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Abstract 

Non-target analysis combined with liquid chromatography high resolution mass spectrometry is considered one of 
the most comprehensive strategies for the detection and identification of known and unknown chemicals in complex 
samples. However, many compounds remain unidentified due to data complexity and limited number structures in 
chemical databases. In this work, we have developed and validated a novel machine learning algorithm to predict the 
retention index (r i  ) values for structurally (un)known chemicals based on their measured fragmentation pattern. The 
developed model, for the first time, enabled the predication of r i  values without the need for the exact structure of 
the chemicals, with an R2 of 0.91 and 0.77 and root mean squared error (RMSE) of 47 and 67 r i  units for the NORMAN 
( n = 3131 ) and amide ( n = 604 ) test sets, respectively. This fragment based model showed comparable accuracy 
in r i  prediction compared to conventional descriptor-based models that rely on known chemical structure, which 
obtained an R2 of 0.85 with an RMSE of 67.

Keywords Non-target analysis, Retention indices, HRMS, Machine learning

Introduction
The human and environmental exposome contains a mul-
titude of chemicals consisting of natural ones, man-made 
chemicals, and their transformation products, including 
their metabolites [1, 2]. These chemicals cover a wide 

range of molecular weights, functional groups or com-
pound classes, physiochemical properties, and biological 
activities (i.e. toxicity) [2, 3]. Most of the chemicals in the 
human exposome are structurally unknown and there-
fore there is little known about their occurrence, fate, and 
potential health impact [4–9].

Non-target analysis (NTA) combined with high-reso-
lution mass spectrometry (HRMS) is considered one of 
the most comprehensive strategies for the detection and 
identification of the unknown chemicals of emerging 
concern (CECs) in complex biological and environmen-
tal samples [2, 4, 8, 10–15]. The NTA experiments are 
reliant on generic experimental conditions as they aim 
to cover as wide a portion of the sample chemical space 
as possible [4, 8, 16, 17]. Moreover, the NTA experi-
ments have the ultimate goal of confident identification 
(i.e. structural elucidation) of all the chemical constitu-
ents within the covered chemical space of the sample. 
This implies that the NTA experiments tend to generate 
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a large number (e.g. thousands) of high-resolution mass 
spectra per sample to be structurally elucidated [8, 12, 14, 
17–20].

In the past decade, a lot of efforts have been put into 
the generation of digital open-source/access data pro-
cessing tools to tackle the complex data generated from 
the NTA assays [11, 12, 21–28]. These digital tools pro-
vide the means to perform a complete NTA workflow 
from feature detection [25, 29–31] to componentization 
[21, 31, 32] and identification/annotation [28, 33–36]. 
These tools, even though powerful, have shown to be 
highly sensitive toward the data quality and the param-
eters used during the processing [9, 37–40], particu-
larly when dealing with complex samples [24, 41–43]. 
In addition, the inherent variability in the data caused 
by the experimental conditions used during the analy-
sis significantly increases the difficulties associated with 
confidence assessment of the generated structures for 
the features in the chromatograms [8, 44–46]. Finally, a 
large number of the generated chromatographic features 
remain unidentified, due to data complexity, limited 
spectral databases [47], and limited structures in chemi-
cal databases (e.g. PubChem [48] and/or CompTox [49]), 
even though their accurate mass spectral information has 
been collected during the analysis.

To mitigate the issues related to the identification of 
known and unknown unknowns, the addition of reten-
tion times and retention indices (ri ), as an additional 
source of information, have been previously tested 
[50–58]. For r i measurements, a series of calibrants (i.e. 
chemicals with known retention behavior) are necessary. 
The simultaneous analysis of the samples and the r i cali-
brants under specified conditions has enabled the meas-
urement of r i values of structurally unknown chemicals 
[59, 60]. These measured r i values are then compared to 
the r i databases of structurally known chemicals to fur-
ther increase the associated confidence in the generated 
identifications [59–61]. Additionally, recent studies have 
highlighted the use of quantitative structure retention 
relationship (QSRR) models to predict and populate the 
r i databases, employing molecular descriptors [59–62]. 
The QSRR methods for the prediction of r i values of 
structurally known chemicals have been a complemen-
tary strategy to the experimentally defined r i values. 
However, these approaches have some major limitations 
namely: they require the chemical structure to be known; 
and for unknown chemicals are applicable only under 
well-defined chromatographic conditions (for example a 
specific organic modifier); and, the experimental r i cali-
brant information associated with each NTA experiment. 
The combination of the measured r i via calibrant chemi-
cals and the predicted values via databases have been 
utilized for reducing the number of potential candidates 

and thus increasing the confidence levels associated with 
tentatively identified features [59–61]. However, for this 
workflow to be effective, the calibrants and the samples 
must be measured using the exact same experimental 
conditions. This implies that any changes in the experi-
mental conditions (e.g. gradient, organic modifier, col-
umn temperature) will warrant additional measurements 
of the calibrants via the new methods. Moreover, it 
should be noted that for most NTA studies, already pub-
lished, the r i calibrants are not injected and thus their 
retention times missing [4]. This limitation also hinders 
the alignment of chromatograms acquired under differ-
ent experimental conditions (i.e. either different labs or 
experimental setups), ultimately slowing down the pro-
cess of detection of chemicals of emerging concern [26]. 
Such aforementioned limitations, greatly limits the appli-
cability of r i values for unraveling the human and envi-
ronmental exposome via NTA assays.

Here we have developed and validated a novel machine 
learning algorithm to predict the r i values for structurally 
unknown chemicals based on their measured fragmen-
tation pattern. The developed models, for the first time, 
enable the prediction of r i values without the need of the 
exact structure of the chemicals. For the model develop-
ment, we selected the alkylamides homologous series as 
the r i scale, based on their range of applications in the 
NTA metabolomics studies [59, 61]. The r i values for 
structurally known chemicals were predicted using both 
descriptors as well as the fragmentation patterns trans-
lated into cumulative neutral losses (CNL). The CNL val-
ues were obtained by calculating the difference between 
the precursor mass and individual fragments within 
the high-resolution mass spectrometry (HRMS) spec-
tra assuming complete independence among fragments. 
The CNL based model was validated employing both 
experimental r i values and descriptor-based predicted r i 
values. Finally, the validated CNL-based model showed 
comparable accuracy in r i prediction to conventional 
descriptor-based models, relying only on the measured 
HRMS spectra (i.e. no information about the chemical 
structures).

Methods
Data
For the model development, validation, and testing we 
employed two different datasets namely: a set of exper-
imental r i values - referred to as amide dataset - based 
on the alkylamides homologous series, consisting out of 
1488 chemicals [59]; and 26489 chemicals from the NOR-
MAN SusDat database [26]. The alkylamides homolo-
gous series is one of the most commonly used r i scale 
for C18 reversed phase liquid chromatography (RP-LC) 
due to their ease of measurement with RP-LC-HRMS 
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and their applications in the metabolomics field [59, 61]. 
The amide dataset consisted of measured r i values for 
1488 chemicals with more than 40 different functional 
groups from amine, aniline, pyridine, pyrrole, ether, 
ester, ketone, alcohol, carboxylic acid, phenol to amide 
and molecular weight range between 79 Da and 609 Da. 
These r i values were measured using a Zorbax SBC18 
column and the combination of water and acetonitrile as 
the mobile phase. More details on these measurements 
are provided elsewhere (Hall et  al 2016 [59]).The NOR-
MAN dataset, on the other hand, was selected based on 
the high level of curation and availability of experimental 
HRMS spectra through NORMAN MassBank [63].

We calculated 2757 1D, 2D, 3D, and PubChem finger-
prints for both datasets using the PaDEL software pack-
age (Fig.  1) [64]. The curated amide dataset descriptors 
were employed for the development and validation of an 
r i prediction model. This was done due to the fact that 
only 133 unique chemicals out of 1488 had their experi-
mental HRMS spectra available in public spectral data-
bases. This descriptor-based model then was utilized to 
predict the r i values for the NORMAN dataset, which 
contained 3217 unique chemicals with experimental 
HRMS spectra (around 20871 measured spectra). We 
combined 30% of the amide dataset with experimental 
r i values and HRMS spectra with 85% of the NORMAN 
dataset with predicted r i values (descriptor based model) 
and experimental HRMS spectra. This combination ena-
bled us to minimize the impact of the first model (i.e. 

descriptor based model) on the CNL based model, while 
enabling an adequate validation of the model. Finally, the 
remaining 70% of the amide dataset with experimental r i 
values and HRMS spectra were employed to further test 
the performance the CNL based model. This workflow is 
schematically shown in Fig. 1.

Additionally, we further compared the chemical spaces 
covered by our training set as well as the NORMAN 
dataset. We performed a principal component analysis 
using the curated descriptors for both datasets. More 
details of the PCA are provided in Section S2 of the Addi-
tional file 1. The scores plot of the first two PCs indicates 
that our training set provides an adequate coverage of the 
NORMAN dataset (see Additional fie 1: Figs. S6 and S7).

Descriptor datasets
Descriptor generation: The PaDEL software was employed 
for the calculation of 2757 1D, 2D, 3D, and PubChem 
fingerprints for the amide and NORMAN datasets [64]. 
The predicted descriptors were saved as CSV files for the 
amide and NORMAN datasets, respectively and can be 
found on FigShare (see Sect. "Potentials and limitations"). 
When performing the 3D descriptor calculations, PaDEL 
needed to optimize the chemical structures, which in 
some cases resulted in convergence issues, and thus a 
failure in descriptor calculation. The descriptor calcula-
tions converged for 1289 out of 1488 unique chemicals in 
the amide dataset and 23012 out of 26489 unique chemi-
cals from the the NORMAN dataset.

Fig. 1 Workflow for setting up the models for predicting r i  values. A shows the construction of the descriptor model for predicting the NORMAN r i  
values, whereas, B shows the conversion of spectra to CNL values and the construction of the CNL model
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Descriptor curation: We also performed a descrip-
tor curation to assure that only the relevant and stable 
descriptors were included in the models. To assess the 
stability of the descriptors, we performed these calcu-
lations in triplicates for the amide dataset. Next, the 
descriptors were scaled based on the minimum and max-
imum value of each descriptor in order to compare them 
at the same scale. Then we calculated the variance of each 
descriptor and kept only the descriptors that had a vari-
ance lower than 0.01. This resulted in 2363 final stable 
descriptors to be used for the models. As for the NOR-
MAN dataset, the descriptors were calculated only once, 
due to the large number of chemicals. It was assumed 
that the descriptors that were deemed stable in the amide 
dataset, had a high probability of being stable also for the 
NORMAN dataset.

The retention index values (ri )
While for the compounds in the amide dataset r i values 
were determined experimentally, this was not the case for 
the compounds in the NORMAN dataset. Therefore, r i 
values for the NORMAN dataset were predicted using 
the descriptor based model (see Sect.  "Modeling"). The 
prediction of the r i values of the NORMAN dataset was 
performed only for the chemicals that were within the 
applicability domain (AD) of the descriptor based model 
(see Sect. "Applicability domain"). The AD filtering of the 
NORMAN dataset resulted in reliably predicted r i values 
for 14567 unique chemicals chemicals. The distribution 
of the r i values used in this study can be seen in Fig. 2.

CNL dataset
For the CNL dataset, electrospray ionization (ESI) high 
resolution (i.e. ≥ 5000) spectra were obtained from Mass-
Bank EU [65] for both the amide and NORMAN com-
pounds. For each of these chemicals, all corresponding 

experimental spectra were obtained based on the 
InChiKeys [66] and SMILES [67]. For the amide dataset, 
a total of 862 mass spectra were found for 133 unique 
compounds. Whereas for the NORMAN dataset, a total 
of unique 23871 mass spectra were found for 3217 unique 
chemicals. These compounds were cross-referenced with 
the NORMAN descriptor dataset, from which it was 
concluded that only for 2734 unique compounds, reli-
able r i values could be predicted, resulting in a dataset 
of 20871 entries. The distribution of r i values for the 
amide and NORMAN datasets can be seen in Fig.  3A, 
B, respectively. The retrieved HRMS spectra were gener-
ated by different labs, instruments, and under different 
experimental conditions. In order for our model to be 
able to handle the variance in the spectra coming from 
these different experimental settings, we kept the redun-
dant spectra of the same compound as separate entries. 
For example, for caffeine there were around 50 meas-
ured spectra with different instruments, collision ener-
gies and instrumental setups (e.g. source geometry and 
temperature). However, we were not able to see a direct 
relationship between different experimental parameters 
and the number, m/z value, and the relative intensity of 
the generated fragments. For example, the spectrum gen-
erated with orbitrap at 10 eV (AU276601) resulted in 2 
fragments while the spectrum via a QToF instrument at 
30 eV resulted also in 2 fragments (KW107903). For our 
model to be robust enough to handle such instrument 
related variance, we kept all those spectra as separate 
entries in our model. This strategy enabled us to incorpo-
rate the instrument variability into our models, without 
compromising the model accuracy.

For both the amide and NORMAN datasets, the CNLs 
were calculated for each individual spectrum by subtract-
ing the fragment masses from the precursor ion mass. For 
each spectrum, the CNL values were converted to a bit 

Fig. 2 Distribution of r i  values for the descriptor amide dataset (A) and of predicted r i  values for the descriptor NORMAN dataset (B)
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vector, corresponding to CNLs masses from 0 to 1000 Da 
with a step size of 0.01 Da (i.e. ± 5 mDa mass tolerance), 
where a 1 represented the presence and a 0 indicated the 
absence of a CNL within a spectrum. Additionally, the 
CNL values larger than the precursor ion were encoded 
as -1 in the bit vector. This was to make sure that the 
model can distinguish between absent and impossible 
CNLs (i.e. fragments with m/z values larger than precur-
sor m/z). The precursor ion mass was added as an addi-
tional continuous feature to the dataset. The combination 
of the monoisotopic mass and the CNLs enabled us to 
incorporate the information provided by the individual 
fragments and NLs into our model while containing the 
number of model variables to minimum. For example in 
case of CNL of 18 Da (i.e. the loss of water), the number 
of variables were reduced ≈ 3000 variables (i.e. individ-
ual fragments) to one single variable without any loss of 
information.

Modeling
For modeling, a gradient boosting regression model was 
implemented in Python 3.7.11 using CatBoost (v 0.3) 
[68]. CatBoost is a state-of-the-art approach for gradi-
ent boosting on decision trees for big data [69]. The main 
idea of gradient boosting is to consecutively combine 
many decision trees (weak learners) to create a strong 
competitive model. Since the decision trees are fitted 
consecutively, the fitted trees will learn from the mistakes 
of former trees to reduce errors. The process of adding 
new trees to existing ones is continued until the selected 

loss function is no longer minimized or the maximum 
tree depth is obtained.

Descriptor based model: To train the descriptor based 
model, the amide dataset was split into a training set 
(85%, n=1102) and a test set (15%, n=195). The descrip-
tor based model had calculated and curated descriptors 
of the amide dataset as the input variables, while hav-
ing the experimental r i values as the output variable (see 
Fig. 2). To reflect the skewed nature of the r i values, the 
data splitting was performed utilizing stratified sampling. 
This ensured that both the training set and test set had 
a good representation of the population. The stratified 
sampling was done using three classes, from 200–440, 
440–700, and 700–1041 r i units.

The model training and optimization was performed 
using the root mean square error (RMSE) loss function for 
a total of 450 iterations (a tree is constructed every itera-
tion) with a learning rate of 0.03. The tree depth was set to 8 
with a maximum number of 256 leaves. The minimum data 
in a leaf was set to 1. To prevent overfitting the coefficient 
of the L2 regularization term was set to 10, which showed 
to provide the needed balance between the model accuracy 
and robustness. In addition, the training was stopped if the 
error on the validation set did not decrease for more than 5 
iterations. For the remaining parameters, the default values 
were used. Additional information regarding the hyperpa-
rameter selection can be found in Additional file 1: Section 
S3. We used 5-fold cross-validation to tune model hyper-
parameters on the training set. Accordingly, the train-
ing set was split into five equally sized parts, which were 
used to construct 5 different training and validation splits. 

Fig. 3 Distribution of r i  values for the CNL amide dataset (A) and of the predicted r i  values for the CNL NORMAN dataset (B)
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Additionally, from the optimized model, we extracted the 
40 features resulting in highest levels of variance explained 
in the training set. The distributions of these features are 
shown for both the amide and NORMAN dataset in Addi-
tional file 1: Section S4.1. The final model was then refitted 
using these 40 features and optimized model hyper-param-
eters, which consisted out of 448 trees, on the whole train-
ing set.

To further assess the model performance, we took advan-
tage of the test set that was unknown to the model during 
the training step.

CNL model: A CatBoost regression model was built uti-
lizing the CNL datasets as input in order to predict r i val-
ues. The model was trained using the RMSE loss function 
for a total of 5000 iterations with a learning rate of 0.077. 
The tree depth was set to 6 with a maximum number of 
64 leaves, with a minimum number of data points of 1 per 
leaf. The coefficient of the L2 regularization term was set to 
3, and the training was stopped if the error on the valida-
tion set did not decrease for more than 5 iterations, to pre-
vent overfitting. Again, the default values were used for the 
remaining parameters. Additional information regarding 
the hyperparameter selection can be found in Additional 
file  1: Section S3. The model was trained on a combina-
tion of the amide and NORMAN datasets. The NOR-
MAN dataset was split into a training set (85% , n=17740) 
and a test set (15% , n=3131). And the amide dataset was 
split into a training set (30% , n=258) and a test set (70% , 
n=604), resulting in a total training set of 17998 entries, 
consisting of unique spectra. It should be noted that only 
a small fraction of the amide dataset was used for training, 
enabling the final testing of the model with experimental r i 
values that were not included in the training set. The model 
was then trained and optimized using 5-fold cross-valida-
tion on the training set (as in the paragraph above). This 
resulted in a final model with 5000 trees and 4220 used 
features out of the 100,000 CNLs. Distributions of the 50 
most important CNLs are shown in Additional file 1:  Sec-
tion S4.2 for both the amide and NORMAN dataset. Both 
test sets (i.e. the test set for the data splitting and the amide 
withheld dataset) were used as external test sets after the 
training process to reliably assess model performance.

Applicability domain (AD)
In order to assess whether a new entry is represented by 
the training set, we employed the applicability domain 
(AD) calculations. The AD was determined using the lever-
age [70] ( hii ), which is defined as follows:

Where X is a matrix of descriptors for compounds 
from the (e.g. amide) training set, and xi is a vector of 

(1)hii = x
⊤
i

(

X
⊤
X

)−1

xi

molecular descriptors for a compound i. The leverage 
score can be viewed as the weighted distance between xi 
and the mean of X , which therefore provides a measure 
of the applicability domain of the model. The acceptable 
threshold leverage value was determined as the 95% con-
fidence interval using the distribution of leverages gener-
ated using a leave-one-out approach on the training set 
(this was ≈ 0.131). This threshold was used for assessing 
whether a chemical was well covered by the training set. 
The same approach was employed for the AD assessment 
of the CNL model. All distributions of the training and 
test sets can be found in Additional file 1: Section S1. It 
should be noted that this AD assessment only takes into 
account the variables used in the final model, which 
could be inadequate for future entries.

Calculations
All calculations were performed using a personal com-
puter with an AMD Ryzen Threadripper 3970X CPU 
and 256GB of RAM operating on Windows 10 Pro. All 
the data processing and statistical analysis were per-
formed using Python 3.7.11 and using Julia language 
1.6.0 For descriptor calculations a Python 3 wrapper of 
PaDEL software called padelpy (https://github.com/ecrl/
padelpy) was employed.

Results and discussion
Descriptor based model
The first model developed in this study was a QSRR 
model of the 2363 curated descriptors for 1289 unique 
chemicals and their experimental r i values. This model 
was then optimized and validated with an external test 
set. Next the validated model was employed to predict 
the r i values for the NORMAN dataset, providing a large 
enough training set for the CNL based model.

Descriptor based model performance
The optimized descriptor based model was able to suc-
cessfully and accurately predict r i  values with a stand-
ard error of 4.9– − 7.5%, for the training and test sets, 
respectively. The quality of the data fit is shown in 
Fig.  4. To assess the performance of the model, both 
the coefficient of determination ( R2 ), the root mean 
squared error (RMSE), and the maximum error were 
evaluated. The model showed regression statistics with 
R
2 = 0.94 for the training set and R2 = 0.85 for the test 

set. The RMSE of the CatBoost model was 44 r i  units 
for the training set and 67 r i  units for the test set, 
which roughly is 4.9−7.5% of standard error. Interest-
ingly, based on the distribution of residuals, the model 
seems to be consistently overestimating for low (200–
400) r i  values and underestimating for high (900–100) 
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r i  values. The worst prediction was off by 165 r i  units 
for the training set data and 211 r i  units for the test set.

Interpretation of selected descriptors
When looking into the 7 most important descrip-
tors selected by the final model (Shown in Additional 
file 1: Section S5 of the Additional file), consistency in 
the information behind the descriptors can be found. 
All 7 most important descriptors are 2D descriptors 
and are directly or indirectly related to the charge of 
the molecule, which is a highly important factor for 
the separation with reversed-phase chromatography 
(RP-LC) [50]. The first three descriptors are describ-
ing a variant of LogP (i.e., partition coefficient), namely, 
the XlogP, Mannhold LogP, and the Crippen LogP. The 
next important descriptors are the number of basic 
groups (nBase), the Lipoaffinity index, and the cen-
tered moreau-broto autocorrelation of lag 3 weighted 
by mass (ATSC3m), which contains information on 
the topological structure. These descriptors all repre-
sent the chemical interactions with the stationary and 
mobile phases. Lastly, the 7th most important variable 
is the BCUTw-1 h [71], which corresponds to the low-
est eigenvalue obtained from information based on 
the atomic charge, polarizability, and hydrogen-bond 
donor and acceptor capabilities. Overall, it is logical 
that descriptors containing information on the charge 
of the molecules have the highest contributions to the 
prediction of RPLC r i  values.

CNL based model
Using the descriptor based model we predicted the r i 
values of 2734 unique chemicals part of the NORMAN 
dataset, that were within the AD of our model. These 
2734 chemicals resulted in 20871 HRMS entries from 
the MassBank EU and were combined with 258 entries 
belonging to the amide dataset. The generated CNL 
matrix and the vector of r i values were utilized to build a 
model, which was able to predict the r i values only based 
on the HRMS spectra. Additionally, 604 entries from the 
amide dataset were used for further testing of the final 
model. These 604 entries had both the CNL matrix and 
r i values experimentally determined and were completely 
unknown to our model.

CNL based model performance
The final model showed correlation statistics with an 
R
2 = 0.96 for the training set and R2 = 0.91 for the test 

set. On the other hand for the withheld 604 entries from 
the amide dataset, an R2 = 0.77 was produced by our 
model. The worst prediction error was for the additional 
amide dataset and was of 283 r i . On the other hand, the 
RMSE for the model was 30 r i and 47 r i units for the 
training and test sets, respectively while resulting in 67 r i 
units for the additional amide test set. This further indi-
cates that our model is able to accurately predict the r i 
values based on the HRMS spectra.

When comparing the performance of the model on 
the different test sets, it is evident that the performance 
is lower for the additional amide test set compared to 

Fig. 4 Parity plot of the descriptor model predictions and the experimental r i  values for the training set (n=1102) (A) and the external test set 
(n=195) (B) with the coefficient of determination ( R2 ), root mean squared error (RMSE) and maximum error. In addition, marginal distributions of 
the experimental and predicted r i  are shown
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the conventional test set. This is not surprising, as the 
training set is mostly comprised of the NORMAN data-
set (17740 out of 17998 entries), for which the r i values 
were predicted using the descriptor based model result-
ing in error propagation and thus lower accuracy. It is 
therefore rather impressive that the model still is able to 
explain more than 77 % of the variance of the additional 
amide test set. This is a strong confirmation that CNLs 
can effectively be used to predict r i values, indicating 
that an increase in experimentally determined retention 
indices and HRMS spectra could further improve the 
model accuracy. Another point of attention is the num-
ber of features that have been used by the model to make 
its predictions. As we are dealing with a setting in which 
we have more features (  100 000) than measurements 
(17998 r i values), care needs to be taken in model con-
struction that the model uses fewer features than there 
are data points to avoid a potential under-determination 
issue. This was addressed using L2 leaf regularization and 
early stopping as described in Sect. "Methods". Yet for the 
generalization of the model, it is important for the model 
to incorporate many features (read different CNLs) as a 
molecule can potentially fragment into different frag-
ments and the model should take these into account. 
Also, measurement noise may change CNL masses 
slightly (and therefore feature values), which should also 
be able to be modeled. Again we emphasize that training 
on larger data sets could naturally capture this. We feel 
that our final model trained on the dataset at hand, utiliz-
ing 4220 features, is balancing the aforementioned trade-
off well (Fig. 5).

Interpretation of selected CNL features
More information on the selected CNL features are 
shown in Additional file 1: Section S6 of the Additional 
file. When investigating the most important features of 

the CNL based model, a few consistent structures were 
found for specific CNLs by checking the annotated spec-
tra on MassBank EU. Among those, the 3 most important 
CNLs for which similarity was found, will be discussed as 
examples. However, it should be noted that for the larger 
CNLs it is generally more difficult to build such relation-
ships between the r i values and the CNL values, due to 
an exponential increasing number of possible structures.

One of the most important CNLs had a mass of 155.00 
Da, which was present in 365 spectra, corresponding 
to 30 unique chemical constituents. A majority of these 
chemicals contained the structure C2(=CC=C(C=C2)
N)[S](=O)=O, which is a common structural feature 
observed in several antibacterial chemicals. Two other 
examples are the CNLs of 65.97 and 56.06 Da, which 
showed to be consistent with a loss of SO2 and C 4H8 , 
respectively. Finally, the monoisotopic mass was also 
highly important to the CNL based model, which is 
understandable due to the direct relationship between 
the molecular weight and its retention behavior. Overall, 
these results show that CNL contains enough structural 
information on the functional groups and/or molecu-
lar substructures to be used for the prediction of r i val-
ues, however, alarger experimental dataset may further 
improve these interpretations.

Potentials and limitations
In this work, we showed a novel approach for predicting 
r i  values of the structurally unknown compounds using 
CNLs obtained from public HRMS spectra. The model 
requires no prior chemical or structural information, 
which enables the use of the model for NTA where 
both known and unknown chemicals can be encoun-
tered. The developed model enables a calibrant free use 
of r i  values in NTA experiments. In other words, the 
analyst can predict the r i  values of every single feature 

Fig. 5 Parity plot of the CNL model predictions and the experimental r i  values for the training set (n=17998) (A) the external NORMAN test set 
(n=3131) (B) and the external amide test set (n=604) (C) with the coefficient of determination ( R2 ), root mean squared error (RMSE) and maximum 
error. In addition, marginal distributions of the experimental and predicted r i  are shown
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in the LC-HRMS chromatogram without knowing the 
chemical structure of the feature or without the need 
for measuring the r i  calibrants. Besides the possibility 
of obtaining r i  for unknown chemicals from CNLs, the 
model can also be used to, for example, enhance the 
performance of library searching and analysis of histor-
ical data. Specifically for cases where no r i  calibrants 
were measured. Being able to predict the r i  values for 
these cases can enhance library searching by reducing 
the number of initial candidates based on r i  filtering. 
Also, the predicted r i  values for historical data enables 
their alignment, independently from the experimental 
setup, which consequently provides the means for per-
forming trend analysis and detection of novel unknown 
CECs. Additionally, r i  values across the full chromato-
gram (i.e. pixel-by-pixel) could be mapped, providing 
insights into the chemical space covered by the analysis 
method. This range, also, gives insight into which com-
pounds can and cannot be analyzed with one method 
vs another. Finally, the model could also be used for 
cross selectivity tracking. For example, if the current 
RPLC r i  model would be used for a HILIC method, a 
reversed order of retention indexes is expected due to 
opposing selectivity modes. Overall, r i  prediction from 
CNLs could potentially be used for a variety of applica-
tions in resolving human exposome.

One of the current limitations of the model is the 
number of chemicals with measured r i  and HRMS 
spectra, impacting our models AD. Expansion of such 
measurements will be part of a near future study. To 
expand its AD and potentially the model confidence, 
larger spectral databases and more measured r i  values 
for a specific selectivity would be required. Addition-
ally, the current version of the model is trained using 
clean spectra. Therefore, in the case of compounds that 
are co-eluting during an LC-HRMS measurement, the 
obtained r i  values could be less accurate due to the 
presence of false positive fragments in the spectrum. 
However, an adequate spectral clean-up and deconvo-
lution could mitigate the above mentioned issue.
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