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ABSTRACT

Optimizing multiple competing objectives is a common problem across science and
industry. The inherent inextricable trade-off between those objectives leads one
to the task of exploring their Pareto front. A meaningful quantity for the purpose
of the latter is the hypervolume indicator, which is used in Bayesian Optimization
(BO) and Evolutionary Algorithms (EAs). However, the computational complexity
for the calculation of the hypervolume scales unfavorably with increasing number
of objectives and data points, which restricts its use in those common multi-
objective optimization frameworks. To overcome these restrictions we propose to
approximate the hypervolume function with a deep neural network, which we call
DeepHV. For better sample efficiency and generalization, we exploit the fact that the
hypervolume is scale-equivariant in each of the objectives as well as permutation
invariant w.r.t. both the objectives and the samples, by using a deep neural network
that is equivariant w.r.t. the combined group of scalings and permutations. We
evaluate our method against exact, and approximate hypervolume methods in terms
of accuracy, computation time, and generalization. We also apply and compare
our methods to state-of-the-art multi-objective BO methods and EAs on a range of
synthetic benchmark test cases. The results show that our methods are promising
for such multi-objective optimization tasks.

1 INTRODUCTION

Imagine, while you are reviewing this paper at the breakfast table you remember that you quickly
need to drive over to the office to welcome your new collaborators. As an experienced reviewer,
who knows how to find typos on the spot, and an excellent driver, who always drives fast, but safe,
you are confident in your abilities on each of those tasks. So you continue reading this paper while
driving. Suddenly you realize that you need to split focus. You face the unavoidable trade-off between
driving fast while only glancing at the paper and driving slowly but properly processing each point
of the paper. Since this is not your first ride, you learned over time how to transition between these
competing objectives while still being optimal under those trade-off constraints. Since you don’t
want to stop the car you decide to drive as fast as possible as safety allows while still making some
progress in reading. You safely arrive at the office, where you pitch to your collaborators the idea of
building self-driving cars that can also automatically review papers. The question remains of how to
train an artificial intelligence to learn to excel in different, possibly competing, tasks or objectives
and make deliberate well-calibrated trade-offs between them, whenever necessary.

Simultaneous optimization of multiple, possibly competing, objectives is not just a challenge in our
daily routines, it also finds widespread application in many fields of science. For instance, in machine
learning (Wu et al., 2019; Snoek et al., 2012), engineering (Liao et al., 2007; Oyama et al., 2018), and
chemistry (O’Hagan et al., 2005; Koledina et al., 2019; MacLeod et al., 2022; Boelrijk et al., 2021).
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The challenges involved in this setting are different from the ones in the single objective case. If we
are only confronted with a single objective function f the task is to find a point x∗ that maximizes f :

x∗ ∈ argmax
x∈X

f(x), (1)

only by iteratively proposing input points xn and evaluating f on xn and observing the output values
f(xn). Since the usual input space X = RD is uncountably infinite we can never be certain if the
finite number of points x1, . . . ,xN contain a global maximizer x∗ of f . This is an instance of the
exploration-vs-exploitation trade-off inherent to Bayesian optimization (BO) (Snoek et al., 2012),
active learning, (Burr, 2009) and reinforcement learning(Kaelbling et al., 1996).
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Figure 1: Illustration of Pareto front and Hy-
pervolume.

In the multi-objective (MO) setting, where we haveM ≥ 2
objective functions, f1, . . . , fM , it is desirable, but usually
not possible to find a single point x∗ that maximizes all
objectives at the same time:

x∗ ∈
M⋂
m=1

argmax
x∈X

fm(x). (2)

A maximizer x∗1 of f1 might lead to a non-optimal value of
f2, etc. So the best we can do in this setting is to find the
set of Pareto points of F = (f1, . . . , fM ), i.e. those points
x ∈ X that cannot be improved in any of the objectives
fm, m = 1, . . . ,M , while not lowering the other values:

X ∗ := {x ∈ X |@x′ ∈ X . F (x) ≺ F (x′)} , (3)

where y � y′ means that ym ≤ y′m for all m = 1, . . . ,M
and y ≺ y′ that y � y′, but y 6= y′. In conclusion, in the multi-objective setting we are rather
concerned with the exploration of the Pareto front:

P∗ := F (X ∗) ⊆ RM =: Y, (4)

which often is a (M − 1)-dimensional subspace of Y = RM . Success in this setting is measured by
how ”close” the empirical Pareto front, based on the previously chosen points x1, . . . ,xN :

P̂N := {F (xn) |n ∈ [N ], @n′ ∈ [N ]. F (xn) ≺ F (xn′)} ⊆ Y, (5)

is to the ’true’ Pareto front P∗, where [N ] := {1, . . . , N}. This is illustrated in Fig. 1, where the
blue points form the empirical Pareto front and where the black line depicts the true Pareto front.

Since the values F (xn) can never exceed the values ofP∗ w.r.t.≺ one way to quantify the closeness of
P̂N to P∗ is by measuring its hypervolume HVMr (P̂N ) inside Y w.r.t. a jointly dominated reference
point r ∈ Y . This suggests the multi-objective optimization strategy of picking the next points
xN+1 ∈ X in such a way that it would lead to a maximal improvement of the previously measured
hypervolume HVMr (P̂N ). This is illustrated in Fig. 1, where the hypervolume (i.e., the area in 2D) is
shown for the empirical Pareto front (blue dots). Adding an additional point to the empirical Pareto
front (y8) in Fig. 1), increases the hypervolume indicated by the green area.

Unfortunately, known algorithms for computing the hypervolume scale unfavorably with the number
of objective functions M and the number of data points N . Nonetheless, finding a fast and scal-
able computational method that approximates the hypervolume reliably would have far-reaching
consequences, and is an active field of research. Computation of the hypervolume has complexity
of O(2NNM) when computed in a naive way, however more efficient exact algorithms have been
proposed such as WFG (O(NM/2 logN),While et al. (2012)) and HBDA (O(NM/2), Lacour et al.
(2017)). However, these computational complexities are still deemed impractical for application in
EAs (Tang et al., 2020), where computational overhead typically is required to be low. Also in BO,
where one is typically less concerned with the computational overhead, faster hypervolume methods
would be beneficial. For instance, the state-of-the-art expected hypervolume improvement (qEHVI)
(Daulton et al., 2020) is dependent on many hypervolume computations, greatly restricting its use to
the setting of high M and N . In addition, the authors of the recently proposed MORBO (Daulton
et al., 2022), which is current state-of-the-art in terms of sample-efficiency and scalability to high M
and N , identified the computational complexity of the hypervolume as a limitation.
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Therefore, efforts have been made to approximate the hypervolume. The method FPRAS (Bringmann
& Friedrich, 2010), provides an efficient Monte Carlo (MC) based method to approximate the
hypervolume, of complexity O(NM/ε), with the error of ±

√
ε. In addition, at time of this work, a

hypervolume approximation based on DeepSets (Zaheer et al., 2017) was proposed called HV-Net
(Shang et al., 2022). HV-Net uses a deep neural network with permutation invariance (i.e. DeepSets)
w.r.t. to the order of the elements in the solution set to approximate the hypervolume of a non-
dominated solution set. It showed favorable results on both the approximation error and the runtime
on MC and line-based hypervolume approximation methods.

Other methods try to avoid hypervolume computation entirely and use other metrics to guide optimiza-
tion. Such as ParEgo (Knowles, 2006), which randomly scalarizes the objectives to generate diverse
solutions. Other approaches focus on distance metrics regarding the empirical Pareto front (Rahat
et al., 2017; Deb et al., 2002a). However, methods using the hypervolume to guide optimization, are
typically superior. This is shown both in the setting of EAs and for BO. For example, a plethora of
work shows that SMS-EMOA (Beume et al., 2007) is more sample-efficient compared to MO EAs
using alternative infill criterion (Narukawa & Rodemann, 2012; Tang et al., 2020). Also, qEHVI and
MORBO have strong empirical performance compared to alternatives (Daulton et al., 2020; 2022).

In this paper, we develop DeepHV, a novel hypervolume approximation approach based on deep
learning. As an input the model requires a non-dominated solution set after which the model outputs
the predicted hypervolume of this solution set. By using specialized layers, DeepHV incorporates
mathematical properties of the hypervolume, such as scaling equivariance of the hypervolume w.r.t.
the scaling of the objectives in the solution set. In addition, the proposed model is permutation
invariant to the order of the elements and objectives in the solution set. Thus leveraging additional
symmetry properties of the hypervolume compared to HV-Net. We show that our method allows for
development of a single model that can be used for multiple objective cases up to M = 10. We obtain
improved performance compared to HV-Net on unseen test data. We compare the time performance of
our methods with exact methods and an approximate MC method. We show a considerable speed-up
that scales favorably with the number of objectives. In addition, to evaluate the useability of our
approach, we use DeepHV in the setting of multi-objective BO and EAs on a range of synthetic test
functions and compare with state-of-the-art methods and show competitive performance.

2 THE HYPERVOLUME

In this section, we introduce relevant information regarding the definition and symmetry properties of
the hypervolume, which will later complement the definition of our method.

Hypervolume - Definition For a natural number N ∈ N, we put [N ] := {1, . . . , N}. Consider
(column) vectors yn ∈ RM in the M -dimensional Euclidean space. For a subset J ⊆ N, we
abbreviate: yJ := [yj |j ∈ J ]> ∈ RM×|J|, so y[N ] := [y1, . . . ,yN ] ∈ RM×N . We then define the
(M -dimensional) hypervolume of yJ w.r.t. a fixed reference point r ∈ RM as:

HVMr (yJ) := HVMr (yj1 , . . . ,yj|J|) := λM

⋃
j∈J

[r,yj ]

 , (6)

where λM is the M -dimensional Lebesgue measure, which assigns to a subset of RM their M -
dimensional (hyper) volume, and where we for y = [y1, . . . , yM ]> ∈ RM abbreviated the M -
dimensional cube as: [r,y] := [r1, y1] × · · · × [rM , yM ], if rm ≤ ym for all m ∈ [M ], and the
empty-set otherwise. For fixed N and another point y ∈ RM we define its hypervolume improvement
(over y[N ]) as:

HVI(y) := HVIMr (y|y[N ]) := HVMr (y,y1, . . . ,yN )−HVMr (y1, . . . ,yN ). (7)

With help of the inclusion-exclusion formula we can explicitely rewrite the hypervolume as:

HVMr (yJ) =
∑
∅6=S⊆J

(−1)|S|+1 ·
M∏
m=1

min
s∈S

(ym,s − rm)+. (8)
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The Symmetry Properties of the Hypervolume Function To state the symmetry properties of
the hypervolume function, we will fix our reference point r := 0, which is w.l.o.g. always possible
by subtracting r from each yn.

The hypervolume then scales with each of its components. So for c = [c1, . . . , cM ]> ∈ RM>0:

HVM (c� y[N ]) = c1 · · · cM ·HVM (y[N ]), (9)

where c � y[N ] means that the m-th entry of each point yn ∈ RM≥0 is multiplied by cm for all
m ∈ [M ]. Furthermore, the order of the points does not change the hypervolume:

HVM (yσ(1), . . . ,yσ(N)) = HVM (y1, . . . ,yN ), (10)

for every permutation σ ∈ SN , where the latter denotes the symmetric group, the group of all permu-
tations of N elements. But also the order of the M -components does not change the hypervolume:

HVM (τ � y[N ]) = HVM (y[N ]), (11)

for every permutation τ ∈ SM , where τ � y[N ] means that the row indices are permuted by τ .

To jointly formalize these equivariance properties of HVM together, we define the following joint
group as the semi-direct product of scalings and permutations:

G := RM>0 o SM × SN , (12)

where the group operation is defined as follows on elements (c1, τ1, σ1) and (c2, τ2, σ2) ∈ G via:

(c2, τ2, σ2) · (c1, τ1, σ1) := (c2 · cτ21 , τ2 ◦ τ1, σ2 ◦ σ1) ∈ G, (13)

where with c1 = [c1,1, . . . , cM,1]
> ∈ RM>0 we use the abbreviation:

cτ21 := [cτ2(1),1, . . . , cτ2(M),1]
> ∈ RM>0. (14)

This group then acts on the space of non-negative (M × N)-matrices as follows. For Y =

(ym,n)m,n ∈ RM×N≥0 and (c, τ, σ) ∈ G we put:

(c, τ, σ)�Y :=

 c1 · yτ(1),σ(1) · · · c1 · yτ(1),σ(N)

...
. . .

...
cM · yτ(M),σ(1) · · · cM · yτ(M),σ(N)

 . (15)

The mentioned symmetries of the hypervolume can then be jointly summarized by the following
G-equivariance property:

HVM ((c, τ, σ)�Y) = c1 · · · cM ·HVM (Y). (16)

This is the property that we will exploit for an efficient approximation of the hypervolume with a
G-equivariant deep neural network.

The hypervolume for different dimensions M are related as follows:

HVM (yJ) = HVM+K

([
yJ

1K×|J|

])
, (17)

where we padded the (K × |J |)-matrix with ones to yJ , or, equivalently, K ones to each point yj ,
j ∈ J . We leverage this property to combine datasets with different dimensions M and to train a
model that can generalize to multiple dimensions.

3 DEEPHV - EQUIVARIANT DEEP HYPERVOLUME APPROXIMATION

In this section, we first present the G-equivariant neural network layers used in DeepHV that
incorporates the symmetry properties defined in Sec. 2. Following this, we discuss the general
architecture of DeepHV. We provide mathematical proofs in App. A.1.
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3.1 THE EQUIVARIANT LAYERS

Before we introduce our G-equivariant neural network layers, we first recall how (SM × SN )-
equivariant layers are constructed.

Theorem 1 (See Hartford et al. (2018) Thm. 2.1). A fully connected layer of a neural network
vec(Z) = σ (W vec(Y)) with input matrix Y ∈ RM×N , output matrix Z ∈ RM×N , weight matrix
W ∈ R(MN)×(MN) and strictly monotonic activation function σ is (SM × SN )-equivariant if and
only if it can be written as:

Z = σ
(
w1 ·Y + w2 · 1M ·YM: + w3 ·Y:M · 1>N + w4 ·YM:M · 1M×N + w5 · 1M×N

)
, (18)

where 1 denotes the matrix of ones of the indicated shape, w1, . . . , w5 ∈ R and where M is the mean
operation, applied to rows (YM:), columns (Y:M) or both (YM:M).

We define the row scale of a matrix Y = (ym,n)m,n ∈ RM×N via:

s(Y) :=

[
max
n∈[N ]

|ym,n|
∣∣∣∣m ∈ [M ]

]>
∈ RM , (19)

and its row-wise inverse s−1(Y) ∈ RM . We then abbreviate the row-rescaled matrix as:

Y� := s−1(Y)�Y ∈ RM×N . (20)

With these notations, we are now able to construct a G-equivariant neural network layer with input
channel indices i ∈ I and output channel indices o ∈ O:

Z(o) = σα

(
1

|I|
∑
i∈I

s
(
Y(i)

)
�
(
w

(o,i)
1 ·

(
Y

(i)
�

)
+ w

(o,i)
2 · 1M ·

(
Y

(i)
�

)
M:

(21)

+ w
(o,i)
3 ·

(
Y

(i)
�

)
:M
· 1>N + w

(o,i)
4 ·

(
Y

(i)
�

)
M:M
· 1M×N + w

(o,i)
5 · 1M×N

))
,

where M is applied to the row-rescaled Y row-wise (YM:), column-wise (Y:M) or both (YM:M), and
where, again, M denotes the mean operation (but could also be max or min), and weights w(o,i)

k ∈ R
for k ∈ [5], o ∈ O, i ∈ I . σα denotes any homogeneous activation function, i.e. we require that for
every y ∈ R, c ∈ R>0:

σα(c · y) = c · σα(y) (22)

This is, for instance, met by the leaky-ReLU activation function. An alternative way to achieve
equivariance of the whole network w.r.t. to the scale of the whole network is by extracting the scales
at the input layer and then multiplying them all against the output layer, in contrast to propagating the
scale through every layer individually.

3.2 ARCHITECTURE

All the DeepHV models presented in this work are comprised of the same architecture, with the
exception that we change the number of input and output channels in order to trade off the number
of model parameters and the expressivity of the model. We denote models as DeepHV-c, where c
denotes the number of channels. Before the RN×M input is passed through the layers, we first extract
and store the scale using eq. 19, and scale the inputs using eq. 20. We use five equivariant layers as
in eq. 21, where the first layer has 1 input channel and c output channels. The three intermediate
layers have the same number c of input and output channels. The last layer then maps back to 1
output channel, again resulting into RM×N output. Consequently, the mean is taken of the resulting
output to bring it back to a permutation invariant quantity (R1). This is then passed through a sigmoid
function to map values between 0 and 1, as this is the value which the hypervolume can have in the
scaled setting. Finally, we rescale the output by multiplying it with the product of the scaling factors.
This step ensures that the model output is scale equivariant.
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4 TRAINING

4.1 DATA GENERATION

To generate training data, we adopt a similar strategy as proposed in Shang et al. (2022), which is
defined as follows: 1. Uniformly sample an integer n ∈ [1, 100]; 2. Uniformly sample 1000 solutions
in [0, 1]M ; 3. Obtain different fronts {P1, P2, ...} using non-dominated sorting, where P1 is the first
Pareto front and P2 is the following front after all solutions of P1 are removed; 4. Identify all fronts
Pi with |Pi| ≥ n. If no front satisfies this conditions, go back to Step 2; 5. Randomly select one front
Pi with |Pi| ≥ n and randomly select n solutions from the front to construct one solution set. Using
this procedure, we generate datasets consisting of 1 million solution sets for each of the objective
cases 3 ≤M ≤ 10. We use this procedure as it generates a wide variety of non-dominated solution
sets (see Shang et al. (2022)) and so that we can compare our model performance with HV-Net. We
split our datasets into 800K training points and 100K validation and test points, respectively. We
note that as we only sample solution sets with at maximum a hundred solutions, our model is likely
restricted to this setting.

In addition, using the relation of eq. 17, we also pad all datasets of M < 10 to M = 10, by padding it
with ones. As this does not change the hypervolume values of each solution set, we create a universal
dataset that incorporates all generated objective cases.

4.2 PERFORMANCE

We train models with 64, 90, 128, and 256 channels (See Sec. 3.2 for architecture) on each objective
case separately. In addition, we also train models on the combined dataset (See Sec. 4.1, denoted
with -all) using 128 and 256 channels. All models have been trained with a learning rate of 10−5,
using Adam and the Mean Absolute Percentage Error (MAPE) loss function (de Myttenaere et al.,
2016). As the (scaled) hypervolume tends to become small in high-dimension cases, more common
loss functions such as the RMSE become rather small rather quickly, despite having large relative
errors. The MAPE is better suited for this setting. For the separate models, we use a batch size of 64
and train for 200 epochs. For the models trained on all objective cases simultaneously, we train for
100 epochs with a batch size of 128. We pick the best model within these epochs based on the lowest
loss on the validation partition.

We report MAPE test errors in Table 1 and compare with HV-Net (Shang et al., 2022). Note that HV-
Net uses 1 million training datapoints, whereas we use 800K. When using 90 channels (DeepHV-90),
our model has a comparable number of parameters (98.3K) w.r.t HV-Net (99.7K), however we obtain
roughly a twofold increase of performance on most objective cases. In fact, using 64 channels (49K
parameters), we already outperform HV-Net on most objective cases. This boost in performance is
likely due to the incorporation of scale equivariance and an additional permutation invariance over
the order of the objectives, which are not incorporated into HV-Net. For larger models, we obtain
even better results.

Table 1: Test Mean Absolute Percentage Error (lower is better) for models trained on each objective M separately.
Bold numbers indicate the best-performing model. Blue numbers indicate the best-performing model between
HV-Net (Shang et al., 2022) and our models with a comparable number of model parameters.

M DeepHV-64 DeepHV-90 DeepHV-128 DeepHV-256 HV-Net

3 0.00800 0.00744 0.00526 0.00483 0.015878
5 0.02065 0.01608 0.01689 0.01209 0.032067
8 0.04710 0.03381 0.01506 0.01093 0.042566
10 0.03203 0.02783 0.02395 0.01148 0.050867

We report results on DeepHV trained on all objective cases simultaneously in Table 2. Here it is
shown that the general models have a significant increase in performance compared to the separate
models. Interestingly, this shows that the model can generalize to multiple objective and can even
gain additional performance in each objective case separately by seeing instances of others. This
potentially allows for the training of a universal model that can be trained on even higher objective
cases.
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Table 2: Test Mean Absolute Percentage Error (lower is better) for models trained on each objective case
separately, and for models trained on all objective cases simultaneously (denoted with additional -all). Bold
numbers indicate the best-performing model in their respective architecture.

M DeepHV-128 DeepHV-128-all DeepHV-256 DeepHV-256-all

3 0.00526 0.00673 0.00483 0.00495
4 0.00964 0.00887 0.00782 0.00714
5 0.01689 0.00956 0.01209 0.00773
6 0.01511 0.00954 0.01354 0.00761
7 0.01164 0.00900 0.00967 0.00707
8 0.01506 0.00849 0.01093 0.00657
9 0.01506 0.00796 0.01216 0.00601
10 0.02395 0.00772 0.01148 0.00598

5 EXPERIMENTS

5.1 TIME COMPARISON

We compare the time performance of DeepHV with the exact hypervolume methods of Lacour et al.
(2017) (complexity O(NM/2+1)) implemented in BoTorch (Balandat et al., 2020) and the method of
Fonseca et al. (2006) (complexity (O(NM−2 logN)) as implemented in Pymoo (Blank & Deb, 2020).
In addition, we compare time performance with an approximate Monte Carlo (MC) hypervolume
method implemented in Pymoo. We perform the tests solely on CPU to allow for fair comparison.
Experiments shown in Fig. 2 comprised of the computation of 100 solution sets randomly drawn from
the test sets. The MC method used 10K samples. In all cases, DeepHV is faster than the BoTorch
and Pymoo MC implementation. Above M = 5, both variants of DeepHV are also faster than the
exact Pymoo implementation. We also compare the Mean Absolute Percentage Error versus the
computation time for DeepHV and the MC method with different number of samples in App. C.1.

5.2 BENCHMARKS

3 4 5 6 7 8 9
Number of objectives M

10 2

10 1

100

101

102

103

104

Co
m

pu
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tio
n 
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e 

(s
)

DeepHV-256
DeepHV-128
Pymoo
Pymoo MC
BoTorch

Figure 2: Comparison of computation time
in seconds, shown on log-scale. We report
the means and standard errors across 3 trials.

We empirically evaluate DeepHV on a range synthetic test
problems from the DTLZ (Deb et al., 2002b) problem suite,
which contains standard test problems from the MO opti-
mization literature that are scalable in the number of input
variables d and objectives M and contain vastly different
types of Pareto fronts. In Sec. 5.2.1, we test DeepHV in
the context of multi-objective evolutionary algorithms (MO
EAs) and in Sec. 5.2.2 in the context of Bayesian optimiza-
tion (BO). In the latter, we also evaluate on a real-world
vehicle safety problem (Yang et al., 2005). See App. B.2
for more details regarding the problems and reference point
specifications.

5.2.1 MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMS

To use DeepHV in the context of MO EAs, we replace the exact computation of the hypervolume in
SMS-EMOA (Beume et al., 2007) with that of DeepHV, and compare performance. In addition, we
compare performance with NSGA-II (Deb et al., 2002a). SMS-EMOA (Beume et al., 2007) is an EA
that uses the hypervolume to guide optimization. In its original form, it uses a steady-state (µ+ 1)
approach to evolve its population, where at each generation, one offspring is created and added to
the population. Next, one solution is removed from the population by first ranking the population
into separate fronts, followed by the removal of the solution that has the least contribution to the
hypervolume of its respective front. This is done by computing the hypervolume contribution of each
solution, by computing the hypervolume difference between the respective front, and the front without
the individual solution. Instead of a steady-state approach, we use a (µ+ µ) approach to evolve the
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population, where we effectively double the population at each generation, and then need to select
half of the population using the selection strategy described above. We stress that this is an extensive
test of the performance of DeepHV, as the model needs to predict both the correct hypervolume of
the front, but also the contribution of each solution in the front (i.e. the front and all of its sub-fronts
need to be predicted with high accuracy). In the case of M > 5, we use the MC approximation of the
hypervolume instead of the exact hypervolume as its use becomes computationally prohibitive.

As another baseline, we compare with the Non-dominated Sorting Genetic Algorithm (NSGA-II)
which is a renowned MO EA, due to its low computational overhead. Although it generally is
less sample-efficient than SMS-EMOA, it is often the method of choice due to a lack of scalable
alternatives. In NSGA-II, the population is evolved using a (µ+ µ) approach, then individuals are
first selected front wise using non-dominated sorting and then, remaining individuals are selected
based on the Manhattan distance in the objective space, in order to maintain a diverse population. The
task of the Manhattan distance corresponds to that of the hypervolume contribution in SMS-EMOA.

For each algorithm, we use a population size of 100 individuals and run for 10 generations, resulting
into 1000 function evaluations, and we record the exact hypervolume of each generation. Further
algorithmic details can be found in the App. B.1.
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Figure 3: Optimization performance in terms of exact hypervolume (higher is better) versus function evaluations.
We report the means and 2 standard errors across 5 trials.

Fig. 3 presents results on the DTLZ1, DTLZ2, and DTLZ5 problems for M = 5 and Fig. 4 reports
the same problems for M = 8. We report results on additional synthetic test problems, also including
the objective casesM = 3 andM = 10 in App. C.2. The specific DeepHV model using 256 channels
(DeepHV-256) typically outperforms the smaller DeepHV-128 model. On most problems there is no
clear performance difference between the general model DeepHV-256-all and DeepHV-256.

The closeness of the DeepHV variations to the exact SMS-EMOA provides an indication on the
ability of the models to generalize to different Pareto front types. We observe that on all problems,
exact SMS-EMOA (blue line) typically obtains higher hypervolumes than the DeepHV variations.
For the M = 3 objective case, these difference are minuscule but for the M = 5 objective case this
becomes more pronounced. This could be due to the fact that the generated training data (see Sec.
4.1) does not provide enough examples on these specific Pareto front shapes. In addition, with more
objectives, the objective space also increases, requiring more training data to adequately learn it.
This is also supported by the fact that in the objective cases M = 8 and M = 10, the SMS-EMOA
equipped with the MC approximation method typically outperforms the DeepHV models. However,
in all cases, the DeepHV models outperform NSGA-II, with performance differences becoming more
pronounced at higher objective cases.

5.2.2 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

We use DeepHV in the context of MO BO by using DeepHV to compute the hypervolume improve-
ment (HVI, eq. 7). We use the HVI in a Upper Confidence Bound (UCB) acquisition function, which
we name UCB-DeepHV, which is defined as follows:

αUCB−DeepHV(x, β) = HVI(fUCB(x, β)), where fUCB(x, β) = µ(x) + βσ(x). (23)

Here, µ(x) and σ(x) are the mean and standard deviation of the GP posterior at input x, whereas β
is a trade-off parameter that controls exploration and exploration. In this work we use β = 0.3.
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Figure 4: Optimization performance in terms of exact hypervolume (higher is better) versus function evaluations.
We report the means and 2 standard errors across 5 trials.

We compare with the state-of-the-art methods qParEgo and qEHVI (Daulton et al., 2020). ParEgo
(Knowles, 2006) randomly scalarizes the objectives and uses the Expected Improvement acquisition
function (Jones et al., 1998). qParego uses an MC-based Expected Improvement acquisition function
and uses exact gradients via auto-differentiation for acquisition optimization. Expected Hypervolume
Improvement (EHVI) is the expectation of the HVI (Yang et al., 2019), thus integrating the HVI over
the Gaussian process posterior. qEHVI is a parallel extension of EHVI and allows for acquistion
optimization using auto-differentation and exact gradients, generally making it more computationally
tractable than EHVI. qEHVI was empirically shown to outperform many other MO BO methods
(including qParEgo) (Daulton et al., 2020; 2022).

We evaluate optimization performance in terms of the exact hypervolume on four test problems.
Note that above the five objectives case, qEHVI becomes computationally prohibitive. We provide
additional experiments on other objective cases in Sec. C.3. Fig. 5 shows results for a range of
DTLZ synthetic test problems. In general, it is expected that qEHVI is superior to UCB-DeepHV,
as it uses the exact hypervolume and integrates out the uncertainty of the GP posterior in a more
elaborate way. So if DeepHV performs on par with qEHVI, it would mean that it approximated the
hypervolume of the test problems well. qEHVI ranks best on DTLZ2 and DTLZ7. On DTLZ1 and
DTLZ5, qEHVI performs worse than qParego and UCB-DeepHV. UCB-DeepHV ranks higher than
qParEgo on DTLZ5 and DTLZ7, and on par on the other problems, which is a strong result. On
DTLZ5 the UCB-DeepHV is the highest ranked algorithm. The DeepHV models generally share
similar performance, where some models perform slightly better than others on different problems.
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Figure 5: Sequential optimization performance in terms of hypervolume (higher is better) versus function
evaluation on 5-objective DTLZ1, DTLZ2 and DTLZ5 problems, and on the 3-objective DTLZ7 problem. We
report the means and 2 standard errors across 5 trials.

6 DISCUSSION

We presented DeepHV, a novel hypervolume approximation based on deep learning. DeepHV is
scale-equivariant in each of the objectives as well as permutation invariant w.r.t. both the objectives
and the samples, thus incorporating important symmetry properties of the hypervolume. We showed
that our method obtains lower approximation error compared to HV-Net that does not incorporate
all of these symmetries. We showed that DeepHV achieved lower approximation error than an MC
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based approximation and is considerably faster than exact methods, becoming more pronounced
at high objective cases M > 4. Therefore, we believe DeepHV is promising as a replacement for
computationally demanding exact hypervolume computations in state-of-the-art (high-throughput)
methods. A limitation is that the DeepHV models are currently only trained on solution sets with
at maximum 100 non-dominated solutions, restricting their use to this setting. However it can
handle arbitrary amount of objectives and samples by design. We tested DeepHV in context of
multi-objective Bayesian optimization and multi-objective evolutionary algorithms and we showed
competitive performance compared with state-of-the-art methods. We believe these results are
promising, and with better training data generation methods, DeepHV could potentially be even more
competitive with exact hypervolume methods.

7 ETHICS STATEMENT

The paper presents a method that can be used in multi-objective optimization problems. These prob-
lems find widespread use throughout society. For example in material design (catalysts, medicines,
etc.), car design or finance. Although many such applications are for the general good, there are also
applications which can have ethically debatable motivations, for instance, when used in the design of
toxins, narcotics, or weaponry.

8 REPRODUCIBILITY STATEMENT

We are in the process of releasing code, models and datasets for the current work. Where applicable,
we have run experiments multiple times with different random seeds and have stated mean and stan-
dard error of the results. In addition, we have described important implementation and experimental
details in either the main body of the text or the Appendix.
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A PROOFS

A.1 PROOF OF SECTION3.1

Proof To show that the layers in eq. 21 are really G-equivariant, let YI := (Y(i))i∈I and g(YI)
the left hand side of eq. 21, and (c, τ, σ) ∈ G. Then (c, τ, σ)�YI = ((c, τ, σ)�Y(i))i∈I . We can
also see that:

s((c, τ, σ)�Y(i)) =

[
max
n∈[N ]

|cm · yτ(m),σ(n)|
∣∣∣∣m ∈ [M ]

]>
(24)

=

[
cm · max

n∈[N ]
|yτ(m),n|

∣∣∣∣m ∈ [M ]

]>
= c · s(Y(i))τ , (25)

where σ acts trivially on the (M × 1)-vector s(Y(i)). If we act on the defining equation for Y(i)
� :

Y(i) = s(Y(i))�Y
(i)
� , (26)
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with (c, τ, σ) we then get:

(c, τ, σ)�Y(i) = (c, τ, σ)�
(
s(Y(i))�Y

(i)
�

)
(27)

= (c · s(Y(i))τ , τ, σ)�Y
(i)
� (28)

= (s((c, τ, σ)�Y(i)), τ, σ)�Y
(i)
� (29)

= s((c, τ, σ)�Y(i))� (τ, σ)�Y
(i)
� . (30)

This shows that: (
(c, τ, σ)�Y(i)

)
�
= (τ, σ)�Y

(i)
� . (31)

With this we get:

h((c, τ, σ)�Y(i)) (32)

:= w
(o,i)
1 ·

(
(c, τ, σ)�Y(i)

)
�
+ w

(o,i)
2 · 1M ·

((
(c, τ, σ)�Y(i)

)
�

)
M:

(33)

+ w
(o,i)
3 ·

((
(c, τ, σ)�Y(i)

)
�

)
:M
· 1>N (34)

+ w
(o,i)
4 ·

((
(c, τ, σ)�Y(i)

)
�

)
M:M
· 1M×N + w

(o,i)
5 · 1M×N (35)

= w
(o,i)
1 · (τ, σ)�Y

(i)
� + w

(o,i)
2 · (τ, σ)�

(
1M ·

(
Y

(i)
�

)
M:

)
(36)

+ w
(o,i)
3 · (τ, σ)�

((
Y

(i)
�

)
:M
· 1>N

)
(37)

+ w
(o,i)
4 · (τ, σ)�

((
Y

(i)
�

)
M:M
· 1M×N

)
+ w

(o,i)
5 · (τ, σ)� 1M×N (38)

= (τ, σ)� h(Y(i)). (39)

With these equations we can finally get:

g((c, τ, σ)�YI) = σα

(
1

|I|
∑
i∈I

s
(
(c, τ, σ)�Y(i)

)
� h

(
(c, τ, σ)�Y(i)

))
(40)

= σα

(
1

|I|
∑
i∈I

c · s(Y(i))τ � (τ, σ)� h
(
Y(i)

))
(41)

= σα

(
1

|I|
∑
i∈I

(c · s(Y(i))τ , τ, σ)� h
(
Y(i)

))
(42)

= σα

(
1

|I|
∑
i∈I

(c, τ, σ)� s(Y(i))� h
(
Y(i)

))
(43)

= σα

(
(c, τ, σ)� 1

|I|
∑
i∈I

s(Y(i))� h
(
Y(i)

))
(44)

= (c, τ, σ)� σα

(
1

|I|
∑
i∈I

s(Y(i))� h
(
Y(i)

))
(45)

= (c, τ, σ)� g(YI). (46)

where we in the second to last step made use of the homogeneity of the activation function σα and
that it is applied element-wise. This shows that g is G-equivariant.
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B DETAILS ON EXPERIMENTS

B.1 ALGORITHMIC DETAILS

Multi-objective Evolutionary Algorithms: For both NSGA-II and SMS-EMOA we use the de-
fault settings in the open-source implementation of Pymoo 1, where only for SMS-EMOA we replace
the hypervolume computation with DeepHV or the MC hypervolume approximation and all other
settings are kept default. For the MC hypervolume approximation we use 10, 000 samples.

Multi-objective Bayesian Optimization: For all methods and experiments we use an independent
Gaussian Process (GP) with a constant mean function and a Matérn-5/2 kernel with automatic
relevance detection (ARD) and fit the GP hyperparameters by maximizing the marginal log-likelihood.
All experiments are initialized with 2d + 1 randomly drawn datapoints. We then allow for a
optimization budget of 150 function evaluations. For qEHVI and qParEgo we use 128 quasi-MC
samples. All methods are optimized using L-BFGS-B with 10 restarts and 64 raw samples (according
to BoTorch naming convention).

Methods using DeepHV: We ensure that solution sets passed to DeepHV only contain non-
dominated solutions and are shifted so that the reference point lies at [0]M . This is done by subtracting
the specified reference point from the solution set and applying non-dominated sorting to only keep
the non-dominated solutions.

B.2 SYNTHETIC PROBLEMS

Information on the reference points used for hypervolume computation of each problem can be found
in Table 3 and are based on suggested values in Pymoo (Blank & Deb, 2020) and BoTorch (Balandat
et al., 2020). The DTLZ problems are minimization problems. As BoTorch assumes maximization,
we multiply the objectives and reference points for all synthetic problems by -1 and maximize the
resulting objectives.

In the multi-objective Bayesian optimization problems we use the implementations of the synthetic
functions as provided in Botorch (Balandat et al., 2020). Whereas in the multi-objective evolutionary
algorithm experiments we use the implementations of Pymoo (Blank & Deb, 2020).

DTLZ: The DTLZ test suite contains a range of test functions which are considered standard
test problems in the multi-objective optimization literature. Mathematical formulas of each test
function are provided in Deb et al. (2005). The problems are scalable in both input dimension d
and in the number of objectives M . We set the input dimension to d = 2M for each problem. The
shape of the Pareto front of each of these problems can be viewed in the Pymoo documentation
(https://pymoo.org/problems/many/dtlz.html).

Table 3: Specification of reference points used for all benchmark problems.

Problem Reference Point Botorch Reference Point Pymoo
DTLZ1 [−400]M [400]M

DTLZ2 [−1.1]M [1]M

DTLZ5 [−10]M [1]M

DTLZ7 [−15]M [15]M

Convex DTLZ2 Not performed [1]M

Vehicle Safety [−1864.72,−11.82, 0.20] Not performed

Vehicle Crash Safety: The vehicle crash safety problem is described in Tanabe & Ishibuchi (2020)
and is a 3-objective problem with d = 5 parameters describing the size of different components
of the vehicle’s frame. The goal is to minimize mass, toe-box intrusion (i.e. vehicle damage), and
acceleration in a frontal collision.

1(https://github.com/anyoptimization/pymoo)
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C ADDITIONAL RESULTS

C.1 TIMING RESULTS

We show the comparison of the Mean Absolute Percentage Error (MAPE) versus the computation for
DeepHV and the approximate MC method (See Sec. 5.1 for details) for the cases of M = 3, M = 5,
M = 8 and M = 10, in Fig. 6. It is shown that in all cases, DeepHV obtains a significantly lower
MAPE at similar runtimes. The approximate MC method requires much more computation time to
obtain similar a MAPE, which significantly increases at higher objective case M .
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Figure 6: Comparison of computation time in seconds of the computation of 10000 solution sets randomly
drawn for the objective cases M = 3, M = 5, M = 8 and M = 10. All computations performed on an Intel(R)
Xeon(R) CPU E5-2640 CPU v4.

C.2 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

To study the performance of DeepHV in the context of multi-objective algorithms on a broader range
of problems, we ran additional experiments on the DTLZ7 and Convex DTLZ2 problems. These are
shown for the case M = 5 in Fig. C.2. On DTLZ7 (M = 5), all methods have relatively similar
performance, with NSGA-II performing best on average, followed by DeepHV-256 and the exact
SMS-EMOA. On Convex DTLZ2, SMS-EMOA using the exact hypervolume scores best, followed
by the DeepHV models. NSGA-II performs significantly worse. We also report results for DTZL1,
DTLZ2, Convex DTLZ2, DLTZ5, and DTLZ7 for the cases M = 3 and M = 10 in Fig. 8 and Fig. 9,
respectively. All methods perform relatively similar on all problems in the case M = 3, where only
DTLZ2 and Convex DTLZ2 SMS-EMOA with exact hypervolume computation performs slightly
better at higher function evaluations. Hence for the case M = 3, all DeepHV models seems to have
learned a satisfactory hypervolume approximation. This picture changes for the M = 10 case, where
the SMS-EMOA-MC is best on all problems. The DeepHV models are competitive for the DTLZ1
and Convex DTLZ2 problems, but are inferior for the DTLZ2 and DTLZ5 problems. Again, the
DeepHV models always outperform NSGA-II. Note that for DTLZ7 (M = 10), all methods do not
seem to find solutions better than the defined reference point.
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Figure 7: Optimization performance in terms of hypervolume (higher is better) versus function evaluations on
5-objective DTLZ7, and Convex DTLZ2 problems. We report the means and 2 standard errors across 5 trials.
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Figure 8: Optimization performance in terms of hypervolume (higher is better) versus function evaluations on
3-objective DTLZ1, DTLZ2 and DTLZ5, DTLZ7 and Convex DTLZ2 problems. We report the means and 2
standard errors across 5 trials.

C.3 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

In order to further evaluate the performance of DeepHV in the context of multi-objective Bayesian
optimization, we also report results for the DTLZ1, DTLZ2 and DTLZ5 synthetic test problems
for the objective cases M = 3 and M = 4 in Fig. 10 and Fig. 11, respectively. In addition, we
show results for the vehicle crash safety problem (M = 3). In general, DeepHV is competitive with
qParEgo and qEHVI and even ranks best on DTLZ1 (M=3). Although qEHVI clearly performs best
on DTLZ2 (both cases), DeepHV is either on par with qParego (M = 3) or slightly worse (M = 4).
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Figure 9: Optimization performance in terms of hypervolume (higher is better) versus function evaluations on
10-objective DTLZ1, DTLZ2 and DTLZ5, DTLZ7 and Convex DTLZ2 problems. We report the means and 2
standard errors across 5 trials.
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Figure 10: Sequential optimization performance in terms of hypervolume (higher is better) versus function
evaluation on 3-objective DTLZ1, DTLZ2 and DTLZ5 problems.
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Figure 11: Sequential optimization performance in terms of hypervolume (higher is better) versus function
evaluation on 4-objective DTLZ1, DTLZ2 and DTLZ5 problems and 3-objective Vehicle Safety problem.
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