shifting gradient for use in the second dimension. 
The 2D gradient conditions change over time starting from the column dead 
time (1t0) of the first dimension to the shift-end time (tshift end). Purple values 
are 1D dependent, green values can be chosen by the algorithm. 2tG indicates 
the gradient time in the second dimension, which is limited by the modulation 
time (tmod). φinit 1, φfinal 1, φinit 2, φfinal 2, φinit 3 and φfinal 3 indicate the initial 
and final modifier fractions at the beginning of the measurements, the inter
mediate times tlow and thigh and the final time tshift end, after which the gradient 
remains constant until the analysis time (tanalysis). 
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Shigh 1 =
φfinal 2 − φfinal 1

thigh − t0
(6)  

Shigh 2 =
φfinal 3 − φfinal 2

tshift end − t0
(7)  

φstart 1 = (Nmod ∗ tmod − t0) ∗ Slow 1 + φinit 1 (8)  

φstart 2 = (Nmod ∗ tmod − tlow) ∗ Slow 2 + φinit 2 (9)  

φend 1 = (Nmod ∗ tmod − t0) ∗ Shigh 1 + φfinal 1 (10)  

φend 2 =
(
Nmod ∗ tmod − thigh

)
∗ Shigh 2 + φfinal 2 (11)  

Where Nmod is the modulation number (rounded up to the nearest 
integer), 1tR is the first dimension retention time, Slow are the slopes of 
the initial modifier fraction, Shigh are the slopes of the final modifier 
fraction and φstart and φend are the start and end conditions of the 
selected 2D gradient. The algorithm selects which start and end modi
fiers (φstart 1, φstart 2 or φinit 3 and φend 1, φend 2 or φfinal 3) are needed 
depending on the 1tR. 

3.4. Gradient profile boundaries 

It is important that the algorithm calculates gradient profiles that 
will result in meaningful chromatography. Therefore, it is essential to 

select proper gradient profile boundaries for the ga function. To prevent 
stationary phase dewetting under fully aqueous solutions [77], the 
modifier fraction was constrained to values between 0.02 and 1 for both 
dimensions. 

Furthermore, to ensure that analytes elute from the 1D column a 
minimum final mobile-phase modifier fraction of 0.8 was used, which 
can be expanded to a final segment with a modifier fraction of 1. 
Negative gradient slopes generally do not provide suitable conditions 
and thus, constraints were set to ensure that the mobile phase modifier 
fraction always ended higher than the starting modifier fraction for each 
gradient segment (φi < φi+1). Also, to minimize the risk of excessive 
band broadening due to a sudden increase in modifier fraction (step- 
gradients [78,79]), a minimum 1D gradient time (1tG) of 0.5 min was 
selected for each gradient segment. Lastly, to minimize unnecessary 
computations, the sum of gradient times was constrained to be less than 
the allowed analysis time (

∑ 1tG < tmax). 
In the 2D shifting gradient, the changes in gradient characteristics 

need to be aligned with the changes in analyte characteristics and this is 
vital to avoid peak splitting between modulations (i.e. eluting at 2D 
retention times that differ too greatly), thus the boundaries cannot in
crease too fast. Therefore, the differences between t0 and tlow /thigh and 
between tlow /thigh and tshift end were not allowed to be less than 10 
modulations and the shifting gradient program was limited to end before 
the maximum allowed analysis time. Furthermore, to avoid negative 
gradient slopes, the upper boundary was constrained to be higher than 
the lower boundary (φinit < φfinal). 

Fig. 5. Chromatograms (A-C) from the first two scanning methods and the first calculated method, and gradient profiles used in each method (D-F). The 2D gradient 
profiles in D and E are identical, but use different 1D and 2D gradient times. The analytes in the red oval indicate analytes with very steep retention slopes. A) LC ×
LC-MS chromatogram from MDI #1. B) LC × LC-MS chromatogram from MDI #2. C) LC × LC-MS chromatogram from MDI #4. D) Gradient program used in MDI #1; 
2tG = 24 s E) Gradient program used in MDI #2; 2tG = 18 s. F) Gradient program used in MDI #4. 
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3.5. Computer-driven separation of a monoclonal antibody digest 

To test the algorithm, the system was allowed 10 method develop
ment iterations (MDI) for the separation of the mAb digest, of which the 
first three were scanning methods as described in Section 3.2. Fig. 5 
shows that the scanning methods did not provide much separation of the 
peptides (Figs. 5A, B). However, the separation in MDI #4 (Fig. 5C), 
where the method parameters were calculated based on results from the 
first two scanning methods, already showed significant improvement in 
terms of resolution and usage of the separation space. The gradient 
profiles that were used are shown in Figs. 5D-F. The subsequent methods 
showed an incremental improvement (see Supplementary Material S-1 
Figures S1-S10), however, MDI #5 and #6 used a much wider shifting 
gradient in the second dimension. Investigation into this phenomenon 
showed that some noise was detected and tracked in MDI #3. Retention 
models that were influenced by this noise produced results indicating 
that there were analytes eluting at a high mobile phase modifier frac
tion, and this increased the modifier range of the shifting gradient. After 
MDI #5, these peaks were classified as noise and the algorithm 
continued to produce narrower shifting gradients. 

Furthermore, the optimization of the shifting gradient was hampered 
by analytes with very steep retention slopes (indicated by the red ovals 
in Fig. 5A-C). Effectively meaning that these analytes would only elute at 
high modifier fractions. The shifting gradient therefore needed to end at 
a high modifier fraction, while the rest of the analytes would elute with a 
lower modifier fraction. Furthermore, the maximum allowed analysis 
time was set at 90 min, however, the algorithm often determined 
analysis times of around 60 min. This meant that the benefit of an in
crease in average resolution did not outweigh the time cost associated 
with increasing the resolution. An analyst can decide if an increase in 
resolution is needed and adjust the weight of the time score in Eq. 2 
accordingly. Another notable observation is that the algorithm focused 
more on the 2D separation compared to the 1D separation. This is not 
surprising since the highest increase in resolution could be gained by 
adjusting the shifting gradient. However, it was expected that the 1D 
gradient profile would increase the modifier fraction quickly after the 
elution of the smaller compounds to elute the analytes with steep 
retention slopes faster. This was not the case. Providing the ga with a 
larger population of potential solutions could potentially increase the 
probability of arriving at a more optimal 1D separation. Or allowing the 
algorithm more 1D gradient segments might provide more flexibility in 
the 1D gradient profile. This, of course, would increase the number of 
computations required since the genetic algorithm might require a sig
nificant increase in function evaluations with an increased number of 
variables to arrive at an optimum (due to the curse of dimensionality) 
[80,81]. However, this might not improve the usage of the separation 
space, as the shifting gradients are dependent on analyte elution from 
the first dimension. A larger number of 1D gradient segments could also 
require more steps within the 2D shifting gradient to fully benefit from 
the additional 1D separation. 

3.6. Accuracy of retention time predictions 

The accuracy of the retention time predictions during the computer- 
driven method optimization strongly influences the success of the 
method development algorithm. Retention time prediction errors are 
highly probable due to the difficulty of assessing 1D retention times, 
gradient deformation in the second dimension due to fast gradients, and 
the dependencies between the two dimensions. The robustness of 
retention models was discussed in Section 3.1 in a general sense, but 
because of the dependence of the two dimensions, prediction errors in 
the second dimension of LC × LC can be even larger. In the simplest 
implementation of LC × LC, the 2D gradients do not change, and thus 
prediction errors in the second dimension are independent of 1D 
retention times. Using shifting gradients, however, prediction errors in 
the first dimension cause an analyte to elute during a different 

modulation period from what is expected, and thus with different 
gradient parameters. This causes a larger deviation between predicted 
and experimental 2D retention times. Retention time predictions in all 
MDIs were calculated using Eq. 12: 

ε% =
tR,pred − tR,exp

tR,exp
∗ 100% (12)  

where ε% is the prediction error in percentage, and tR,pred and tR,exp are 
the predicted and experimental retention times, respectively. Fig. 6 
shows the retention time and peak width prediction errors per MDI. Both 
the absolute prediction error (to show accuracy) and the non-absolute 
prediction errors are shown (to show over-/underestimation). Here it 
can be seen that the means and relative standard deviations of the 
prediction errors are larger in the second dimension than they are in the 
first dimension (Fig. 6A). Furthermore, the 2D retention times are typi
cally overestimated (Fig. 6C), but these overestimations decrease when 
the 1D retention times predictions are more accurate. In addition to the 
reasons given above, prediction errors can have other causes. For 
example, the system dwell volumes and column dead volumes were 
estimated based on specifications (e.g., LC pump series and column di
mensions) from the suppliers. Experimental determination of these pa
rameters could increase the accuracy of calculated retention factors and 
in turn more accurate retention time predictions for method parameters 
proposed by the algorithm. In this work, we chose to work with esti
mates to increase ease of use and quickly start the automated method 
development. However, with more method iterations, the retention time 
prediction errors became smaller. This was expected as more reliable 
retention parameters can be estimated when more data points are 
available. Histograms of the spread of retention time prediction errors 
for both dimensions are shown in Supplementary Material Section S-2, 
Fig. S-11. 

The errors in the prediction of peak widths were larger than errors in 
the prediction of retention time, as shown in Fig. 6B, and typically 
overestimated (Fig. 6D). This could similarly be due to all the above- 
discussed reasons, or for example, mass overload or extra-column 
dispersion. Additionally, small retention time deviations in the first 
dimension can lead to compounds eluting in a 2D gradient that is 
different from what is expected based on the predictions of the algo
rithm. The speed of elution, and thus the peak width, is dependent on the 
retention factor at elution. Thus, an accurate prediction of the modifier 
fraction at elution and the assessment of the retention models are 
crucial. It has been shown that calculated compression factors (i.e., a 
ratio of the peak width under gradient conditions compared to isocratic 
elution) differ from the experimental values up to a ratio of 1.8 [78]. 
However, Vaast et al. concluded this difference is due to the incorrect 
determination of the retention factor at elution using linear retention 
models (e.g., the LSS model). They stated that using non-linear retention 
models, such as the quadratic model or the Neue-Kuss model, can greatly 
improve the prediction of the compression factors [82] and thus peak 
widths. At this moment it is unclear which of these effects contributes to 
the observed deviations and further investigations will be required. 

4. Conclusions 

Computer-driven optimization of complex gradients in LC × LC was 
successfully demonstrated. The current workflow and all code are 
available in the Supplementary Materials. Using only two scanning 
gradients, a large improvement in resolution and usage of the available 
separation space was already realized using the first method recom
mended by the algorithm by using so-called shifting gradients. Subse
quent MDIs showed an improvement in the accuracy of the predicted 
chromatograms. However, larger errors in the prediction of retention 
time and peak width were observed in the second dimension compared 
to the 1D prediction errors. Retention time deviations in the first 
dimension can lead to a difference between the 2D conditions used for 
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prediction and those experienced by analytes during an experimental 
separation, leading to larger prediction errors for the second dimension. 
Furthermore, due to fast 2D gradients, the programmed gradient may 
deform [61], also affecting the accuracy of predictions. Monitoring the 
actual gradient shape and using retention modeling on the actual 
gradient shape is expected to produce more accurate results. This, 
however, requires additional computational resources as the (now sin
gle) gradients need to be modeled into multiple small linear gradients to 
approximate the actual shape. Furthermore, the interaction by the an
alyst with the performance of the algorithm was limited. System and 
column constants, such as the dwell volumes and column dead volumes, 
were estimated in this work. Accurate determination of these constants 
is expected to improve retention modeling and thus performance. 

Peak widths were generally overestimated in predictions made by 
the algorithm. The above-mentioned reasons for the retention time 
prediction errors are also likely to affect peak width predictions. 
Nonetheless, it has been shown that theoretical values for compression 
factors typically differ greatly from the experimental values [78]. Mul
tiple causes for this phenomenon have been provided in literature, for 
example, extra-column volume [83], variation in plate height with 
mobile phase composition [84], and viscous fingering [79]. More 
recently, it was concluded that the incorrect determination of the 
retention factor at elution by using linear retention models is likely the 
cause for this [82]. Thus it is expected that by using a non-linear 
retention model the peak width predictions will improve. However, in 
this work, it has been shown that the non-linear quadratic retention 
model is not as robust as the LSS model for difficult-to-model analytes. In 

the current work, the peak widths are overestimated and thus the al
gorithm underestimates the actual performance of the LC × LC separa
tion (i.e., broader peaks equal lower resolution). It could be argued 
though, that this is preferred over the other way around. It would be 
worse if the algorithm predicts a “good” separation, but the separation 
itself is of bad quality, although this would impede the total analysis 
time slightly. Nevertheless, it can be debatable what is preferred and 
other retention models can be incorporated within the current work
flow. Hao et al. have derived the gradient compression equations for the 
quadratic model [24], therefore these can be incorporated if preferred. 

The algorithm mainly focused on the 2D separation. This is not sur
prising as the largest increase in resolution was expected to be obtained 
by the shifting gradient. Still, there was room for improvement in the 
first dimension. An analyst would see that a slow gradient at the start of 
the separation would result in a better separation for the early eluting 
analytes. Following this up with a steep gradient would result in the 
elution of the late eluting analytes and reduce the total analysis time. A 
larger population size for the ga or more gradient segments might aid the 
ga with the improvement of the 1D separation. This, however, will come 
at a greater computational cost. The current ga was trained with 16 
variables, of which nine belonged to the shifting gradient program, two 
parameters per 1D gradient (i.e., gradient time and final modifier), and 
the initial modifier fraction of the first dimension. Adding more 1D 
gradient segments will increase the total variables by two per gradient 
segment, potentially requiring a significant increase in function evalu
ations for the number of variables that need to be determined. Increasing 
the population size/number of generations in the genetic algorithm will 

Fig. 6. Errors in the prediction of retention time and peak width for each MDI. Mean 1D prediction errors are shown in green, and mean 2D prediction errors in red. 
The size of the bubble corresponds to the relative standard deviation of the prediction errors. (Larger bubbles mean a larger spread in prediction errors) A) Absolute 
retention time prediction errors. B) Absolute peak width prediction errors. C) Retention time prediction errors. D) Peak width prediction errors. 
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most likely result in longer calculation times than measurement times. 
This means the LC × LC-MS system will have to wait for new instructions 
from the algorithm before continuing its measurements. The current 
workflow minimized the total optimization time by allowing computa
tions while a separation was being performed. This decreased the total 
needed time by approximately half. It is debatable whether it would be 
worth the extra computational investment (and thus let the LC × LC-MS 
system wait) for an improvement in 1D separation. 

The current work focused on maximizing the resolution of each an
alyte with respect to its nearest neighbor, while simultaneously mini
mizing the total analysis time using pre-defined weights in the objective 
function. However, studying other objective functions could be very 
fruitful. While many so-called chromatographic response functions 
(CRF), or chromatographic objective functions, exist for 1D chroma
tography [85], not so many CRFs exist for 2D chromatography [86–89]. 
Most of these CRFs use the number of experimentally detected peaks as a 
quality descriptor. However, when using retention modeling to guide 
the optimization process, the number of peaks that are modeled is 
known. This does not mean that all experimental peaks are indeed 
modeled, but the number of detected peaks is hence not a suitable 
quality descriptor for the genetic algorithm. Using the current workflow, 
it would be highly interesting to study the effect of different quality 
descriptors and their performance on 2D separations. Likewise, it would 
be interesting to study the effect of using different weights for both the 
resolution and analysis time terms, as these might impact the found 
optima and might be dependent on the nature of the studied sample. 
Here, Pareto front-based multi-objective optimization strategies might 
also be interesting venues for future research [25,90]. 
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