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Abstract
Sharp upper bounds are proved for the probability that a standardized random variable
takes on a value outside a possibly asymmetric interval around 0. Six classes of distribu-
tions for the randomvariable are considered, namely thegeneral class of ‘distributions’,
the class of ‘symmetric distributions’, of ‘concave distributions’, of ‘unimodal distribu-
tions’, of ‘unimodal distributions with coinciding mode and mean’, and of ‘symmetric
unimodal distributions’. In this way, results by Gauß (Commentationes Societatis
Regiae Scientiarum Gottingensis Recentiores 5:1–58, 1823), Bienaymé (C R Hebd
Séance Acad Sci Paris 37:309–24, 1853), Bienaymé (C R Hebd Séance Acad Sci
Paris 37:309–24, 1853), Chebyshev (Journal de mathématiques pures et appliqués (2)
12:177–184, 1867), and Cantelli (Atti del Congresso Internazionale dei Matematici
6:47–59, 1928) are generalized. For some of the known inequalities, such as the Gauß
inequality, an alternative proof is given.
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1 Introduction

Let X be a random variable with finite mean μ and finite, positive variance σ 2. We are
interested in sharp upper bounds on the tails of the distribution of X . Without loss of
generality and inorder to simplify notation,wewill restrict attention to the standardized
version of X , which is denoted by Z = (X − μ)/σ. Hence, we are interested in sharp
upper bounds on the probability that a standardized random variable falls outside an
arbitrary interval containing the value zero, i.e. sharp upper bounds on

P(Z ≤ −u or Z ≥ v), u > 0, v > 0. (1)

Wemay assume 0 < v ≤ u. We also study the one-sided probability P(Z ≥ v), which
corresponds to (1) with u = ∞.

Of course, upper bounds on probability (1) depend on the class of distributions
assumed for Z . We shall focus on broad, nonparametric classes of distributions. The
corresponding upper bounds are often applied in theoretical considerations and proofs,
typically with u = v. However, as Rougier et al. (2013), p.861, argue, they have
practical value as well when one does not want strong model assumptions. Let us
mention two examples, one with u equal to infinity and the other one with general u
and v.

Clarkson et al. (2009) study the Receiver Operating Characteristic (ROC) curve,
which they define as the power of a simple versus simple Neyman–Pearson hypothesis
test viewed as a function of the significance level, more precisely

α �→ 1 − G(F−1(1 − α)), α ∈ [0, 1],

where F and G are the continuous distribution functions of the test statistic under the
null hypothesis and the alternative, respectively. They are interested in the Area Under
Curve (AUC), which equals

∫ 1

0

(
1 − G(F−1(1 − α))

)
dα = P(X ≤ Y )

with X and Y independent random variables with continuous distribution functions F
and G, respectively. For Gaussian X and Y with variance 1 and E(Y − X) = 2

√
6, the

AUC equals �(2
√
3) ≈ 0.99973 (and not 0.99966 as at page 468 of Clarkson et al.

(2009)). If Gaussianity is weakened to unimodality of X and Y with at least one of
them being strongly unimodal, then Clarkson et al. (2009) obtain 1/2 as a lower bound
to the AUC; see their page 468, Corollary 6 and Remark 7. However, our bound (27)
from Theorem 5.2 with v = 2

√
3 yields 113/117 ≈ 0.96581 as a lower bound. This

shows that at least some of the bounds presented here are strong enough to be valuable
in applications.

Sharp upper bounds on probability (1) are also relevant in statistical process control.
Indeed, attainable upper bounds on (1) determine the maximum risk for producing
products outside specification limits, as the distribution of the quality characteristic X
is typically not (perfectly) centredwithin the specification limits. This kind of practical
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568 R. A. Ion et al.

concerns was our main motivation for studying upper bounds on (1); see for instance
(Van den Heuvel and Ion 2003) and the PhD thesis (Ion 2001).

Traditionally, focus has beenonupper bounds on the probability in (1) for symmetric
intervals with u = v. The Bienaymé–Chebyshev inequality, which may be stated and
proved by

P(|Z | ≥ v) = E
(
1[Z2/v2≥1]

) ≤ E

(
Z2

v2
1[Z2/v2≥1]

)
≤ E

(
Z2

v2

)
= 1

v2
, (2)

was first obtained by Bienaymé (1853), cf. page 171 of the 1867 reprint, and later
by Chebyshev (1867); see also Heyde and Seneta (1972), page 682. Note that in (2)
equality holds if and only if |Z | takes on the values 0 and v only.

Amazingly, Gauß (1823), translation (Stewart 1995), had already proved the sharp
inequality

P(|Y | ≥ v) ≤ 4

9

1

v2
(3)

for random variables Y with a unimodal distribution with mode at zero and with
E(Y 2) = 1. Sellke and Sellke (1997) describe the history of the Gauß inequality and
refer to Pukelsheim (1994) for three proofs, namely Gauß’s one, a variation on it,
and the one from exercise 4 on page 256 of Cramér (1946). A detailed description of
Gauß’s proof is given also by Hooghiemstra and Van Mieghem (2015). We present a
fourth proof of the Gauß inequality in Section 4. However, as the mean is typically
known or estimated in the practice of statistical process control (and in general can
be estimated more accurately than the mode), we shall focus on standardized random
variables Z with EZ = 0. For the asymmetric case with u 
= v in (1), this mean zero
condition complicates results and proofs considerably; see Theorems 6.1 and 6.3.

The upper bound in (2) follows from the classical Markov inequality P(|Z | ≥ v) =
E(1[|Z |r /vr≥1]) ≤ E |Z |r/vr with r = 2. Generalizations of the Gauß inequality in
Markov style have been presented by Camp (1922); Meidell (1922), and Theil (1949).
DasGupta (2000) has exploited these Markov–Gauß–Camp–Meidell inequalities to
derive properties of, e.g. the zeta function. Sellke (1996) and Sellke and Sellke (1997)
extend this line of research by determining sharp upper bounds on P(|Z | ≥ v) in
terms of Eg(|Z |) for unimodal random variables Z and nondecreasing functions g on
[0,∞). Bickel and Krieger (1992) derive improvements of (2) with Z an average and
of (3) for symmetric unimodal densities with a bound on the derivative.

For symmetric distribution functions of X , an upper bound on the one-sided prob-
ability P(Z ≥ v) is 1/(2v2), which can be obtained by the inequality in (2), see
Theorem 3.1. Cantelli (1928) proved the upper bound 1/(1 + v2) on this tail proba-
bility for the class of all distribution functions of X . Camp (1922) provided an upper
bound when the distribution function of X is symmetric and unimodal.

Bhat and Kosuru (2022) presented bounds for linear combinations of tail prob-
abilities. There are many generalizations of the Bienaymé–Chebyshev inequality to
vector valued random variables; see, e.g. Ogasawara (2019) and Ogasawara (2020).
Tail probabilities for sums (and other functions) of i.i.d. random variables are called
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concentration inequalities. The extensive literature on concentration inequalities is
reviewed in the elegant books Boucheron et al. (2013) and Lugosi (2009).

In each of the subsequent Sections, we shall discuss sharp inequalities for a specific
class of distributions of the standardized random variable Z . The only exception is in
Section 4, where we do not consider standardized random variables. There we shall
present a one-sided, sharp version of Gauß’s inequality for concave distributions,
more specifically, for distributions on the nonnegative half line with a mode at zero
and a concave distribution function on this half line. As an immediate consequence of
this one-sided version, the original Gauß inequality is also presented in this Section.
Our proof is based on Khintchine’s representation of unimodal densities, Khintchine
(1938), and Jensen’s inequality, Jensen (1906), as are our proofs of most results for
unimodal distributions. A formulation and proof of Khintchine’s representation may
be found in Lemma A.1 in the Appendix.

The results on upper bounds for the probability in (1) as discussed in this article
are summarized in Table 1, where we mention only the most relevant cases of the
inequalities. The complete versions of the inequalities with all special cases and proofs
may be found in the text. Reference is made to the corresponding theorems that are
proved in the present article. Theorems 3.1, 3.2, 4.1, 5.2, 5.3, 5.5, 6.1 and 6.3 seem to
be new. For known results like in Theorems 2.2, 4.2, 7.1 and 7.2, alternative proofs
are given. It is shown that all inequalities are sharp as well, by constructing random
variables satisfying the bounds. It should be noted that the results on probability (1)
imply the results for upper bounds on the probability in (2).

2 All distributions

Here,we discuss the inequalities from the first rowof Table 1. The standardized version
Z = (X −μ)/σ of the random variable X has mean 0 and variance 1. Apart from this
standardization, the distribution of Z is arbitrary within this section. We will start with
the one-sided analogue of the Bienaymé–Chebyshev inequality, which is referred to
as Cantelli’s inequality. It is given by formula (19) in Cantelli (1928), and it reads as
follows.

Theorem 2.1 (Cantelli’s inequality) Let Z be a random variable with mean 0 and
variance 1. For any v ≥ 0, the inequality

P(Z ≥ v) ≤ 1

1 + v2
(4)

holds. This inequality is sharp and for positive v equality is uniquely attained by

Z =

⎧⎪⎨
⎪⎩

v 1
1+v2

with probability

− 1
v

v2

1+v2
.

(5)

123



570 R. A. Ion et al.

Ta
bl
e
1

O
ve
rv
ie
w
of

th
e
in
eq
ua
lit
ie
s
of

B
ie
na
ym

é–
C
he
by

sh
ev

an
d
G
au
ß
ty
pe

fo
r
st
an
da
rd
iz
ed

ra
nd

om
va
ri
ab
le
s
Z
(e
xc
ep
tf
or

th
e
co
nc
av
e
ca
se
)

C
la
ss

of
di
st
ri
bu
tio

ns
P

(
Z

≥
v
)

P
(|Z

|≥
v
)

P
(
Z

≤
−u

,
Z

≥
v
)

A
ll

1
1+

v
2

1 v
2

4+
(u

−v
)2

(u
+v

)2

C
an
te
lli

(1
92

8)
B
ie
na
ym

é
(1
85

3)

T
he
or
em

2.
1

C
he
by

sh
ev

(1
86

7)
T
he
or
em

2.
2

Sy
m
m
et
ri
c

1 2v
2

1 v
2

m
ax

{1 u
2
,

1 2v
2
}

C
he
by

sh
ev

(1
86

7)
C
he
by

sh
ev

(1
86

7)
1

≤
v

≤
u

T
he
or
em

3.
1

T
he
or
em

3.
2

C
on

ca
ve

4 9
1 v
2

on
[0,

∞
)

Ir
re
le
va
nt

Ir
re
le
va
nt

E
Z

>
0

T
he
or
em

4.
1

U
ni
m
od

al
4 9

1
1+

v
2

4 9
1 v
2

4 9
4+

(u
−v

)2

(u
+v

)2

V
ys
oč
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Proof According to the hint from Problem 1.5.5 of Billingsley (1995), the Bienaymé–
Chebyshev inequality yields

P(Z ≥ v) = P(1 + vZ ≥ 1 + v2) ≤ E

(
1 + vZ

1 + v2

)2

= 1

1 + v2
. (6)

In order to obtain equality in (6), the equality

1[Z≥v] = ((1 + vZ)/(1 + v2))2

has to hold almost surely, or equivalently, Z has to have support {−1/v, v} and hence,
has to satisfy (5) ��

The asymmetric two-sided analogue of the Bienaymé–Chebyshev inequality from
(2) will be presented in full detail. Its simple proof is based on the Bienaymé–
Chebyshev inequality itself.

Theorem 2.2 Let Z have mean 0 and variance 1, and assume 0 < v ≤ u. Then,

P(Z ≤ −u or Z ≥ v) ≤ 4 + (u − v)2

(u + v)2
(7)

holds. Under the additional condition u ≤ 1/v, the trivial inequality

P(Z ≤ −u or Z ≥ v) ≤ 1 (8)

holds with equality for

Z =

⎧⎪⎪⎨
⎪⎪⎩

−
√

u
v

v
u+v

with probability√
v
u

u
u+v

.

(9)

In the case of

1

v
≤ u ≤ v + 2

v
(10)

inequality (7) is sharp and equality holds for

Z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−u 2+v(v−u)

(u+v)2

v−u
2 with probability 1 − 4+(u−v)2

(u+v)2

v
2+u(u−v)

(u+v)2
.

(11)
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572 R. A. Ion et al.

In the case of v + 2/v ≤ u, the inequality

P(Z ≤ −u or Z ≥ v) ≤ 1

1 + v2
(12)

holds with equality for

Z =

⎧⎪⎨
⎪⎩

− 1
v

v2

1+v2

with probability
v 1

1+v2
.

(13)

Proof By the Bienaymé–Chebyshev inequality, we obtain

P(Z ≤ −u or Z ≥ v) = P
(| Z − 1

2 (v − u) |≥ 1
2 (u + v)

)
= P (| 2Z − (v − u) |≥ u + v)

≤ E

(
2Z − (v − u)

u + v

)2

= 4 + (v − u)2

(u + v)2
.

Straightforward computations show that (11) yields a well-defined random variable
provided that (10) holds, and that this randomvariable hasmean zero and unit variance,
and satisfies equality in (7).

Similarly, the random variable from (9) is well-defined and attains equality in the
trivial inequality (8) in view of −√

u/v ≤ −u iff uv ≤ 1 iff
√

v/u ≥ v.
For u ≥ v +2/v, the probability in (7) is bounded by P(Z ≤ −v −2/v or Z ≥ v)

Applying inequality (7) with u replaced by v+2/v results in (12). Finally, straightfor-
ward computations show that (13) defines a proper random variable with zero mean
and unit variance that attains equality in (12). �

Forv fixed, theminimumof the right hand side of (7) overu is attained atu = v+2/v
and equals 1/(1+ v2). Consequently, Cantelli’s inequality (4) is a special case of (7);
cf. (12) and (13).

Selberg (1940) seems to be the first to have formulated a version of Theorem 2.2.
According to Ferentinos (1982), his proof of (7) is less complicated than Selberg’s,
but it is still more complicated than ours due to the cumbersome notation.

Note that (7) with u = v reduces to the famous Bienaymé–Chebyshev inequality.
The inequalities in this section are all based on the inequality of Bienaymé–Chebyshev
itself, as is the first one of the next section. However, this inequality does not always
seem to be helpful if the class of distributions of Z (or X ) is restricted.

3 Symmetric distributions

The inequalities for symmetric distributions from the second row of Table 1 will be
discussed in this section. The symmetry implies P(Z ≥ v) = P(|Z | ≥ v)/2, and
hence, the Bienaymé–Chebyshev inequality yields the following result.
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Theorem 3.1 Let Z be symmetric with mean 0 and variance 1. For v ≥ 0 with w =
max{v, 1}, the inequality

P(Z ≥ v) ≤ 1

2w2

holds, with equality if

Z =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−w 1
2w2

0 with probability 1 − 1
w2

w 1
2w2 .

In view of 2w2 = 2(max{v, 1})2 ≥ 1+v2, this inequality improves the bound from
Cantelli’s inequality from Theorem 2.1, as it should. For symmetric random variables,
we obtain the following bound for asymmetric intervals.

Theorem 3.2 Let the standardized random variable Z be symmetric. Consider any
positive u and v with v ≤ u and discern four cases.

For 0 < v ≤ u ≤ 1, the inequality

P (Z ≤ −u or Z ≥ v) ≤ 1 (14)

holds with equality if Z puts mass 1/2 at both 1 and −1.
For 0 < v ≤ u ≤ √

2 v, 1 ≤ u, the inequality

P (Z ≤ −u or Z ≥ v) ≤ 1

u2
(15)

is valid with equality if

Z =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−u 1
2u2

0 with probability 1 − 1
u2

u 1
2u2

holds. For 0 < v ≤ 1 < u,
√
2 v ≤ u, the inequality

P (Z ≤ −u or Z ≥ v) ≤ 1

2
+ 1 − v2

2(u2 − v2)
(16)
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is valid with equality if

Z =

⎧⎪⎨
⎪⎩

−u, u 1−v2

2(u2−v2)

with probability

−v, v u2−1
2(u2−v2)

holds. For 1 ≤ v ≤ u,
√
2 v ≤ u, the inequality

P (Z ≤ −u or Z ≥ v) ≤ 1

2v2
(17)

is valid with equality if

Z =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−v 1
2v2

0 with probability 1 − 1
v2

v 1
2v2

holds.

Note that any choice of (u, v) with 0 < v ≤ u belongs to at least one of the four cases
in this Theorem.

Proof To prove these inequalities, we determine the supremum of the left hand side
of (14) over all symmetric random variables Z with mean 0 and variance at most 1.
Let Z be such a random variable and define the symmetric random variable Y by

Y = −u1[Z≤−u] − v1[−u<Z≤−v] + v1[v≤Z<u] + u1[u≤Z ].

Note that Y is a discrete, symmetric random variable with probability mass at
V = {−u,−v, 0, v, u} only and with var(Y ) = E(Y 2) ≤ E(Z2) = var(Z) ≤ 1.
Furthermore,

P (Y ≤ −u or Y ≥ v) = P (Z ≤ −u or Z ≥ v) (18)

holds, and we may conclude that the supremum of (18) over Z is attained by a sym-
metric discrete random variable Y taking its values at V and with E(Y 2) ≤ 1.

We introduce

p = P(Y = −u) = P(Y = u), q = P(Y = −v) = P(Y = v),

and note that the supremum of (18) equals the maximum of

P (Y ≤ −u or Y ≥ v) = 2p + q
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over the convex polygon

Q = {(p, q) | p ≥ 0 , q ≥ 0 , p + q ≤ 1
2 , u2 p + v2q ≤ 1

2 }.

In this linear programming problem, the maximum is attained at one of the vertices
of polygon Q. We discern three cases.

A. 0 < v ≤ u ≤ 1
Here, Q reduces to the triangle

Q = {(p, q) | p ≥ 0 , q ≥ 0 , p + q ≤ 1

2
},

the maximum 1 of the map (p, q) �→ 2p + q on Q is attained at (p, q) = ( 12 , 0),
and we get inequality (14).

B. 0 < v ≤ 1 < u
In this case, the polygon Q is a quadrangle with vertices

(0, 0),

(
1

2u2
, 0

)
,
(
0, 1

2

)
,

(
1 − v2

2(u2 − v2)
,

u2 − 1

2(u2 − v2)

)
. (19)

The corresponding values of the function (p, q) �→ 2p + q are

0,
1

u2
,

1

2
,

1

2
+ 1 − v2

2(u2 − v2)
.

Computation shows that the fourth value is larger than the second value and hence
largest, iff

√
2 v ≤ u holds. Note that this yields inequality (16) and inequality

(15) under the additional restriction v ≤ 1.
C. 1 ≤ v ≤ u

Polygon Q reduces to a triangle here with vertices

(0, 0),

(
0,

1

2v2

)
,

(
1

2u2
, 0

)
.

The corresponding values of the function (p, q) �→ 2p + q are

0,
1

2v2
,

1

u2
.

Computation shows that this implies inequality (17) and inequality (15) under the
additional restriction v ≥ 1.

Straightforward computation shows that equalities are attained by the randomvariables
mentioned in the Theorem. �
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4 Concave distribution functions

The upper bounds from the preceding sections to the probability in (1) are rather large.
It is to be expected that restriction of the class of completely unknown distributions
and the class of symmetric distributions to smaller classes of distributions will yield
smaller upper bounds. In the next three sections, we will obtain sharp upper bounds
for (1) over the class of unimodal distributions, the class of unimodal distributions
with mean and mode coinciding, and the class of symmetric unimodal distributions,
respectively. This unimodality assumption is not unrealistic, as it is a very natural
assumption in several practical applications, like statistical process control.

A distribution is unimodal withmode atM if its corresponding distribution function
is convex on (−∞, M) and concave on [M,∞).Consequently, a unimodal distribution
has at most one atom, which may occur only at the mode M . If a unimodal distribution
is uniform on its support with an atom at one of its boundary points, we will call
it a one-sided boundary-inflated uniform distribution; cf. Klaassen et al. (2000). We
shall repeatedly use a representation theorem for unimodal distributions ofKhintchine,
Lemma A.1, Khintchine (1938). It characterizes unimodal distributions as a mixture
of uniform distributions. The inequalities we will derive attain equality for mixtures
of at most three uniforms, where often one of these uniforms is degenerate, i.e. a point
mass. Unimodal distributions with their mode at M = 0 and all their mass on the
nonnegative half line [0,∞) have a distribution function that is concave on [0,∞)

and vanishes on (−∞, 0). They have a nonincreasing density on (0,∞). This special
class of distributions is considered in the present section. For this class, a one-sided
version of the Gauß inequality holds. The Gauß inequality itself is an immediate
consequence of it and will be presented also.

Theorem 4.1 (One-sided Gauß inequality) Let the random variable Y have second
moment E(Y 2) = 1 and let its distribution function be concave on [0,∞) and 0 on
(−∞, 0). For all nonnegative v, the inequality

P(Y ≥ v) ≤

⎧⎪⎨
⎪⎩
1 − v√

3
, 0 ≤ v ≤ 2√

3
,

4
9

1
v2

, 2√
3

≤ v,

is valid. For 0 ≤ v ≤ 2/
√
3, equality holds iff Y has a uniform distribution on

[0,√3).For 2/
√
3 ≤ v, equality holds iff Y has a one-sided boundary-inflated uniform

distribution on [0, 3v/2) with mass 1 − 4/(3v2) at 0.

Proof By Khintchine’s representation from Lemma A.1, there exist a probabil-
ity p0 and a distribution function F on the positive half line, such that P(Y =
0) = p0 holds and the density of Y at y on the positive half line equals (1 −
p0)

∫ ∞
0 c−11(0,c)(y) dF(c). By Fubini, it follows that

1 = E(Y 2) = (1 − p0)
∫ ∞

0

1

3
c2 dF(c) (20)
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holds and that for positive v

P(Y ≥ v) = (1 − p0)
∫ ∞

0

∫ ∞

v

1

c
1(0,c)(y) dy dF(c)

= (1 − p0)
∫ ∞

v

(
1 − v

c

)
dF(c) (21)

is valid. Without loss of generality, we assume that F puts positive mass on (v,∞).

Let us write

cv =
∫ ∞

v

c dF(c)/(1 − F(v)) > v.

As the map c �→ (1 − v/c) is strictly concave on [v,∞), (21) implies by Jensen’s
inequality

P(Y ≥ v) ≤ (1 − p0)(1 − F(v))

(
1 − v

cv

)
≤ (1 − p0)

(
1 − v

cv

)
(22)

with equalities iff F is degenerate at cv. This means that we may restrict attention to
those Y with mass p0 at 0 for which F is degenerate at some cv > v. For such Y
equation (20) implies

1 − p0 = 3c−2
v , (23)

which together with (22) yields

P(Y ≥ v) ≤ 3

c2v

(
1 − v

cv

)
. (24)

As this function of cv attains its maximum at cv = 3v/2 > v, we obtain

P(Y ≥ v) ≤ 4

9v2

with equality iff Y has the one-sided boundary-inflated uniform distribution as
described in the Theorem. However, for cv = 3v/2 equation (23) becomes 1 − p0 =
4/(3v2), which for v < 2/

√
3 leads to an impossible, negative value of p0. This

means that for v < 2/
√
3 the mass at 0 vanishes and that (22), (23), and (24) hold

with cv = √
3. �

About two centuries ago, Johann Carl Friedrich Gauß presented and proved a sharp
upper bound on the probability P(|X | ≥ v) for unimodal random variables X with
mode at 0 and finite second moment in Sections 9 and 10 of Gauß (1823); for a
translation from Latin into English see Stewart (1995). His result precedes the famous
Bienaymé–Chebyshev inequality (2) by three decades. The Gauß inequality for large
values of v has been given in (3). The complete inequality is the following.
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Theorem 4.2 (Original Gauß inequality) Let the random variable Y have a unimodal
distribution with mode at 0 and second moment E(Y 2) = 1. For all nonnegative v,
the inequality

P(|Y | ≥ v) ≤

⎧⎪⎨
⎪⎩
1 − v√

3
, 0 ≤ v ≤ 2√

3
,

4
9

1
v2

, 2√
3

≤ v,

(25)

is valid. For 0 ≤ v ≤ 2/
√
3, equality holds if Y has a uniform distribution on

(−√
3,

√
3). For 2/

√
3 ≤ v, equality holds if Y has mass 1 − 4/(3v2) at 0 and the

rest of its mass uniformly distributed on (−3v/2, 3v/2).

Proof As |Y | has a concave distribution function on [0,∞), the one-sided Gauß
inequality proves the Theorem. �

Our proof of the Gauß inequality via the Khintchine representation and Jensen’s
inequality differs from the three proofs as presented by Pukelsheim (1994). Observe
that the bound in (25) can also be described as the minimum of the two functions in
there. Also note that Gauß considered only densities and hence could not prove the
second bound in (25) to be sharp.

5 Unimodal distributions

In the preceding section on concave distributions, we have already defined the related
class of unimodal distributions, which we will study in the remaining sections. The
factor 4/9 from the one-sided Gauß inequality of Theorem 4.1 will play a role in all
these sections. For the proof of our extension of the Cantelli inequality from Theorem
2.1 to unimodal distributions, we shall use the following powerful result for unimodal
distributions, which also shows the factor 4/9.

Theorem 5.1 (Vysochanskiĭ and Petunin inequality) Any unimodal random variable
W with finite second moment satisfies

P(|W | ≥ w) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 0 ≤ w ≤ √
E(W 2),

4
3

E(W 2)

w2 − 1
3 for

√
E(W 2) ≤ w ≤ √

8E(W 2)/3,

4
9

E(W 2)

w2

√
8E(W 2)/3 ≤ w.

(26)

Proof The proof of Vysočanskiı̆ and Petunin (1980) and Vysochanskiı̆ and Petunin
(1983) has been smoothed by Pukelsheim (1994) and invokes Gauß’s inequality pre-
sented in Theorem 4.2. �
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Actually, for
√
8/3 ≤ v inequality (26) implies the Gauß inequality (25). Observe

that the bound in (26) can be described as the minimum of the three expressions at its
right hand side.

Here is our analogue of Cantelli’s inequality from Theorem 2.1.

Theorem 5.2 Let the distribution of the standardized random variable Z be unimodal.
For any v ≥ 0, the inequality

P(Z ≥ v) ≤

⎧⎪⎪⎨
⎪⎪⎩

3−v2

3(1+v2)
, 0 ≤ v ≤

√
5
3 ,

4
9

1
1+v2

,

√
5
3 ≤ v,

(27)

holds, with equality for 0 < v ≤ √
5/3 if Z has mass (3 − v2)/(3(1 + v2)) at v and

the rest of its mass, 4v2/(3(1 + v2)), uniformly distributed on the interval [−(3 +
v2)/(2v), v], and with equality for

√
5/3 ≤ v if Z has mass (3v2 − 1)/(3(1 + v2))

at −1/v and the rest of its mass, 4/(3(1 + v2)), uniformly distributed on the interval
[−1/v, (1 + 3v2)/(2v)].

Proof Applying Theorem 5.1 with W = Z + 1/v and w = v + 1/v, we obtain (27)
after some computation. Additional computation shows that the random variables
mentioned in the theorem attain equality. �

Comparing this inequality (27) to Cantelli’s inequality from Theorem 2.1, we note
the extra factor 4/9 for larger values of v; see also Table 1. Furthermore, note that the
bound in (27) can be viewed as the minimum of the two functions in there, and that
these functions intersect at v = √

5/3.
Next, we turn to the general case of asymmetric intervals around 0. The

Vysochanskiĭ and Petunin inequality from Theorem 5.1 implies the following result.

Theorem 5.3 For v ≥ √
5/3, max{v, (11v − 4

√
6v2 − 10)/5} ≤ u ≤ v + 2/v, and

any standardized unimodal random variable Z, the inequality

P(Z ≤ −u or Z ≥ v) ≤ 4

9

4 + (u − v)2

(u + v)2
(28)

holds with equality if Z = (v − u)/2+UY , U and Y independent random variables,
U uniform on the unit interval, and Y the generalized Bernoulli random variable

Y =

⎧⎪⎪⎨
⎪⎪⎩

− 3
4 (u + v) 4

3
2+v(v−u)

(u+v)2

0 with probability 1 − 4
3
4+(v−u)2

(u+v)2

3
4 (u + v) 4

3
2+u(u−v)

(u+v)2
.

(29)
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Proof As in the proof of Theorem 2.2, we note

P(Z ≤ −u or Z ≥ v) = P (|2Z − (v − u)| ≥ u + v) .

Applying the third inequality of (26) from Theorem 5.1, we obtain (28). Computation
shows that the random variable Y and hence Z = (v − u)/2 + UY are well defined
under the conditions on u and v, and that this Z attains the bound. �

An immediate consequence of this Theorem is the following one, which is the main
content of Theorem 2 of Vysočanskiı̆ and Petunin (1980).

Corollary 5.4 For
√
8/3 ≤ v and any standardized unimodal random variable Z, the

inequality

P(|Z | ≥ v) ≤ 4

9v2

holds with equality for Z = UY , U and Y independent random variables, U uniform
on the unit interval, and Y the generalized Bernoulli random variable

Y =

⎧⎪⎨
⎪⎩

− 3
2v

2
3v2

0 with probability 1 − 4
3v2

3
2v

2
3v2

.

Instead of applying the VysochanskiMi and Petunin inequality from Theorem 5.1, we
could choose the approach via Khintchine’s characterization of unimodal distributions
and Jensen’s inequality as in Section 4. This would yield an admittedly laborious proof
of Cantelli’s inequality for unimodal distributions as given in Theorem 5.2. However,
this Khintchine-Jensen approach yields a partially improved version of Theorem 5.3
too, namely

Theorem 5.5 Assume
√
3 ≤ v ≤ u. For any standardized unimodal random variable

Z, the inequality

P(Z ≤ −u or Z ≥ v) ≤

⎧⎪⎨
⎪⎩

4
9

4+(u−v)2

(u+v)2
v ≤ u ≤ v + 2

v

for
4
9

1
1+v2

v + 2
v

≤ u

(30)

holds. For v ≤ u ≤ v+ 2
v
, equality is attained if Z is defined as in (29). For v+ 2

v
≤ u,

equality is attained if Z has mass (3v2 − 1)/(3(1 + v2)) at −1/v and the rest of its
mass, 4/(3(1 + v2)), uniformly distributed on the interval [−1/v, (1 + 3v2)/(2v)],
like in Theorem 5.2.

The proof of this Theorem is given in Subsection 1 of the Appendix.
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6 Unimodal distributions with coincidingmode andmean

Whenwe restrict the class of distributions further to the class of unimodal distributions
with coinciding mode and mean, then for the one-sided probability we see that the
factor 4/9 does not play such a role anymore as in Theorem 5.2, the analogue of
Cantelli’s inequality, Theorem 2.1.

Theorem 6.1 For any standardized unimodal random variable Z with mode at 0, the
inequality

P(Z ≥ v) ≤ 2(x − 1)

v2x2 + 2x + 1
,

x = 1

2

(
w + 1 + 1

w

)
, w =

(√
3 + v2 + √

3
)2/3

v−2/3, (31)

holds with equality if Z = UY holds with U and Y independent random variables, U
uniform on the unit interval, and Y the Bernoulli variable

Y =

⎧⎪⎨
⎪⎩

−3
vx

v2x2

3+v2x2

with probability
vx 3

3+v2x2
.

(32)

Proof Let Z0 and Y0 be the classes of distributions as defined in Lemma A.2. By this
lemma with u = ∞, we obtain

sup
Z∈Z0

P(Z ≥ v) = sup
Y∈Y0

Eψ(Y ) (33)

with ψ defined by

ψ(y) =
[
1 − v

y

]
1[y≥v].

With Y ∈ Y0, we define the Bernoulli random variable Y0 by

Y0 = μ− 1[Y<v] + μ+ 1[Y≥v],

with μ− = E(Y | Y < v) and μ+ = E(Y | Y ≥ v). Note EY0 = EY = 0 and
EY 2

0 ≤ EY 2 = 3. Since ψ is concave on [v,∞) and vanishes elsewhere, we have by
Jensen’s inequality

Eψ(Y ) = E(ψ(Y ) | Y ≥ v)P(Y ≥ v) ≤ ψ(E(Y | Y ≥ v))P(Y ≥ v) = Eψ(Y0).

By adding a positive amount to μ+ and subtracting from μ−, if necessary, we can
force the Bernoulli random variable Y0 to have variance 3 while we maintain its mean
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at 0 and possibly increase Eψ(Y0), as ψ is increasing on [v,∞). We have shown that
the supremum at the right hand side of (33) is attained by a Bernoulli random variable

Y0 =
⎧⎨
⎩
a 1 − p
with probability

b p

with a < v ≤ b, and 0 ≤ p ≤ 1. In view of EY0 = 0 and EY 2
0 = 3, we obtain

p = 3

3 + b2
, a = − 3

b
.

Writing

b = vx, x ≥ 1,

we see that the suprema from (33) equal

sup
x≥1

x − 1

x

3

3 + v2x2
. (34)

Straightforward computation shows that the derivative with respect to x of the function
in (34) is nonnegative if and only if

2v2x3 − 3v2x2 − 3 ≤ 0 (35)

holds. Observe that the function x �→ 2x3 − 3x2 is increasing for x ≥ 1 and negative
for 1 ≤ x < 3/2. By Vieta’s method to tackle cubic equations, we substitute x =
(w + 1 + 1/w)/2 ≥ 3/2, w > 0 and obtain equality in (35) if and only if

v2
(
w3

)2 − 2
(
6 + v2

)
w3 + v2 = 0

holds. The positive roots of this quadratic equation in w3 yield w1 = (
√
3 + v2 +√

3)2/3v−2/3 and w2 = (
√
3 + v2 − √

3)2/3v−2/3. Note that w1w2 = 1 and hence
w1+1/w1 = w2+1/w2 hold. Consequently, the only real root x of the cubic function
in (35) equals the one given in (31). Combining (34) and (35) (with equality), we arrive
at the inequality in (31).

Straightforward verification shows that Z = UY with Y as in (32) attains this
bound. �

The sharp, restricted Gauß inequality for random variables with coinciding mean
and mode is the same as the original one from Theorem 4.2, as the distributions that
attain equality in (25) are symmetric and hence, have coinciding mean and mode.
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Theorem 6.2 (Restricted Gaußinequality) For any standardized unimodal random
variable Z with mode at 0, the inequality

P(|Z | ≥ v) ≤

⎧⎪⎨
⎪⎩
1 − v√

3
, 0 ≤ v < 2√

3
,

4
9

1
v2

, v ≥ 2√
3
,

(36)

holds with equality if the distribution of Z is the mixture of a uniform distribution on
[−(( 32v) ∨ √

3) , ( 32v) ∨ √
3] and a distribution degenerate at 0 such that the point

mass at 0 equals [1 − 4/(3v2)] ∨ 0.

We extend Gauß’s inequality to asymmetric intervals as in (1) as follows.

Theorem 6.3 For
√
3 ≤ u ≤ v ≤ u + 2/u or

√
3 ≤ v ≤ u ≤ v + 2/v and for any

standardized unimodal random variable Z with mode at 0, the inequality

P(Z ≤ −u or Z ≥ v) ≤ 1024v−2 + 27(γ − 1)2(γ + 3)2

9(γ + 3)3(3γ + 1)
(37)

holds with

γ = 2

√
1 + u

v
cos

(
1

3

[
π − arctan

(√
u

v

)])
− 1. (38)

Equality is attained in (37) for Z = UY with U and Y independent random variables,
U uniform on the unit interval, and Y the generalized Bernoulli random variable

Y =

⎧⎪⎪⎨
⎪⎪⎩

−γ c 3 4c−2−γ+1
(γ+1)(γ+3)

3
4 (1 − γ )c with probability 16 γ−3c−2

(γ+3)(3γ+1)

c 34c−2+γ (γ−1)
(γ+1)(3γ+1)

(39)

with

c = 3

8
(γ + 3)v. (40)

Proof The proof of Theorem 5.5, given at the end of the Appendix, can be applied
with M = 0 all the way up to and including the value of the upper bound in (67) with
γ defined in (38) and satisfying

γ 3 + 3γ 2 − 3
u

v
γ − u

v
= 0. (41)

Note that this equation may be rewritten as

(3γ + 1)u = (γ 3 + 3γ 2)v,
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which implies

(3γ + 1)(u + v) = (γ + 1)3v.

With the help of the last two equations, u may be eliminated from (67) resulting in the
expression in (37).

In view of this, the random variable Y from (39) follows straightforwardly from
(66) and (51) with M = 0. �
Remark 6.4 For u = v, the value of γ from (38) becomes 1 and the upper bound in
(37) takes on the value 4/(9v2), which is in line with Theorem 6.2.

7 Symmetric Unimodal distributions

Under the extra assumption of unimodality, Theorem 3.1 for symmetric distributions
may be sharpened too. Again we will encounter the extra factor 4/9. The resulting
inequality for symmetric unimodal distributions has been obtained by Camp (1922);
Meidell (1922), and Shewhart (1931). A different proof is given by Theil (1949). Still
a different proof is given in Lemma 2 of Clarkson et al. (2009). However, our proof is
shorter and simpler than theirs.

Theorem 7.1 If the distribution of the standardized random variable Z is symmetric
and unimodal, then

P(Z ≥ v) ≤

⎧⎪⎨
⎪⎩

1
2

(
1 − v√

3

)
, 0 < v < 2√

3
,

4
9

1
2v2

, v ≥ 2√
3
,

holds. Equality is attained by the mixture of a uniform distribution on [−(( 32v) ∨√
3) , ( 32v) ∨ √

3] and a distribution degenerate at 0 such that the point mass at 0
equals [1 − 4/(3v2)] ∨ 0.

Proof As Z is symmetric, P(Z ≥ v) = P(|Z | ≥ v)/2 holds and hence, Theorem 6.2
yields a proof. �

Actually, this Theorem is equivalent to Theorem 6.2. Indeed, let Z be standard-
ized with mode at 0 and let B be an independent Bernoulli random variable with
P(B = −1) = P(B = 1) = 1/2. As BZ is symmetric and hence P(|Z | ≥ v) =
P(|BZ | ≥ v) = 2P(BZ ≥ v) holds, Theorem 7.1 implies Theorem 6.2. For the class
of symmetric unimodal distributions, these Theorems also imply that inequality (36)
holds and is sharp.

Next, we consider the case of asymmetric intervals around 0.

Theorem 7.2 Assume the distribution of the standardized random variable Z is sym-
metric and unimodal and consider

√
3 ≤ v ≤ u. For u ≤ (2

√
2− 1)v, the inequality

P(Z ≤ −u or Z ≥ v) ≤ 4

9

4

(u + v)2
(42)
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holds with equality if Z is uniform on [−3(u + v)/4 , 3(u + v)/4] with probability
16/(3(u + v)2) and has a point mass at 0 with probability 1 − 16/(3(u + v)2).

For (2
√
2 − 1)v ≤ u, the inequality

P(Z ≤ −u or Z ≥ v) ≤ 4

9

1

2v2
(43)

holds with equality if Z is uniform on [−3v/2 , 3v/2] with probability 4/(3v2) and
has a point mass at 0 with probability 1 − 4/(3v2).

Remark 7.3 The Theorem in Sect. 3 of Semenikhin (2019) presents a complete version
for all positive u and v of our Theorem 7.2 with hism = (v−u)/2 and h = (u+v)/2.
Semenikhin (2019) uses another approach for the proof than we do, although there
are similarities between (44) below and his expression in the displayed formula above
his (A.3).

Proof By Lemma A.1, we have Z = UY with Y symmetric around 0 because of
the symmetry of Z around 0. Along the lines of Lemma A.2, we obtain by Jensen’s
inequality

P(Z ≤ −u or Z ≥ v) = P(Z ≥ u) + P(Z ≥ v)

= E
(
1 − v

Y
| v ≤ Y < u

)
P(v ≤ Y < u)

+E

(
2 − u + v

Y
| Y ≥ u

)
P(Y ≥ u)

≤
[
1 − v√

E(Y 2 | v ≤ Y < u)

]
P(v ≤ Y < u)

+
[
2 − u + v√

E(Y 2 | Y ≥ u)

]
P(Y ≥ u).

With the notation a = √
E(Y 2 | v ≤ Y < u), b = √

E(Y 2 | Y ≥ u),
p = P(v ≤ Y < u), and q = P(Y ≥ u), this implies

P(Z ≤ −u or Z ≥ v)

= sup

{(
1 − v

a

)
p +

(
2 − u + v

b

)
q : v ≤ a ≤ u ≤ b,

p ≥ 0, q ≥ 0, p + q ≤ 1
2 , 2a2 p + 2b2q ≤ 3

}
. (44)

By increasing a or b if necessary, we see that this supremum is attained at 2a2 p +
2b2q = 3.
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Fixa andbwith v ≤ a ≤ u ≤ b andwriteα = 1−v/a ≥ 0 andβ = 2−(u+v)/b ≥
0. Consider

S(α, β) = sup{α p + βq : p ≥ 0, q ≥ 0, p + q ≤ 1
2 , 2a2 p + 2b2q = 3}.

Now, b ≥ a ≥ v ≥ √
3 and hence, p+q ≤ (a2 p+b2q)/3 = 1/2 hold. Consequently,

we have

S(α, β) = sup

{
α p + β

3 − 2a2 p

2b2
: 0 ≤ p ≤ 3

2a2

}
= 3

2
max

{
α

a2
,

β

b2

}
. (45)

Studying the stationary points of the functions a �→ (1−v/a)/a2 and b �→ (2− (u+
v)/b)/b2, we see with the help of (45) that the supremum in (44) equals

3

2
max

{
sup

v≤a≤u

[
1

a2

(
1 − v

a

)]
, sup
b≥u

[
1

b2

(
2 − u + v

b

)]}

= max

{
2

9v2
1[3v≤2u] ,

3

2u2

(
1 − u

v

)
,

16

9(u + v)2
1[u≤3v]

}
.

If 3v < u holds, then we have

3

2u2

(
1 − v

u

)
≤ 3

2u2
<

1

6v2
<

2

9v2
.

If 3v ≥ u ≥ v holds, then

3

2u2

(
1 − v

u

)
≤ 16

9(u + v)2

holds iff

27

32

(
1 − v

u

) (
1 + v

u

)2 ≤ 1

holds. The last inequality is valid in view of

sup
1/3≤x≤1

27

32
(1 − x)(1 + x)2 = 1.

We conclude that the supremum in (44) is bounded by

4

9
max

{
1

2v2
,

4

(u + v)2

}
.

Straightforward computation shows that equality holds in (42) and (43) for the indi-
cated random variables Z . �
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8 Discussion

Our bounds for the probability that (the absolute value of) a standardized random
variable exceeds a given value are essential in quality control, where the probability
for the risk of an out-of-specification (OOS) result is being calculated or estimated.
The probability that a quality characteristic is above or below the upper (USL) or
lower (LSL) specification limit, respectively, can be formulated by the probability
P(Z ≤ −u or Z ≥ v) in (1), assuming that the process mean μ falls within the
specification limits, μ ∈ (LSL,USL).

With the introduction of Statistical Process Control (SPC) by Walter Shewhart in
the 1920’s, three-sigma limits (μ ± 3σ ) were suggested for the use of control charts
to monitor the stability or predictability of quality characteristics of products and
processes over time; see Di Bucchianico and Van den Heuvel (2015). On page 277
of Shewhart (1931), Shewhart mentioned the Bienaymé–Chebyshev inequality and
stated “Experience indicates that v = 3 seems to be an acceptable economic value.”

In case, the three-sigma control limits of a Shewhart control chart fall (just) within
the specifications limits, the process has a capability index Cpk of at least one, i.e.
Cpk = min{(μ − LSL)/(3σ), (USL − μ)/(3σ)} ≥ 1. For such capable processes,
the worst case risk of an OOS result becomes P(Z ≥ 3) for one-sided specification
limits, P(|Z | ≥ 3) for two-sided specification limits when the process is perfectly
centred, i.e. μ = (LSL + USL)/2), and P(Z ≤ −11/3 or Z ≥ 3) for non-centred
processes with two-sided specification limits. This last probability follows from our
Theorem 2.2, where we have chosen v = 3, u = v + 2/v = 11/3.

In case u would be at least 11/3, the OOS probability P(Z ≤ −11/3 or Z ≥ 3) for
non-centred processes with two-sided specification limits and a Cpk ≥ 1 is the worst
case risk for producing products with a quality characteristic outside specification.
When u is smaller than 11/3 (and larger than 3 to maintain a Cpk ≥ 1), the OOS
probability P(|Z | ≥ 3) is considered theworst risk, while theOOS probability P(Z ≤
−11/3 or Z ≥ 3) is then considered the most favourable risk when the process has a
capability of one, i.e. Cpk = 1.

The bounds for these three OOS probabilities under different assumptions are pre-
sented in Table 2 below.

We see that these probabilities for the specific distributions in Table 2 show a rather
large discrepancy with their bounds, which is due to their large deviation in shape from
the distributions for which the bounds are sharp. Note that the symmetrized Pareto
density from the table is log-convex and that the Laplace, logistic and normal densities
are log-concave and hence strongly unimodal. The strongly unimodal distributions
constitute an important class of distributions; cf. Section 1.4 of Dharmadhikari and
Joag-dev (1988). Therefore, it might be useful to prove sharp bounds for this class as
well.

Acknowledgements The more tedious computations were partially checked with the help of Mathematica.
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Table 2 Overview of the resulting bounds of the inequalities of Bienaymé–Chebyshev and Gauß type for
standardized random variables Z for v = 3 and u = 11/3

Class of distributions P(Z ≥ 3) P(|Z | ≥ 3) P(Z ≤ −11/3 or Z ≥ 3)

All 1/10 ≈ 0.10000 1/9 ≈ 0, 11111 40/400 ≈ 0.10000

Symmetric 1/18 ≈ 0.05556 1/9 ≈ 0.11111 9/121 ≈ 0.07438

Unimodal 4/90 ≈ 0.04444 4/81 ≈ 0.04938 4/90 ≈ 0.04444

Unimodal & mode = mean 0.04166 4/81 ≈ 0.04938 0.04348

Symmetric & unimodal 2/81 ≈ 0.02469 4/81 ≈ 0.04938 16/400 ≈ 0.04000

Symm. Pareto 0.00917 0.01835 0.01433

Laplace 0.00718 0.01437 0.01278

Logistic 0.00431 0.00863 0.00551

Normal 0.00135 0.00270 0.00147

Furthermore, the corresponding values for four symmetric unimodal distributions are given, namely the
Laplace (double exponential), logistic and normal distribution and the symmetrized Pareto distribution
with density 5/(2

√
6) (1+ | x | /

√
6)−6
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A Appendix

In this Appendix, we prove a lemmawith Khintchine’s representation theorem, Khint-
chine (1938), and other lemmata that we need. Furthermore, the proof of Theorem 5.5
is given.

Lemma A.1 (Khintchine representation) If Z has a unimodal distribution, then there
exist a constant M and independent random variables U and Y with U uniformly
distributed on the unit interval, such that Z = M + UY holds. If Z is symmetric
around M, then Y is symmetric around 0.

Proof Let Z have its mode and possibly a point mass at M . Theorem V.9 of Feller
(1966) and Theorem 1.3 of Dharmadhikari and Joag-dev (1988) yield the characteriza-
tion Z = M +UY .As an alternative proof, cf. page 8 of Dharmadhikari and Joag-dev
(1988), let the conditional distribution of Z − M given Z > M have density f and
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distribution function F on (0,∞). Since f is nonincreasing, we may write

f (x) = −
∫ ∞

0

1

y
1[0,y](x) y d f (y) =

∫ ∞

0

1

y
1[0,y](x) d[F(y) − y f (y)]

with

F(y) − y f (y) =
∫ y

0
[ f (z) − f (y)] dz

a distribution function on [0,∞). It follows that f is the density of UY given Y
positive. With a similar argument for negative values of Z − M and Y , we obtain
Khintchine’s characterization. From this construction, it follows that Y is symmetric
around 0, if Z is symmetric around M . �

For the proofs of Theorems 5.5, 6.1, 6.3, and 7.2, we need also the following result.

Lemma A.2 Let ZM be the class of random variables Z that have a unimodal distri-
bution with mean zero, unit variance, and mode at M . Let YM be the class of random
variables Y with mean −2M and variance 3− M2. With −u ≤ M ≤ v, the following
holds true

sup
Z∈ZM

P(Z ≤ −u or Z ≥ v) = sup
Y∈YM

E	M (Y )

with the function 	M given by

	M (y) =
[
1 + u + M

y

]
1[y<−u−M] +

[
1 − v − M

y

]
1[y>v−M].

Proof By Lemma A.1, we may write Z = M +UY withU and Y independent, which
implies 0 = EZ = M+ 1

2 EY and 1 = varZ = var(UY ) = E(U 2Y 2)−(E(UY ))2 =
1
3 E(Y 2) − M2. These equations yield EY = −2M, E(Y 2) = 3(1+ M2), and hence
varY = 3 − M2, which shows M2 ≤ 3. Consequently, we get

P(Z ≥ v) = P(UY ≥ v − M) = E

(
P

(
U ≥ v − M

Y
| Y

)
1[Y>v−M]

)

= E

([
1 − v − M

Y

]
1[Y>v−M]

)
.

As a similar relation holds for P(Z ≤ −u), we obtain the lemma. �

In the proof of Theorem 5.5, we will need to solve the following cubic equation.

Lemma A.3 With r > 0, the cubic equation

z3 + 3z2 − 3r z − r = 0 (46)
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has exactly one positive root, namely

zr = 2
√
1 + r cos

(
1

3

[
π − arctan

(√
r
)]) − 1

with, in particular, z1 = 1.

Proof By Vieta’s method, Eq. (46) becomes

(
w3

)2 + 2(1 + r)w3 + (1 + r)3 = 0

via the substitution z = w + (1 + r)w−1 − 1. This leads to

w3 = −(1 + r)(1 ± √
r i) = −(1 + r)3/2 exp

(
2kπ i ± arctan

(√
r
))

and hence to

z = −1 − √
1 + r[

exp

(
1

3

[
2kπ ± arctan

(√
r
)]
i

)
+ exp

(
−1

3

[
2kπ ± arctan

(√
r
)]
i

)]

= −2
√
1 + r cos

(
1

3

[
2kπ + arctan

(√
r
)]) − 1

= 2
√
1 + r cos

(
π − 1

3

[
2kπ + arctan

(√
r
)]) − 1 = 2

√
1 + r cos(α) − 1

with k an integer and α equal to

α0 = 1

3

[
3π − arctan

(√
r
)] ∈ (5π/6, π),

α1 = 1

3

[
π − arctan

(√
r
)] ∈ (π/6, π/3), or

α2 = 1

3

[−π − arctan
(√

r
)] ∈ (−π/2,−π/3).

In view of

cos(α0) < −√
3/2, cos(α1) > 1/2,

the claim has been proved once

2
√
1 + r cos(−α2) − 1 < 0 (47)

has been shown. Writing ψ = π/6 − arctan(
√
r)/3 with ψ ∈ (0, π/6), we have

r = cot2(3ψ) and we see that (47) holds if and only if

2

sin(3ψ)
cos(π/2 − ψ) − 1 < 0
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or equivalently

2 sin(ψ) − sin(3ψ) = 2 sin(ψ) − 3 sin(ψ) + 4 sin3(ψ) = sin(ψ)[4 sin2(ψ) − 1] < 0

holds. Because of sin(ψ) ∈ (0, 1/2), this is the case. �

A. 1 Proof of Theorem 5.5

Finally, we present our proof of Theorem 5.5 as given in Sect. 5.
By Khintchine’s Lemma A.1, the standardized unimodal random variable Z may

be represented as Z = M + UY with U uniformly distributed on the unit interval
and independent of the random variable Y . As Z is standardized, Y has to satisfy
EY = −2M and EY 2 = 3(1+ M2) with M the location of the mode of Z . It follows
that the variance of Y equals 3− M2, and hence that |M | ≤ √

3 holds. As u and v are
both at least as large as

√
3, we have−u ≤ M ≤ v. Hence, Khintchine’s representation

and Lemma A.2 yield

P(Z ≤ −u or Z ≥ v) = E	M (Y ), (48)

where the function 	M is given by

	M (y) =
[
1 + u + M

y

]
1[y<−u−M] +

[
1 − v − M

y

]
1[v−M<y].

We define the random variable Y1 by

Y1 = μ− 1[Y<−u−M] + μ0 1[−u−M≤Y≤v−M] + μ+ 1[v−M<Y ],

with μ− = E(Y | Y < −u − M), μ0 = E(Y | −u − M ≤ Y ≤ v − M), and
μ+ = E(Y | Y > v − M). Note EY1 = EY and EY 2

1 ≤ EY 2.

As μ− < −u−M ≤ μ0 ≤ v −M < μ+ holds andψM is concave on (−∞,−u−
M) and on (v − M,∞) and vanishes elsewhere, we have by Jensen’s inequality

E	M (Y )

= [E(	M (Y ) | Y < −u − M)] P(Y < −u − M)

+[E(	M (Y ) | v − M < Y )] P(v − M < Y )

≤ 	M (E(Y | Y < −u − M))P(Y < −u − M)

+	M (E(Y | v − M < Y ))P(v − M < Y )

= 	M (μ−)P(Y1 = μ−) + 	M (μ+)P(Y1 = μ+) = E	M (Y1).

If necessary, by subtracting a positive value fromμ− (orμ0 if themass atμ− vanishes)
and adding to μ+ (or μ0 if the mass at μ+ vanishes), the random variable Y1 can be
forced to satisfy E(Y 2

1 ) = 3(1 + M2) while increasing E	M (Y1) and maintaining
EY1 = −2M . This mechanism does not work if Y1 is degenerate at −2M . However,
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in view of −u − M ≤ −2M ≤ v − M we then have E	M (Y1) = 0, which is not an
upper bound to (48) whatever the values of u and v are.

We have shown that the supremum of the probability in (30) is attained by a random
variable Z = M +UY as above, where Y is discrete with three atoms, namely

Y =
⎧⎨
⎩

−a p
b with probability 1 − p − q
c q

with −a ≤ −u − M ≤ b ≤ v − M ≤ c, |M | ≤ √
3, and

P(Z ≤ −u or Z ≥ v) =
(
1 − u + M

a

)
p +

(
1 − v − M

c

)
q. (49)

The restrictions EZ = 0 and EZ2 = 1 imply

EY = −2M = −ap + b(1 − p − q) + cq

EY 2 = 3(1 + M2) = a2 p + b2(1 − p − q) + c2q, (50)

and hence

p = 3(1 + M2) + 2M(b + c) + bc

(a + b)(a + c)
, q = 3(1 + M2) + 2M(b − a) − ab

(c − b)(a + c)
,

p + q = 3(1 + M2) + 2M(c − a) + b(c − a − b)

(a + b)(c − b)
. (51)

Writing

ζ = 3(1 + M2) + 2Mb, η = 2M + b, (52)

we note

p ≥ 0 ⇔ bc + 2M(b + c) + 3(1 + M2) = ζ + ηc ≥ 0,

q ≥ 0 ⇔ ab + 2M(a − b) − 3(1 + M2) = −ζ + ηa ≤ 0,

p + q ≤ 1 ⇔ ac + 2M(a − c) − 3(1 + M2) ≥ 0, (53)

and define the set

A =
{
(a, b, c, M) | −a ≤ −u − M ≤ b ≤ v − M ≤ c, |M | ≤ √

3,

p ≥ 0, q ≥ 0, p + q ≤ 1} .
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So far, we have seen that

P(Z ≤ −u or Z ≥ v)

≤ sup
A

[(
1 − u + M

a

)
ζ + ηc

(a + b)(a + c)
+

(
1 − v − M

c

)
ζ − ηa

(c − b)(a + c)

]

(54)

holds. Note that u + M and v − M are positive on A in view of −u ≤ M ≤ v.
We shall prove that for

√
3 ≤ v ≤ u ≤ v + 2/v this supremum is attained at a

stationary point withinA of the function in (54) and that for v +2/v ≤ u it is attained
at a point on the boundary of A. To this end, we shall show first that at the boundary
of A the function in (54) cannot attain a value larger than the second bound given in
(30). With Ā denoting the closure ofA, we see that the boundary ∂A ofA is the union
of the following sets

A1 = {(a, b, c, M) ∈ A | a = u + M},
A2 = {(a, b, c, M) ∈ A | c = v − M},
A3 = {(a, b, c, M) ∈ A | ζ − ηa = 0} = {(a, b, c, M) ∈ A | q = 0},
A4 = {(a, b, c, M) ∈ A | ζ + ηc = 0} = {(a, b, c, M) ∈ A | p = 0},
A5 = {(a, b, c, M) ∈ A | p + q = 1},
A6 = {(a, b, c, M) ∈ Ā | |M | = √

3},
A7 = {(a, b, c, M) ∈ Ā | b = −a},
A8 = {(a, b, c, M) ∈ Ā | b = c}.

We treat these boundary subsets as follows.

A1 With a = u + M , we have

P(Z ≤ −u or Z ≥ v) =
(
1 − v − M

c

)
q = P(Z ≥ v), (55)

which by Theorem 5.2 is bounded by 4/(9(1+ v2)) provided v2 ≥ 5/3 holds. By
differentiation, one observes that the function

u �→ 4 + (u − v)2

(u + v)2

is decreasing if and only if u ≤ v + 2/v holds, and hence, it has minimum value
1/(1 + v2). So, the first bound from (30) equals at least the bound 4/(9(1 + v2))

from Theorem 5.2.
A2 By symmetry, an analogous argument holds for A2 as for A1.
A3 By symmetry, an analogous argument holds for A3 as for A4.
A4 With p = 0, we have (55) and the same argument as for A1 holds here. Further-

more, the random variable Z that attains the second bound from (30), corresponds
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to M = −1/v and

Y =

⎧⎪⎨
⎪⎩
0 3v2−1

3(1+v2)

with probability
3
2

(
v + 1

v

) 4
3(1+v2)

,

which shows that this second bound is attained within A4.
A5 In view of EZ = 0 and EZ2 = 1, the definition of Y from (50) implies EY =

−2M and EY 2 = 3(1 + M2), and hence, E(Y + M)2 = 3. With p + q = 1, this
yields

(a − M)2 p + (M + c)2(1 − p) = 3,

which means that a − M and M + c cannot simultaneously be larger than
√
3.

As both u and v equal at least
√
3, this shows that either 1 − (u + M)/a ≤ 0 or

1 − (v − M)/c ≤ 0 holds. Together with (55), we conclude that A5 ⊂ A1 ∪ A2
holds and that the second bound from (30) cannot be exceeded on A5.

A6 In case of |M | = √
3, the variance of Y from (50) vanishes, i.e. Y is degenerate,

and hence, at least two of the restrictions p = 0, q = 0, and p + q = 1 hold.
Consequently, we have A6 ⊂ A3 ∪ A4 and we see that the second bound from
(30) cannot be exceeded on A6.

A7 If b equals −a, the random variable Y from (50) may be viewed as a Bernoulli
random variable with p + q = 1, which implies A7 ⊂ A5.

A8 If b equals c, the random variable Y from (50) may be viewed as a Bernoulli
random variable with p + q = 1, which implies A8 ⊂ A5.

We conclude that for
√
3 ≤ v ≤ u

sup
∂A

[(
1 − u + M

a

)
ζ + ηc

(a + b)(a + c)
+

(
1 − v − M

c

)
ζ − ηa

(c − b)(a + c)

]

= 4

9

1

1 + v2
(56)

holds. As we have shown that at the boundary of A the function from (54) cannot
attain a value larger than the first bound given in (30), we focus on the interior of A
and determine the stationary points of the function in (54). For the time being, we fix
b and hence ζ and η and note that the function to be maximized over a and c may be
written as

{ζ [ac(a + c) − (u + M)c(c − b) − (v − M)a(a + b)]
+ η[ac(a + c)(c − a − b) − (u + M)c2(c − b) + (v − M)a2(a + b)]

}

×{a(a + b)c(c − b)(a + c)}−1. (57)
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“Some” computation shows that the stationary points of this function of a and c are
solutions of the two equations

[ζ + ηc] [−a2c(a + c)2 + (u + M)c(c − b)(3a2 + 2a(b + c) + bc)

+(v − M)a2(a + b)2] = 0

[ζ − ηa] [−ac2(a + c)2 + (u + M)c2(c − b)2

+(v − M)a(a + b)(3c2 + 2c(a − b) − ab)] = 0.

Ignoring the first factors, which correspond to the boundary conditions p = 0 and
q = 0 treated under A3 and A4 above, we obtain

a2c2(a + c)2

= (u + M)c2(c − b)(3a2 + 2a(b + c) + bc) + (v − M)a2(a + b)2c

= (u + M)ac2(c − b)2 + (v − M)a2(a + b)(3c2 + 2c(a − b) − ab). (58)

Dividing the second equality by v − M , we obtain

u + M

v − M
c2(c − b)(a + b)(3a + c) + a2(a + b)(c − b)(−3c − a) = 0.

Dividing this by c3(c − b)(a + b) and writing a = γ c, we arrive at

γ 3 + 3γ 2 − 3
u + M

v − M
γ − u + M

v − M
= 0, (59)

which by Lemma A.3 has exactly one positive root, namely

γM = 2

√
1 + u + M

v − M
cos

(
1

3

[
π − arctan

(√
u + M

v − M

)])
− 1 > 0. (60)

By a slight abuse of notation, we shall denote this unique positive root by γ too. We
conclude that a and c satisfy (58) and

a = γ c

holds with a and c depending on b and M , and with γ depending on M only.
Note that ζ and η defined in (52) depend on b. Straightforward computation shows

that the derivative of (57) with respect to b vanishes if

[
(u + M)c(c − b)2 − (v − M)a(a + b)2 + ac(a + c)(a + 2b − c)

]

×
[
3(1 + M2) − 2M(a − c) − ac

]
= 0
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holds. If the second factor vanishes, (51) implies

p + q = 3(1 + M2) − 2M(a − c) + b(c − a − b)

(a + b)(c − b)

= ac + bc − ab − b2

(a + b)(c − b)
= 1,

which is the boundary case A5 treated above. So, ignoring the second factor and
multiplying by ac we arrive at

(u + M)ac2(c − b)2 − (v − M)a2c(a + b)2 + a2c2(a + c)(a + 2b − c) = 0.

(61)

The first equation from (58) can be rewritten as

(u+M)c2(c − b)(3a2+2a(b + c)+bc)+(v − M)a2(a + b)2c − a2c2(a+c)2=0.

(62)

Adding up (61) and (62) and dividing the result by c2, we obtain

(u + M)(c − b)(a + c)(3a + b) − 2a2(a + c)(c − b) = 0 (63)

and hence,

b = 2a2

u + M
− 3a.

Substituting this into (61) with c = a/γ and multiplying the result by a−3γ 3, we get

4

(
a

u + M

)2 [
γ (2γ + 1)(u + M) − γ 3(v − M)

]

+ a

u + M

[
−(17γ 2 + 10γ + 1)(u + M) + 8γ 3(v − M)

]

+(3γ + 1)2(u + M) − 4γ 3(v − M) = 0.

With the help of (59), this may be rewritten as

4

(
a

u + M

)2 [
(2γ 2 − 2γ − 1)(u + M) + 3γ 2(v − M)

]

+ a

u + M

[
(−17γ 2 + 14γ + 7)(u + M) − 24γ 2(v − M)

]

+3(3γ + 1)(γ − 1)(u + M) + 12γ 2(v − M) = 0. (64)

123



Sharp inequalities of Bienaymé–Chebyshev and Gauß type… 597

One may verify that (64) can be factorized as follows

(
a

u + M
− 1

){
a

u + M

[
(8γ 2 − 8γ − 4)(u + M) + 12γ 2(v − M)

]

−(9γ 2 − 6γ − 3)(u + M) − 12γ 2(v − M)
}

= 0.

As a = u + M is a boundary case, we conclude

a = 3

4
(u + M)

(γ − 1)(3γ + 1)(u + M) + 4γ 2(v − M)

(2γ 2 − 2γ − 1)(u + M) + 3γ 2(v − M)
.

Note that (59) may be reformulated as

(3γ + 1)(u + M) = γ 2(γ + 3)(v − M)

and that hence

a = 3

4
(u + M)

(γ + 1)2(v − M)

(γ + 1)2(v − M) − (u + v)
.

holds. Consequently also b, c, and the function to be maximized itself, as given in
(57), can be expressed in terms of M and γ . As γ is a complicated function of M , we
shall write M in terms of γ . To this end, we rewrite (59) as

u + M

v − M
= γ 2(γ + 3)

3γ + 1

and notice that this implies

M = γ 2(γ + 3)v − (3γ + 1)u

(γ + 1)3
(65)

and hence

a = 3

8

γ (γ + 3)(3γ + 1)

(γ + 1)3
(u + v),

b = 9

32

(1 − γ )(γ + 3)(3γ + 1)

(γ + 1)3
(u + v),

c = 3

8

(γ + 3)(3γ + 1)

(γ + 1)3
(u + v). (66)

As γ is positive, these values satisfy −a < b < c and −u ≤ M ≤ v as prescribed
by A. Substituting them into (49)–(52), we arrive at

256(γ + 1)5

27(γ + 3)3(3γ + 1)3(u + v)2

[
(γ + 3)(ζ + ηc) + (3γ + 1)(ζ − ηa)

]
.
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Eliminating ζ and η from this expression, we obtain

[
9(γ + 3)3(3γ + 1)3(u + v)2

]−1

[
1024(γ + 1)6 + u2(3γ + 1)3(9γ 3 + 33γ 2 + 99γ + 115)

+ v2(γ + 3)3(115γ 3 + 99γ 2 + 33γ + 9)

− 2uv(γ + 3)(3γ + 1)(111γ 4 + 276γ 3 + 250γ 2 + 276γ + 111)
]
, (67)

which we shall denote as ψ(γ ; u, v). At γ = 1, the expression from (67) equals the
first bound from (30), i.e.

ψ(1; u, v) = 4

9

4 + (u − v)2

(u + v)2
.

We shall prove

ψ(1; u, v) − ψ(γ ; u, v) ≥ 0, γ > 0,
√
3 ≤ v ≤ u. (68)

The function

χ(γ ; u, v) = 9(u + v)2(γ + 3)3(3γ + 1)3[ψ(1; u, v) − ψ(γ ; u, v)]
= −4(γ − 1)2[148γ 4 + 752γ 3 + 1272γ 2 + 752γ + 148]

+ u2[189γ 6 + 3186γ 5 + 12051γ 4 + 18556γ 3 + 11667γ 2 + 3186γ + 317]
+ v2[317γ 6 + 3186γ 5 + 11667γ 4 + 18556γ 3 + 12051γ 2 + 3186γ + 189]
− 2uv[99γ 6 + 2382γ 5 + 11853γ 4 + 20484γ 3 + 11853γ 2 + 2382γ + 99]

is quadratic in u with a positive coefficient for u2 and attains its minimum in u at

v
99γ 6 + 2382γ 5 + 11853γ 4 + 20484γ 3 + 11853γ 2 + 2382γ + 99

189γ 6 + 3186γ 5 + 12051γ 4 + 18556γ 3 + 11667γ 2 + 3186γ + 317
, (69)

which equals at most v as the denominator minus the numerator in (69) equals

2(γ − 1)2(45γ 4 + 492γ 3 + 1038γ 2 + 620γ + 109) ≥ 0.

We see that

χ(γ ; v, v) = −4(γ − 1)2[148γ 4 + 752γ 3 + 1272γ 2 + 752γ + 148]
+ 4v2(γ − 1)2[77γ 4 + 556γ 3 + 1038γ 2 + 556γ + 77]

is nonnegative for γ > 0, if

v2 ≥ sup
γ>0

148γ 4 + 752γ 3 + 1272γ 2 + 752γ + 148

77γ 4 + 556γ 3 + 1038γ 2 + 556γ + 77
= 2
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holds,which is the case in viewof the assumptionv ≥ √
3.Consequently,χ(γ ; u, v) ≥

0 and (68) hold.We have proved that the first bound from (30) is valid for
√
3 ≤ v ≤ u.

Substituting γ = 1 into (65) and (66), we arrive at the random variables Z and
Y defined in Theorem 5.3. However, Y from this Theorem is not well defined if
2 + v(v − u) is negative, i.e. if u > v + 2/v holds. Put differently, for u > v + 2/v
and γ = 1 the point (a, b, c, M) from (65) and (66) is not contained in A.

Therefore, we have to consider the case
√
3 ≤ v, v + 2/v < u separately, as we

do next. Lengthy computations show that the derivative of ψ(γ ; u, v) from (67) with
respect to γ vanishes if and only if

(γ 2 − 1)
[
256(γ + 1)4 + (3γ + 1)4u2 + (γ + 3)4v2

− 2(γ + 3)(3γ + 1)(29γ 2 + 54γ + 29)uv
]

= 0 (70)

holds. As γ = 1 corresponds with a point outsideA in the present situation, we restrict
attention to those γ for which the second factor vanishes. So, we may assume

−(3γ + 1)4u2 = 256(γ + 1)4 + (γ + 3)4v2

− 2(γ + 3)(3γ + 1)(29γ 2 + 54γ + 29)uv = 0. (71)

Using (53), (65), and (66), we see that in terms of γ the nonnegativity of p is equivalent
to

256(γ + 1)6 − (γ − 1)(3γ + 1)4u2

+ (γ + 3)2
(
112γ 4 + 207γ 3 + 139γ 2 + 45γ + 9

)
v2

− 2(γ + 3)(3γ + 1)
(
24γ 4 + 43γ 3 + 79γ 2 + 81γ + 29

)
uv ≥ 0,

which by (71) becomes the inequality

256γ (γ + 1)4(γ + 3) + 16γ (γ + 1)(γ + 3)2
(
7γ 2 + 6γ + 3

)
v2

− 16γ (γ + 1)(γ + 3)(3γ + 1)
(
3γ 2 + 6γ + 7

)
uv ≥ 0.

In view of u > v + 2/v, this implies

−32γ (γ + 1)(γ + 3)(γ − 1)3 > 0

and we conclude that for a γ satisfying (71) 0 ≤ γ < 1 holds. Since γ = γM from
(60) is increasing in (u + M)/(v − M) and equals 1 for (u + M)/(v − M) = 1, we
have (u + M)/(v − M) < 1 and hence,

v + 2

v
< u < v − 2M ≤ v + 2

√
3.
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Applying these inequalities to (71) with the first factor removed, we arrive at

0 < 16(γ − 1)
(
55γ 3 + 87γ 2 + 45γ + 5

)

− 4
(
23γ 4 + 196γ 3 + 330γ 2 + 196γ + 23

)
v2 + 4

√
3(3γ + 1)4v

and hence, in view of
√
3 ≤ v and γ < 1 at

0 < 16(γ − 1)
(
55γ 3 + 87γ 2 + 45γ + 5

)

+ 8
(
29γ 4 − 44γ 3 − 138γ 2 − 92γ − 11

)
v2

< 16(γ − 1)
(
55γ 3 + 87γ 2 + 45γ + 5

)

− 8
(
15γ 3 + 138γ 2 + 92γ + 11

)
v2 < 0.

This contradiction shows that the stationary points corresponding to the second factor
in (71) do not belong to A. It follows that for v + 2/v < u there are no stationary
points within the interior of A and hence, the supremum in (54) is attained at the
boundary ∂A of A. Consequently, (56) completes the proof, as computation shows
that the random variables Z mentioned in the Theorem attain the bounds. �
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Vysočanskiı̆ DF, Petunin JuI (1980) Justification of the 3σ -rule for unimodal distributions. Theory Probab

Math Stat 21:25–36
Vysochanskiı̆ DF, Petunin YuI (1983) A remark on the paper ‘Justification of the 3σ -rule for unimodal

distributions’. Theory Probab Math Stat 27:27–29

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://84.89.132.1/lugosi/anu.pdf
http://84.89.132.1/lugosi/anu.pdf

	Sharp inequalities of Bienaymé–Chebyshev and Gauß type for possibly asymmetric intervals around the mean
	Abstract
	1 Introduction
	2 All distributions
	3 Symmetric distributions
	4 Concave distribution functions
	5 Unimodal distributions
	6 Unimodal distributions with coinciding mode and mean
	7 Symmetric Unimodal distributions
	8 Discussion
	Acknowledgements
	A Appendix
	A. 1 Proof of Theorem 5.5

	References




