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Abstract
Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An 
assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and 
non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident bar-
nacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and 
when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. 
We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-
transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory 
geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual 
cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. 
Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both 
migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn 
migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate 
that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the 
annual cycle, with migrants being more frequently forced to extend foraging activity into the night.

Keywords Annual cycle · Day length · Foraging · Migration · Residency

Introduction

Migration enables animals to exploit seasonally occurring 
food peaks in different regions throughout the year (Aler-
stam et al. 2003; Newton 2008; Avgar et al. 2014), or can be 
a response to changes in resource requirements and pressure 
from predation and competition during different life stages 
(Fokkema et al. 2020). Migration itself, however, comes 
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with energetic costs, which have to be balanced within the 
annual cycle (Buehler and Piersma 2008; Wingfield 2008). 
By including migration as an additional stage in the annual 
cycle, migrants face a stronger time constraint compared 
to residents (Crozier et al. 2008). Moreover, for many spe-
cies, timing of migration is tightly linked to successful 
reproduction (Lack 1968; Sedinger and Flint 1991; Prop 
and de Vries 2007; Post and Forchhammer 2008; Miller-
Rushing et al. 2010) through timely arrival with respect to 
the seasonal peak in food availability and quality (Van der 
Graaf et al. 2006; Post and Forchhammer 2008; Bischof 
et al. 2012; Merkle et al. 2016; Ross et al. 2018). The nutri-
tional demands to fuel migration and reproduction follow 
each other in short succession, while the need to arrive in 
time at the breeding grounds puts additional time pressure 
on migratory animals. Thus, in comparison to residents, 
migrants have additional energetic expenses and are under 
time pressure to build up their energy stores (Buehler and 
Piersma 2008).

The ability to fly gives birds unparalleled mobility, ena-
bling them to cover large distances in relatively short peri-
ods of time. Active flight, however, is an expensive way 
of locomotion, resulting in high energetic costs (Alerstam 
and Bäckman 2018). To fuel their migratory journeys, 
many migratory birds therefore build up body stores prior 
to migration (Klaassen 1996; Kvist and Lindström, 2003; 
Schaub et al. 2008) and during stop-overs (Eichhorn et al. 
2006; Rakhimberdiev et al. 2018; Nolet and Drent 1998) by 
increasing food intake (McWilliams et al. 2004; Eichhorn 
et al. 2012). This increase in food intake can be achieved by 
extending the period spent foraging, which has been shown 
in passerines (Gifford and Odum 1965; Bairlein 2002), 
shorebirds (Kvist and Lindström, 2003) and geese (Dokter 
et al. 2018a; Lameris et al. 2021). However, for diurnal birds, 
foraging time is limited by the available daylight, and when 
day length is insufficient to meet daily energy requirements 
they experience a diurnal foraging constraint and may be 
forced to forage at night (Tinkler et al. 2009; Lameris et al. 
2021). Given the energetic expenses of migration, birds that 
differ in life history strategy (migratory or resident) might 
therefore differ in the extent to which they experience such 
diurnal foraging constraints throughout their annual cycle. 
However, migration to higher latitudes might lift these con-
straints, because northwards migration is associated with 
increasing day lengths in spring (Schekkerman et al. 2003; 
Tjørve et al. 2007; Pokrovsky et al. 2021).

Attempts to look at the compensation for the costs of 
migration have so far mainly focused on migration distance 
(Shamoun-Baranes et al. 2017; Weegman et al. 2017), or 
have been restricted to the migratory period itself (Guil-
lemette et al. 2012; Flack et al. 2016). However, a migra-
tory life history strategy influences the entire annual cycle 
due to potential carry-over effects (Harrison et al. 2011), 

and its impact must therefore be evaluated within the com-
plete annual cycle (Marra et al. 2015). Ideally, comparisons 
between migrants and residents are made within the same 
species, because species of different phylogenetic back-
ground are likely to differ in many other aspects besides life 
history strategy alone (Garland and Adolph 1994).

For this study, we combined year-round tracking and 
accelerometery data of barnacle geese from two popula-
tions, one resident population breeding along the North Sea 
coast and one long-distance migratory population breeding 
in Arctic Russia and wintering along the North Sea coast, 
and compared their (foraging) activity throughout the whole 
annual cycle. In search for diurnal foraging constraints expe-
rienced by the geese, we identified periods when activity 
exceeded the available daylight period, which suggests noc-
turnal foraging. Finally, we present data on seasonal vari-
ation in body condition of geese from the same migratory 
and resident population in support of our conclusions based 
on activity records.

Methods

Study species and populations

Barnacle geese are originally Arctic-breeding migratory 
birds, and the majority of the population breeds in Arctic 
Russia along the Barents Sea coast, while wintering along 
the North Sea coast in South-western Denmark, Northern 
Germany and the Netherlands (Fox and Leafloor 2018). Fol-
lowing a rapid population increase (Rozenfeld et al. 2021), 
barnacle geese have expanded their breeding area towards 
the southwest within the flyway, and have established new 
populations in the Baltic on Gotland in 1971 and along the 
North Sea coast in the Netherlands in 1982 (Van der Jeugd 
et al. 2009). Barnacle geese breeding in these new popu-
lations also changed their life history strategy, with Baltic 
breeders having a greatly reduced migration distance rela-
tive to Arctic-breeding geese, and geese breeding along the 
North Sea coast having become residents. All populations 
still share the same wintering grounds. This breeding range 
expansion and coinciding change of life history strategy 
offers the opportunity to compare activity of migratory and 
resident birds within the same species.

GPS‑ACC data

We gathered accelerometer (ACC) and GPS data from 
migratory (n = 94) and resident (n = 30) barnacle geese. 
We used data from four types of GPS-ACC transmitters, col-
lected between 2014 and 2020; type A: UvABiTS (Bouten 
et al. 2013), type B: Ornitela (OrniTrack-25), type C: Mil-
sar Technologies S.R.L (GSMRadioTag custom), type D: 
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Madebytheo (Solar GPRS/GPS). Both tracking period and 
transmitter type overlapped between the migratory and resi-
dent populations (Table S1). GPS-ACC transmitters (18.5-
25 g) were all attached to adult female geese using a 16-g 
Teflon harness (Lameris et al. 2017), with the combined 
weight of transmitter and harness being < 3% of the average 
female body weight (1615 g; Boom et al. 2022). The use of 
this harness did not appear to affect migratory behaviour 
(Lameris et al. 2018). Geese of the migratory population 
were caught in the breeding colony at Kolokolkova Bay, 
Russia (68°34′N, 52°18′E), on the nest in 2014 (n = 24) and 
during post-breeding wing-moult in 2018 (n = 3). Addition-
ally, migratory geese were caught on the wintering grounds 
using canon-nets in Lower Saxony, Germany (n = 29) and 
in the province of Fryslân, the Netherlands (n = 36) during 
the winters of 2016–2020. These birds were assigned to the 
migratory population when the collected GPS-tracking data 
confirmed migration.

Birds of the resident population were caught on the nest 
(n = 23) in the breeding colony at the Westplaat Buiten-
gronden (51°47′N, 4°08′E) in 2015 and 2016 as well as dur-
ing post-breeding wing-moult in 2018 (n = 7). All geese 
were measured at capture (body mass, head length, tarsus 
length, wing length, p9 length, see van der Jeugd et al. 
(2003) for details) and were equipped with coloured PVC 
leg rings with inscription for individual recognition.

All GPS-ACC transmitters recorded accelerometer meas-
urements in bursts, with transmitter types differing in burst 
length (from 0.5 to 5 s) and within-burst frequency (between 
20 Hz and 50 Hz). Transmitters took accelerometer bursts 
on regular time intervals varying between 5–30 min and 
recorded GPS-positions at intervals varying between 5 and 
240 min, both depending on transmitter type and battery 
level. To keep transmitters with different sampling regimes 
comparable, we resampled all ACC data to intervals of 
30 min. Incomplete days (with < 48 ACC measurements) 
were excluded from the analysis. Every ACC measurement 
was matched with the GPS position that was taken closest 
in time (mean deviation and SD: 17 ± 8 min from ACC 
measurement).

For every GPS position we calculated day length based on 
the sunrise and sunset times using the R-package “suncalc” 
(Thieurmel and Elmarhraoui 2019), in which we defined day 
length as the period between dawn and dusk (including the 
period of civil twilight).

Body mass data

Data on body mass of a larger sample of untracked adult 
females in both populations was collected in the Nether-
lands and Russia during various catches over the period 
1979–2020 (n = 2744 birds), as well as from shot birds (n 
= 320) to compare body condition dynamics throughout the 

year. Data on body mass was collected over the full annual 
cycle in both populations (see Table S2). Geese captured 
or shot in the SW part of the Netherlands were considered 
to belong to the resident population (see supplementary 
material), as well as all geese caught in the Netherlands in 
July. Birds captured or shot in the North of the Netherlands, 
along the migratory route and in the Arctic were considered 
to belong to the migratory population. Body condition was 
defined as body mass corrected for size (head length) using 
the scaled body mass index, calculated following Peig and 
Green (2009) with mean head length = 81.25 mm and  bSMA 
= 3.37 as coefficients.

Data analyses

Activity classification

We used ACC data to classify activity budgets for individual 
geese. To deal with the differences in accelerometer types as 
well as burst length and burst frequency, we used the vecto-
rial sum of dynamic body acceleration as measure of activity 
(Qasem et al. 2012; Dokter et al. 2018b). The vectorial sum 
of dynamic body acceleration was calculated for each burst 
by taking the square root of the summed variances on all 
three accelerometer axes (x, y, z; surge, sway, heave) which 
measure acceleration in g0 (standard gravity). For every 
transmitter type separately, we then created probability den-
sity histograms. Based on these histograms we determined 
the peaks for inactive, active and flying behaviour (Dokter 
et al. 2018b). We used the “mix” function in the R-package 
“mixdist” (Macdonald and Du 2018) to unravel the gamma 
distributions that make up the probability histogram. We 
instructed the function to assume two underlying gamma-
distributions (for active and inactive behaviour). By calcu-
lating the intersections of the distributions for inactive and 
active behaviour, we determined transmitter-specific thresh-
olds distinguishing active from inactive behaviour (Fig. S1). 
Flying behaviour was determined as VeDBA > 550. Further 
analyses are focused on active behaviour on the ground only 
(hereafter simply referred to as “activity”), which serves as 
a proxy for foraging behaviour since foraging takes up over 
80% of the active behaviour observed in wild geese (Drent 
et al. 1978; Owen et al. 1992).

Correction for breeding timing

Because of their different life history strategies, the two 
barnacle goose populations we studied differed in timing 
of breeding and moult (Van der Jeugd et al. 2009), with the 
resident population breeding c. 7 weeks earlier and moulting 
c. 2–4 weeks earlier. To account for the different breeding 
phase within the annual cycle in our population compari-
son, we used the distinct trough in activity levels observed 
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during incubation in each population (Fig. 1, Fig. S2). We 
fitted quadratic curves to the weekly activity data during 
the breeding period, to determine the moment of minimum 
activity in each population corresponding to the moment 
when most geese are incubating, or peak incubation (Fig. 
S2). We then centred the annual cycle of each population 
relative to this moment of peak incubation. Within this 
approach, we did not distinguish between breeding and non-
breeding individuals since we could not determine breeding 
for all birds included in this study because not all tracked 
birds provided (sufficient) data during the breeding period.

Determining periods of activity differences

To quantify to what extent and when in the annual cycle the 
populations differed in activity, we compared cumulative 
activity throughout the annual cycle. To do so, we first aver-
aged daily activity per week to smooth out fluctuations due 
to days on which only a few transmitters provided a complete 
day of data: For each day in a week, we averaged the time 
spent active over the individuals of the resident and migra-
tory population respectively that provided a complete day of 
data. Subsequently we calculated the daily average over each 
week. By first averaging over day, we make sure every day 

is treated equally in the analysis, regardless of the number 
of individuals that provided data that day. Based on these 
weekly averages we calculated the cumulative difference 
in mean daily activity per week between the resident and 
migratory population over the year. Calculating the cumula-
tive activity difference makes it possible to identify the peri-
ods in which similar activity differences exists, while also 
demonstrating what these differences accumulate to over 
the year. We excluded the incubation period (determined 
based on published periods in Van der Jeugd et al. (2009)) 
from this analysis, because potential population differences 
in the proportion of incubating birds may influence the mean 
activity of the population. To study whether differences in 
activity between populations change throughout the year, we 
fitted segmented linear regressions to identify breakpoints 
using the package “segmented” in R 4.0.1 (Muggeo 2008; 
R Development Core Team 2020). The cumulative differ-
ence in activity was used as dependent variable and week 
as independent variable. We used the Bayesian Information 
Criterion (BIC) to compare models with different numbers 
of breakpoints (D’angelo and Priulla 2020). Segments with 
positive slopes then indicate periods of higher activity of 
the migratory population, whereas negative slopes refer to 
periods with a higher activity in the resident population.

Fig. 1  Double plot (i.e. the annual cycle is repeated for illustra-
tive purpose) of the variation in time spent active throughout the 
year (weekly means ± SD) for barnacle geese (Branta leucopsis) of 
the migratory (red) and resident population (blue). Coloured bars 
above the x-axis show the stage in the annual cycle of both popula-
tions (Mig: migratory, Sed: resident), based on data published in van 

der Jeugd et  al. (2009) for incubation (inc; red) and moult (period 
between mean onset and end of breeding and moult ± 1 SD). Migra-
tion periods (mig; yellow) are estimated based on the GPS data. Fuel-
ling and wintering are estimated as the periods between stages with 
known timing. Blanks indicate uncertainty on life stage. The migra-
tory population is generally more active than the resident year-round
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In addition, we compared the average body condition 
(scaled body mass index, see “Body mass data”) of the pop-
ulations to determine if periods with differences in activity 
coincided with differences in body condition. Body condi-
tion was grouped per month and population to ensure suf-
ficient body mass data coverage of both populations through-
out the year. We could not correct for annual differences in 
body condition, because birds were caught at different times 
of the month in different years (e.g. beginning or end of the 
month). By grouping body condition measures of all years 
per month, such differences were smoothed out. Individuals 
captured in multiple years and/or months were only included 
once. We used Mann Whitney U tests to test for differences 
in body condition between the populations in each month, 
using a Bonferroni correction for multiple testing.

Daylight and activity differences

Like daily activity, available daylight was averaged per 
week. To test whether any differences in activity between 
populations are explained by differences in day length, we 
created linear regressions for each segment of the segmented 
regression analysis described above, in which the difference 
in activity was used as dependent variable and the difference 
in day length as independent variable. The population that 
experienced longer days was expected to be more active, 
hence the relation between the day length difference and 
activity difference was expected to be positive. Therefore, 
we opted for one-sided t-tests to test for an effect of day 
length difference on the difference in activity.

Determining diurnal foraging constraints

Because barnacle geese are mainly diurnal birds (Eichhorn 
et al. 2021), we assumed that night-time foraging occurs 
when energy requirements cannot be met by daytime forag-
ing alone (Lameris et al. 2021). To determine when such 
diurnal foraging constraints occur, and whether this differs 
between populations, we determined when daily activity of 
geese of either population exceeded day length, thus assess-
ing the active time exceeding day length (AED).

Results

Periods of activity differences

Annual cycle patterns of active behaviour (excluding flight) 
broadly resembled each other, with both populations show-
ing increasing activity in spring culminating in a peak just 
before incubation. However, the migratory population con-
sistently showed elevated levels of activity compared to the 
resident population especially in the weeks before and after 

the incubation period (Fig. 1). At the moment of spring 
migration (the first migration period in Fig. 1, indicated with 
yellow in the bar showing the annual cycle stages), activ-
ity of the migratory population showed a small dip, caused 
by long periods of flight, but still remained higher than the 
activity of the resident population.

The segmented regression used to investigate activity 
differences between the migratory and resident barnacle 
geese indicated three breakpoints in the cumulative differ-
ence in weekly activity: at week − 36 (− 36.19 ± 0.36), 
week − 25 (− 25.37 ± 0.450) and week − 13 (− 13.42 ± 
0.25; estimate ± SE) relative to peak incubation (Table 1). 
These breakpoints split the annual cycle into four differ-
ent periods of, respectively, (1) week − 46 till − 37, (2) 
week − 36 till − 26, (3) week − 25 till − 14, and (4) week 
− 13 till − 6 relative to peak incubation (Fig. 2a). The first 
period, the post-incubation period including wing moult and 
preparation for autumn migration, indicated higher mean 
daily activity for the migratory population (slope = 10.87 
mean h/week;  t9 = 20.97; P < 0.001). For the second period, 
including autumn migration and the beginning of wintering, 
we found no difference in activity between the populations 
(slope = − 0.79 mean h/week;  t10 = − 1.77; P = 0.11). Dur-
ing the third period, which includes the rest of the winter-
ing period and passes into the start of the spring fuelling 
period, activity was again higher in the migratory compared 
to the resident population (slope = 7.14 mean h/week;  t11 
= 18.14; P < 0.001). Similarly, during the fourth period, 
which covers spring fuelling, a higher mean daily activity 
was found for the migratory population (slope = 24.39 mean 
h/week;  t7 = 33.57; P < 0.001). Over one complete annual 
cycle (excluding the breeding period), the difference in mean 
daily activity per week accumulated to more than 370 h that 
the migratory population was more active than the resident 
population (Fig. 2a).

Table 1  Model selection results of the segmented regression with the 
cumulative difference in mean weekly activity between the migratory 
and resident population as dependent variable

Six candidate models are compared: intercept only (~1), weeks 
before peak incubation (~week) and 4 models with increasing num-
ber of breakpoints (bp.#) and additional slopes (sl.#). The best model 
(including 3 breakpoints) based on BIC is given in bold

Model df AIC BIC

~1 2 324.87 328.30
~week 3 260.31 260.31
~week + sl.1 + bp.1 5 188.17 196.73
~week + sl.1 + bp.1 + sl.2 + bp.2 7 162.54 174.54
~week + sl.1 + bp.1 + sl.2 + bp.2 + sl.3 + 

bp.3
9 92.94 108.36

~week + sl.1 + bp.1 + sl.2 + bp.2 + sl.3 + 
bp.3 + sl.4 + bp.4

11 92.60 111.45
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We found a higher body condition in the migratory 
population than in the resident population in the 2 months 
prior to the moment of peak incubation (month − 2: W 
= 1619, P < 0.001; month − 1: W = 1883.5, P < 0.001; 
Fig. S3). In contrast, during incubation, body condition 
of the migratory population was lower than the resident 
population (month 0: W = 5714, P < 0.01, Fig. S3). In 
the 2 months after the moment of peak incubation, body 
condition was again higher in the migratory population 
(month 1: W = 5920.5, P < 0.001; month 2: W = 55498, 
P < 0.001; Fig. S3).

Daylight and activity differences

The population difference in activity was only explained by 
the longer days experienced by the migratory population 
during the fourth period (i.e., spring fuelling)  (t6 = 2.434, P 
< 0.05). With an increasing difference in daylight of 1 h, the 
difference in activity between the populations increased by 
1.38 h (Table 2, Fig. 2b). Daylight did not explain activity 
differences between the populations in the other three peri-
ods (period 1:  t8 = − 0.068, P = 0.48; period 2:  t9 = − 0.28, 
P = 0.40; period 3:  t10 = 0.51, P = 0.31; Table 2; Fig 2b).

Fig. 2  Differences in activ-
ity between the migratory and 
resident population throughout 
the annual cycle. a depicts 
the cumulative difference in 
activity per week (mean ± SD 
of the difference), including 
four regression lines based on 
segmented linear regression, 
indicated by different colours 
and numbers (see main text 
for slopes, Table 1 for model 
selection results). Coloured 
bars above the x-axis show 
the stage in the annual cycle 
of both populations (Mig = 
migratory, Sed = resident; see 
legend Fig. 1). b shows the 
relation between the difference 
in mean weekly activity (mean 
daily activity per week) and the 
difference in day length (mean 
day length per week) between 
the migratory and resident 
population for each segment. 
Regression lines and confi-
dence intervals (shaded bands) 
are shown based on linear 
regressions (see main text for 
slopes). Colours and numbers 
correspond to the colours of the 
segments in a. The dashed line 
shows the y=x relationship. The 
positive slope in period 4 shows 
that the population difference 
in activity was partly explained 
by the longer days experienced 
by the migratory population in 
this period
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Daylight and diurnal foraging constraints

Individuals from both populations were found to be active 
for longer than the day length (i.e., AED > 0) during the 
non-breeding part of the year (Fig. 3a, b). AED in the migra-
tory population started to occur shortly after wing moult and 
continued until spring migration. In the resident population, 
AED lasted from approximately 1 month after moult until 
about 2 weeks prior to the onset of incubation. The period 
with AED was longer in the migratory population by an 

additional 6 weeks, and included the post-moult and autumn 
migration (− 40 till − 33 weeks relative to peak incubation).

Discussion

We examined whether migratory barnacle geese show more 
foraging activity, here measured as overall activity excluding 
flight, than resident barnacle geese, and when differences in 
activity occur in the annual cycle. We found that the migra-
tory population showed higher activity throughout most of 
the year, particularly in the periods preceding spring and 
autumn migration. Although our measure of activity does 
not immediately translate to foraging, observational stud-
ies on barnacle geese confirmed that, of the period spent 
active, most of this time (80–90%) is allocated to foraging 
(Ebbinge et al. 1975; Black et al. 1991; Owen et al. 1992). 
Below we discuss the role of foraging activity in balancing 
the energetic costs of migration, and if this is mediated by 
varying day length.

Differences preceding spring migration

The population difference in activity was largest in the 
period preceding spring migration, when the migratory 
population was, on average, 3.4 h/day longer active than the 
resident population. While we could not distinguish between 
breeding and non-breeding birds, activity differences might 
exist, especially in spring. Breeding probability increased 
with increasing foraging time during spring migration in 

Table 2  Relation between the difference in mean weekly activity and 
difference in day length between the migratory and resident popula-
tion for the four different segments of the segmented regression anal-
ysis

P-values for slopes are one-sided, P-values for intercepts are two-
sided. Significant effects are indicated in bold

Segment Model Estimate SE t-value P-value

Segment 1 Intercept 1.46 0.24 5.96 <0.001
Day length dif-

ference
− 0.00059 0.076 − 0.068 0.48

Segment 2 Intercept − 0.45 1.85 − 0.24 0.81
Day length dif-

ference
− 0.21 0.74 − 0.28 0.40

Segment 3 Intercept 0.87 0.27 3.15 0.01
Day length dif-

ference
0.092 0.18 0.51 0.31

Segment 4 Intercept − 0.78 1.71 − 0.47 0.66
Day length dif-

ference
1.38 0.57 2.43 0.026

Fig. 3  Daily activity per week (mean ± SD) for the migratory (panel 
a, red) and resident population (panel b, blue), in relation to the avail-
able day length (indicated by the shaded area). The shaded area rep-
resents the night (period between dusk and dawn), points within the 
shaded area indicate activity exceeding available daylight (AED). The 

dashed vertical lines indicate the period during which AED occurs 
(i.e., is positive). Coloured bars above the x-axis show the stage in the 
annual cycle of both populations (see legend Fig. 1). The migratory 
population faces a longer diurnal foraging constraint than the resident 
one, particularly in autumn
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white-fronted geese (Anser albifrons) (Cunningham et al. 
2023). The observed activity difference during peak incuba-
tion, being higher in the migratory than resident population 
(Fig. 1), suggests a lower breeding propensity in the migra-
tory population, which would mean that the activity differ-
ence in spring would be even larger when only considering 
breeding birds.

The increased activity preceding migration probably 
underlines the need to acquire sufficient body stores prior to 
migration. Increased (foraging) activity in preparation for 
migration has been reported in passerines, shorebirds and 
waterfowl (Gifford and Odum 1965; Bairlein 2002; Kvist 
and Lindström, 2003; Dokter et al. 2018a). For example, 
white-crowned sparrows increased foraging time when 
approaching migration by becoming active throughout the 
whole daylight period (instead of activity peaks in the morn-
ing and evening) (Ramenofsky et al. 2003), while shorebirds 
and waterfowl are also able to forage nocturnally to increase 
fuelling rates (Zwarts et al. 1990; McNeil et al. 1992; Lam-
eris et al. 2021). In line with the observed increase in for-
aging activity, body condition of barnacle geese increased 
during spring, with a higher peak body condition in spring 
in the migratory population (prior to spring migration) com-
pared to the resident population (prior to incubation) (Fig. 
S3). Geese are partly capital breeders that accumulate body 
stores to fuel egg formation and incubation (Drent et al. 
2007; Hahn et al. 2011). Part of these stores are deposited 
prior to migration and replenished during stopovers on the 
way to the breeding grounds. The transport of body stores 
is considered energetically expensive, increasing the costs 
of migration (Pennycuick 1989; Hedenström and Alerstam 
1997). Moreover, most barnacle geese currently bypass 
intermediate spring staging sites in the Baltic and transport 
an overload of body stores to fly directly from the Wadden 
Sea to the distant Arctic (see Eichhorn et al. (2009) for an 
estimate of costs incurred by this strategy). The transpor-
tation costs of extra body stores for fuelling long-distance 
flights and reproduction may contribute to the larger differ-
ences in both activity and body condition between individu-
als of the migratory and resident population prior to spring 
migration, as compared to autumn, when the difference 
between the populations is presumed to be mainly caused 
by the preparation for migratory flight (also see Kölzsch 
et al. 2016).

Day length and diurnal foraging constraints

The lengthening of days in spring is known to facilitate 
increased foraging activity in animals (Kvist and Lindström, 
2000; Hill et al. 2003; Pokrovsky et al. 2021), and due to the 
northward movement, the migratory population experiences 
longer days during spring migration as compared to resident 
geese. As they move North, barnacle geese quickly adjust 

their circadian rhythm and thereby take full advantage of 
longer daylight by prolonging their active phase (Eichhorn 
et al. 2021). The activity levels of the migratory popula-
tion are similar to white-fronted geese migrating along the 
same flyway, in which daily activity ranged from 14.6 to 
21 h (compared to 14.4–19.3 h in our study) (Pokrovsky 
et al. 2021).

However, we found that differences in activity levels 
between migratory and resident barnacle geese were not 
fully explained by differences in day length. This is espe-
cially clear prior to autumn migration, when day length 
decreases and differences in day length did not facilitate 
the higher activity of the migratory population. Despite the 
stronger decrease in day length in the Arctic, the activity 
difference between the migratory and resident population 
remained constant and the activity of the migratory popu-
lation even started to exceed day length. In line with this 
observation, Eichhorn et al. (2021) reported that migratory 
barnacle geese in the Russian Arctic were arrhythmic not 
only during the Polar day (24 h light), but remained so for 
nearly 1 month after the Polar day had ended. In autumn, 
food quality is declining as a result of plant aging (Lindholm 
et al. 1994; Van der Graaf et al. 2006), which could further 
drive migratory geese to be foraging for longer periods of 
time to meet energy demands. In contrast, resident geese 
can profit from high quality food year round, as a result of 
agricultural intensification (Abraham et al. 2005; Eichhorn 
et al. 2012), which might allow for lower levels of forag-
ing activity (Dokter et al. 2018b; Pot et al. 2019). Although 
migratory geese might experience relatively lower food 
quality in autumn, they have access to high quality food on 
agricultural pastures in winter (Pot et al. 2019) and food 
quality experienced by resident and migratory geese was 
found to be comparable during spring and breeding (van 
der Jeugd et al. 2009). It seems therefore unlikely that the 
observed activity differences outside autumn are caused by 
differences in food quality.

Activity of both populations exceeded the available day 
length during the non-breeding period. Because activity of 
migratory geese already started to exceed the day length 
when preparing for autumn migration at Arctic staging 
sites, the total AED period for the migratory population 
was 6 weeks longer than for residents. Animals are expected 
to experience a diurnal foraging constraint particularly in 
winter, when days are shortest, food quality and abundance 
drops, and lower temperatures cause higher thermoregula-
tion costs. In line with findings of Owen et al. (1992) and 
Prop (2004), activity of barnacle geese exceeded the day 
length most markedly mid-winter, when days are shortest. 
During this period, barnacle geese use moonlit nights for 
nocturnal foraging (Ydenberg et al. 1984), which also hap-
pens further into spring, but to a decreasing extent (Lameris 
et al. 2021). Our measure of activity does not immediately 
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translate to foraging, and part of the AED might therefore 
consist of other behaviours which might explain the large 
amount of AED. It is possible that at night, geese allocate 
more time to other active behaviours like preening rather 
than foraging, which we could not disentangle with our 
approach. However, this is the case for both populations 
and the differences in AED thus remain. In spring, activ-
ity of both populations continued to exceed the available 
day length. During this period both populations are prepar-
ing either for breeding (resident population) or migration 
and breeding (migratory population). By then, (part of) the 
migratory geese are already experiencing longer days at 
northern stopovers than the resident geese, therefore abso-
lute activity is higher in the migratory population, probably 
also due to the need to accumulate body stores for spring 
migration on top of the stores for breeding. One may expect 
that different levels of food processing rate and physical 
activity (including migratory flights) as observed in resi-
dent and migratory geese go hand in hand with physiological 
adjustments. Eichhorn et al. (2019) indeed found a higher 
basal metabolic rate in the migratory geese (measured dur-
ing summer post-breeding), which likely reflects a larger 
‘metabolic machinery’.

Two viable strategies

Although we show that a migratory life history strategy 
comes with diurnal foraging constraints for adults, this is 
likely to be offset by benefits for the offspring (Lack 1968). 
Correspondingly, goslings in the migratory population grow 
faster (Boom et al. 2022) and experience higher pre-fledging 
survival than goslings in the resident population (Fokkema 
et al. 2020). This illustrates the benefits of migrating to the 
Arctic to breed, which is in line with findings in other Arctic 
breeding birds such as waders (Schekkerman et al. 2003). On 
the other hand, clutches laid by resident breeding barnacle 
geese are, on average, one egg larger than those produced 
in the Arctic-migratory population (Eichhorn et al. 2010) 
and post-fledging survival is markedly higher in the resident 
population (Fokkema et al. 2020; van der Jeugd et al. 2009). 
Overall, the population growth rate of the migratory popula-
tion was found to be positive (1.034), albeit lower than for 
the resident population (1.139), showing that both strategies 
are currently viable (Fokkema et al. 2020). Although the 
resident strategy currently appears to be the better option, 
it is important to note that the resident population is likely 
still in an earlier stage of population development, where 
density dependent effects have not yet set in. Furthermore, 
when considering the size of available breeding habitat, it is 
highly unlikely that the breeding area of the resident geese 
could sustain similar numbers as the breeding areas of the 
migratory population in the Arctic.

Conclusions

In a changing environment the balance between the costs 
and benefits of migration might change, causing migration 
to evolve or be suppressed in populations (Alerstam et al. 
2003). Obtaining an overview of the mechanisms that con-
tribute to this balance is required to gain insight into the 
adaptations that co-occur with migration. By comparing 
seasonally migratory and resident populations of barnacle 
geese, we show that a migratory life history strategy involves 
a higher amount of daily (foraging) activity not only during 
periods of active migration but year-round, most notably 
in the periods preceding migration. While spring migration 
has been a prominent focus in migration research (Newton 
2008), the potential challenges for migratory birds prepar-
ing for autumn migration are less clear. In spring, lengthen-
ing days and improving food conditions (both coinciding 
with latitudinal movement) aid migratory birds to meet their 
energy requirements (Pokrovsky et al. 2021; La Sorte and 
Graham 2021; van der Graaf et al. 2006). In contrast, the 
need to prepare for migration under the shortening days and 
declining food quality in autumn forces migratory geese 
to be active beyond the available day length. While the 
post-breeding period is known to be important for juvenile 
survival in migratory birds (Owen and Black 1989; Rotics 
et al. 2016; Jones and Ward 2020), our results show that 
this period might also be crucial for adults, because fuelling 
for autumn migration occurs under deteriorating conditions.
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