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GENERALISED ORDINARY VS FULLY SIMPLE DUALITY FOR n-POINT FUNCTIONS

AND A PROOF OF THE BOROT-GARCIA-FAILDE CONJECTURE
BORIS BYCHKOV, PETR DUNIN-BARKOWSKI, MAXIM KAZARIAN, AND SERGEY SHADRIN

Abstract. We study a duality for the n-point functions in VEV formalism that we call the ordinary
vs fully simple duality. It provides an ultimate generalisation and a proper context for the duality
between maps and fully simple maps observed by Borot and Garcia-Failde. Our approach allows to
transfer the algebraicity properties between the systems of n-point functions related by this duality,
and gives direct tools for the analysis of singularities. As an application, we give a proof of a recent
conjecture of Borot and Garcia-Failde on topological recursion for fully simple maps.

Contents
1. Introduction
1.1. Organisation of the paper
1.2. Acknowledgements
2. Vacuum expectation values
3. Fully simple maps and topological recursion
3.1.  Geometric definition
3.2.  VEV formulas
3.3.  Formulation of topological recursion
3.4. Topological recursion for ordinary maps
3.5. Topological recursion for fully simple maps
4. Dualities
4.1. Objects
4.2. Conjectural topological recursions
4.3. Duality formulation
4.4. Special cases and examples
4.5. Duality proof
4.6. Maps vs fully simple maps
4.7. Beyond KP integrability
4.8. General duality for M-functions
5. Proof of topological recursion for fully simple maps
5.1. Loop equations
5.2. Projection property
References

1. Introduction
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An original motivation that lead to the results of this paper came from an attempt to understand
the results and a conjecture of Borot and Garcia-Failde on maps and fully simple maps [BGF20] in
the framework of algebraic formalism developed for the n-point functions of hypergeometric KP
tau functions in [BDBKS20a; BDBKS20b].

Borot and Garcia-Failde studied the duality between maps and fully simple maps as an instance
of a phenomenon known in the theory of topological recursion, the x <+ y duality, developed
by Eynard and Orantin [EO13]. Borot and Garica-Failde also proved (see also a different fully
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2 B. BYCHKOV, P. DUNIN-BARKOWSKI, M. KAZARIAN, AND S. SHADRIN

combinatorial proof in [BCDGF19]) that enumerations of map and fully simple maps are related by
a matrix whose coefficients are given by monotone / strictly monotone Hurwitz numbers.

The second result has a nice interpretation in terms of the vacuum expectation value (VEV)
presentation of KP tau functions and using a VEV formula for ordinary maps it gives a VEV formula
for fully simple maps. The relation between the VEV formulas for the tau functions of ordinary
maps and fully simple maps gives rise to a very general duality for the n-point functions of KP tau
functions and beyond, for more general VEV n-point functions that cover, for instance, the stuffed
maps and their generalisations. Note that in general this generalised duality (which we still call the
ordinary vs fully simple duality) is not reduced to the x <> y duality.

This general duality is the main object of study in this paper. We prove explicit closed algebraic
formulas (of the same flavour as in [BDBKS20a]) expressing the general ordinary n-point functions
in terms of the fully simple ones and vice versa.

These algebraic relations between the n-point functions appear to be a very efficient tool to
transfer the properties between the sides of this duality. In particular, we apply this technique to
the case of fully simple maps, and we prove (using the known topological recursion on the side of
ordinary maps) the topological recursion statement for fully simple maps, conjectured by Borot and
Garcia-Failde in [BGF20].

1.1. Organisation of the paper. This paper heavily depends on the techniques developed in [BD-
BKS20a; BDBKS20b]. For many explicit computations that literally repeat what is done in op. cit.
we rather give references than repeat them here.

Section 2 is devoted to explaining the vacuum expectation values that appear in other sections,
and how to represent them as sums over graphs.

In Section 3 we recall the details regarding the ordinary and the fully simple maps, and state the
theorem on topological recursion for the fully simple maps (originally conjectured by Borot and
Garcia-Failde in [BGF20])).

Section 4 is devoted to our main result, namely the generalised ordinary vs fully simple duality,
which holds in a much more general context than that of maps. We formulate and prove it first
(Sections 4.1-4.6) in the KP context (where we also pose a conjecture on topological recursion for the
respective n-point functions), and then (Sections 4.7-4.8) in an even more general context inspired
by the so-called stuffed maps .

In Section 5 we use the main result of Section 4 in order to prove the theorem on topological
recursion for fully simple maps (Theorem 3.4) stated in Section 3.

Remark 1.1. Throughout the paper we use the notation M ,,, Wy ,, and My, W for the ordinary
and fully simple n-point functions, respectively. Let us note here that we abuse the notation: in
Sections 3 and 5 My ,, W, »,, M/, W/, stand for the n-point functions of maps/fully simple maps,
while in Sections 4.1-4.6 they stand for the general t-deformed hypergeometric KP n-point functions
and in Sections 2 and 4.7-4.8 they stand for an even more general case inspired by the stuffed maps.
See the respective sections for the precise definitions.

1.2. Acknowledgements. When this paper was essentially finished and we mentioned the re-
sults at the 7th Workshop on Combinatorics of Moduli Spaces, Cluster Algebras, and Topological
Recursion (organized by L. Chekhov, S. Lando et al. online on May 31-June 4 2021), we got a
message from E. Garcia-Failde that she together with G. Borot and S. Charbonnier also found an
alternative independent proof of their conjecture with Borot on the topological recursion for fully
simple maps, which was to appear soon (at the time of the current update of our present paper,
Borot-Charbonnier—Garcia-Failde’s paper is already available, [BCGF21]).

B. B. and M. K. were partially supported by the International Laboratory of Cluster Geometry at
the HSE University. S. S. was supported by the Netherlands Organization of Scientific Research.

2. Vacuum expectation values

The main technical tool used in this paper allowing us to work with various kinds of correlator
functions is to express them as certain vacuum expectation values and then to reduce computations



GENERALISED ORDINARY VS FULLY SIMPLE DUALITY 3

to sums over graphs. In this section we explain a general set-up for this technique. We refer
to [Kac90; MJD00] and also [BDBKS20a] as the main sources on the formalism presented here.

Consider the bosonic Fock space F = C|[p1, po, .. .]]. Let|0) := 1 € F and define (0|: F — Cas
0: f(p1,p2;--.) — flp=0i>1. For m > 0 denote J,, := md,, and .J_,, = p,, and set .J, := 0. For
a formal power series ¥(y, h?) such that ¢)(0, i?) = 0 we define an operator Dy, that acts diagonally
in the basis of Schur functions as

(1) Dysy=exp | Y ¢(h(j —1i),h) | s
(4,5)EX
(below, once the functions 1); are fixed and obvious from the context, we often omit them in the
notation for D).
Given a collection of quantities s, .k, defined for g > 0, m > 1, k; > 1 and symmetric in
k1,...,kmn, we are interested in the VEVs of the type

@) We(X1,..., X O\HD (ZJ@ XZ>D¢,Z

;=1

Here ¢;(y, %), i = 1,...,n, are formal power series such that 1;(0, #?) = 0 that might eventually
coincide with each other. Denote

3) A = D;j(z J&Xfi)mi, Ap= Ay Ay, T={i<iz<-- <iy} C[nl,
l;i=1

and
o0 X© h29—2+m o UE J_.
(4) @:exp(ZZT > suretn | k)
9=0 m=1 T kpekm=1 j=1 7

With this notation W (X7, ..., X,) = (0|.A[;€|0). We define a connected VEV as

n

(5) Wa(X1, .., Xp) = (0] AR €[0)° =) % > T](0]AL€0).

=1 Ilu...ull:[[n]] =1
V3 I;#0

The computation of such expressions is based on the following formula ([BDBKS20a], Section
3.1):

ez;’il uﬁS(uﬁi)J,iz*ieZ;’il uhS (uhi)J; 2

hoy)
(6) Ai = ZXm Zar St )|y=0[ur] uhS (uh) ’

as well as the obvious identities J-(|0) = 0, (0|J.o = 0, commutation relations [J,, J;] = adsts0,
and their natural corollaries like

g [ ] =
i=1 j=1

where the latter formula is understood as its asymptotic expansion in the sector |z| < |w|. In (6)
and everywhere below in the paper for a power series f(z) the expression [z¥] f(x) stands for the
coefficient in front of z* in the series, and also we have

6u/2 _ e—u/Q

(8) S(u) ==



4 B. BYCHKOV, P. DUNIN-BARKOWSKI, M. KAZARIAN, AND S. SHADRIN

With these formulas, we expand IV} as an infinite sum of the coefficients of the VEVs of the type
) <O‘H (ezgﬁl wihS(uihl)J 127" 3222 uihS(uihr)JrziT> €|0>7

We commute all operators with the negative indices to the left, and all operators with the positive
indices to the right. This way we obtain that (9) is given as a sum over bi-coloured graphs (with
white and black vertices) with the following properties:

e There are n vertices labelled from 1 to n (white vertices).

e There is a finite number of ordinary edges connecting the white vertices. Self-adjusted
ordinary edges (loops) are forbidden. An ordinary edge connecting the white vertices
labelled by ¢ and j, @ # j, is decorated by

ZiZj

(2 — 2)*

e There is a finite number of multi-edges (unlabelled black vertices connected by a finite
number of edges to white vertices). A multi-edge can be connected to a white vertex

multiple times. A multi-edge that is connected to the white vertices labelled by 74, ..., i
(the indices might be repeated) is decorated by

(10) uth(uzhzzazl)ujh/S(u]th@ZJ)

[e.e]

(11) Zh2g’2+k Z Sgitr.. ,tkHu,lhé’ i hzi,0,)) 7
g=0

t1,..,tk=1

e The value that we associate to a graph is the product of the weights on its ordinary and
multi-edges divided by the order of its automorphism group.

Note that there is no requirement that the graphs are connected.
Denote the set of not necessarily connected graphs with n labelled white vertices and with any
number of ordinary and multi-edges by I'?. Let F/() be the set of ordinary and multi-edges of

a graph v € I'*, and denote the weight of an ordinary or a multi-edge e by @t(e). Then the
formula for W is

(12) Wy = Z Hszan m S(ﬁay) S il

1,0, >0 =1
mi,...,mp>1

" OH

ﬁ 1 Z [Lcs(,) weight(e)
-+ uhS(uih) = |Aut(7)| '

vyel,

n

A direct corollary of the inclusion-exclusion formula (5) is the following lemma:

Lemma 2.1. LetT,, C I'* be a subset of the connected graphs. Then
(13)

_ i s SR ot 1 [L.cs Weight(c)
W, = Z HX dyie s Vil yz_oH Huihs(uih) Z € ‘Xut(,m .

1,0 >0 1=1 =1 Ef‘
mamn>1 =

In order to get more compact formulas for practical computations, it is also useful to reduce the
sets of graphs I'* and T',, to forbid the multiple edges and thus include coefficients coming from
the automorphlsm group into the labels on the multi-edges. To this end, we introduce a subset
I C f‘; of graphs that has at most one multi-edge for each tuple of indices a4, ..., a;, where
a; < --- < ag, foreach k = 1,...,n, and no ordinary edges (there are multi-edges with 2 indices,
and the contributions of former ordinary edges are incorporated in those). For an edge e like that
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define weight(e) as

ZaiRas

)Uay NS (Ua, hzmazal )5+

(2a; = Zay)?
h29 24714+

Z Z B B Z sg{t”}H<Hua hS (Ua, hzaﬁza)z“_ﬂ))

g=0 r1,...,rp=1 tJ =1
i=1,.
:1

Zal

(14)  weight(e) = —1 4+ exp <5k’2ua1h/5(ua1 hza, 0

3]

Lemma 2.2. LetT',, C I denote the subset of connected graphs. We have:

S(m; hﬁyl

= E | | X a mi Wilya,h? | | Ti M Y€y, ecE(y) lght( )

15 We = mi i S(hdy,) iy Z E: re | | we

( ) " ¥i=0 i 1 U S(Uz ) !
T1ye,Tn 20 =1 | |z h

mi,...,Mnp>1

S(m;ho

(16 W,= > mezan e SO

T1yeeesn >0 =1
mi,...,mp>1

H T mz ZWEFH HeeE () Welght( )
vi=0 [T, whS(u;h) ’

3. Fully simple maps and topological recursion

In this section, we recall the definitions of ordinary maps, fully simple maps, and their VEV
expressions. We also recall the definition of topological recursion of Chekhov-Eynard-Orantin,
and a statement on topological recursion of ordinary maps as well as a conjecture of Borot-Garcia-
Failde on topological recursion for fully simple maps (the latter one is proved below in this paper).

3.1. Geometric definition. Let Map,, = count the number of connected ordinary maps.
More precisely, Map,.,, . .. is a generating formal series in 1,19, %3,... whose coefficient of

bt /mgl, with Y0P mZ M, is equal to the weighted count of the number of ways to combi-
natorlally glue a surface of genus g from n + M ordered polygons along their sides. The numbers
of sides of the first n polygons should be 1, .. ., u,, respectively (these are the distinguished poly-
gons), and then there are m,; polygons with 7 sides, i = 1,...,p. The weighted count means that
we weight each polygonal decomposition with the inverse order of its symmetry group.

Let FSMap,,, ., be the number of connected fully simple maps, which has exactly the same
definition as ordinary maps, with one important addendum: consider the genus g surface combi-
natorially glued from polygons as a cellular complex. We require that each 0-cell is adjacent to at
most one 1-cell that is a boundary component of a distinguished polygon.

By Map; ,, . and FSMap;  we denote the disconnected variants of the above definitions,
the index ¢ here refers to a possibly disconnected surface of the Euler characteristic 2 — 2g.

Note a slight difference between our definitions and the definitions in [BGF20; BCDGF19] —
op. cit. the authors require also that each distinguished polygon also has one distinguished side,
which amounts in a difference by a simple combinatorial factor. In the present paper we drop this

requirement, to make formulas and computations below a bit nicer.

3.2. VEV formulas. The interpretation of the enumeration of maps as coefficients of a particular
hypergeometric KP tau function is proved in [G]J08]. We have:

J_2

L oo Jit;
(17) Maps,, . = [129727)(0] [ 245 % Dot

0),

where D := D, of (1) for

(18) d(y) = log(1 +y),
ie. Duy = []; jyer(1 + h(j — i)). We have a similar VEV formula for the fully simple maps.
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Lemma 3.1. We have

1) T ()| U]

o fn

Proof. The results of [BGF20; BCDGF19] express FSMap;, = 3" , I*9~**"FSMap;, - as

[ - 1 - °
(20) FSMapulv“'vﬂ”L - Z E Z )\ )\k ;Uflv a/‘n)\la »)‘k fi— _hMap)‘l
k=1 """ Aty Ap=1
where
(21) Map;h---,un <0| H /h pIalt m De 2}? |0>’
and H= itpimiM., ar€ the monotone double Hurwitz numbers given by [GPH15]

(22) HY s 0!1_[ ’“D H |0>

(note some differences in normalization in our paper and [BCDGF19]). Using this and the fact that
on the Fock space

k
(23) Id = Zk. > 1 00 H%

ALy Ap=1j=1

h——h

we obtain the statement of the lemma. O
We introduce the following generating functions:

(24) Mga(Xy,.... X)) = > Map,, , X% Xk

M1y pin =1

[hzg 2+n] Z HXm my - - Jmy, e 1%96%‘@0,

mi,...,mp=11i=1

(25) My (wy,... ,w,) = Z FSMap,.,,. ., wi"---wh”

M1y fin=1

= [h29-2+n] Z H - <0}Jm1. T D1 ez f;ipeJan 0>°

mi,....mnp=1i=1

and
(26) Wg,n(Xb Ce ,Xn) = DX1 s DXnMg,n(Xb ce ,Xn),
(27) W)/ (wi, ... wy) == Dy, -+ Dy MY (w1, ... wy),

where Dy, = X;0/0X;, Dy, = w; 0/0w;.

3.3. Formulation of topological recursion. In this paper, it is more convenient for us to give
not a general definition of topological recursion [EO07], but its reformulation in terms of the loop
equations and the projection property [BS17], further specialized to the case of the underlying curve
of genus 0 and rational functions on it as in [BDBKS20b].

Let X and y be meromorphic functions on ¥ = CP! with affine coordinate z, and assume that
the finite critical points of X are py,...,py, all these critical points are simple; y is regular at
these points and has non-zero differential. Let o; denote the deck transformation of X near p;. Let
B(z1, 29) = dz1dzo /(21 — 29)>.
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Consider a system of symmetric rational functions I\/Igyn(zl7 ceeyZn), g > 0,m > 1, and set
(28) ng = D1 e DnMgﬂ, DZ = X(ZZ)—dXCéZZV
L dX(z1)dX (z2)
(29) Wygn = dl s ang,n + 59,05n,2 (X(zl)le(z;))Q

= Wy [ [ d108(X (21) + 65.00m2 (sl

X(21)—X (22))?"
i=1
Definition 3.2. We say that the rational symmetric differentials w,,, g > 0, n > 1, satisfy the

topological recursion on the spectral curve (3, X (z),y(2), B(21, 22)) if

e (Initial conditions) We have:

(30) wo1(2) = y(x)dlog X (2); wo2(21, 22) = B(21, 22).
These equalities are also equivalent to

1 1
21 T Ry

(31) Woa(z) = y(2), Moz(21,22) = lo8 sy

o (Linear Loop Equations) For any g,n > 0 the function W, ,; may have a pole at p; for
1 =1,..., N withrespect to the first argument such that its principal part is skew symmetric
with respect to the involution ;. In other words, we have that

(32) Wyn+1 (27 Z[[n]]) + Wynt1 (Ui(z)’ Z[[nﬂ)

is holomorphic in 2z at z — p;.
o (Quadratic Loop Equations) For any g,n > 0 the rational function

(33) Wg—l,n-i-?(zvzaz[[nﬂ) + Z W917\11|+1(Z>zh)Wg2,|12|+1(z>le)

g1+91=9g
I1|J12=ﬂnﬂ

may have a pole at p; in z such that its principal part is skew symmetric with respect to the

involution o; forany i =1,..., N.

e (Projection Property) For any g,n > 0 the function My .1 (2, 2[,]) considered as a rational
function in 2 has no poles other than py, . .., py. Equivalently, the differential wy ,,+1(2, 2[n])
has no poles in z other than py, ..., pn.

The projection property implies that W, .11 (2, 2[,) also has no poles in z other than py, ..., py.

But this weaker condition on W, ,,;; is not sufficient for the projection property. We need a stronger
dX(z)

requirement that W, ,, 1 vanishes at the poles of dX/X so that W .1 (2, 2[n]) 5 ©)

outside pq, ..., pn.

The linear and quadratic loop equations together determine the principal part of the poles of
Wyn+1(2, 2[n]) in 2 up to the terms with at most simple poles at p;. Multiplying by dX (z)/X(2)
we obtain the principal part of the poles of wg ,,+1(2, 2[,j) Without ambiguity. Any meromorphic
differential form on CP! is determined uniquely by the principal parts of its poles. The principal
relation of topological recursion is nothing but an explicit formula expressing the form w, ;1 in
terms of the principal parts of its poles.

is holomorphic

Remark 3.3. The original formulation ([EO07]) of the spectral curve topological recursion, which is
equivalent to the one given above, allows one to explicitly recursively reconstruct all the n-point
differentials w, ,, starting with the spectral curve data (X, X (z2), y(z), B(z1, 22)); we are not listing
the respective formulas here for brevity.
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3.4. Topological recursion for ordinary maps. Denote t := (¢y,...,%,,0,0,...). Set

(34) r(z) = a4y (z + l) ,

(35) —x—Zth -1 xmz

(36) w(z) = V(z) (the polynomial part of the Laurent polynomial V' (z) ),
1

(37) X(z) = &

(z) azt+y(1+22)
o

IS H

(38) y(z) =

where o = «(t) and v = 7(t) are functions defined in the vicinity of the point £ = 0 via implicit
algebraic equations

(39) [°IV(z) =0, [z7']V(2) =77,

such that a(0) = 0, v(0) = 1.
With this set-up, the n-point functions W, ,,(X7, ..., X,,) enumerating maps and defined by (26)

become rational functionsin z1, . . ., 2, after the substitution X; = X (z;). Moreover, the differentials
dX,dXs
40 =Wy 00275

can be obtained via topological recursion (cf. Remark 3.3) with the initial data

dX(z) . dz1dz
X(z)’ T (51— 2)?

(41) wo1(2) = y(2)

Y

i.e. on the spectral curve
(42) (CPY, X(2),y(2),dz1dzs /(21 — 22)?),

see [Eyn04; CE06; CEO06; DBOPS18; Eyn16].

In particular, this implies that for stable (g,n) all possible poles of rational functions W, lie
on the hyperplanes z; = +1. When we say that WV, ,, are rational, we mean that they are ratios
of polynomials of fixed degree whose coefficients are formal power series in the ¢; parameters.
Moreover, the coefficients can be expressed as polynomials in ¢4, ...,%,, o, 7, so that the entire
“nonpolynomiality” is contained in the algebraic functions a(t) and 7(t). In particular, all these
series have non-zero radii of convergence.

3.5. Topological recursion for fully simple maps. Given that topological recursion is known
for Wy, (X1, ..., Xy), we prove it for W', (wy, ..., w,), with the spectral curve data given by the
functions w(z) and y(z) defined by (36)—(38).

Theorem 3.4 (Conjectured by Borot and Garcia-Failde, [BGF20]). Let the parameterst;,i =1...q,
be such that the function w(z) defined in (36) has only simple critical points. Then the n-point
functions W), (w1, ..., w,) defined in (27) satisfy the topological recursion on the spectral curve

(CPY w(z),y(2),dz1dz /(21 — 22)?), where y(z) is defined in (38); that is, the (0, 1)-differential is

given by y(z) w((;))

In terms of of the spectral curve data X (z) and y(z) for ordinary maps, (42), the spectral curve data
for fully simple maps takes the following form:

(43) w=X()1+y(),  y=yl2)
Proof. Follows from Corollaries 5.4 and 5.10. U
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Remark 3.5. If w(z) has non-simple critical points, the ordinary topological recursion is not appli-
cable, and one needs to use the Bouchard-Eynard recursion [BE13]. For brevity, we omit this case
here, but the fact that the Bouchard-Eynard recursion holds for it, can be proved by taking a limit
from the general case (where the ordinary topological recursion applies), analogously to [BDBS20,
Section 2].

4. Dualities

In this section we formulate and prove the generalised ordinary vs fully simple duality. We start
with formulating and proving it in the KP context (along with introducing a conjecture on the
topological recursion in this context) in Sections 4.1-4.6, and then, in Sections 4.7-4.8, we also do it
in a more general context inspired by the so-called stuffed maps.

4.1. Objects. Consider three sets of parameters (cy, co, ... ), (s1,S2,...), (t1, 2, ... ). For simplicity,
we restrict ourselves to the ACEH-type [ACEH20] case when only a finite number of parameters
are different from zeroes.

Remark 4.1. Note that there were not any ¢-parameters in [ACEH20], that paper covered only
the ¢t = 0 specialization of what is described below; still, we use the terminology ACEH-type to
reflect that only a finite number of parameters are non-zero, since this was the case for the c- and
s-parameters in [ACEH20].

Along with the parameters, we also have variables (py, po, ... ). Let
(44) U(y) =log(l +cy+coy* +...),
(45) o(y) = exp((y)) = 1+ cry + o> + ...,

(40 bmly) = exp (Zw (v 2“—;"_171)) , m>0,
i=1

(47) do(y) =1,
(48) Om(y) = (o-m(y)) ", m <0

(here, for simplicity, ¢ does not depend on A, compared to what we had in Section 2). Then

(49) DysyZexp | S G(h(j — 1) | sn

(4,7)EX

Consider the following two partition functions

(50) Z =P = (0| e ezrl";;?p pe=n |0,
(51) Z\/ — €F <O‘ pDat zh ’D 621001 JfﬁlDzberol S;In‘ |0>

The first one specializes for ¢t = 0 to the ACEH partition function studied in [ACEH20], ZACFH =
Z|i=o. On the other hand, for ¢ # 0 it is recovered from the ACEH function by a shift of variables,

(52) Z(p,t) = ZACH(py 4ty py + ty,...) = Z

t;=0,pi=p;+t;"
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The n-point functions are then defined as follows:

(53)

Wg,n(Xh ce 7Xn) = {h29*2+”] Z ap ap |p 0 H {’TLZ)(WLI
my - mn

mai,.. 7mn_1

= [h2g*2+n} Z HXml O‘ Jml m 6 =1 zh Dwezfolsjﬁ. ’0>O’

mi,....mnp=11=1

(54)

I o FY
W;/n(wl,...,wn) =[R20 2] Z T — | OHmw

mi,...,Mmp=1
2g—2+n - m; 1 Shoo ity oo %id—i
= [h D H%@MWMM%eMmmeﬂm

mi,....mnp=11i=1

0)°.

Notation 4.2. We call the partition functions and the n-point functions defined above in this
subsection (and used up until Section 4.7) KP-type as opposed to the more general type discussed in
Section 4.7.

Remark 4.3. In the case t = 0 the coefficients of IV, ,, enumerate various kinds of Hurwitz numbers
for various specializations of the other parameters. In the most general case when c and s parameters
are not specified, these are the so-called weighted double Hurwitz numbers, see e.g. [ACEH20]. The
insertion of ¢-parameters corresponds to additional markings of ramified coverings enumerated by
Hurwitz numbers. Therefore, we can refer to the coefficients of W, ,, as the ¢-deformed weighted
Hurwitz numbers. On the other hand, the functions W, are introduced in a formal way by an
explicit formula (54) and combinatorial meaning of their coefficients is not clear at the moment. The
only case when the combinatorial meaning is assigned is the case of enumeration of (hyper)maps
and fully simple (hyper)maps. In this way, we consider the coefficients of W, as the “fully simple
analogues” of (t-deformed) weighted double Hurwitz numbers.

4.2. Conjectural topological recursions. We conjecture that the n-point functions W, and
W, satisfy topological recursions on some spectral curve.

Conjecture 4.4. Consider the n-point functions W, (X1, ..., X,,) and W)/, (wy, ..., wy) defined in
(53) and (54), respectively. Here it is important that only a finite number of parameters c, t, s are non-
zero, as we have assumed at the beginning of Section 4.1; moreover we assume that these parameters are
in general position, more on that below. Also consider the curve ¥ = CP' with the global coordinate
2, and a bidifferential B(z1, z) = dz1dzo/ (21 — 29)%.

Then there exist meromorphic functions X = X (z), w = w(z), andy = y(z) on X such that

e X(z) and w(z) serve as local coordinates near z = 0, i.e.
(55) X(0) =w(0) =0, dX/dz(0) # 0, dw/dz(0) # 0.

e Then-point differentialsw, ,, andw; ,, reconstructed via topological recursion (as in Remark 3.3)
for the spectral curve data (X, X (z),y(z), B(21,22)) and (3, w(z),y(z), B(z1, 22)) respec-
tively, have the power expansions at z = 0 given by

tdX; dX dX,
56 n=Won(Xi,....X, 0g00n2————s,
(56) Wy, g (X1 )H X, + 040 72(X1_X2)2

(57)

dw; dwid
WV (w17"-awn)H o +5905n2Ma

“an 1w (wy — ws)?

respectively. Here Vi X; = X (z;), w; = w(z).
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e Moreover, the functions X (z), w(z) and y(z) are related by the identity
(58) w =X o(y),

where ¢ is the one of (45).

The aforementioned general position requirement is needed since for some special values of parameters
¢, t, s the functions X (z), w(z) will acquire non-simple critical points, and thus the ordinary topological
recursion will not be applicable; one has to use the Bouchard-Eynard recursion [BE13] for these special
situations, but we are not giving the respective precise statement here for brevity.

Remark 4.5. For the two topological recursions conjectured above we have:

e The ‘poles’ of the two recursions and the involutions near the poles are provided by the
functions X and w, respectively, considered as ramified coverings > — CP.
e The (0, 2) differential is the standard bidifferential w2 = wyy = B(z1, 20) = 22142,

(21—22)2

e The (0, 1)-differentials are given by

dX
(59) Wo1 =Y =

dw
60 —
(60) W01 Y w

in other words, the functions W ; = Wy, = y considered as functions on the spectral curve
coincide.

Remark 4.6. The conjecture in this form remains open, even just for the case of the “ordinary”
functions W, (disregarding the “fully simple” ones, W,/ ). The topological recursion statement is
proved for W, ,, for the specialization ¢ = 0 only, see [ACEHZO] [BDBKS20b]. We expect that this
statement extends to the ¢-deformed case with the same number of critical points for the function X.
Meanwhile, we can prove certain duality statements for W, ,, and ng .,» see below (Theorems 4.10
and 4.11), which can potentially allow one to prove the topological recursion on one side if it is
already known on the other side independently. We then do the latter for the maps / fully simple

maps case, i. e., we prove the Borot—Garcia-Failde conjecture (Theorem 3.4) this way.

4.3. Duality formulation. In this subsection we formulate the duality statement for the W, ,, and
W, For this we need to introduce multigraphs:

Notation 4.7. Let V be a finite set. A multiedge is an arbitrary subset of V. A multigraph with
the set of vertices V' is an arbitrary collection of multiedges. A multigraph can be represented
as a bipartite graph with white and black vertices. The white vertices are considered as ‘true’
vertices while black ones are regarded as multiedges. Every multiedge connects several white
vertices, namely, those connected with the corresponding black vertex by edges in the usual sense.
A multigraph is called connected if the corresponding bipartite graph is connected. All multigraphs
that we are considering are simple meaning that neither multiple multiedges nor multiple edges in
the corresponding bipartite graph are allowed. We denote by I';, the set of all connected multigraphs
on n numbered (white) vertices. For a multigraph v € I, we denote by V() and E(~) the set of
its vertices and multiedges, respectively.

Remark 4.8. Notation 4.7 just gives a more detailed and formal definition of the same set I';, which
appeared at the end of Section 2; the graphs from this set differ from the graphs from the set I';, of
that section by lacking any multiple edges or “ordinary” edges connecting white vertices.

We formulate an expression for W, ,, as a sum over multigraphs on n vertices involving W7 ,’s
for different pairs of ¢, n’ and a similar expression for I, in terms of W, ,,’s. These expressions
have a symmetric form providing the duality between the functions W, ,, and W/, : the collection
of one of these two functions determines uniquely the other one.
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Define
(61) ZujhkS u; hk)wk e 9
1 apk
(62) Wy =070 FY o

/‘\

Huhh‘s (), hw;, 0 Wi ) Zth wEw, k: (wjys - - wj,),
k ~
. 6y
(63) W, = <H(e - 1)) -

1 Tk
Let v € I',, be a multigraph. Let e = (j1,...,Jx) € E(7) be a multiedge connecting vertices
J1,-- -, Jk- We define the weight of this multiedge as follows. If £ > 2, we set

k ~
(64) Wgt\/(jl, oy JK) = €xp ((H(e% — 1)) Y ‘p:()) —1

=1

In the exceptional cases k < 2 these formulas are slightly modified. Namely, if £ = 2, we set

(65) w;{;orr ::h2uiuj8(uihwi8wi)S(ujhwj(?wj)%,
(66) wgt (i, j) =TT 1.

Finally, in the case k = 1 we set

(67) wet” () =™~ ol e,

Remark 4.9. This wgt”(j1,...,Jx) (and wgt(j1, ..., jx) below) is similar to the weight we had in
Section 2 (or, more precisely the former is a special case of the latter), except that it gets this
correction for £ = 1, which was not the case for the weight.

With these notations, the main relation connecting the KP-type ‘ordinary’ and ’fully simple’
correlator functions reads as follows:

Theorem 4.10.
(68) Wg,n(Xl, e X)) F 0,002

S = 10 0, Y T e

yel, e€E(7)
where U; is the transformation sending a function H (u;,w;) in u; and w; to the function U;H in X
given by

m - wiWY (w; H( i) z)
(69) CHX) =3 3 X0 O lyo) [t RSt

r=0 m=—o0

If H(u;, w;) /u; is regular in u; (which is always the case forn > 2), we also have

[e.9]

o0 (W) Ly (0,1, Wy 1 (wi)) [ H(ui7wi)
(0 (U)X = Y (et P 3 PR e et |
J=0 r=0
S(vhdy)
7)) Lo hy) = (3, + ol () e (S0 VW,

(72) QY (w;) = —

R _ . N .
X, duw, =1—w;0y, IOg(Qb(Wo,l(wz)))‘
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The form (70) can be obtained from (69) due to the fact that the ‘principal identity’ of [BDBKS20a]
implies that the action of U; can be expressed in this case through the local change of variables
w = w(X) defined by an implicit equation

w

(Wi (w))

The advantage of this form of U; is that when it is applied in (68) the sums over r and j appear to
be finite for any fixed g and n.

All relations (61)—(72) have dual analogues with the exchange of the generalised ‘ordinary’ and
‘fully simple’ functions. Namely, denoting

(73) X =

(74) W i = (H UJZhS(U,]Z hX]ZaXJ1)> Z h2g—2+ng7m(Xj1, R ,ij),
i=1 g=0
(75) Wj,...j = Z mmh ,,,,, VIR RN IS
T1,...,rg=1 Y T
X, X

(76) W = hPuu;S (uihX0x,)S (ujhX;0x ) mo——ts |

\J J J J J (Xz _ Xj)2
(77) Wgt(jl, o 7]19) — GQU]-I ,,,,, jk+5k,2m§‘l’f;2—5k,1u,7'1W0,1(X,7'1) — 1+ 519,17 (jl’ L >]k) c E(’Y),
we have:
Theorem 4.11.
(78) Wy (wi, o wn) 46y 00n s ity = (2920 UY S [ wate).

v€Ty, e€E(Y)
The transformation U}’ takes the function H (u;, X;) in u; and X; to the function U’ H in w; given by

wiWo (x,) 1 (Ui, Xi)

(79) (UivH)(wi) = Z Z w;" (a;¢—m(y>|y:0) [u; X7"]e uth(ujh)'

r=0 m=—o0

If H(u;, X;)/u; is regular in u; (which is always the case forn > 2), then we have also

80 UVHY(w;) = S (oA X,y Y § Lo Woa (X)), r 2\ A

(80)  (UYH)(w) ;(Qm) ) Z:; e oml UAbrw > s I
S(vhdy)

1) L(v,hy) = (8, + v (y)) " (57 )P

(82) Q(X;) : =1+ X;0x, log(¢(Wo.1(Xy))),

w; dX;
where the change X = X (w) is defined through an implicit equation
(83) w =X p(Wp1(X)).

We give the proofs of the latter two theorems in Section 4.5.

Corollary 4.12. Assume that we are given rational functions X (z), w(z), y(2), and ¢(y) satisfying
the identity

(84) w(z) = X(2)o(y(2)).

Consider the collections of functions W, ,, and ng,n defined by (53)—(54) and expressed in z1, ..., z,
through the substitutions X; = X(z;) and w; = w(z;), respectively. Then the functions W,,, are
rational in z-coordinates for all g and n iff the functions W, are rational in z-coordinates for all g
andn.
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4.4. Special cases and examples. In this subsection we list explicit formulas for W, ,, and W},
in terms of one another for the special cases (g,n) = (0,1) and (g,n) = (0,2), and for regular
examples (g,n) = (0,3) and (g,n) = (1, 1).

4.4.1. (0,1) case. The case (g,n) = (0, 1) is a unique case when the sum over graphs has a constant
term in the expansion in the u-variables and the relations (70), (80) cannot be applied directly.
However, the computations similar to those in [BDBKS20a] give in this case

= UW(;/J(U))
(55) Woa(X) = D0 D" X" 9oy)™ |, ' w™| —— = Wy, (w(X)),
r=0 m=1
v w(X)
(86) W3 (w(X)))’
oo 0 ’LLWOJ(X)
(57 Wr(w) = D2 D" X" 9oy |, 0w ———— = Woa (X (w)),
r=0 m=1
(8) w = X(w) $(Wo (X (w))).

As a corollary, we conclude that the changes w(X) and X (w) defined by (73) and (83) are inverse to
one another and the functions Wy 1(X) and Wy, (w) are identified through this change. Indeed, we
have

(83) w(X) (88) w(X) @3
(®) ) = S K@) s @)

and similarly one shows w(X (w)) = w.

4.4.2. (0,2) case. Out of four connected multigraphs on two vertices only one gives a contribution
for g = 0, and we get

(90) WOvQ(Xl’ X2) + )l(iXQ = [hO]UlUQUfLLQ (WS{2 (U)h wg) 4 Wt )

(X1—X2)2 (w1 —w2)?

_ 1 \Y4 W1 W:
— QV(w1)QY (w2) (Wo,Q(wla w?) + (wliwz)2>'

The dual computation of Wy, yields

1) Woia n, w) + 22825 = orxrigre (WoalXn, Xa) + 2255 ).
The two computations agree since we have through the change between X and w
1
(%2) QX) = :
QY (w)
These relations can be rewritten also in a more symmetric form
(93)  wpy = Woh(wr, we) G252 + % = Woa(Xy, Xp) G2 422 4 % = Wo,2-

Remark 4.13. For the special case of maps/fully simple maps it is known that there exists a local

coordinate z on the line with coordinate X or w such that the above bidifferential becomes %

in this coordinate (it is the global affine coordinate 2 on the spectral curve ¥ = CP!, see Section 3).
Computer experiments indicate that it should also be the case in general. However, the problem of
finding this coordinate for the general case remains open, cf. Conjecture 4.4.

4.4.3. (0,3) case. Set
(94) yi = Woa(Xi) = Wyl (wi),
(95) Qi = Q" (w)

1

(96) Qi =Q(X;) = oV
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Then,
3 Wi Wy
(i) T | Wol o (wisws)+7——=3
Wy 5 (w1,w2,w3) 1 J#l( 0,2 I (wi—wy) )
(97) WO,S(Xb X2> X3) 05\/Q2 Q3 + Z Qv W; awl QYQXQ?’,/ s
Vv Wo,3(X1,X2,X3) : 1 V(1) [z (WO72(Xi7Xj)+ (X)i(i))(é)Q)
(98) W073(w17 w2, w3) T Q1Q:Q3 Z Qi XzaXl Q1Q2Qs3

where we identify functions in X; and w; on the two sides of these equations through the change (73)
and (83).

4.4.4. (1,1) case. Applying Theorem 4.11 to this case we obtain, after some simplification,

(99)  Wia(X) =gbs ) (w) + (X0x)? (% (W;gﬂwa Y+ Y92 (15,2 ))

<¢” (wdy, )y w(y) + 1/) Wa/Q(w w)) — %)

+X3X<

(100) WY, (w) =g Wi (X) + (wd)* (o (— L Xox y+w (Xox ) )
e (o 5 )

where we identify similarly functions in X and w through the change (73) and (83) and where we
denote y = W/, (w) = Wy1(X). Note that we have through this change

(101) X0x = ( w@w, WOy, = ﬁX@X.

4.5. Duality proof.

Proof of Theorems 4.10 and 4.11. Consider Z = e and Z¥ = e’ as elements of the (bosonic) Fock
space:

oo iti o Sid_j
(102) 7 = X Dwezv e |0);
(103) 7Y = DX Dy et = o).

In fact, an explicit structure of these expressions is not important for the proof. The only property
that is used in the derivation of (68) and (78) is the following relation between these functions.

(104) Z =DyZ", 7' =Dy'Z=D_yZ.
Denote

(105) Jm = Dy Jo Dy,

(106) Iy, =Dy JnDyt.

Consider first the disconnected n-point functions (or rather the extended versions /V[Z; of these
functions in the sense of [BDBKS20a, Section 4]). By definition, we have

(107) We= > X X0 g I Z
— Z X X0 iy - T, Dy ZY

= > X X0 Ty T, 2,
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where the summation runs over tuples of all possible integer values of m;’s, both positive and
negative. Then, [BDBKS20a, Proposition 3.1] states that

[o.¢]
o7 uhS (uhk)J_jw k590 | uhS(uhk) Jywh
(108) I = Z(ﬁ;qﬁm(y) ‘y:O) [ w™] == ; (u;) = :
r=0

Similarly, for the dual case we get

(109) WYe = Z wi w0 I Y Z
> - o e uhS(uhk)J_ X—kezoo: whS (uhk)J, XF
(110) I = Z(ay —m(y) |y:0) [ X e== Zhs(uh)k : —.
r=0

Next, we substitute these expressions for J,, and commute the corresponding vertex operators
moving positive J-operators to the right and negative ones to the left. Then, we compute

(111) We= > > T10@ém |,_) [Tww]
=1

M1,yeeeyMp, T1,...,7n=0 1=1

n
WEwe

H 1 H eﬁ?ukugs(ukﬁwkawk)S(ugﬁweawl)m
uihS(u;h)
=1 1<k<t<n

n
% <O‘ H 621211 u,hS(u,hk)kaf Z\/
i=1

n

Vcorr SV \Y

=U;...U, He ui W' (wi) H ekt (He5i)eF
=1

1<k<t<n

n 5Y \/|
= U, ... U,e Zi=1wWen (it cpeean W™ e(Hi:1 )
=U,...Uye” P wiWy (W) 430 <pcr<n QBZ,CEO" +>X e

=U ..U, ] (14 wst“(D))
Ic{1,...,n}

=U,...U, Z H wegt” (I

Y e€E(7)

.....

where the last summation goes over all multigraphs v on n numbered vertices, both connected
and disconnected ones. The inclusion/exclusion procedure used in the passage from disconnected
to connected n-point functions singles out exactly connected multigraphs. On the other hand,
by [BDBKS20a], the ‘connected extended n-point functions’ are given by

(112) Wg’n(X17""X”) = Wg,n<X17--‘, )+5905n2 Xl))(é) .

This completes the proof of (68). The proof of (78) is similar.
O

4.6. Maps vs fully simple maps. The enumeration of maps corresponds to the specialization
sk = 02 and ¢(y) = 1 + y. We have in this case

w
113 =1 = —.
(113) oy)=1+y=+
Therefore, we have
dX dX dX 1 dX
d 1 d d
(115) wglzy—w:ﬂd __w_X dw w

’ w w w w
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The topological recursion relations make use of the odd part of wy; with respect to the involution
only. It follows that adding even summands to this form does not change the result of the recursion.
Therefore, we can set in this case equally

(116) wo1 = —wd(X), wyy =X ""duw,

and this will not affect the computation of the higher differentials. Therefore, our duality statement
is equivalent in this case to the ‘(x <+ y)-symmetry’ conjecture of [BGF20]: we use X ! and w as
the conventional x and y coordinates of topological recursion. Note that in the general case our
formulation of ordinary vs fully simple duality is not reduced to the x <+ y duality.

4.7. Beyond KP integrability. The generalised ordinary vs fully simple duality theory developed
in Sections 4.1-4.5 can be applied (with literally the same proofs) to more general VEVs. Let
Y= 0 > Crmy*h*™ be a formal series in y and /2, and ty,, k. and Sgk,, k. (for g >0,
m > 1, k; > 1) be some numbers symmetric in the indices k. Here we no longer assume that only a
finite number of the coefficients c, ¢, and s are non-zero (as we did at the beginning of this section).
Define

117) M3(Xy,. .., X,) =

n oo JZ . th 2+m o] m J
= (O (TT>_ X" ) exp DD DLAEE o Hk—
i=16=1 " g=0 m=1 : k1yeokm=1 j=1
o 0 129-2+m o0
X Dy exp ( Z % Z Sgik,km H kj) ‘O
g=0 m=1 ’ ki,....km=1 j=1
= (0] HZ g Ni | Duoxp 22 T 2 e H 0).
=1 0;=1 g=0 m=1 kiye.oskm=1 J=1
(118)  MY*(wy, ..., w,) =
SCIII SRR ESERE0 9 S S Hk—)
i=1¢;=1 g=0 m=1 ki,....km=1 =1
oo 00 h2972+m o0 m —k-
X Dy exp Z Z — Z Sgiki e him H k'J > |0)
9=0 m=1 m: kiekm=1 j=1 7
— (0| <H >0 wf@> exp (Z S swwl k?) 0),
i=1 =1 " g=0 m=1 T ki km=1 j=1 "7

with M, (X1,...,X,) and MY(X1,...,X,,) being the connected counterparts, respectively. Do
note that while we list the variants of these formulas containing the ¢-parameters (in order for
the maps/fully simple maps case to be clearly seen as a special case here), these ¢-parameters do
not represent independent degrees of freedom w. r. t. the s-parameters, which is visible from the
s-rewritten formulas.

This more general case includes, in particular, the stuffed maps [Bor14; BS17; BGF20] (for
1) = log(1+y) and general values for the parameters sk, . x,.), and some pieces of the generalised
ordinary vs fully simple duality statements in this case are already mentioned in [BGF20, Section
7]. Using the results of [BCDGF19, Section 5], our Lemma 3.1 also proves that MY enumerates the
corresponding fully simple objects (stuffed maps and hypermaps).

4.8. General duality for M-functions. In this section we formulate the refined form of the duality
formulated in terms of the functions My, := [R*9"**"]M,, and MY, = [#*9">*"|M)/ (we use here
the same notation as in (24), (25) for the generalised n-point function) defined in Section 4.7. It takes

the following form, where Wy 1 (X) = X0xM1(X) and ¢y == ¢ |p—0:



18 B. BYCHKOV, P. DUNIN-BARKOWSKI, M. KAZARIAN, AND S. SHADRIN

Theorem 4.14. Forn > 3:

(119) My (wr, . wy) =[R2 H ST wat(e

Y€, Vi€ly e€E,\KCy

_V _ —_——
X H ( o zl( (e )Wgt(e) + Wgtil(e)..jl(e)(e) (6)) + const,
eeky
whereT,, is the set of all connected multigraphs on n vertices vy, . .., vy, E, is the set of multiedges of a

graph vy, L, is the subset of vertices of valency > 2, and IC, is the subset of multiedges e withl(e) > 0
ends Vi, (¢); - - - , Vi, (e) Of valency 1, and where

@ T o) e |

r=0
(vhdy)
(12))  Lo(o,hy) = (@ + vviyl) e (S70),
Xi dwz d
122 X)) = — =14+ X; Wo1(X;
(122) QX;) v, Lt dsz( 0.1(Xi)),
and
(123)  wat(ji, ..., jx) = T o255, =Ohaus Woa (X)) _ g
PARAS T‘l T‘k
(125) mjh_“?jm = <H U,JZH,S(U]Z hinani)leani> Zh29_2+mMg,m(Xj1; cee ,ij),
i=1 g9=0
COIT XZX
(126) W = h2uiuj8(uihXiaX¢)S(uthjan)m’
and
- . . X l 1
(127) Wby (1o Jb) 3= Ol S(u, DG, 0, ) 5= + W

11

wherem =k — [ and {i1,...,im} = {j1,- -, Ju} \ {i1,-.., 01}, and

(128) Wit =it m=0
= 1
7. ’Ll . 1.9
(129) wjl jm '_ Z Tl! ey !mjl,...,jl,---,jmp--,jm7 m Z 1
1y Pm=1 m \'71"/ \Tﬂ:-/
(130) it = B [ [ ushS(uy, hX;,0x, ) X;,0x,,
s=1
oo !
29—2+1
S OREEIM (X X X X)),
g=0

where in the last sum the prime means that for (I,q) = (1,0) the sum runs from g = 1 instead of
g=0.
Forn = 2 and g > 0 we have:

(131) MY, = (119) + [A%] (UYU;wgt(l, 2) + U, wety(1,2) + Uy wet, (1, 2)> + const,
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where by (119)' we mean the expression one obtains from (119) for thisn = 2 case, but instead of the
summation over all 4 graphs there are in this case, we sum over only 3 of them, excluding the graph

with E(7) = {(1,2)}.
Forn =1 and g > 0 we have:

(132) My, = [%71] (ingm) + wegt, (1)

I it Lo (—o 1(Xa
3 (ki) G 0 30

_ /OWOJ(XI) (&%ay)w(y’ h) — wo(y)) dy) + const.

Proof. Theorem 4.11 holds for the general W, and W, ,, corresponding to I\/Ig’n and M, of Sec-
tion 4.7 (in place of KP-type W/, and W, ,,) in exactly the same form, and the proofs are completely
analogous. Passing from W, to M/ is then done analogously to how a similar thing was done in
[BDBKS20a, Theorem 5.3 and Section 6]. O

Remark 4.15. Analogously, M, ,,’s can be expressed in terms of M/, ’s in similar way to Theorem 4.14.
The difference is as Theorem 4.11 differs from Theorem 4.10. One just has to take all formulas of
Theorem 4.14 and then to replace 1) with — and all V-d functions with non-V-d ones and vice
versa everywhere; this follows from the fact that DJ = D_,. We do not list explicit formulas here
for brevity.

Example 4.16. In the case (g,n) = (0,3), applying (X;X2X30x,0x,0x,)”" to both sides of
formulas for general Wy 3 and (w;wyw30y, dw,0uw,) " to both sides of formulas for general Wy’
(formulas for general W) 3 and W/, are analogous to the ones in Section 4.4), we obtain

3
(133) Mo (X1, X, Xg) = MYy (1w, w2, wg) = 3 SO0 TT (Do My, wy) + 52 ) + 04(0)
i=1 j#i
3 i
=3 ST (D Moa (X, X)) + 525 ) + ¥4(0).
i=1 j#i
Here
(134) Ui (y) = [1*]log ¢(y)
(135) Dx = X0x = Qv;(mwaw, Dy = w0, = ﬁxax,

The integration constant ¢}(0) is computed from the condition that both sides should vanish at
the origin, see [BDBKS20a] for more details on the computation of this kind of constants.
Analogously, in the case (g,n) = (1, 1) we obtain

(136)  My;— MY, =24 (%Diy Wl | Wy, (w, w))

4 DX (& (1/)0( )Dwy+ ( ) D2 wo(y) / w du+ 1/10

— % (W)Qiy)Diy _ 2( ) Tﬁo(y)W (X X))

4
+Du (3 (2D — 42Dy ) = 42— [ ) -+ 42

5. Proof of topological recursion for fully simple maps

In this section we prove Theorem 3.4. Starting from this moment and up to the end of the paper
we work only with a special case of fully simple maps, though, when possible, we still write more
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general formulas in the intermediate computations. So, from now on, as in Section 3, we assume
that ¢(y) = 1+ vy, ¥(y) = log(l + y), the functions W, (X;,...,X,,) are the corresponding
n-point functions for maps, and we use that these functions are rational functions on CP! in the
coordinates z1,...,2,, X; = X(z), with the coefficients depending on ¢-parameters, and with
known singularities. Furthermore, they satisfy the topological recursion.

An immediate observation that follows from Theorem 4.11 and topological recursion for the
ordinary maps is that W/ (w,...,w,) are also rational functions on CP! in the coordinates
21y .oy Zn, Wi = w(z;) (cf. Corollary 4.12).

5.1. Loop equations. In this section we prove the loop equations (the blobbed topological recur-
sion) for the fully simple maps. The way we present it is a bit streamlined and shortened version
of the argument in [BDBKS20a, Section 2], and it is heavily based on op. cit.,, so we skip here many
subtleties explained there in detail. We use the following notation for operators on the bosonic Fock
space:

Q?éy% (eZﬁl(y*i*z’i)%e 2 (@ —y")op; _ 1)

137 bRy, = ;
(137) > alyrEy p—y ;
klez+3
(138) 80(’&) = Z eukEAﬂk’k;
kEZ+3
(139) J(w) = Z Jmw™.
meZ

Definition 5.1. Let
(140)

Wl (wi; wpapa; w) = (0] <Z m) Eo(hu) (HJ w; ) Dl WDyt =l 0)-

Using inclusion-exclusion procedure as described in Section 2, we also consider the connected
versions of these VEVs denoted by Wy. Let W)/ = [R*9>*" W),

Lemma 5.2 (See [BDBKS20b]). We have:

(141) [T, (w15 w13 w) = 0;
(142) [ WY (wis Wi as w) = W, (wp);
1
(143) (W), (W wpap1; u) = EWQVA nt1 (W1, W1, WEapy1)
+ = Z |[H_1 w17w1>Wg\;,\J|+1(wlan)
9g1+9g2=
II_IJ:[[n]]\l
wlwl
+ Z g\fn—l(wl’wﬂnﬂ\lvi)'
ze[[n]]\l wi)

So, in order to proof the linear and quadratic loop equations it is sufficient to prove that the
corresponding coefficients of W, are rational functions in 21, w; = w(21), whose polar parts at the
critical points of w are odd W1th respect to the respective deck transformations. We can show this
via deriving explicit closed formulas for WW,,,. To this end, we obtain the following straightforward
generalisation of Theorem 4.11.

Lemma 5.3. Forg > 0,n > 2,29 — 2+ n > 0, we have:

(144) Wy (W wpap s w) = (27200 OYTY Y [T wat, (e)

yeD, e€By
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where U, i = 2,...,n, are given by Equation (80), and the transformation 171\/ takes a function

7 0

H(uy, X;) to thefunction UYH inw; given by

o0

(as)  (OYm) =Y (g Xion) W]

i Ly (=v, h, Wo (X1))uS (vuh)e o1 (X1 ) 2L X0)
—0 Q(X1) u1hS (urh) 1xi=x(w)’
wherew = X p(Wy1(X)) = X(1 + Wo1(X)).
For (g,n) = (0,2) we have:
uet Wor(X1) X1Xo
146 Wiy = ——— | Woa(X1, X2) + o |
(146) 0 @1Q2 ( 02(X1, Xz) (X1 — Xp)?
Forn =1, g > 0 we have:
(147)
Wy, = 210y 37 T wat, o)+
el e€Ey
i ( XlaX > -[Uj—H] L()(—U, FL, W071(X1))uS(vuh)e“WOvl(xl)Xlaxl W(),l(Xl)
= 1 hQ(X1) o

(of course, |T'y| = 1 and for the only v € Ty we have |E,| = 1, but it is still convenient to write the

expression this way).
Finally, for (g,n) = (0, 1) we have:

(148) W(Y,l — euWou(X1) _ 1

Proof. We compute W, in a closed form applying the techniques developed in [BDBKS20b], see
also Section 4.5. From [BDBKS20b, Proof of Proposition 2.26] we have

(149) WS (w5 wpap1; @)

sJ-

(ST = e
= ['){0|D; (Z v ) -1 (HD¢J w;) Dy )
1=2

m=1

h2g—2+l~c e

exp< > o X H ’"[Hxﬂ gnxl,...,Xk)>|o>,

9>0,k>1 P1ypr=1 i=1

where log ¢(y) = ¥(y) — euhiS(hd,)e*. This allows to apply directly the same computations as in
Section 4.5, which leads to the formulas stated in this lemma. O

Corollary 5.4. The linear and quadratic loop equation hold for fully simple maps.

Proof. Indeed, the formulas that we obtain in Lemma 5.3 manifestly show that the coefficients of
the expansion in u of W; ,, are rational functions on CP!, whose singularities in z; at the critical
points of w; = w(z;) are generated by a finite iterative application of w0, to rational functions
locally holomorphic at the respective critical points. By [BDBKS20b, Proposition 2.9 and 2.12], this
property implies the quadratic and linear loop equations. U
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5.2. Projection property. We are going to closely follow [BDBKS20b, Sections 3 & 4], though there
are some new effects that we have to take into account. Recall from [BDBKS20b] the definition of
the space O,,:

Definition 5.5. The space © (which we denote by ©,,, n > 1, when we want to stress the number
of variables) is defined as the linear span of functions of the form [[_, fi(z;), where each f;(z;)

e is a rational function on the Riemann sphere;

e has poles only at the zeroes of dw(z) (which we denote by py, ..., py);

e its principal part at px, £ = 1,..., N, is odd with respect to the corresponding deck trans-
formation, that is, f;(z;) + fi(ox(2;)) is holomorphic at z; — py.

In order to prove the projection property, we need to prove that for 2g — 2 + n > 0 we have
M, . € ©, [BDBKS20b, Proposition 3.9]. Consider the statement of Theorem 4.14 specified to fully
simple maps expressions in terms of maps, as defined in Section 3. From Equations (119), (131),
and (132) specified to this case we see that for 29 — 2 + n > 0 every 'V'Z,n is a rational function in
21,...,%,. Indeed, all M, ,, (without """, the n-point functions for maps) entering the respective
formulas for M, are rational functions in z, ..., z, (as implied by the topological recursion for
maps), except for the My ; and M cases. But Mo 1 itself does not enter the formulas (119), (131),
and (132) for l\/lgn, we only use Wy ; , which is rational, and My 2 only appears with at least one
derivative taken, which is also a global rational function. From the structure of the aforementioned
formulas of Theorem 4.14 we also immediately see that M, can have poles only at the following
points:

e At the zeroes of (X (z)) which are the same as the zeroes of dw(z). These are the expected
poles of My, which is fine for our purpose of proving My, € ©,,.

o At z = :I:l since the functions M, ,, (for 2g — 2 + n > 0), entering the expression for
wgt(e), have poles at these points (and only at these points, as it follows from the topological
recursion for maps).

e At z such that y(z) = —1, since they appear in L,.

e At z = 0 and z = o0, since the derivatives of y(z) = Wy 1(X (%)) can poles at these points.

Let us prove that all these poles, except the ones at the zeroes of (X (2)), actually get cancelled.
Lemma 5.6. For2g —2+n >0, M/, (w(z1),...,w(2,)) has no poles at z; = +1 and z; = 0.

Proof. As mentioned above, Theorem 4.14 implies that for 2g — 2 + n > 0 every n-point function

My (w(21), ..., w(2,)) is a rational function in 21, .. ., 2,, also depending on the ¢-variables. Con-
51der the expansion of MV in the t-variables. If I\/Iv had a pole at, say, z; = 1, then at least one
of the coefficients [t,, - - - t,,|M; , would have such a pole as well (as a function in 21, ..., z,). This
means that it is enough to prove that Vk € Z> Vay,. .., a; € Z~( the following expression
8k
(150) —Mvn(w(zl)a'--7w<zn>>
&ga Ce ata 9
1 k t=0
has no poles at z; = 1 (and similarly for the poles at z; = —1 and z; = 0).

In fact, let us prove that (9,,, - - 9, My ,,)|i=o is a polynomial, and thus has no poles at all, other
than potentially at infinity.
We have

(151) MY, (wi, ... w,) = [R297277)(0] LT De T 0)°.

j=1m;=1

Denote

o Jity J_

(152) € = D1eSE D,
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then, via the inclusion-exclusion formula, we can write M;/n as a finite sum of products of discon-
nected correlators:

l .

(153) MY, (wy, ..., w,) = [A*72] Z DS il ] K(U H Z Smyw;” ¢ |0).

=1 Liu..uh=[n] =1 jeI; mj=1
Vi I;#0

Then, by the Leibniz rule, if we prove that for any n' € Z.o, k' € Z>o, b1,...,bp € Zso any
correlator of the form

Jm]P m; (z
(154) (0] H Z G Dty Oy, ©)li=0 |0),
j=1m;=1
where P, (2;) are some polynomials in z;, is a polynomial in 21, ..., 2, this would imply that

(Ota, * 01, My ,)|i=0 is a polynomial too. The appearance of the polynomials Pj,,; is due to the
fact that, from (36), w(z) is a polynomial in z which also depends on the ¢-variables, and thus some
of the ¢-derivatives after applying the Leibniz rule will act on the w’s, but they will only produce
polynomials in the respective z-variables.

We have
I Pim (2
(155) (0| H Z I Fiam (23) Dty =+ Oy, ©)li=0 |0)
j=1m;=1
JmJPJmJ D\ o (e is
(I3 o (Tl ) 2 o
j=1m;=1
I Pjm: (2
ST 280 (Lo Jen) o )
j=1m;=1
From [BDBKS20a, Proposition 3.1], since in our case ¢(y) = 1 + y and recalling (46), we have
° > 1uf/S(ufz)J_ZC_'ezooluhS(uﬁz)J ¢t
156) D' BD = & daly reh S
(156) b ; Ga(v) |, [u7C"] ThS(ah)
b . oo . —1 oo - '3
2% —b—1 ezizluhS(uhz)J_z( ezizluﬁS(uhz)JiC
:Z a’"H lty+——F—"h [u"¢"]
2 . uhS(uh)
rT= y=

The infinite sum in 7 becomes finite in the second line since the 7-th derivative acts on a polynomial
of degree a. Thus D~'J,D can be represented as a finite sum of expressions of the form

(157) R(h)‘]—oq "'J—ak‘]ﬁ1 "'Jﬁl,

where R(h) is some polynomial in /& and «y, 5; € Z-y.
This implies that the whole expression (155) is a finite sum of expressions of the form

(158)
2 Lo tid T T, | SOE (2
R <0| H mjz_l H ‘]—Oéz 1 J_Oli,ki Jﬁi,l Jﬂi,li ; N 2% ‘O>7
where R(h) is some polynomial in /. But a VEV
(159) (O] Jiy -+ Ji, |0)

is not equal to zero if and only if the numbers (i1, ..., i) perfectly split into pairs (i, —i). Since
there is only a finite number of J,’s and a finite number of J_;’s, j # 2,5 > 0, inside (158),
only a finite number of terms one gets after expanding all brackets in (158) are non-vanishing.
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Since all these terms are polynomial in z,...,z2,, the whole expression is polynomial, and
thus all (0, -+~ 9, M, ,)|i=0 are polynomial as well. This, as mentioned above, implies that
all M/, (w(z1),...,w(z,)) have no poles at z; = 1 or 2; = 0. .

Remark 5.7. Note that the argument in the proof of the preceding lemma does not work for poles at
points with coordinates depending on ¢.

Lemma 5.8. M/, has no poles at z, such thaty(z;) = —1.

Proof. This follows from Lemma 4.1 and the proof of Lemma 4.4 (formulas (149)-(152)) of [BD-
BKS20b], up to a change of signs. O

Lemma 5.9. For2g —2+n > 0, M;/’n has no poles at z; = oc.
Proof. The proof literally repeats the proofs of [BDBKS20b, Lemmata 4.6 and 4.10]. U
Corollary 5.10. For2g — 2 +n > 0 we have M, ,, € ©,,.

Proof. Follows from Theorem 4.14 and Lemmas 5.6, 5.8, and 5.9, taking into account that M, ,, is
symmetric in all arguments. O

As we mentioned above, this Corollary implies the projection property, and thus concludes the
proof of Theorem 3.4.

References

[ACEH20]  A. Alexandrov, G. Chapuy, B. Eynard, and J. Harnad. “Weighted Hurwitz numbers
and topological recursion”. In: Comm. Math. Phys. 375.1 (2020), pp. 237-305. doi:
10.1007/s00220-020-03717-0.

[Bor14] G. Borot. “Formal multidimensional integrals, stuffed maps, and topological recur-
sion”. In: Ann. Inst. Henri Poincaré D 1.2 (2014), pp. 225-264. doi: 10.4171/AIHPD/7.

[BCDGF19]  G. Borot, S. Charbonnier, N. Do, and E. Garcia-Failde. “Relating ordinary and fully
simple maps via monotone Hurwitz numbers”. In: Electron. J. Combin. 26.3 (2019),
Paper No. 3.43, 24. doi: 10.37236/8634.

[BCGF21] G. Borot, S. Charbonnier, and E. Garcia-Failde. Topological recursion for fully simple
maps from ciliated maps. 2021. arXiv: 2106.09002 [math.CO].

[BGF20] G. Borot and E. Garcia-Failde. “Simple maps, Hurwitz numbers, and topological
recursion”. In: Comm. Math. Phys. 380.2 (2020), pp. 581-654. doi: 10.1007/500220-020-
03867-1.

[BS17] G. Borot and S. Shadrin. “Blobbed topological recursion: properties and applications”.
In: Math. Proc. Cambridge Philos. Soc. 162.1 (2017), pp. 39-87. doi: 10.1017/503050041
16000323.

[BE13] V. Bouchard and B. Eynard. “Think globally, compute locally”. In: 7. High Energy Phys.
2 (2013), 143, front matter + 34. doi: 10.1007/JHEP02(2013)143.

[BDBKS20a] B.Bychkov, P. Dunin-Barkowski, M. Kazarian, and S. Shadrin. Explicit closed algebraic
formulas for Orlov-Scherbin n-point functions. 2020. arXiv: 2008.13123 [math.CO].

[BDBKS20b] B.Bychkov, P. Dunin-Barkowski, M. Kazarian, and S. Shadrin. Topological recursion for
Kadomtsev-Petviashvili tau functions of hypergeometric type. 2020. arXiv: 2012.14723
[math-ph].

[BDBS20] B. Bychkov, P. Dunin-Barkowski, and S. Shadrin. “Combinatorics of Bousquet-Mélou-
Schaeffer numbers in the light of topological recursion”. In: European J. Combin. 90
(2020), p. 103184. doi: 10.1016/j.ejc.2020.103184.

[CE06] L. Chekhov and B. Eynard. “Hermitian matrix model free energy: Feynman graph
technique for all genera”. In: J. High Energy Phys. 3 (2006), pp. 014, 18. doi: 10.1088/
1126-6708/2006/03/014.


https://doi.org/10.1007/s00220-020-03717-0
https://doi.org/10.4171/AIHPD/7
https://doi.org/10.37236/8634
https://arxiv.org/abs/2106.09002
https://doi.org/10.1007/s00220-020-03867-1
https://doi.org/10.1007/s00220-020-03867-1
https://doi.org/10.1017/S0305004116000323
https://doi.org/10.1017/S0305004116000323
https://doi.org/10.1007/JHEP02(2013)143
https://arxiv.org/abs/2008.13123
https://arxiv.org/abs/2012.14723
https://arxiv.org/abs/2012.14723
https://doi.org/10.1016/j.ejc.2020.103184
https://doi.org/10.1088/1126-6708/2006/03/014
https://doi.org/10.1088/1126-6708/2006/03/014

REFERENCES 25

[CEO06] L. Chekhov, B. Eynard, and N. Orantin. “Free energy topological expansion for the
2-matrix model”. In: . High Energy Phys. 12 (2006), pp. 053, 31. doi: 10.1088/1126-
6708/2006/12/053.

[DBOPS18]  P. Dunin-Barkowski, N. Orantin, A. Popolitov, and S. Shadrin. “Combinatorics of
loop equations for branched covers of sphere”. In: Int. Math. Res. Not. IMRN 18 (2018),
pp- 5638-5662. doi: 10.1093/imrn/rnx047.

[EO07] B. Eynard and N. Orantin. “Invariants of algebraic curves and topological expansion”.
In: Commun. Number Theory Phys. 1.2 (2007), pp. 347-452. doi: 10.4310/CNTP.2007.
vl.n2.a4.

[EO13] B. Eynard and N. Orantin. About the x — y symmetry of the F, algebraic invariants.
2013. arXiv: 1311.4993 [math-ph].

[Eyn04] B. Eynard. “Topological expansion for the 1-Hermitian matrix model correlation
functions”. In: J. High Energy Phys. 11 (2004), 031, 35 pp. (2005). doi: 10.1088/1126-
6708/2004/11/031.

[Eyn16] B. Eynard. Counting surfaces. Vol. 70. Progress in Mathematical Physics. CRM Aisen-

stadt chair lectures. Birkhauser/Springer, [Cham], 2016, pp. xvii+414. doi: 10.1007/978-
3-7643-8797-6.

[GJ03] L P. Goulden and D. M. Jackson. “The KP hierarchy, branched covers, and triangula-
tions”. In: Adv. Math. 219.3 (2008), pp. 932-951. doi: 10.1016/j.aim.2008.06.013.

[GPH15] M. Guay-Paquet and J. Harnad. “2D Toda 7-functions as combinatorial generating
functions”. In: Lett. Math. Phys. 105.6 (2015), pp. 827-852. doi: 10.1007/s11005-015-
0756-z.

[Kac90] V. G. Kac. Infinite-dimensional Lie algebras. Third. Cambridge University Press, Cam-

bridge, 1990, pp. xxii+400. doi: 10.1017/CBO9780511626234.

[MJDO00] T. Miwa, M. Jimbo, and E. Date. Solitons. Vol. 135. Cambridge Tracts in Mathemat-
ics. Differential equations, symmetries and infinite-dimensional algebras, Translated
from the 1993 Japanese original by Miles Reid. Cambridge University Press, Cam-
bridge, 2000, pp. x+108.

B. B.: Faculty of Mathematics, National Research University Higher School of Economics, Usacheva 6, 119048
Moscow, Russia; and Center of Integrable Systems, P. G. Demidov Yaroslavl State University, Sovetskaya 14, 150003,
Yaroslavl, Russia

Email address: bbychkov@hse.ru

P. D.-B.: Faculty of Mathematics, National Research University Higher School of Economics, Usacheva 6, 119048
Moscow, Russia; HSE-Skoltech International Laboratory of Representation Theory and Mathematical Physics, Skoltech,
Nobelya 1, 143026, Moscow, Russia; and ITEP, 117218 Moscow, Russia

Email address: ptdunin@hse.ru

M. K.: Faculty of Mathematics, National Research University Higher School of Economics, Usacheva 6, 119048
Moscow, Russia; and Center for Advanced Studies, Skoltech, Nobelya 1, 143026, Moscow, Russia
Email address: kazarian@mccme.ru

S. S.: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam,
The Netherlands
Email address: S.Shadrin@uva.nl


https://doi.org/10.1088/1126-6708/2006/12/053
https://doi.org/10.1088/1126-6708/2006/12/053
https://doi.org/10.1093/imrn/rnx047
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://arxiv.org/abs/1311.4993
https://doi.org/10.1088/1126-6708/2004/11/031
https://doi.org/10.1088/1126-6708/2004/11/031
https://doi.org/10.1007/978-3-7643-8797-6
https://doi.org/10.1007/978-3-7643-8797-6
https://doi.org/10.1016/j.aim.2008.06.013
https://doi.org/10.1007/s11005-015-0756-z
https://doi.org/10.1007/s11005-015-0756-z
https://doi.org/10.1017/CBO9780511626234

	1. Introduction
	1.1. Organisation of the paper
	1.2. Acknowledgements

	2. Vacuum expectation values
	3. Fully simple maps and topological recursion
	3.1. Geometric definition
	3.2. VEV formulas
	3.3. Formulation of topological recursion
	3.4. Topological recursion for ordinary maps
	3.5. Topological recursion for fully simple maps

	4. Dualities
	4.1. Objects
	4.2. Conjectural topological recursions
	4.3. Duality formulation
	4.4. Special cases and examples
	4.5. Duality proof
	4.6. Maps vs fully simple maps
	4.7. Beyond KP integrability
	4.8. General duality for H-functions

	5. Proof of topological recursion for fully simple maps
	5.1. Loop equations
	5.2. Projection property

	References

