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A B S T R A C T

Graph structured representations are a powerful inductive bias applicable across
a wide spectrum of systems in nature, ranging from atom interactions in molec-
ular systems to complex human interactions such as social networks. Part of the
success of Graph Neural Networks (GNNs) can be attributed to their broad ap-
plicability in capturing these complex interactions. This thesis aims to extend the
capabilities of GNNs by incorporating additional physics-based inductive biases.

The thesis begins by enriching GNN architectures with traditional graphical in-
ference methods to craft hybrid models. These models leverage the prior knowl-
edge inherent in conventional graphical models along with the adaptive inference
from data-driven learning. The resulting algorithms outperform the individual
approaches when run in isolation.

We then implement inductive biases as a symmetry constraint by creating E(n)
Equivariant Graph Neural Networks (EGNNs), which improve upon standard
GNNs through the inclusion of the Euclidean symmetry. This improves gener-
alization for data within n-dimensional Euclidean spaces, a characteristic partic-
ularly relevant in molecular data. Subsequently, we demonstrate the benefits of
EGNNs in various applications in the domain of deep learning for molecular
modelling.

The concluding part of this work is the incorporation of euclidean symmetries
into generative models by building upon the proposed EGNNs. The presented
generative model significantly outperforms previous 3D molecular generative
models, showing potential to be disruptive in the future of molecular modeling.
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S A M E N VAT T I N G

Representaties die gestructureerd zijn als grafen zijn een belangrijke inductieve
aanname die breed toepasbaar is op natuurlijke systemen, van atomische inter-
acties in moleculaire systemen tot complexe menselijke interacties in sociale net-
werken. Een gedeelte van het succes van Graph Neural Networks (GNNs) kan
worden toegeschreven aan hun toepasbaarheid in het modelleren van deze brede
complexe interacties. Deze dissertatie verbetert de capaciteiten van GNNs door
aanvullende inductieve aannames toe te voegen die op natuurkunde gebaseerd
zijn.

De dissertatie begint met het verrijken van GNN architecturen door gebruik te
maken van traditionele graphical inference methoden om hybride modellen te vor-
men. Deze modellen combineren de a priori kennis van conventionele graphical
models met de adaptieve inferentie uit data. Deze gecombineerde algorithmen
presenteren beter dan de componenten waaruit ze bestaan.

Vervolgens implementeren we inductieve aannames als symmetrie randvoorwar-
de door E(n) Equivariant Graph Neural Networks (EGNNs) te maken. Deze
verbeteren standaard GNNs door Euclidische symmetrieën toe te voegen. Dit
verbetert generalisatie voor data in n-dimensionale Euclidische ruimten, een ei-
genschap die in het bijzonder relevant is voor moleculaire data. Vervolgens de-
monstreren we de voordelen van EGNNs met verschillende toepassingen in het
domein van deep learning voor moleculair modelleren.

Het concluderende deel van dit werk verenigt Euclidische symmetrie met gene-
ratieve modellen door EGNNs verder te ontwikkelen. De gepresenteerde genera-
tieve modellen werken beter dan vorige 3D moleculair generatieve modellen, en
dragen daarmee bij aan de toekomst van moleculair modelleren.
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1
I N T R O D U C T I O N

1.1 overview

Inductive biases are essential in Machine Learning for enabling algorithms to gen-
eralize from a limited set of training data to novel unseen examples. Such biases
are critical in guiding the learning process towards viable solutions by leveraging
inherent structure or symmetries in the data. For instance, Convolutional Neural
Networks (CNNs) (LeCun et al., 1998) exhibit translation equivariance, allowing
them to recognize patterns regardless of their position in the visual field. Ad-
ditionally, neural networks commonly incorporate an inherent smoothness bias,
which assumes that small variations in input lead to small variations in the out-
put, reflecting an expectation of continuity in the data they model. These biases
are key in the design of neural networks and significantly influence their learning
and generalization capabilities.

Structuring data as a graph (a set of interconnected nodes) is an inductive bias
observed in nature across various scales. At the granular level of chemistry,
molecules can be modeled as a set of atoms interacting with each other. In bi-
ology, cellular networks emerge from the intricate connections between cells. On
a larger scale, social networks arising from human interactions can similarly be
represented as graphs. Even larger chaotic systems, such as planetary systems,
or complex abstract concepts can be structured as graphs, such as knowledge
graphs.

Graph Neural Networks (GNNs) (Bruna et al., 2013) leverage the inductive bi-
ases present in graph-structured data. Part of their success can be attributed to
their broad applicability in capturing complex interactions in graph data. How-
ever, similar to other deep learning architectures, GNNs may require considerable
amounts of training data to achieve robust generalization to new observations.

1



2 introduction

In many real-world systems, we can achieve better generalization by leverag-
ing inductive biases related to the dynamics of a system. The inductive biases
considered in this thesis fall into two categories: i) Physics-based equations that
approximate the dynamics of real-world systems. ii) Symmetry constraints that
must be strictly satisfied, such as the invariance of molecular properties to their
orientation.

In the first part of the thesis, we focus on integrating physics-based inductive bi-
ases with data-driven models. These physics biases are structured within graph-
ical models, providing a structural representation of the system. Example ap-
plications include the motion equations in a tracking system or the differential
equations used to model chaotic phenomena relevant to applications such as
weather forecasting. While graphical models defined from physics approxima-
tions provide robust generalization to new data points, they may not capture all
the intricate details present in real-world data. Our goal in the first part of the
thesis is to leverage the best from both worlds: the high generalizability of graph-
ical models and the high flexibility of GNNs. For this purpose, we explore hybrid
message-passing models that combine both graphical inference and learned in-
ference from data.

In the subsequent parts of the thesis, we focus on leveraging symmetries that
must be strictly satisfied in certain settings, such as invariance or equivariance to
certain Euclidean transformations. This principle is particularly relevant for data
that lies in a 3D space, such as molecular data, offering the potential for signifi-
cant real-world impact. We start by building a graph neural network equivariant
to Euclidean symmetries and demonstrate its efficacy in a series of discriminative
tasks such as molecular property prediction. We then build upon this network to
design equivariant generative models which significantly outperform previous
methods for molecule generation in 3D, resulting in a promising approach for
molecular modelling and drug discovery.

In summary, this thesis explores the incorporation of inductive biases into graph
neural networks to design models that are better grounded in reality with the
potential to better address real world applications as for example deep learning
for molecular modelling.

1.2 scope and research questions

Research Question 1: How can we benefit from both the expressivity of GNNs and the
generalization and data efficiency of graphical models?

A graphical model is a structured representation of the data generation process,
however, the equations that define a graphical model are often only a poor ap-
proximation of the true data generation process. The subtleties of the generative



1.2 scope and research questions 3

process are however captured in the data, and if data is available, we can learn
to infer the missing subtleties from it, but pure learned inference can be data
hungry and lack generalization.

In Chapters 3 and 4, we propose a hybrid message-passing framework that com-
bines both graphical inference and learned inference, which we structure as a
Graph Neural Network. By using cross-validation, we can automatically balance
the amount of work performed by graphical inference versus learned inference.
Specifically, in Chapter 3, we propose a hybrid framework for a Gaussian Hidden
Markov Model, the type of graphical model used in Kalman Filters. We demon-
strate through a variety of experiments that we can estimate trajectories much
more accurately than either learned or graphical inference run in isolation. In
Chapter 4, we extend the proposed framework to enhance Belief Propagation, a
standardized algorithm used to reason over graphical models.

Research Question 2: How can we build effective and yet fast graph neural networks
that are equivariant to Euclidean transformations?

In Chapter 5, we introduce E(n) Equivariant Graph Neural Networks (EGNNs).
In contrast to previous existing E(n) equivariant methods, EGNNs do not re-
quire computationally expensive higher-order representations (spherical harmon-
ics) allowing for significantly faster inference speeds, while still achieving com-
petitive or better performance. Moreover, while existing methods are limited to
equivariance on 3 dimensional spaces, the proposed model can scale to higher-
dimensional spaces. We demonstrate the effectiveness of the EGNN on dynamical
systems modelling, representation learning in graph autoencoders and predict-
ing molecular properties. Due to its benefits, the EGNN has been adopted in
various subsequent works in molecular modelling, and in our case, we further
used it to design equivariant generative models to answer our next Research
Question.

Research Question 3: How can we construct E(3) equivariant generative models and
what advancements do they offer in the generation of molecular structures?

Generative models have shown significant breakthroughs in the domains of im-
age and text generation, and they are promising candidates to impact the field
of drug discovery via molecular modeling. Molecules inherently exist within a
3-dimensional space, subjecting them to Euclidean symmetries, such as rotations
and translations. Leveraging these symmetries can enhance the generalization
capabilities of generative models for molecular structures.

In Chapters 6 and 7, we build upon the EGNN framework from the previous
chapter to develop two novel equivariant generative models: the E(n) Equivari-
ant Normalizing Flows (E-NFs) and the E(3) Equivariant Diffusion Model (EDM).
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The EDM, in particular, marks a significant improvement in the performance of
molecular generative models. Additionally, we experiment with EDM to condi-
tion the generative process on targeted properties, aiming to produce molecules
with specific characteristics.

1.3 subsequent impact

In this section, we discuss some of the subsequent impacts on the literature de-
rived from the research presented in this thesis.

E(n) Equivariant Graph Neural Networks (discussed in Chapter 5) have been
used in a wide variety of applications within the field of molecular modelling.
In addition to parameterizing the molecular generative models (Satorras et al.,
2021a; Hoogeboom et al., 2022) we introduce in Chapters 6 and 7, the EGNN has
also been used in the literature to model binding interactions between ligands
and molecules/proteins, a key problem in drug discovery. Some works use the
EGNN to construct conditional generative models of ligands (Igashov et al., 2022;
Schneuing et al., 2022; Rozenberg and Freedman, 2022), while others use or adapt
the EGNN in a discriminative manner to predict structure coordinates in binding
interactions (Stärk et al., 2022; Masters et al., 2022; Dhakal et al., 2023; Sestak et
al., 2023; Zhang et al., 2023; Guan et al., 2023).

Continuing in the realm of proteins, the EGNN has been applied in a variety of
tasks such as antibody structure prediction (Abanades et al., 2022), protein design
(Song et al., 2023), protein backbone generation (Trippe et al., 2022; Mahmud et
al., 2023; Wu et al., 2021), protein representation learning (Zhang et al., 2022) and
protein dynamics simulations (Chen et al., 2023).

Further works include improving molecular Force Fields through transfer learn-
ing (Gao et al., 2022; Cui et al., 2023), improving Density Functional Theory pre-
dictions through delta-learning (Atz et al., 2022), materials design (Govindarajan
et al., 2023), developing more accurate equivariant networks (Brandstetter et al.,
2021) and further topics such as robotic kinematics (Limoyo et al., 2023).

Moving to Chapters 6 and 7, we presented Equivariant Generative Models for
molecule generation. This family of generative models is starting to have a sig-
nificant impact on molecular modelling. In particular, some of the works already
mentioned in the EGNN paragraphs that generate ligands in molecule-ligand
interactions have been adapted from E(n) Equivariant Normalizing Flows intro-
duced in Chapter 6 (Rozenberg and Freedman, 2022) and from the Equivariant
Diffusion Models introduced in Chapter 7 (Igashov et al., 2022; Schneuing et
al., 2022). More broadly, equivariant generative models are emerging as a new
paradigm in the field of chemical sciences (Anstine and Isayev, 2023) and po-
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tentially influencing key applications such as drug design (Isert et al., 2023) and
material design (Zeni et al., 2023).

Last but not least, the hybrid models discussed in chapters 3 and 4 have influ-
enced subsequent research in model-based deep learning, leading to enhance-
ments in Neural Network Kalman Filters and in signal processing as seen in the
works (Revach et al., 2022; Pratik et al., 2020; Shlezinger et al., 2023).





2
B A C K G R O U N D

2.1 notation

This section outlines the main notation used in the thesis. Additional notation
will provided as required in different chapters.

Symbol Description Example
x,y, z Scalars are denoted by lowercase italic letters. x = 3

x, y, z Vectors are represented by boldface lowercase
letters.

x = (x1, x2, x3)

X, Y, Z Matrices are denoted by boldface uppercase let-
ters.

X =

[
x11 x12

x21 x22

]
S,V,U Sets are represented by calligraphic uppercase

letters.
S = {s1, s2, s3}

f,g,ϕ Functions are denoted by lowercase letters. f(x) = x2

∇,∆ Common operators such as the gradient and
Laplacian.

∇f,∆f

N(µ,Σ) Multivariate Gaussian distribution with mean
vector µ and covariance matrix Σ.

N(0, I)

p(x) Probability density function of a random vari-
able x.

p(x) ∝ e−x⊤x

RN N-dimensional Euclidean space. R3

Table 1: General notation for scalars, vectors, and matrices used throughout the thesis,
including notation for multivariate Gaussian distributions and probability density func-
tions.

The following sections recall some some basic background concepts that are used
trough the thesis.

7
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2.2 neural networks

A neural network in its most basic form is a sequence of linear operations inter-
spersed with non-linear functions also known as activation layers. To be more
precise, we can define a neural network ϕ as a function composed of linear
operations fl(h) = Wlh + bl and non-linearities such as the sigmoid function
σ(x) = 1/(1+ e−x) which operates element-wise, as detailed below:

ϕ = fL ◦ σ ◦ fL−1 ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1 (1)

where Wl ∈ Rml×nl are the weights of the matrix multiplication and addition
term bl ∈ Rm

l at the linear layer l. Notice that all learnable parameters are
contained in the linear layers fl. The resulting neural network is a function ϕ :

Rn0 → RmL
that maps from an input space of dimensionality n0 defined as

the number of columns in W0 to an output space of dimensionality mL defined
as number of rows in {WL, bl}. The remaining number of rows in the weight
matrices of this neural network are of arbitrary choice (as long as ml = nl+1 for
all l). Therefore some of the most common hyperparameters to tune in a neural
network are what we usually call the number of hidden neurons per layer ml for
l < N and the number of layers L.

A strength of neural networks is that they are universal approximators for con-
tinuous functions (Cybenko, 1989), meaning that a neural network with at least
one hidden layer and a sufficient number of neurons can approximate any contin-
uous function. Notice that this characteristic does not guarantee generalization
but the capacity to overfit the training data. Therefore, incorporating inductive
biases into neural networks is crucial to obtain good generalization performance.
Multilayered neural networks as the one defined in this section are also known
by the name Multilayer Perceptron (MLP).

2.3 graph neural networks

Graph Neural Networks are permutation equivariant networks that operate on
graph structured data (Bruna et al., 2013; Defferrard et al., 2016; Kipf and Welling,
2016a). Consider a graph G = (V,E) with nodes vi ∈ V and edges eij ∈ E where
each edge connect a pair of nodes. Each node vi has associated a node of features
hi ∈ Rnf where "nf" is the number of features.

Then, a Graph Neural Network (GNN) takes as input the edges E and a set of
node features H0 = {h1, . . . , hi, . . .hN} at layer 0 and outputs a transformation
HL after L layers such as HL = GNN[H0,E]. A very important property of GNNs
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Figure 1: Illustration of the three main Graph Neural Network operations.

not present in Multilayer Perceptrons from previous Section 2.2 is that they are
permutation equivariant. In other words, permuting the input results in the same
permutation of the output such as P(HL) = GNN[P(H0,E)] where P is a permu-
tation operator of the node indexes.

A GNN is usually defined as a sequence of Graph Convolutional Layers (GCL)
which are also permutation equivariant. Each GCL takes as input Hl at a given
layer l and outputs an update Hl+1 such as Hl+1 = GCL[Hl,E]. Following the
notation from Gilmer et al., 2017 we define a GCL layer as:

mij = ϕe(hl
i, hl

j , aij) Edge message (2)

mi =
∑

j∈N(i) mij Aggregation (3)

hl+1
i = ϕh(hl

i, mi) Node update (4)

where hl
i ∈ Rnf is the nf-dimensional embedding of node vi at layer l, aij are

optional edge attributes, N(i) represents the set of neighbors of node vi. Finally,
ϕe and ϕh are the edge and node operations respectively which are commonly
modelled by Multilayer Perceptrons (MLPs) such as the network introduced in
previous Section 2.2. The GCL defined here and illustrated in Figure 1 consists
of three main operations :

Edge message: This operation computes a message for each edge (i, j) in the graph,
taking as input features of a neighbor node hl

j and the node itself hl
i. Additional

edge features can be incorporated if necessary through the vector aij.

Aggregation: This operation aggregates the incoming message to a node i from
all its neighbor nodes N(i). Typically it is just a sum operation but it could take
other forms as long as it satisfies permutation equivariance.
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Figure 2: (Left) Example of a very simple directed graphical model. (Right) its representa-
tion as a Factor Graph.

Node update: This operation computes an update on the node embeddings given
the embeddings hl

i and the aggregated message mi.

2.4 graphical models

A Graphical Model is a structured representation of the data generating process,
where nodes represent random variables and edges describe the dependence be-
tween these random variables. This allows for an efficient representation of com-
plex probability distributions.

Graphical Models can be categorized as directed or undirected depending on
whether their edges contain directional information, and also as cyclic or acyclic
depending on whether we can find loops in the graph. An example of a Directed
Acyclic Graphical Model is shown at the left of Figure 2. This graphical model
contains four random variables xI, xD, xG, xL and its joint distribution can be
factorized as p(xI, xD, xG, xL) = p(xI)p(xD)p(xG|xI, xD)p(xL|xG). Imagine xI is
a random variable describing the intelligence of a student, xD the difficulty of an
exam, xG the obtained grade and xL whether getting or not a recommendation
letter. This graphical model shows that for example, given xG, the variable xL
will be independent from xI and xD. Now we can ‘reason‘ over this graphical
model to obtain some desired measurements such as the marginal of one of its
variables, for example, to obtain the marginal p(xL) we need to marginalize the
other variables p(xL) =

∑
I

∑
D

∑
G p(xI)p(xD)p(xG|xI, xD)p(xL|xG) which we

can do in two steps, first p(xL|xI, xD) =
∑

xG
p(xG|xI, xD)p(xL|xG) and then

p(xL) =
∑

xI

∑
xD
p(xI)p(xD)p(xL|xI, xD).

These two steps can be conceptualized as local operations or messages among
subsets of nodes in the graphical model. Even for a small graphical model of 4
nodes, these integrals start to look convoluted. If we want to compute multiple
marginals on much larger graphs, coming up with these marginalization rules
may become much more complex. To facilitate this, message passing algorithms
have been developed to perform inference on graphical model variables, such
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as the sum-product algorithm also known as Belief Propagation (Pearl, 1988).
Belief Propagation locally marginalizes over random variables. It exploits the
structure of factor graphs, allowing more efficient computation of the marginals.
We will introduce this algorithm in more detail in Chapter 4. For a graphical
model without cycles, Belief Propagation can obtain the true marginals.

2.4.1 Factor Graphs

Factor Graphs (Loeliger, 2004) are a convenient way of representing graphical
models. A factor graph is a bipartite graph that interconnects a set of factors
fs(xs) with a set of variables x. Here, each xs is a subset of the variables x,
and each factor fs(xs) defines dependencies among its subset of variables xs.
A visual representation of a Factor Graph derived from the previous directed
graphical model is depicted at the right of Figure 2, where black squares rep-
resent factors and blue circles variables. For this particular example in Figure
2, x = {xI, xD, xG, xL}, and for instance, the factor in the middle of the graph
that connects to three variables would be defined as fxI,xD,xG

(xI, xD, xG). A
global probability distribution p(x) can be defined as the product of all factors
in the graphical model p(x) = 1

Z

∏
s∈F fs(xs), where Z is the normalization

constant of the probability distribution and F is the set of all factors. We can
re-write the previous graphical model as the factor graph: p(xI, xD, xG, xL) =

fxI
(xI)fxD

(xD)fxG,xI,xD
(xG, xI, xD)fxL,xG

(xL, xG). Notice that the factor graph
notation discards the directional dependencies between variables. This Factor
Graph notation will be used Chapter 4.

2.5 equivariance

In simple terms, equivariance is a concept in which the output of a function
changes in a consistent way in response to transformations applied to its input.
For example, if rotating the input of a function ϕ results in the same rotation at
the output, the function is considered equivariant to rotations such as R(ϕ(X)) =
ϕ(R(X)), where R is a rotation operator and X = (x1, . . . , xM) ∈ RM×n an input
set of M points in a point cloud embedded in a n-dimensional space.

Formally, equivariance can be defined as follows. Let Tg : X −→ X be a set of
transformations on X for an abstract group g ∈ G. We say a function ϕ : X −→ Y is
equivariant to g if there exists an equivalent transformation on its output space
Sg : Y −→ Y such that ϕ(Tg(x)) = Sg(ϕ(x)). In this thesis, particularly in Chapter
5, 6 and 7, we focus on the Euclidean group E(n) which includes translations,
rotations and reflections in addition to also being interested in the permutation
group. Specifically, given X ∈ RM×n and ϕ(X) = Y ∈ RM×n the transformed
set of point clouds, we are interested in the following types of equivariance:
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Translation equivariance: Translating the input by g ∈ Rn results in an equivalent
translation of the output. Let X + g be shorthand for (x1 + g, . . . , xM + g). Then
Y + g = ϕ(X + g).

Rotation (and reflection) equivariance: For any orthogonal matrix Q ∈ Rn×n, let QX
be shorthand for (Qx1, . . . , QxM). Then rotating the input results in an equivalent
rotation of the output QY = ϕ(QX).

Permutation equivariance: Permuting the input results in the same permutation of
the output P(Y) = ϕ(P(X)) where P is a permutation on the row indexes.

For instance, the forces within a molecule, resulting from its atomistic interactions
are rotation equivariant. This implies that if we rotate the Cartesian positions of
the molecule in a 3D space, the vector force field rotates accordingly.

2.6 deep generative models

A Generative Model is a statistical model that is capable of generating new sam-
ples from a probability distribution x ∼ pθ(x) where θ are the learnable parame-
ters that define the model. With the advance of deep learning, Deep Generative
Models have evolved to model much more complex probability distributions.
This has lead to very impactful applications in image, text and audio generation
(Ramesh et al., 2021; Brown et al., 2020; Oord et al., 2016).

Deep Generative Models aim to model a probability distribution p(x) to which
we may not have direct access. However, we often have access to a set of samples
drawn from that probability distribution D = {x1, · · · , xD}. These samples can be
used to learn a probability distribution as pθ(x) ≈ p(x), approximating the true
one.

Ideally, to learn pθ, we would like to optimize a similarity metric between the
true and the parametrized distributions with respect to θ. A common choice to
measure distribution similarity is the Kullback–Leibler divergence KL(p,pθ) =∫
p(x) log p(x)

pθ(x) . As shown in the next equations, minimizing the KL(p,pθ) be-
tween distributions with respect to θ is equivalent to minimizing the cross-entropy
H(p,pθ):
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θ̂ = argmin
θ

KL(p,pθ) = argmin
θ

∫
p(x) logp(x) − p(x) logpθ(x) (5)

= argmin
θ

∫
− p(x) logpθ(x) (6)

= argmin
θ

H(p,pθ) (7)

This is possible because the first term of the KL divergence does not depend on θ,
allowing us to discard that term when optimizing with respect to θ. The entropy
term H(p,pθ) =

∫
−p(x) logpθ(x) can be rewritten as an expectation over sam-

ples Ex ∼ p(x)[− logpθ(x)]. However, we do not have access to the true distribu-
tion p(x), but we can approximate it from a limited set of samples Ex∼D[− logpθ(x)]
from our dataset. This results in minimizing the negative log-likelihood of the
data with respect to the model parameters θ resulting in the following equation
to optimize:

θ̂ = argmin
θ

Ex∼D[− logpθ(x)] (8)

In practice, direct minimization of the negative log-likelihood is not always tractable,
especially for some models that introduce latent variables pθ(x) =

∫
pθ(x|z)p(z)dz

such as Variational Autoencoders (Kingma and Welling, 2013) and Diffusion
Models (Ho et al., 2020). However, in such cases, we can optimize a variational
lower bound on the log-likelihood logpθ(x) (Kingma and Welling, 2013). Differ-
ent generative models approach the optimization the log-likelihood term or the
lower bound in different ways. In this thesis we work with Normalizing Flows
and Diffusion Models, the details on how these methods are optimized are in-
troduced in their respective chapters 6 and 7. For both cases we will incorporate
E(3) Equivariant constraints into these generative models to adapt them for data
existing in a 3-dimensional space.
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H Y B R I D I N F E R E N C E I N H I D D E N M A R K O V M O D E L S

This Chapter is based on the content of:
Victor Garcia Satorras et al. (2019). “Combining generative and discriminative models for hybrid

inference.” In: Advances in Neural Information Processing Systems 32

3.1 introduction

Currently, deep learning is a dominant paradigm in the machine learning com-
munity. Before that, however, one of the dominant paradigms in machine learning
was graphical models (Bishop, 2006; Murphy, 2012; Koller et al., 2009). Graphical
models structure the space of random variables by organizing them into a depen-
dency graph. For instance, some variables have parents/children dependencies
(directed models) or neighbor dependencies (undirected models). These depen-
dencies are encoded by conditional probabilities (directed models) or potentials
(undirected models). While these interactions can have learnable parameters, the
structure of the graph imposes a strong inductive bias onto the model. Reason-
ing in graphical models is performed by a process called probabilistic inference
where the posterior distribution, or the most probable state of a set of variables,
is computed given observations of other variables. Many approximate algorithms
have been proposed to solve this problem efficiently, among which are MCMC
sampling (Neal et al., 2011; Salimans et al., 2015), variational inference (Kingma
and Welling, 2013) and belief propagation algorithms (Crick and Pfeffer, 2002;
Koller et al., 2009).

Graphical models are a kind of generative model where we specify important
aspects of the generative process. They excel in the low data regime because
we maximally utilize expert knowledge (a.k.a. inductive bias). However, human
imagination often falls short of modeling all of the intricate details of the true
underlying generative process. In the large data regime there is an alternative
strategy which we could call “learning to infer”. Here, we create lots of data
pairs {xn, yn} with {yn} the observed variables and {xn} the latent unobserved
random variables. These can be generated from the generative model or are avail-

17
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Figure 3: Examples of inferred 5K length trajectories for the Lorenz attractor with ∆t = 0.01
trained on 50K length trajectory. The mean squared errors from left to right are (Observa-
tions: 0.2462, GNN: 0.0613, E-Kalman Smoother: 0.0372, Hybrid: 0.0169).

able directly in the dataset. Our task is now to learn a flexible mapping q(x|y)
to infer the latent variables directly from the observations. This idea is known
as “inverse modeling” in some communities. It is also known as “amortized” in-
ference (Rezende and Mohamed, 2015a) or recognition networks in the world of
variational autoencoders (Kingma and Welling, 2013) and Helmholtz machines
(Dayan et al., 1995).

In this chapter we consider inference as an iterative message passing scheme over
the edges of the graphical model. We know that (approximate) inference in graph-
ical models can be formulated as message passing, known as belief propagation,
so this is a reasonable way to structure our computations. When we unroll these
messages for N steps we have effectively created a recurrent neural network as
our computation graph. We will enrich the traditional messages with a learnable
component that has the function to correct the original messages when there is
enough data available. In this way we create a hybrid message passing scheme
with prior components from the graphical model and learned messages from
data. The learned messages may be interpreted as a kind of graph convolutional
neural network (Bruna et al., 2013; Henaff et al., 2015; Kipf and Welling, 2016a).

Our hybrid model neatly trades off the benefit of using inductive bias in the
small data regime and the benefit of a much more flexible and learnable inference
network when sufficient data is available. In this chapter we restrict ourselves to
a sequential model known as a hidden Markov process.

3.2 the hidden markov process

In this section we briefly explain the Hidden Markov Process and how we intend
to extend it. In a Hidden Markov Model (HMM), a set of unobserved variables
X = {x1, . . . , xK} define the state of a process at every time step 0 < k < K. The
set of observable variables from which we want to infer the process states are de-
noted by Y = {y1, . . . yK}. HMMs are used in diverse applications as localization,
tracking, weather forecasting and computational finance among others. (in fact,
the Kalman filter was used to land the Eagle on the moon.)
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We can express p(X|Y) as the probability distribution of the hidden states given
the observations. Our goal is to find which states x maximize this probability
distribution. More formally:

X̂ = argmaxXp(X|Y) (9)

Under the Markov assumption i) the transition model is described by the tran-
sition probability p(xt|xt−1), and ii) the measurement model is described by
p(yt|xt). Both distributions are stationary for all k. The resulting graphical model
can be expressed with the following equation:

p(X, Y) = p(x0)
K∏

k=1

p(xk|xk−1)p(yk|xk) (10)

One of the best known approaches for inference problems in this graphical model
are the Kalman Filter (Kalman, 1960) and Smoother (Rauch et al., 1965). The
Kalman Filter assumes both the transition and measurement distributions are
linear and Gaussian. The prior knowledge we have about the process is encoded
in linear transition and measurement processes, and the uncertainty of the pre-
dictions with respect to the real system is modeled by Gaussian noise:

xk = Fxk−1 + qk (11)

yk = Hxk + rk (12)

Here qk, rk come from Gaussian distributions qk ∼ N(0, Q), rk ∼ N(0, R). F, H
are the linear transition and measurement functions respectively. If the process
from which we are inferring x is actually Gaussian and linear, a Kalman Filter +
Smoother with the right parameters is able to infer the optimal state estimates.

The real world is usually non-linear and complex, assuming that a process is
linear may be a strong limitation. Some alternatives like the Extended Kalman
Filter (Ljung, 1979) and the Unscented Kalman Filter (Wan and Van Der Merwe,
2000) are used for non-linear estimation, but even when functions are non-linear,
they are still constrained to our knowledge about the dynamics of the process
which may differ from real world behavior.

To model the complexities of the real world we intend to learn them from data
through flexible models such as neural networks. In this work we present an hy-
brid inference algorithm that combines the knowledge from a generative model
(e.g. physics equations) with a function that is automatically learned from data
using a neural network. In our experiments we show that this hybrid method out-
performs the graphical inference methods and also the neural network methods
for low and high data regimes respectively. In other words, our method benefits
from the inductive bias in the limit of small data and also the high capacity of
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a neural networks in the limit of large data. The model is shown to gracefully
interpolate between these regimes.

3.3 related work

The proposed method has interesting relations with meta learning (Andrychow-
icz et al., 2016) since it learns more flexible messages on top of an existing algo-
rithm. It is also related to structured prediction energy networks (Belanger et al.,
2017) which are discriminative models that exploit the structure of the output.
Structured inference in relational outputs has been effective in a variety of tasks
like pose estimation (Wei et al., 2016), activity recognition (Deng et al., 2016) or
image classification (Nauata et al., 2018). One of the closest works is Recurrent
Inference Machines (RIM) (Putzky and Welling, 2017) where a generative model
is also embedded into a Recurrent Neural Network (RNN). However in that work
graphical models played no role. In the same line of learned recurrent inference,
our optimization procedure shares similarities with Iterative Amortized Inference
(Marino et al., 2018), although in our work we are refining the gradient using a
hybrid setting while they are learning it.

Another related line of research is the convergence of graphical models with
neural networks, (Mirowski and LeCun, 2009) replaced the joint probabilities
with trainable factors for time series data. Learning the messages in conditional
random fields has been effective in segmentation tasks (Chen et al., 2014; Zheng et
al., 2015). Relatedly, Johnson et al. (2016) runs message passing algorithms on top
of a latent representation learned by a deep neural network. More recently (Yoon
et al., 2018) showed the efficacy of using Graph Neural Networks (GNNs) for
inference on a variety of graphical models, and compared the performance with
classical inference algorithms. This last work is in a similar vein as ours, but in our
case, learned messages are used to correct the messages from graphical inference.
In the experiments we will show that this hybrid approach really improves over
running GNNs in isolation.

The Kalman Filter is a widely used algorithm for inference in Hidden Markov
Processes. Some works have explored the direction of coupling them with ma-
chine learning techniques. A method to discriminatively learn the noise param-
eters of a Kalman Filter was introduced by Abbeel et al. (2005). In order to in-
put more complex variables, Haarnoja et al. (2016) back-propagates through the
Kalman Filter such that an encoder can be trained at its input. Similarly, Coskun
et al. (2017) replaces the dynamics defined in the Kalman Filter with a neural net-
work. In our hybrid model, instead of replacing the already considered dynamics,
we simultaneously train a learnable function for the purpose of inference.
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Figure 4: Graphical illustration of our Hybrid algorithm. The GM-module (blue box) sends
messages to the GNN-module (red box) which refines the estimation of X.

3.4 model

We cast our inference model as a message passing scheme where the nodes of a
probabilistic graphical model can send messages to each other to infer estimates
of the states x. Our aim is to develop a hybrid scheme where messages derived
from the generative graphical model are combined with GNN messages:

Graphical Model Messages (GM-messages): These messages are derived from the
generative graphical model (e.g. equations of motion from a physics model).

Graph Neural Network Messages (GNN-messages): These messages are learned by a
GNN which is trained to reduce the inference error on labelled data in combina-
tion with the GM-messages.

In the following two subsections we introduce the two types of messages and the
final hybrid inference scheme.

3.4.1 Graphical Model Messages

In order to define the GM-messages, we interpret inference as an iterative opti-
mization process to estimate the maximum likelihood values of the states X. In
its more generic form, the recursive update for each consecutive estimate of X is
given by:

X(t+1) = X(t) + γ∇X(t) log(p(X(t), Y)) (13)
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Factorizing Equation 13 to the hidden Markov Process from Equation 10, we get
three input messages for each inferred node xk:

x(t+1)
k = x(t)k + γµ

(t)
k (14)

µ
(t)
k = µ

(t)
xk−1→xk + µ

(t)
xk+1→xk + µ

(t)
yk→xk

µ
(t)
xk−1→xk =

∂

∂x(t)k

log(p(x(t)k |x(t)k−1)) (15)

µ
(t)
xk+1→xk =

∂

∂x(t)k

log(p(x(t)k+1|x
(t)
k )) (16)

µ
(t)
yk→xk =

∂

∂x(t)k

log(p(yk|x
(t)
k )) (17)

These messages can be obtained by computing the three derivatives from equa-
tions 15, 16, 17. It is often assumed that the transition and measurement distri-
butions p(xk|xk−1), p(yk|xk) are linear and Gaussian (e.g. Kalman Filter model).
Next, we provide the expressions of the GM-messages when assuming the linear
and Gaussian functions from equations 11, 12:

µxk−1→xk = −Q−1(xk − Fxk−1) (18)

µxk+1→xk = FTQ−1(xk+1 − Fxk) (19)

µyk→xk = GTR−1(yk − Gxk) (20)

3.4.2 Adding GNN-messages

We call V the collection of nodes of the graphical model V = X ∪ Y. We also
define an analogous graph where the GNN operates by propagating the GNN
messages. We build the following mappings from the nodes of the graphical
model to the nodes of the GNN: Hx = {ψ(x) : x ∈ X}, Hy = {ψ(y) : y ∈ Y}.
Analogously, the union of both collections would be Hv = Hx ∪ Hy. Therefore,
each node of the graphical model has a corresponding node h in the GNN. The
edges for both graphs are also equivalent. Values of H(0)

x that correspond to un-
observed variables X are randomly initialized. Instead, values H(0)

y are obtained
by forwarding each yk through a linear layer. The elements within these sets are
denoted hv ∈ Hv and hx ∈ Hx.

Next we present the equations of the learned messages, which consist of a GNN
message passing operation. Similarly to (Li et al., 2015; Kipf et al., 2018), a GRU
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(Chung et al., 2014) is added to the message passing operation to make it recur-
sive:

m(t)
k,n = ϕe(h

(t)
xk , h(t)

vn ,µ(t)
vn→xk) Edge message (21)

m(t)
k =

∑
vn∈N(xk) m(t)

k,n Aggregation over edges (22)

h(i+1)
xk

= GRU(m(t)
k , h(t)

xk ) Node update (23)

ϵ
(t+1)
k = ϕdec(h

(t+1)
xk ) Correction factor (24)

Each GNN message m(t)
k,n is computed by the function ϕe(·), which receives

as input two hidden states from the previous recurrent iteration, and their cor-
responding GM-message µvn→xk

, this function is approximated by a different
neural network for the two types of edges (e.g. transition or measurement in the
Hidden Markov Model from Equation 10). Equation 22 aggregates all incoming
messages in the neighborhood set N(xk), this sum of messages is represented as
m(t)

k . The sum of messages m(t)
k is then provided as input to the GRU neural net-

work that updates each hidden state h(t)
xk for each node. The GRU is composed

by a single GRU cell preceded by a linear layer at its input. Finally a correction
signal ϵ(t+1)

k is decoded from each hidden state h(t+1)
xk

and it is added to the
recursive operation 14, resulting in the final equation:

x(t+1)
k = x(t)k + γ(µ

(t)
k + ϵ

(t+1)
k ) (25)

In summary, Equation 25 defines our hybrid model in a simple recursive form
where xk is updated through two contributions: one that relies on the probabilis-
tic graphical model messages µ

(t)
k , and ϵ

(t)
k , that is automatically learned. We

note that it is important that the GNN messages model the "residual error" of the
GM inference process, which is often simpler than modeling the full signal. A
visual representation of the algorithm is shown in Figure 2.

In the experimental section of this work we apply our model to the Hidden
Markov Process, however, the above mentioned GNN-messages are not constrained
to this particular graphical structure. The GM-messages can also be obtained for
other arbitrary graph structures by applying the recursive inference equation 13

to their respective graphical models.
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3.4.3 Training Procedure

The loss function is computed at every iteration, with a weighted sum that em-
phasizes later iterations, wi =

i
N , more formally:

Loss(Θ) =

N∑
i=1

wiL(gt, Γ(x(t))) (26)

In this equation, the function Γ(·) is designed to extract the elements of the hidden
state x that overlap with the ground truth gt. To give a more concrete example,
imagine x contains positions, velocity, and acceleration. Out of these, in many
tracking systems, we may only have the ground truth for positions, while the
rest is inferred by model. The function Γ(·) would extract the positions from x to
be compared against the ground truth. In our experiments we choose the mean
square error as the loss L(·).

The training procedure consists of three main steps. First, we initialize x(0)k at the
value that maximizes p(yk|xk). For example, in a trajectory estimation problem
where p(yk|xk) is approximated as gaussian we initialize the position values
of x(0)k as the observed positions yk. Second, we tune/sweep over the hyper-
parameters of the graphical model as it would be done with a Kalman Filter,
which are usually the variance of Gaussian distributions Q from Equation 12.
Finally, we train the proposed hybrid model using the above mentioned loss.

3.5 experiments

In this section we compare our Hybrid model with the Kalman Smoother and
a recurrent GNN. We show that our Hybrid model can leverage the benefits of
both methods for different data regimes. Next we define the models used in the
experiments

Kalman Smoother: The Kalman Smoother is the widely known Kalman Filter al-
gorithm (Kalman, 1960) + the RTS smoothing step (Rauch et al., 1965). In exper-
iments where the transition function is non-linear we use the Extended Kalman
Filter + smoothing step which we will call “E-Kalman Smoother”.

GM-messages: As a special case of our Hybrid model we propose to remove the
learned signal ϵ(t)k and base our predictions only on the graphical model mes-
sages from Eq. 14.

GNN-messages: The GNN model is another special case of our model when all
the GM-messages are removed and only GNN messages are propagated. In-
stead of decoding a refinement for the current x(t)k estimate, we directly esti-
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mate: x(t)k = G⊤yk+ϕdec(h
(t)
xk ). The resulting algorithm is equivalent to a Gated

Graph Neural Network (Li et al., 2015).

Hybrid model: This is the name used for our proposed model explained in Section
3.4.2.

For the training settings, we set γ = 0.005 from Equation 25 and use the Adam
optimizer with a learning rate 10−3. The number of inference iterations used in
the Hybrid model, GNN-messages and GM-messages is N=50. ϕe and ϕdec are
a 2-layers MLPs with Leaky Relu and Relu activations (Nair and Hinton, 2010)
respectively. The number of features in the hidden layers of the GRU, ϕe and
ϕdec is nf=48. In trajectory estimation experiments, yk values may take any value
from the real numbers R. Shifting a trajectory to a non-previously seen position
may hurt the generalization performance of the neural network. To make the
problem translation invariant we modify yk before mapping it to hyk

, we use the
difference between the observed current position with the previous one and with
the next one.

3.5.1 Linear Dynamics

The aim of this experiment is to infer the position of every node in trajectories
generated by linear and gaussian equations. The advantage of using a synthetic
environment is that we know in advance the original equations the motion pat-
tern was generated from, and by providing the right linear and gaussian equa-
tions to a Kalman Smoother we can obtain the optimal inferred estimate as a
lower bound of the test loss.

Among other tasks, Kalman Filters are used to refine the noisy measurement of
GPS systems. A physics model of the dynamics can be provided to the graphical
model that, combined with the noisy measurements, gives a more accurate esti-
mation of the position. The real world is usually more complex than the equations
we may provide to our graphical model, leading to a gap between the assumed
dynamics and the real world dynamics. Our Hybrid model is able to fill this gap
without the need to learn everything from scratch.

To show that, we generate synthetic trajectories T = {X, Y}. Each state xk ∈ R6

is a 6-dimensional vector that encodes position, velocity and acceleration (p, v, a)
for two dimensions. Each yk ∈ R2 is a noisy measurement of the position also
for two dimensions. The transition dynamic is a non-uniform accelerated motion
that also considers drag (air resistance):

∂p
∂t

= v,
∂v
∂t

= a − cv,
∂a
∂t

= −τv (27)
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Figure 5: MSE comparison with respect to the number of training samples for the linear
dynamics dataset.

Where −cv represents the air resistance (Falkovich, 2011), with c being a constant
that depends on the properties of the fluid and the object dimensions. Finally, the
variable −τv is used to non-uniformly accelerate the object.

To generate the dataset, we sample from the Markov process of equation 10 where
the transition probability distribution p(xk+1|xk) and the measurement proba-
bility distribution p(yk|xk) follow equations (11, 12). Values F, Q, G, R for these
distributions are described in the Appendix A.1, in particular, F is analytically
obtained from the above mentioned differential equations 27. We sample two
different motion trajectories from 50 to 100K time steps each, one for validation
and the other for training. An additional 10K time steps trajectory is sampled for
testing. The sampling time step is ∆t = 1.

Alternatively, the graphical model of the algorithm is limited to a uniform mo-
tion pattern p = p0 + vt. Its equivalent differential equations form would be
∂p
∂t = v. Notice that the air friction is not considered anymore and velocity and
acceleration are assumed to be uniform. Again the parameters for the matrices
F, Q, G, R when considering a uniform motion pattern are analytically obtained
and described in Appendix A.1.

results . The Mean Square Error with respect to the number of training sam-
ples is shown for different algorithms in Figure 5. The plot shows the average
and the standard deviation over 7 runs, the sampled test trajectory remains the
same over all runs, this is not the case for the training and validation sampled tra-
jectories. Note that the MSE of the Kalman Smoother and GM-messages overlap
in the plot since both errors were exactly the same.
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Our model outperforms both the GNN or Kalman Smoother in isolation in all
data regimes, and it has a significant edge over the Kalman Smoother when the
number of samples is larger than 1K. This shows that our model is able to ensem-
ble the advantages of prior knowledge and deep learning in a single framework.
These results show that our Hybrid model benefits from the inductive bias of the
graphical model equations when data is scarce, and simultaneously it benefits
from the flexibility of the GNN when data is abound.

A clear trade-off can be observed between the Kalman smoother and the GNN.
The Kalman Smoother clearly performs better for low data regimes, while the
GNN outperforms it for larger amounts of data (>10K). The Hybrid model is
able to benefit from the strengths of both.

3.5.2 Lorenz Attractor

The Lorenz equations describe a non-linear chaotic system used for atmospheric
convection. Learning the dynamics of this chaotic system in a supervised way
is expected to be more challenging than for linear dynamics, making it an inter-
esting evaluation of our Hybrid model. A Lorenz system is modelled by three
differential equations that define the convection rate, the horizontal temperature
variation and the vertical temperature variation of a fluid:

∂z1
∂t

= 10(z2 − z1),
∂z2
∂t

= z1(28− z3) − z2,
∂z3
∂t

= z1z2 −
8

3
z3 (28)

To generate a trajectory we run the Lorenz equations with a ∂t = 10−5 from
which we sample with a time step of ∆t = 0.05 resulting in a single trajectory of
104K time steps. Each point is then perturbed with gaussian noise of standard
deviation λ = 0.5. From this trajectory, 4K time steps are separated for testing,
the remaining trajectory of 100K time steps is equally split between training and
validation partitions.

Assuming x ∈ R3 is a 3-dimensional vector x = [z1, z2, z3]⊤, we can write down
the dynamics matrix of the system as A|x from the Lorenz differential eq. 28, and
obtain the transition function F|xk (Labbe, 2014) using the Taylor Expansion.

ẋ = A|xx =

 −10 10 0

28− z3 −1 0

z2 0 −8
3


z1z2
z3

 , F|xk = I +
J∑

j=1

(A|xk∆t)
j

j!
(29)

where I is the identity matrix and J is the number of terms from the Taylor
expansion. We run simulations for J=1, J=2 and J=5. For larger J the improvement
was minimal. For the measurement model G = I we use the identity matrix. For
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Figure 6: MSE with respect to the the number of training samples on the Lorenz Attractor.

the noise distributions Q = σ2∆tI and R = 0.52I we use diagonal matrices. The
only hyper-parameter to tune from the graphical model is σ.

Since the dynamics are non-linear, the matrix F|xk depends on the values xk. The
presence of these variables inside the matrix introduces a simple non-linearity
that makes the function much harder to learn.

results . The results in Figure 6 show that the GNN struggles to achieve low
accuracies for this chaotic system, i.e. it does not converge together with the
Hybrid model even when the training dataset contains up to 105 samples and
the hybrid loss is already 0.01 ∼ 0.02. We attribute this difficulty to the fact the
matrix F|xk

is different at every state xk, becoming harder to approximate.

This behavior is different from the previous experiment (linear dynamics) where
both the Hybrid model and the GNN converged to the optimal solution for
high data regimes. In this experiment, even when the GNN and the E-Kalman
Smoother perform poorly, the Hybrid model gets closer to the optimal solution,
outperforming both of them in isolation. This shows that the Hybrid model bene-
fits from the labeled data even in situations where its fully-supervised variant or
the E-Kalman Smoother are unable to properly model the process. One reason for
this could be that the residual dynamics (i.e. the error of the E-Kalman Smoother)
are much more linear than the original dynamics and hence easier to model by
the GNN.

As can be seen in Figure 6, depending on the amount of prior knowledge used
in our Hybrid model we will need more or less samples to achieve a particular
accuracy. Following, we show in Table 2 the approximate number of training
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samples required to achieve accuracies 0.1 and 0.05 depending on the amount of
‘knowledge‘ we provide (i.e. the number of J terms in the Taylor expansion). The
hybrid method requires ∼ 10 times less samples than the fully-learned method
for MSE=0.1 and ∼ 20 times less samples for MSE=0.05.

Table 2: Number of samples required to achieve a given MSE depending on the amount
of prior knowledge (i.e. J). These numbers have been extracted from Figure 6.

GNN (J = 0) Hybrid (J = 1) Hybrid (J = 2 & J = 5)

MSE = 0.1 ∼ 5.000 ∼ 500 ∼ 400

MSE = 0.05 ∼ 90.000 ∼ 5.000 ∼ 4.000

Finally, qualitative results of estimated trajectories by the different algorithms
on the Lorenz attractor are depicted in Figure 3. The plots correspond to a 5K
length test trajectory (with ∆t = 0.01). All trainable methods in this plot have
been trained on 5K length trajectories.

3.5.3 Real World Dynamics: Michigan NCLT Dataset

To demonstrate the generalizability of our Hybrid model to real world data, we
use the Michigan NCLT (Carlevaris-Bianco et al., 2016) dataset which is collected
by a segway robot moving around the University of Michigan, North Campus.
It comprises different trajectories where the GPS measurements and the ground
truth location of the robot are provided. Given these noisy GPS observations,
our goal is to infer a more accurate position of the segway at a given time.

Algorithm MSE

Observations (Baseline) 3.4974

Kalman Smoother 3.0099

GM-Messages 3.0048

GNN-Messages 1.7929

Hybrid model 1.4109

Table 3: MSE for different methods on the
Michigan NCLT datset.

In our experiments we arbitrarily
use the session with date 2012-01-22
which consists of a single trajectory of
6.1 Km on a cloudy day. Sampling at
1Hz results in 4.629 time steps and
after removing the parts with an un-
stable GPS signal, 4.344 time steps re-
main. Finally, we split the trajectory
into three sections: 1.502 time steps
for training, 1.469 for validation and
1.373 for testing. The GPS measure-
ments are assumed to be the noisy measurements denoted by y.

For the transition and measurement graphical model distributions we assume
the same uniform motion model used in Section 3.5.1, specifically the dynamics
of a uniform motion pattern. The only parameters to learn from the graphical
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model will be the variance of the measurement and transition distributions. The
detailed equations are presented in Appendix A.1.1.

results . Our results show that our Hybrid model (1.4109 MSE) outperforms
the GNN (1.7929MSE), the Kalman Smoother (3.0099MSE) and the GM-messages
(3.0048 MSE). One of the advantages of the GNN and the Hybrid methods on
real-world datasets is that both can model the correlations through time from the
noise distributions while the GM-messages and the Kalman Smoother assume
the noise to be uncorrelated through time as it is defined in the graphical model.
In summary, this experiment shows that our Hybrid model can generalize with
good performance to a real-world dataset.

3.6 discussion

In this work, we explored the combination of recent advances in neural networks
(e.g., Graph Neural Networks) with more traditional methods of graphical infer-
ence in hidden Markov models for time series. The result is a hybrid algorithm
that benefits from the inductive bias of graphical models and from the high flexi-
bility of neural networks. We demonstrated these benefits in three different tasks
for trajectory estimation: a linear dynamics dataset, a non-linear chaotic system
(Lorenz attractor) and a real-world positioning system. In all three experiments,
the hybrid method learns to efficiently combine graphical inference with learned
inference, outperforming both when run in isolation.

Possible future directions include applying our idea to other generative models
(e.g. different graph structures or discrete data). The equations that describe our
hybrid model are defined on edges and nodes, therefore, by modifying the input
graph, i.e. by modifying the edges and nodes of the input graph, we can run
our algorithm on arbitrary graph structures. Furthermore, hybrid models like
the one presented in this chapter can help improve the interpretability of model
predictions due to their graphical model backbone.

In the next chapter, we will expand upon the ideas presented here to build a
hybrid model for graphical models with discrete variables. A conventional ap-
proach to perform inference over graphical models with discrete random vari-
ables is Belief Propagation; therefore, we will propose a hybrid model to enhance
Belief Propagation with Neural Networks.
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N E U R A L E N H A N C E D B E L I E F P R O PA G AT I O N

This Chapter is based on the content of:
Victor Garcia Satorras and Max Welling (2021). “Neural enhanced belief propagation on factor

graphs.” In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 685–693

4.1 introduction

In the previous Chapter we presented a Hybrid model for Hidden Markov Mod-
els that leveraged ideas from Kalman Filters and Graph Neural Networks. This
chapter takes those concepts further to create a more generic hybrid model for
graphical models with discrete random variables. Typically, Belief Propagation,
that we will introduce later in more detail, is used to reason over discrete graph-
ical models. In this chapter we enhance the capabilities of Belief Propagation
with graph neural networks, leading to the model name: Neural Enhanced Belief
Propagation.

Graphical models (Bishop, 2006; Murphy, 2012) are a structured representation of
locally dependent random variables, that combine concepts from probability and
graph theory. A standard way to reason over these random variables is to per-
form inference on the graphical model using message passing algorithms such
as Belief Propagation (BP) (Pearl, 2014; Murphy et al., 2013). Provided that the
true generative process of the data is given by a non-loopy graphical model, BP is
guaranteed to compute the optimal (posterior) marginal probability distributions.
However, in real world scenarios, we may only have access to a poor approxima-
tion of the true generative process, leading to sub-optimal estimates. In addition,
an important limitation of belief propagation is that on graphs with loops BP
computes an approximation to the desired posterior marginals or may fail to
converge at all.

In this chapter we present a hybrid inference model to tackle these limitations.
We cast our model as a message passing method on a factor graph that com-
bines messages from BP and from a Graph Neural Network (GNN). The GNN

31
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messages are learned from data and complement the BP messages. The GNN
receives as input the messages from BP at every inference iteration and deliv-
ers as output a refined version of them back to BP. As a result, given a labeled
dataset, we obtain a more accurate algorithm that outperforms either Belief Prop-
agation or Graph Neural Networks when run in isolation in cases where Belief
Propagation is not guaranteed to obtain the optimal marginals.

Belief Propagation has demonstrated empirical success in a variety of applica-
tions: Error correction decoding algorithms (McEliece et al., 1998), combinato-
rial optimization in particular graph coloring and satisfiability (Braunstein and
Zecchina, 2004), inference in Markov logic networks (Richardson and Domingos,
2006), the Kalman Filter is a special case of the BP algorithm (Yedidia et al., 2003;
Welch, Bishop, et al., 1995) etc. One of its most successful applications is Low
Density Parity Check codes (LDPC) (Gallager, 1962) an error correction decod-
ing algorithm that runs BP on a loopy bipartite graph. LDPC is currently part
of the Wi-Fi 802.11 standard, it is an optional part of 802.11n and 802.11ac, and
it has been adopted for 5G, the fifth generation wireless technology that began
wide deployment in 2019. Despite being a loopy algorithm, its bipartite graph is
typically very sparse which reduces the number of loops and increases the cycle
size. As a result, in practice LDPC has shown excellent results in error correction
decoding tasks and performs close to the Shannon limit in Gaussian channels.

However, a Gaussian channel is an approximation of the more complex noise
distributions we encounter in the real world. Many of these distributions have
no analytical form, but we can approximate them from data. In this chapter we
show the robustness of our algorithm over LDPC codes when we assume such a
non-analytical form. Our hybrid method is able to closely match the performance
of LDPC in Gaussian channels while outperforming it for deviations from this
assumption (i.e. a bursty noise channel (Gilbert, 1960; Kim et al., 2018)).

The three main contributions in this chapter are: i) We extend the standard graph
neural network equations to factor graphs (FG-GNN). ii) We present a new hy-
brid inference algorithm, Neural Enhanced Belief Propagation (NEBP) that re-
fines BP messages using the FG-GNN. iii) We apply our method to an error cor-
rection decoding problem for a non-Gaussian (bursty) noise channel and show
clear improvement on the Bit Error Rate over existing LDPC codes.

4.2 background

4.2.1 Factor Graphs

Factor graphs (Loeliger, 2004) already introduced in background Section 2.4.1,
are a convenient way of representing graphical models. To recall the definition,
a factor graphs is a bipartite graph that interconnects a set of factors fs(xs) with
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a set of variables x = {x1, . . . , xi}, each factor defining dependencies among its
subset of variables. A global probability distribution p(x) can be defined as the
product of all these factors p(x) = 1

Z

∏
s∈F fs(xs), where Z is the normalization

constant of the probability distribution. A visual representation of a Factor Graph
is depicted in the left image of Figure 7.

4.2.2 Belief Propagation

Belief Propagation (Bishop, 2006), also known as the sum-product algorithm, is
a message passing algorithm that performs inference on graphical models by
locally marginalizing over random variables. It exploits the structure of factor
graphs, allowing more efficient computation of the marginals. Belief Propagation
directly operates on factor graphs by sending messages (real valued functions)
on its edges. These messages exchange ‘beliefs‘ of the sender nodes about the re-
ceiver nodes, thereby transporting information about the variable’s probabilities.
We can distinguish two types of messages: those that go from variables to factors
and those that go from factors to variables.

Variable to factor: µxm→fs(xm) is the product of all incoming messages to variable
xm from all neighbor factors N(xm) except for factor fs.

µxm→fs(xm) =
∏

l∈N(xm)\fs

µfl→xm
(xm) (30)

Factor to variable: µfs→xi
(xi) is the product of the factor fs itself with all its in-

coming messages from all variable neighbor nodes except for xi marginalized
over all associated variables xs except xi.

µfs→xi
(xi) =

∑
xs\xi

fs(xs)
∏

m∈N(fs)\n

µxm→fs(xm) (31)

To run the Belief Propagation algorithm, messages are initialized with uniform
probabilities, and the two above mentioned operations are then recursively run
until convergence. One can subsequently obtain marginal estimates p(xi) by mul-
tiplying all incoming messages from the neighboring factors:

p(xi) ∝
∏

s∈N(xi)

µfs→xi
(xi) (32)
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From now on, we simplify notation by removing the argument of the messages
function, such that the variable to factor messages simplify to µfs→xi

and the
factor to variable messages simplify to µfs→xi

. When we want to refer to all set
of messages in the graph from a factors to variables instead of to single one, we
denote it µf→x and the set of messages in the graph from variables to factors
µx→f. In the left side of Figure 7 we can see the defined messages on a factor
graph where black squares represent factors and blue circles represent variables.

4.2.3 LDPC Codes

In this chapter we will apply our proposed method to error correction decoding.
Low Density Parity Check (LDPC) codes (Gallager, 1962; MacKay, 2003) are linear
codes used to correct errors in data transmitted through noisy communication
channels. The sender encodes the data with redundant bits while the receiver has
to decode the original message. In an LDPC code, a parity check sparse matrix
H ∈ B(n−k)×n is designed, such that given a code-word x ∈ Bn of n bits the
product of H and x is constrained to equal zero: Hx = 0. H can be interpreted
as an adjacency matrix that connects n variables (i.e. the transmitted bits) with
(n− k) factors, i.e. the parity checks that must sum to 0. The entries of H are 1
if there is an edge between a factor and a variable, where rows index factors and
columns index variables. For a linear code (n,k), n is the number of variables and
(n− k) the number of factors. The prior probability of the transmitted code-word
P(x) ∝ 1[Hx = 0 mod 2] can be factorized as:

P(x) ∝
∏
s

1
[ ∑
n∈N(s)

xn = 0 mod 2
]
=

∏
s

fs(xs) (33)

At the receiver we get a noisy version of the code-word, r. The noise is assumed
to be i.i.d, therefore we can express the probability distribution of the received
code-word as x as P(r|x) =

∏
n P
(
rn|xn

)
. Finally we can express the posterior

distribution of the transmitted code-word given the received signal as:

P(x|r) ∝ P(x)P(r|x) (34)

Equation 34 is a product of factors, where some factors in P(x) (eq. 33) are con-
nected to multiple variables expressing a constraint among them. Other factors
P(r|x) are connected to a single variable expressing a prior distribution for that
variable. A visual representation of this factor graph is shown in the left image
of Figure 7. Finally, in order to infer the transmitted code-word x given r, we can
just run (loopy) Belief Propagation described in section 4.2.2 on the Factor Graph
described above (equation 34). In other words, error correction with LDPC codes
can be interpreted as an instance of Belief Propagation applied to its associated
factor graph.
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4.3 related work

One of the closest works to this method is (Satorras et al., 2019) also mentioned in
the previous Chapter, which also combines graphical inference with graph neural
networks. However, the previous chapter model is only applied to the Kalman
Filter, a Hidden Gaussian Markov model for time sequences, and all factor graphs
are assumed to be pair-wise. In this new chapter, we run the GNN in arbitrary
Factor Graphs, and we hybridize Belief Propagation, which allows us to enhance
one of its main applications (LDPC codes). Other works from literature also learn
an inference model from data like Recurrent Inference Machines (Putzky and
Welling, 2017) and Iterative Amortized Inference (Marino et al., 2018). However,
in our case we are presenting a hybrid algorithm instead of a fully learned one.
Additionally in (Putzky and Welling, 2017) graphical models play no role.

Our work is also related to meta learning (Schmidhuber, 1987; Andrychowicz
et al., 2016) in the sense that it learns a more flexible algorithm on top of an al-
ready existing one. It also has some interesting connections to the ideas from the
consciousness prior (Bengio, 2017) since our model is an actual implementation
of a sparse factor graph that encodes prior knowledge about the task to solve.

Another interesting line of research concerns the convergence of graphical mod-
els with neural networks. In (Mirowski and LeCun, 2009), the conditional proba-
bility distributions of a graphical model are replaced with trainable factors. (John-
son et al., 2016) learns a graphical latent representation and runs Belief Propaga-
tion on it. Combining the strengths of convolutional neural networks and con-
ditional random fields has shown to be effective in image segmentation tasks
(Chen et al., 2014; Zheng et al., 2015). A model to run Neural Networks on factor
graphs was also introduced in (Zhang et al., 2019). However, in our case, we sim-
ply adjust the Graph Neural Network equations to the factor graph scenario as a
building block for our hybrid model (NEBP).

More closely to our work, (Yoon et al., 2018) trains a graph neural network to
estimate the marginals in Binary Markov Random Fields (Ising model) and the
performance is compared with Belief Propagation for loopy graphs. In our work
we are proposing a hybrid method that combines the benefits of both GNNs and
BP in a single model. In (Nachmani et al., 2016) some weights are learned in
the edges of the Tanner graph for High Density Parity Check codes, in our case
we use a GNN on the defined graphical model and we test our model on Low
Density Parity Check codes, one of the standards in communications for error
decoding. A subsequent work (Liu and Poulin, 2019) uses the model from (Nach-
mani et al., 2016) for quantum error correcting codes. Recently, (Kuck et al., 2020)
presented a strict generalization of Belief Propagation with Neural Networks, in
contrast, our model augments Belief Propagation with a Graph Neural Network
which learned messages are not constrained to the message passing scheme of
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Belief Propagation, refining BP messages without need to backpropagate through
them.

4.4 method

4.4.1 Graph Neural Network for Factor Graphs

Figure 7: Visual representation of a LDPC Factor Graph (left) and its equivalent represen-
tation in our Graph Neural Network (right). In the Factor Graph, factors are displayed as
black squares, variables as blue circles. In the Graph Neural Network, nodes associated to
factors are displayed as black circles. Nodes associated to variables are displayed as blue
circles.

We will propose a hybrid method to improve Belief Propagation (BP) by com-
bining it with Graph Neural Networks (GNNs). Both methods can be seen as
message passing on a graph. However, where BP sends messages that follow di-
rectly from the definition of the graphical model, messages sent by GNNs must
be learned from data. To achieve seamless integration of the two message passing
algorithms, we will first extend GNNs to factor graphs.

Graph Neural Networks (Bruna et al., 2013; Defferrard et al., 2016; Kipf and
Welling, 2016a) operate on graph-structured data by modelling interactions be-
tween pairs of nodes. A graph is defined as a tuple G = (V,E), with nodes v ∈ V

and edges e ∈ E. For a recap, a more precise definition of Graph Neural Network
and the detailed equations are provided in the Background Section 2.3.

In order to integrate the GNN messages with those of BP we have to run them
on a Factor Graph. In (Yoon et al., 2018) a GNN was defined on pair-wise factor
graphs (ie. a factor graph where each factor contains only two variables). In their
work each variable of the factor graph represents a node in the GNN, and each
factor connecting two variables represented an edge in the GNN. Properties of
the factors were associated with edge attributes aij. The mapping between GNNs
and Factor Graphs becomes less trivial when each factor may contain more than
two variables. We can then no longer consider each factor as an edge of the GNN.
In this work we propose special case of GNNs to run on factor graphs with an
arbitrary number of variables per factor.
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Similarly to Belief Propagation, we first consider a Factor Graph as a bipartite
graph Gf = (Vf,Ef) with two type of nodes Vf = X ∪ F, variable-nodes vx ∈ X

and factor-nodes vf ∈ F, and two types of edge interactions, depending on if they
go from factor-node to variable-node or vice-versa. With this graph definition, all
interactions are again pair-wise (between factor-nodes and variable-nodes in the
bipartite graph).

Figure 7. illustrates how a factor graph is transformed into its equivalent repre-
sentation for our GNN. Each variable in the factor graph, depicted by blue circles,
corresponds to a node in the GNN. However, Factors (shown as black squares in
the factor graph) are only represented in the GNN if they connect to multiple
variables; single edge factors are treated as attributes of their connected variable-
node, eliminating unnecessary nodes. Once we have defined our graph, we use
the GNN notation from the Background Section 2.3, and we adapt it specifically
for this factor graph structre. From now on we reference the new GNN for fac-
tor graphs as FG-GNN. Within this framework, we introduce the term FG-GCL
to describe the Graph Convolutional Layer for factor graphs, which define the
layers of the FG-GNN. The definition of a FG-GCL is detailed in Table 4.

Table 4: Graph Convolutional Layer of a FG-GNN.

FG-GCL

Edge message
mxm→fs = ϕx→f(hl

fs
, hl

xm
, axm→fs)

mfs→xi
= ϕf→x(hl

xi
, hl

fs
, afs→xi

)

Aggregation
mfs =

∑
xm∈N(fs)

mxm→fs

mxi
=

∑
fs∈N(xi)

mfs→xi

Node Update
hl+1
fs

= ϕvf
(hl

fs
, mfs , afs)

hl+1
xi

= ϕvx(h
l
xi

, mxi
, axi

)

In the GNN we did not have two different kind of variables in the graph and
hence we only used one edge function ϕe. In the FG-GNN however, we now
have two types of nodes, which lead to to two type of edges which we model
with different functions ϕx→f and ϕf→x, depending on whether the message
was sent by a variable or a factor node. In addition, we also have two type of
node embeddings hxi

and hfs for the two types of nodes vx and vf. Again we
sum over all incoming messages for each node, but now in the node update we
have two different functions, ϕvf

for the factor-nodes and ϕvx for the variable-
nodes. The optional edge attributes are now named axi→fs and afs→xi

. The node
attributes are named afs and axi

.
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Figure 8: Graphical illustration of our Neural Enhanced Belief Propagation algorithm.
Three modules are depicted in each iteration {BP, FG-GNN, Comb.}. Each module is asso-
ciated to each one of the three lines from Equation 35.

4.4.2 Notation Clarification

Differently to the standard notation described in Section 2.1, we refer to the em-
bedding variables of the whole graph by omitting the subindex instead of using
a capital letter. For example, if hxi

∈ Rnf is the embedding of a variable node
xi with "nf" being the number of features in the embedding, then we refer to
the set of all variable node embeddings as hx. We follow this convention for
the rest of embeddings in the neural network, such that hf, mx→f represent the
set of embeddings in the graph, with their respective node-wise and edge-wise
embeddings being hfs , mfs→xi

.

4.4.3 Neural Enhanced Belief Propagation

Now that we have defined the FG-GNN we can introduce our hybrid method
that runs co-jointly with Belief Propagation on a factor graph, we denote this
new method Neural Enhanced Belief Propagation (NEBP). At a high level, the
procedure is as follows: after every Belief Propagation iteration, we input the
BP messages into the FG-GNN. The FG-GNN then runs for two iterations and
updates the BP messages. This step is repeated recursively for N iterations. After
that, we can compute the marginals from the refined BP messages.

We first define the two functions BP(·) for Belief Propagation and FG-GNN(·).
BP(·) takes as input all the factor-to-node messages µt

f→x, then runs the two BP
updates eqns. 30 and 31 respectively and outputs the result of that computation
as µ̃t

f→x, µ̃t
x→f. We initialize µ0

f→x as uniform distributions.

The function FG-GNN(·) runs the equations displayed in Table 4. At every "t"
iteration we give it as input the quantities Ht = {ht

x ∪ ht
f}, ax→f, af→x and av.

Ht is initialized randomly at H0 by sampling from a normal distribution. Notice
this H is a different variable than H from Section 4.2.3. Moreover, the attributes
ax→f and af→x are provided to the function FG-GNN(·) as the messages µ̃t

x→f
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and µ̃t
f→x obtained from BP(·), as an exception, the subset of messages from

µ̃f→x that go from a singleton factor fj to its neighbor variable are treated as
attributes av. The output of the FG-GNN(·) are the updated latent node repre-
sentations Ht+1 and the latent messages representations m̃f→x, which are com-
puted as part of the FG-GNN algorithm in Table 4. These latent representations
m̃f→x = mf→x ∪ ht+1

x will be used to update the current message estimates
µ̃t
f→x, specifically ht+1

x will refine those messages µ̃t
fj→x that go from a single-

ton factor to its neighbor variable, and mf→x will refine the rest of messages
µ̃t
f→x\µ̃

t
fj→x. All other variables computed inside FG-GNN(·) are kept internal

to this function.

Finally, fs(·) and fu(·) take as input the embeddings mf→x and output a re-
finement for the current message estimates µ̃t

f→x. Particularly, fs(·) outputs a
positive scalar value that multiplies the current estimate, and fu(·) outputs a
positive vector which is summed to the estimate. Both functions encompass two
Multi Layer Perceptrons (MLP), one MLP takes as input the node embeddings
ht+1
x , and outputs the refinement for the singleton factor messages, the second

MLP takes as input the edge embeddings mt
f→x and outputs a refinement for the

rest of messages µ̃t
f→x\µ̃

t
fl→x. In summary, the hybrid algorithm thus looks as

follows:

µ̃t
f→x, µ̃t

x→f = BP
(
µt
f→x

)
Ht+1, m̃f→x = FG-GNN

(
Ht, µ̃t

f→x, µ̃t
x→f

)
µt+1
f→x = µ̃t

f→xfs(m̃f→x) + fu(m̃f→x)

(35)

After running the algorithm for N iterations. We obtain the estimate p̂(xi) by
using the same operation as in Belief Propagation (eq. 32), which amounts to tak-
ing a product of all incoming messages to node xi, i.e. p̂(xi) ∝

∏
s∈N(xi)

µfs→xi
.

From these marginal distributions we can compute any desired quantity on a
node.

4.4.4 Training and Loss

The loss is computed from the estimated marginals p̂(x) and ground truth val-
ues xgt, which we assume known during training. In the LDPC experiment the
ground truths xgt are the transmitted bits which are known by the receiver dur-
ing the training stage.

Loss(Θ) = L (xgt, p̂(x)) +R (36)

During training we back-propagate through the whole multi-layer estimation
model (with each layer an iteration of the hybrid model), updating the FG-GNN,
fs(·) and fu(·) weights Θ. The number of training iterations is chosen by cross-
validating. In our experiments we use the binary cross entropy loss for L. The reg-
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ularization term R is the mean of fu(·) outputs, i.e. R = 1
N

∑
t mean

(
fu(m̃t

f→x)
)
.

It encourages the model to behave closer to Belief Propagation. In case, fu(·)
output is set to 0, the hybrid algorithm would be equivalent to Belief Propa-
gation. This happens because fs(·) outputs a scalar value that on its own only
modifies the norm of µ̃t

f→x. Belief Propagation can operate on unnormalized
beliefs, although it is a common practice to normalize them at every BP(·) itera-
tion to avoid numerical instabilities. Therefore, only modifying the norm of the
messages on its own doesn’t change our hybrid algorithm because messages are
being normalized at every BP iteration.

4.5 experiments

We analyze the performance of Belief Propagation, FG-GNNs, and our Neural
Enhanced Belief Propagation (NEBP) in an error correction task where Belief
Propagation is also known as LDPC (Section 4.2.3). In both FG-GNN and NEBP,
the edge operations σx→f, σf→x defined in Section 4.4 consist of two layers Mul-
tilayer Perceptrons (MLP). The node update functions σvf

and σvx consist of two
layer MLPs followed by a Gated Recurrent Unit (Chung et al., 2014). Functions
fs(·) and fu(·) from the NEBP combination module also contain two layers MLPs.

4.5.1 Low Density Parity Check Codes

LDPC codes, explained in Section 4.2.3 are a particular case of Belief Propaga-
tion run on a bipartite graph for error correction decoding tasks. Bipartite graphs
contain cycles, hence Belief Propagation is no longer guaranteed to converge
nor to provide the optimal estimates. Despite this lack of guarantees, LDPC has
shown excellent results near the Shannon limit (MacKay and Neal, 1996) for Gaus-
sian channels. LDPC assumes a channel with an analytical solution, commonly a
Gaussian channel. In real world scenarios, the channel may differ from Gaussian
or it may not even have a clean analytical solution to run Belief Propagation on,
leading to sub-optimal estimates. An advantage of neural networks is that, in
such cases, they can learn a decoding algorithm from data.

In this experiment we consider the bursty noisy channel from (Kim et al., 2018),
where a signal xi is transmitted through a standard Gaussian channel zi ∼

N(0,σ2c), however this time, a larger noise signal wi ∼ N(0,σ2b) is added with
a small probability ρ. More formally:

ri = xi + zi + piwi (37)

Where ri is the received signal, and pi follows a Bernoulli distribution such that
pi = 1 with probability ρ, and pi = 0 with probability 1− ρ. In our experiments,
we set ρ = 0.05 as done in (Kim et al., 2018). This bursty channel describes how
unexpected signals may cause interference in the middle of a transmitted frame.
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Figure 9: Bit Error Rate (BER) with respect to the Signal to Noise Ratio (SNR) for different
bursty noise values σb ∈ {0, 1, 2, 3, 4, 5}.

For example, radars may cause bursty interference in wireless communications.
In LDPC, the SNR is assumed to be known and fixed for a given frame, yet, in
practice it needs to be estimated with a known preamble (the pilot sequence)
transmitted before the frame. If bursty noise occurs in the middle of the trans-
mission, the estimated SNR is blind to this new noise level.

dataset : We use the parity check matrix H "96.3.963" from (MacKay and
Codes, 2009) for all experiments, with n = 96 variables and k = 48 factors, i.e. a
transmitted code-word x ∈ Bn contains 96 bits. The training dataset consists of
pairs of received and transmitted code-words {(rd, xd)}1⩽d⩽L. The transmitted
code-words x are used as ground truth for training the decoding algorithm. The
received code-words r are obtained by transmitting x through the bursty channel
from Equation 37. We generate samples for SNRdb = {0, 1, 2, 3, 4}. Regarding
the bursty noise σb, we randomly sample its standard deviation from a uniform
distribution σb ∈ [0, 5]. We generate a validation partition of 750 code-words
(150 code-words per SNRdb value). For the training partition we keep generating
samples until convergence, i.e. until we do not see further improvement in the
validation accuracy.

training procedure : We provide as input to the model the received code-
word rd and the SNR for that code-word. These values are provided as node
attributes av described in Section 4.4. We run the algorithms for 20 iterations and
the loss is computed as the cross entropy between the estimated x̂ and the ground
truth xd. We use an Adam optimizer (Kingma and Ba, 2014) with a learning rate
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2e−4 and batch size of 1. The number of hidden features is 32 and all activation
functions are ’Selus’ (Klambauer et al., 2017). As a evaluation metric we compute
the Bit Error Rate (BER), which is the number of error bits divided by the total
amount of transmitted bits. The number of test code-words we used to evaluate
each point from our plots (Figure 9) is at least 200

ˆBER·n , where n is the number of
bits per code-word and ˆBER is the estimated Bit Error Rate for that point.

baselines : Beside the already mentioned methods (FG-GNN and standard
LDPC error correction decoding), we also run two extra baselines. The first one
we call Bits baseline, which consists of independently estimating each bit that max-
imizes p(ri|xi). The other baseline, called LDPC-bursty, is a variation of LDPC,
where instead of considering a SNR with a noise level σ2c = var[z], we con-
sider the noise distribution from Equation 37 such that now the noise variance
is σ2 = var[z+ pw] = σ2c + (ρ(1− ρ) + ρ2)Eσ2

b
[σ2b]. This is a fairer comparison

to our learned methods, because even if we are blind to the σb value, we know
there may be a bursty noise with probability ρ and σb ∼ U(0, 5).

Figure 10: Bit Error Rate (BER) with respect to σb value for a fixed SNR=3.

results : In Figure 9 we show six different plots for each of the σb values {0,
1, 2, 3, 4, 5}. In each plot we sweep the SNR from 0 to 4. Notice that for σb = 0

the bursty noise is non-existent and the channel is equivalent to an Additive
White Gaussian Noise channel (AWGN). LDPC has analytically been designed
for this channel obtaining its best performance here. The aim of our algorithm is
to outperform LDPC for σb > 0 while still matching its performance for σb = 0.
As shown in the plots, as σb increases, the performance of NEBP and FG-GNN
improves compared to the other methods, with NEBP always achieving the best
performance, and getting close to the LDPC performance for the AWGN channel
(σb = 0). In summary, the hybrid method is more robust than LDPC, obtaining
competitive results to LDPC for AWGN channels but still outperforming it when
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bursty interferences are present. The FG-GNN instead, obtains relatively poor
performance compared to LDPC for small σb, demonstrating that belief propaga-
tion is still a very powerful tool compared to pure learned inference for this task.
Our NEBP is able to combine the benefits from both LDPC and the FG-GNN
to achieve the best performance, exploiting the adaptability of FG-GNN and the
prior knowledge of Belief Propagation. Finally, LDPC-bursty shows a more ro-
bust performance as we increase σb but it is significantly outperformed by NEBP
in bursty channels, and it also performs slightly worse than LDPC for the AWGN
channel (σb = 0).

In order to better visualize the decrease in performance as the burst variance
increases, we sweep over different σb values for a fixed SNR=3. The result is
shown in Figure 10. The larger σb, the larger the BER. However, the performance
decreases much less for our NEBP method than for LDPC and LDPC-bursty. In
other words, NEBP is more robust as we move away from the AWGN assumption.
We want to emphasize that in real world scenarios, the channel may always de-
viate from gaussian. Even if assuming an AWGN channel, its parameters (SNR)
must be estimated in real scenarios. This potential deviations make hybrid meth-
ods a very promising approach.

4.6 conclusions

In this chapter, we presented a hybrid inference method that enhances Belief
Propagation by co-jointly running a Graph Neural Network that we designed for
factor graphs. In cases where the data generating process is not fully known (e.g.
the parameters of the graphical model need to be estimated from data), belief
propagation doesn’t perform optimally. Our hybrid model in contrast is able
to combine the prior knowledge encoded in the graphical model (albeit with
the wrong parameters) and combine this with a (factor) graph neural network
with its parameters learned from labeled data on a representative distribution
of channels. Note that we can think of this as meta-learning because the FG-
GNN is not trained on one specific channel but on a distribution of channels
and therefore must perform well on any channel sampled from this distribution
without knowing its specific parameters. We tested our ideas on a state-of-the-art
LDPC implementation with realistic bursty noise distributions. Our experiments
show that the neural enhancement of LDPC improves performance both relative
to LDPC and relative to FG-GNN as the variance in the bursts gets larger.
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E ( N ) E Q U I VA R I A N T G R A P H N E U R A L N E T W O R K S

This Chapter is based on the content of:
Victor Garcia Satorras et al. (2021b). “E (n) equivariant graph neural networks.” In: International

conference on machine learning. PMLR, pp. 9323–9332

5.1 introduction

In the following chapters we focus on developing machine learning models that
leverage symmetries inherent in the data. Specifically, we focus on the Euclidean
symmetry group which includes translations, rotations and reflections. In this
chapter we design a variant of graph neural networks that is equivariant to
Euclidean transformations which we name E(n) Equivariant Graph Neural Net-
works (EGNNs).

Although deep learning has largely replaced hand-crafted features, many ad-
vances are critically dependent on inductive biases in deep neural networks. An
effective method to restrict neural networks to relevant functions is to exploit the
symmetry of problems by enforcing equivariance with respect to transformations
from a certain symmetry group. Notable examples are translation equivariance in
Convolutional Neural Networks and permutation equivariance in Graph Neural
Networks (Bruna et al., 2013; Defferrard et al., 2016; Kipf and Welling, 2016a).

Many problems exhibit 3D translation and rotation symmetries. Some examples
are point clouds (Uy et al., 2019), 3D molecular structures (Ramakrishnan et al.,
2014) or N-body particle simulations (Kipf et al., 2018). The group corresponding
to these symmetries is named the Euclidean group: SE(3) or when reflections
are included E(3). It is often desired that predictions on these tasks are either
equivariant or invariant with respect to E(3) transformations.

Recently, various forms and methods to achieve E(3) or SE(3) equivariance have
been proposed (Thomas et al., 2018b; Fuchs et al., 2020; Finzi et al., 2020b; Köh-
ler et al., 2020a). Many of these works achieve innovations in studying types of

47



48 e(n) equivariant graph neural networks

Figure 11: Example of rotation equivariance on a graph with an equivariant graph neural
network ϕ.

higher-order representations for intermediate network layers. However, the trans-
formations for these higher-order representations require coefficients or approx-
imations that can be expensive to compute. Additionally, in practice for many
types of data the inputs and outputs are restricted to scalar values (for instance
temperature or energy, referred to as type-0 in literature) and 3d vectors (for
instance velocity or momentum, referred to as type-1 in literature).

In this work we present a new architecture that is translation, rotation and re-
flection equivariant (E(n)), and permutation equivariant with respect to an input
set of points. Our model is simpler than previous methods in that it does not
require the spherical harmonics as in (Thomas et al., 2018b; Fuchs et al., 2020)
while it can still achieve competitive or better results. In addition, equivariance
in our model is not limited to the 3-dimensional space and can be scaled to larger
dimensional spaces without a significant increase in computation.

We evaluate our method in modelling dynamical systems, representation learn-
ing in graph autoencoders and predicting molecular properties in the QM9 dataset.
Our method reports the best or very competitive performance in all three experi-
ments.

5.2 background

In this section we introduce the relevant materials on equivariance and graph
neural networks which will later complement the definition of our method.
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5.2.1 Equivariance

The concept of equivariance is introduced in more detail in the Background Sec-
tion 2.5. For a quick recapitulation, consider a set ofM points in an n-dimensional
space X = {x1, . . . , xM} ∈ RM×n. Let Tg : X −→ X be a set of transformations on
X for the abstract group g ∈ G. We say a function ϕ : X −→ Y is equivariant to g
if there exists an equivalent transformation on its output space Sg : Y −→ Y such
that:

ϕ(Tg(X)) = Sg(ϕ(X)) (38)

In this particular chapter we are interested in equivariance to Euclidean transfor-
mations, such as translations, rotations, and reflections. As well as to permuta-
tions, which are already inherent in graph neural networks. Our method intro-
duced in this chapter will satisfy these four mentioned equivariant constraints.

5.2.2 Graph Neural Networks

Graph Neural Networks are permutation equivariant networks that operate on
graph structured data (Bruna et al., 2013; Defferrard et al., 2016; Kipf and Welling,
2016a). They have been introduced in more detail in the Background Section 2.3.
Given a graph G = (V,E) with nodes vi ∈ V and edges eij ∈ E we can recall the
equations of a graph convolutional layer from Section 2.3 as:

mij = ϕe(hl
i, hl

j , aij) (39)

mi =
∑

j∈N(i)

mij (40)

hl+1
i = ϕh(hl

i, mi) (41)

Where hl
i ∈ Rnf is the nf-dimensional embedding of node vi at layer l. aij are the

edge attributes. N(i) represents the set of neighbors of node vi. Finally, ϕe and
ϕh are the edge and node operations respectively which are commonly approx-
imated by Multilayer Perceptrons (MLPs). The E(n) Equivariant Graph Neural
Network introduced in this chapter is build on top this Graph Neural Network
equations.

5.3 equivariant graph neural networks

In this section we present Equivariant Graph Neural Networks (EGNNs). Follow-
ing the notation from background Section 5.2.2, we consider a graph G = (V,E)
with nodes vi ∈ V and edges eij ∈ E. In addition to the feature node embeddings
hi ∈ Rnf we now also consider a n-dimensional coordinate xi ∈ Rn associated
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with each of the graph nodes. Our model will preserve equivariance to rotations
and translations on these set of coordinates xi and it will also preserve equivari-
ance to permutations on the set of nodes V in the same fashion as GNNs.

Our Equivariant Graph Convolutional Layer (EGCL) takes as input the set of
node embeddings Hl = {hl

0, . . . , hl
M−1}, coordinates Xl = {xl0, . . . , xlM−1} and

edge information E = (eij) and outputs a transformation on Hl+1 and Xl+1.
Concisely: Hl+1, Xl+1 = EGCL[Hl, Xl,E]. The equations that define this layer are
the following:

mij = ϕe

(
hl
i, hl

j ,
∥∥∥xli − xlj

∥∥∥2 , aij

)
(42)

xl+1
i = xli +C

∑
j ̸=i

(
xli − xlj

)
ϕx

(
mij

)
(43)

mi =
∑
j ̸=i

mij (44)

hl+1
i = ϕh

(
hl
i, mi

)
(45)

Notice the main differences between the above proposed method and the original
Graph Neural Network from Equation 39 are found in equations 42 and 43. In
equation 42 we now input the relative squared distance between two coordinates
∥xli − xlj∥

2 into the edge operation ϕe. The embeddings hl
i, hl

j , and the edge
attributes aij are also provided as input to the edge operation as in the GNN
case. In our case the edge attributes will incorporate the edge values aij := eij,
but they can also include additional edge information.

In Equation 43 we update the position of each particle xi as a vector field in a
radial direction. In other words, the position of each particle xi is updated by the
weighted sum of all relative differences (xi − xj)∀j. The weights of this sum are
provided as the output of the function ϕx : Rnf → R1 that takes as input the edge
embedding mij from the previous edge operation and outputs a scalar value. C
is chosen to be 1/(M − 1), which divides the sum by its number of elements.
This equation is the main difference of our model compared to standard GNNs
and it is the reason why equivariances 1, 2 are preserved (proof in Appendix
B.1). Despite its simplicity, this equivariant operation is very flexible since the
embedding mij can carry information from the whole graph and not only from
the given edge eij.

Finally, equations 44 and 45 follow the same updates than standard GNNs. Equa-
tion 44 is the aggregation step, in this work we choose to aggregate messages
from all other nodes j ̸= i, but we could limit the message exchange to a given
neighborhood j ∈ N(i) if desired in both equations 44 and 43. Equation 45 per-
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forms the node operation ϕh which takes as input the aggregated messages mi,
the node emedding hl

i and outputs the updated node embedding hl+1
i .

5.3.1 Analysis on E(n) Equivariance

In this section we analyze the equivariance properties of our model for E(3)
symmetries (i.e. properties 1 and 2 stated in section 2.5). In other words, our
model should be translation equivariant on X for any translation vector g ∈ Rn

and it should also be rotation and reflection equivariant on X for any orthogonal
matrix Q ∈ Rn×n. Let QX be shorthand for (Qx1, . . . , QxM), more formally our
model satisfies:

QXl+1 + g, Hl+1 = EGCL(QXl + g, Hl)

We provide a formal proof of this in Appendix B.1. Intuitively, let’s consider a
hl
i ∈ Hl feature which is already E(n) invariant, then we can see that the resul-

tant edge embedding mij from Equation 42 will also be E(n) invariant, because
in addition to hl

i and hl
j , it only depends on squared distances ∥xli − xlj∥

2, which
are E(n) invariant. Next, Equation 43 computes xl+1

i by a weighted sum of dif-
ferences (xi − xj) which is added to xi, this transforms as a type-1 vector and
preserves equivariance (see Appendix B.1). Finally the last two equations 44 and
45 that generate the next layer node-embeddings hl+1

i remain E(n) invariant
since they only depend on hl

i and mij which, as we saw above, are E(n) invari-
ant. Therefore the output hl+1

i is E(n) invariant and xl+1
i is E(n) equivariant to

xli. Inductively, a composition of EGCLs will also be equivariant.

5.3.2 Extending EGNNs for Vector Type Representations

In this section we propose a slight modification to the presented method such
that we explicitly keep track of the particle’s momentum. In some scenarios this
can be useful not only to obtain an estimate of the particle’s velocity at every
layer but also to provide an initial velocity value in those cases where it is not 0.
We can include momentum Vl = {vl

0, . . . , vl
M−1} to our proposed method by just

replacing Equation 43 of our model with the following equation:

vl+1
i = ϕv

(
hl
i

)
vinit
i +C

∑
j ̸=i

(
xli − xlj

)
ϕx

(
mij

)
xl+1
i = xli + vl+1

i

(46)

Note that this extends the EGCL layer as Hl+1, Xl+1, Vl+1 = EGCL[Hl, Xl, Vinit,E].
The only difference is that now we broke down the coordinate update (Eq. 43)
in two steps, first we compute the velocity vl+1

i and then we use this velocity
to update the position xli. The initial velocity vinit

i is scaled by a new function
ϕv : RN → R1 that maps the node embedding hl

i to a scalar value. Notice that
if the initial velocity is set to zero (vinit

i = 0), both equations 43 and 46 become
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exactly the same. We proof the equivariance of this variant of the model in Ap-
pendix B.2.1. This variant is used in experiment 5.5.1 where we provide the initial
velocity of the system, and predict a relative position change.

5.3.3 Inferring the Edges

Given a point cloud or a set of nodes, we may not always be provided with an
adjacency matrix. In those cases we can assume a fully connected graph where all
nodes exchange messages with each other j ̸= i as done in Equation 44. This fully
connected approach may not scale well to large point clouds where we may want
to locally limit the exchange of messages mi =

∑
j∈N(i) mij to a neighborhood

N(i) to avoid an overflow of information.

Similarly to (Serviansky et al., 2020; Kipf et al., 2018), we present a simple solution
to infer the relations/edges of the graph in our model, even when they are not
explicitly provided. Given a set of neighbors N(i) for each node i, we can re-write
the aggregation operation from our model (Eq. 44) in the following way:

mi =
∑

j∈N(i)

mij =
∑
j̸=i

eijmij (47)

Where eij takes value 1 if there is an edge between nodes (i, j) and 0 otherwise.
Now we can choose to approximate the relations eij with the following function
eij ≈ ϕinf(mij), where ϕinf : Rnf → [0, 1]1 resembles a linear layer followed by
a sigmoid function that takes as input the current edge embedding and outputs
a soft estimation of its edge value. This modification does not change the E(n)
properties of the model since we are only operating on the messages mij which
are already E(n) invariant.

5.4 related work

Group equivariant neural networks have demonstrated their effectiveness in a
wide variety of tasks (Cohen and Welling, 2016; Cohen and Welling, 2017; Weiler
and Cesa, 2019; Rezende et al., 2019; Romero and Cordonnier, 2021). Recently,
various forms and methods to achieve E(3) or SE(3) equivariance have been pro-
posed. Thomas et al. (2018b) and Fuchs et al. (2020) utilize the spherical har-
monics to compute a basis for the transformations, which allows transformations
between higher-order representations. A downside to this method is that the
spherical harmonics need to be recomputed which can be expensive. Currently,
an extension of this method to arbitrary dimensions is unknown. Finzi et al.
(2020b) parametrize transformations by mapping kernels on the Lie Algebra. For
this method the neural network outputs are in certain situations stochastic, which
may be undesirable. Horie et al. (2020) proposes a set of isometric invariant and
equivairant transformations for Graph Neural Networks. Köhler et al. (2019) and
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Table 5: Comparison of different works from the literature written under the message
passing notation. We created this table with the aim of providing a clear and simple
way to compare these different methods. The names from left to right are: Graph Neural
Networks (Gilmer et al., 2017); Radial Field from Equivariant Flows (Köhler et al., 2019);
Tensor Field Networks (Thomas et al., 2018b); Schnet (Schütt et al., 2017b); and our Equiv-
ariant Graph Neural Network. The rows in the table below the model name represent the
edge operation, aggregation and node update respectively. The difference between two
points is written as rij = (xi − xj). The layer index l+ 1 is written as l‘.

GNN Radial Field TFN Schnet EGNN

mij = ϕe(hl
i , hl

j) mij = ϕrf(|rlij|)rlij mij =
∑
k

Wℓkrljihlk
i mij = ϕc(|rlij|)ϕs(hl

j)
mij = ϕe(hl

i , hl
j , |rlij|

2)

m̂ij = rlijϕx(mij)

mi =
∑

j∈N(i) mij mi =
∑

j ̸=i mij mi =
∑

j ̸=i mij mi =
∑

j ̸=i mij
mi =

∑
j ̸=i mij

m̂i = C
∑

j ̸=i m̂ij

hl‘
i = ϕh(hl

i , mi) xl‘
i = xli + mi hl‘,ℓ

i = wℓhlℓ
i + mi hl‘

i = ϕh(hl
i , mi)

hl‘
i = ϕh

(
hl
i , mi

)
xl‘
i = xli + m̂i

Non-equivariant E(n)-Equivariant SE(3)-Equivariant E(n)-Invariant E(n)-Equivariant

Köhler et al. (2020a) propose an E(n) equivariant network to model 3D point
clouds, but the method is only defined for positional data on the nodes without
any feature dimensions.

Another related line of research concerns message passing algorithms on molec-
ular data. (Gilmer et al., 2017) presented a message passing setting (or Graph
Neural Network) for quantum chemistry, this method is permutation equivari-
ant but not translation or rotation equivariant. (Kondor et al., 2018) extends the
equivariance of GNNs such that each neuron transforms in a specific way un-
der permutations, but this extension only affects its permutation group and not
translations or rotations in a geometric space. Further works (Schütt et al., 2017b;
Schütt et al., 2017a) build E(n) invariant message passing networks by inputting
the relative distances between points. Klicpera et al. (2020d) and Klicpera et al.
(2020a) in addition to relative distances it includes a modified message passing
scheme analogous to Belief Propagation that considers angles and directional
information equivariant to rotations. It also uses Bessel functions and spherical
harmonics to construct and orthogonal basis. Anderson et al. (2019) and Miller
et al. (2020) include SO(3) equivariance in its intermediate layers for modelling
the behavior and properties of molecular data. Our method is also framed as a
message passing framework but in contrast to these methods it achieves E(n)
equivariance.
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Relationship with existing methods

In Table 5, the EGNN equations are detailed together with some of its closest
methods from the literature under the message passing notation from (Gilmer
et al., 2017). This table aims to provide a simple way to compare these different
algorithms. It is structured in three main rows that describe i) the edge ii) aggre-
gation and iii) node update operations. The GNN algorithm is the same as the
previously introduced in Section 5.2.2. Our EGNN algorithm is also equivalent to
the description in Section 5.3 but notation has been modified to match the (edge,
aggregation, node) format. In all equations rlij = (xli − xlj). Notice that except the
EGNN, all algorithms have the same aggregation operation and the main differ-
ences arise from the edge operation. The algorithm that we call "Radial Field"
is the E(n) equivariant update from (Köhler et al., 2019). This method is E(n)
equivariant, however its main limitation is that it only operates on xi and it does
not propagate node features hi among nodes. In the method ϕrf is modelled as
an MLP. Tensor Field Networks (TFN) (Thomas et al., 2018b) instead propagate
the node embeddings h but it uses spherical harmonics to compute its learnable
weight kernel Wℓk : R3 → R(2ℓ+1)×(2k+1) which preserves SE(3) equivariance
but is expensive to compute an limited to the 3 dimensional space. The SE(3)
Transformer (Fuchs et al., 2020) (not included in this table), can be interpreted
as an extension of TFN with attention. Schnet (Schütt et al., 2017b) can be inter-
preted as an E(n) invariant Graph Neural Network where ϕc receives as input
relative distances and outputs a continuous filter convolution that multiplies the
neighbor embeddings hi. Our EGNN differs from these other methods in terms
that it performs two different updates in each of the table rows, one related to
the embeddings hi and another related to the coordinates xi, these two variables
exchange information in the edge operation. In summary the EGNN can retain
the flexibility of GNNs while remaining E(n) equivariant as the Radial Field al-
gorithm and without the need to compute expensive operations (i.e. spherical
harmonics).

5.5 experiments

5.5.1 Modelling a Dynamical System | N-body System

In a dynamical system a function defines the time dependence of a point or set
of points in a geometrical space. Modelling these complex dynamics is crucial
in a variety of applications such as control systems (Chua et al., 2018), model
based dynamics in reinforcement learning (Nagabandi et al., 2018), and physical
systems simulations (Grzeszczuk et al., 1998; Watters et al., 2017). In this experi-
ment we forecast the positions for a set of particles which are modelled by simple
interaction rules, yet can exhibit complex dynamics.
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Similarly to (Fuchs et al., 2020), we extended the Charged Particles N-body exper-
iment from (Kipf et al., 2018) to a 3 dimensional space. The system consists of 5

particles that carry a positive or negative charge and have a position and a veloc-
ity associated in 3-dimensional space. The system is controlled by physic rules:
particles are attracted or repelled depending on their charges. This is an equivari-
ant task since rotations and translations on the input set of particles result in the
same transformations throughout the entire trajectory.

dataset : We sampled 3.000 trajectories for training, 2.000 for validation and
2.000 for testing. Each trajectory has a duration of 1.000 timesteps. For each trajec-
tory we are provided with the initial particle positions P0 = {p0

1, . . .p0
5} ∈ R5×3,

their initial velocities V0 = {v0
1, . . . v0

5} ∈ R5×3 and their respective charges
c = {c1, . . . c5} ∈ {−1, 1}5. The task is to estimate the positions of the five par-
ticles after 1.000 timesteps. We optimize the averaged Mean Squared Error of the
estimated position with the ground truth one.

implementation details : In this experiment we used the extension of our
model that includes velocity from Section 5.3.2. We input the positions p0

i as the
first layer coordinates x0i of our model and the velocity v0

i as the initial velocity
in Equation 46, the norms ∥v0

i ∥ are also provided as features to h0
i through a

linear mapping. The charges are input as edge attributes aij := cicj. The model
outputs the last layer coordinates XL as the estimated positions. We compare our
method to its non equivariant Graph Neural Network (GNN) cousin, and the
equivariant methods: Radial Field (Köhler et al., 2019), Tensor Field Networks
and the SE(3) Transformer. All algorithms are composed of 4 layers and have
been trained under the same conditions, batch size 100, 10.000 epochs, Adam
optimizer, the learning rate was tuned independently for each model. We used
64 features for the hidden layers in the Radial Field, the GNN and our EGNN.
As non-linearity we used the Swish activation function (Ramachandran et al.,
2017). For TFN and the SE(3) Transformer we swept over different number of
vector types and features and chose those that provided the best performance.
Further implementation details are provided in Appendix B.3.1. A Linear model
that simply considers the motion equation p(t)

i = p0
i + v0

i t is also included as a
baseline. We also provide the average forward pass time in seconds for each of
the models for a batch of 100 samples in a GTX 1080 Ti GPU.

results : As shown in Table 6 our model significantly outperforms the other
equivariant and non-equivariant alternatives while still being efficient in terms
of running time. It reduces the error with respect to the second best performing
method by a 32%. In addition it doesn’t require the computation of spherical
harmonics which makes it more time efficient than Tensor Field Networks and
the SE(3) Transformer.
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Table 6: Mean Squared Error for the future position estimation in the N-body system
experiment, and forward time in seconds for a batch size of 100 samples running in a
GTX 1080Ti GPU.

Method MSE Forward time (s)

Linear 0.0819 .0001
SE(3) Transformer 0.0244 .1346
Tensor Field Network 0.0155 .0343
Graph Neural Network 0.0107 .0032
Radial Field 0.0104 .0039
EGNN 0.0071 .0062

analysis for different number of training samples : We want to
analyze the performance of our EGNN in the small and large data regime. In
the following, we report on a similar experiment as above, but instead of using
3.000 training samples we generated a new training partition of 50.000 samples
and we sweep over different amounts of data from 100 to 50.000 samples. We
compare the performances of our EGNN vs its non-equivariant GNN counterpart
and the Radial Field algorithm. Results are presented in Figure 12. Our method
outperforms both Radial Field and GNNs in the small and large data regimes.
This shows the EGNN is more data efficient than GNNs since it doesn’t require
to generalize over rotations and translations of the data while it ensembles the
flexibility of GNNs in the larger data regime. Due to its high model bias, the
Radial Field algorithm performs well when data is scarce but it is unable to learn
the subtleties of the dataset as we increase the training size. In summary, our
EGNN benefits from both the high bias of E(n) methods and the flexibility of
GNNs.

5.5.2 Graph Autoencoder

A Graph Autoencoder can learn unsupervised representations of graphs in a
continuous latent space (Kipf and Welling, 2016b; Simonovsky and Komodakis,
2018). In this experiment section we use our EGNN to build an Equivariant Graph
Autoencoder. We will explain how Graph Autoencoders can benefit from equiv-
ariance and we will show how our method outperforms standard GNN autoen-
coders in the provided datasets. This problem is particularly interesting since
the embedding space can be scaled to larger dimensions and is not limited to a
3-dimensional Euclidean space.

Similarly to the work of (Kipf and Welling, 2016b) further extended by Section
3.3 in (Liu et al., 2019), our graph auto-encoder Z = q(G) embeds a graph G
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Figure 12: Mean Squared Error in the N-body experiment for the Radial Field, GNN and
EGNN methods when sweeping over different amounts of training data.

into a set of latent nodes Z = {z1, . . . zM} ∈ RM×n, where M is the number of
nodes and n the embedding size per node. Notice this may reduce the memory
complexity to store the graphs from O(M2) to O(Mn) where n may depend on
M for a certain approximation error tolerance. This differs from the variational
autoencoder proposed in (Simonovsky and Komodakis, 2018) which embeds the
graph in a single vector z ∈ RK, which causes the reconstruction to be computa-
tionally very expensive since the nodes of the decoded graph have to be matched
again to the ground truth. In addition to the introduced graph generation and
representation learning methods, it is worth mentioning that in the context of
graph compression other methods (Candès and Recht, 2009) can be used.

More specifically, we will compare our Equivariant Graph Auto-Encoder in the
task presented in (Liu et al., 2019) where a graph G = (V,E) with node features
H ∈ RM×nf and adjacency matrix A ∈ {0, 1}M×M is embedded into a latent space
Z = q(H, A) ∈ RM×n. Following (Kipf and Welling, 2016b; Liu et al., 2019), we
are only interested in reconstructing the adjacency matrix A since the datasets we
will work with do not contain node features. The decoder g(·) proposed by (Liu
et al., 2019) takes as input the embedding space Z and outputs the reconstructed
adjacency matrix Â = g(Z), this decoder function is defined as follows:

Âij = ge(zi, zj) =
1

1+ exp(w
∥∥zi − zj

∥∥2 + b)
(48)

Where w and b are its only learnable parameters and ge(·) is the decoder edge
function applied to every pair of node embeddings. It reflects that edge probabil-
ities will depend on the relative distances among node embeddings. The training
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loss is defined as the binary cross entropy between the estimated and the ground
truth edges L =

∑
ij BCE(Âij,Aij).

the symmetry problem : The above stated autoencoder may seem straight-
forward to implement at first sight but in some cases there is a strong limitation
regarding the symmetry of the graph. Graph Neural Networks are convolutions
on the edges and nodes of a graph, i.e. the same function is applied to all edges
and to all nodes. In some graphs (e.g. those defined only by its adjacency matrix)
we may not have input features in the nodes, and for that reason the difference
among nodes relies only on their edges or neighborhood topology. Therefore, if
the neighborhood of two nodes is exactly the same, their encoded embeddings
will be the same too. A clear example of this is a cycle graph (an example of
a 4 nodes cycle graph is provided in Figure 13). When running a Graph Neu-
ral Network encoder on a node featureless cycle graph, we will obtain the exact
same embedding for each of the nodes, which makes it impossible to reconstruct
the edges of the original graph from the node embeddings. The cycle graph is a
severe example where all nodes have the exact same neighborhood topology but
these symmetries can be present in different ways for other graphs with different
edge distributions or even when including node features if these are not unique.

Figure 13: Visual representation of a Graph Autoencoder for a 4 nodes cycle graph. The
bottom row illustrates that adding noise at the input graph breaks the symmetry of the
embedding allowing the reconstruction of the adjacency matrix.

An ad-hoc method to break the symmetry of the graph is introduced by (Liu
et al., 2019). This method introduces noise sampled from a Gaussian distribution
into the input node features of the graph h0

i ∼ N(0,σI). This noise allows different
representations for all node embeddings and as a result the graph can be decoded
again, but it comes with a drawback, the network has to generalize over the new
introduced noise distribution. Our Equivariant Graph Autoencoder will remain
translation and rotation equivariant to this sampled noise which we find makes
the generalization much easier. Another way of looking at this is considering the
sampled noise makes the node representations go from structural to positional
(Srinivasan and Ribeiro, 2019) where E(n) equivariance may be beneficial. In our
case we will simply input this noise as the input coordinates X0 ∼ N(0,σI) ∈
RM×n of our EGNN which will output an equivariant transformation of them
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Table 7: We report the Binary Cross Entropy, % Error and F1 scores for the test partition on
the Graph Autoencoding experiment in the Community Small and Erdos&Renyi datasets.

Community Small Erdos&Renyi
Encoder BCE % Error F1 BCE % Error F1

Baseline - 31.79 .0000 - 25.13 0.000
GNN 6.75 1.29 0.980 14.15 4.62 0.907
Noise-GNN 3.32 0.44 0.993 4.56 1.25 0.975
Radial Field 9.22 1.19 0.981 6.78 1.63 0.968
EGNN 2.14 0.06 0.999 1.65 0.11 0.998

Figure 14: In this Figure we report the F1 score when overfitting a training partition of
100 samples in the Erdos&Renyi dataset for different values of sparsity pe. The GNN is
not able to successfully auto-encode sparse graphs (small pe values) for the Erdos&Renyi
dataset even when evaluating on the training set an overfitting task. This is due to the
symmetry problem already discussed.

XL, this output will be used as the embedding of the graph (i.e. Z = XL) which
is the input to the decoder from Equation 48.

dataset : We generated community-small graphs (You et al., 2018; Liu et al.,
2019) by running the original code from (You et al., 2018). These graphs contain
12 ⩽M ⩽ 20 nodes. We also generated a second dataset using the Erdos&Renyi
generative model (Bollobás, 1998) sampling random graphs with an initial num-
ber of 7 ⩽ M ⩽ 16 nodes and edge probability pe = 0.25. We sampled 5.000
graphs for training, 500 for validation and 500 for test for both datasets. Each
graph is defined as and adjacency matrix A ∈ {0, 1}M×M.

implementation details : Our Equivariant Graph Auto-Encoder is com-
posed of an EGNN encoder followed by the decoder from Equation 48. The
graph edges Aij are input as edge attributes aij in Equation 42. The noise used
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to break the symmetry is input as the coordinates σ X0 ∼ N(0,σI) ∈ RM×n in
the first layer and H0 is initialized as ones since we are working with featureless
graphs. As mentioned before, the encoder outputs an equivariant transforma-
tion on the coordinates which is the graph embedding and input to the decoder
Z = XL ∈ RM×n. We use n = 8 dimensions for the embedding space. We com-
pare the EGNN to its GNN cousin, we also compare to Noise-GNN which is
an adaptation of our GNN to match the setting from (Liu et al., 2019), and we
also include the Radial Field algorithm as an additional baseline. All four models
have 4 layers, 64 features for the hidden layers, the Swish activation function as a
non-linearity and they were all trained for 100 epochs using the Adam optimizer
and learning rate 10−4. More details are provided in Appendix B.3.2. Since the
number of nodes is larger than the number of layers, the receptive field of a GNN
may not comprise the whole graph which can make the comparison unfair with
our EGNN. To avoid this limitation, all models exchange messages among all
nodes and the edge information is provided as edge attributes aij = Aij in all of
them.

results : In the table from Figure 7 we report the Binary Cross Entropy loss
between the estimated and ground truth edges, the % Error which is defined
as the percentage of wrong predicted edges with respect to the total amount of
potential edges, and the F1 score of the edge classification, all numbers refer to
the test partition. We also include a "Baseline" that predicts all edges as missing
Âij = 0. The standard GNN seems to suffer from the symmetry problem and
provides the worst performance. When introducing noise (Noise-GNN), both the
loss and the error decrease showing that it is actually useful to add noise to the
input nodes. Finally, our EGNN remains E(n) equivariant to this noise distribu-
tion and provides the best reconstruction with a 0.11% error in the Erdos&Renyi
dataset and close to optimal 0.06% in the Community Small dataset. A further
analysis of the reconstruction error for different n embedding sizes is reported
in Appendix B.4.1.

overfitting the training set : We explained the symmetry problem and
we showed the EGNN outperforms other methods in the given datasets. Al-
though we observed that adding noise to the GNN improves the results, it is
difficult to exactly measure the impact of the symmetry limitation in these re-
sults independent from other factors such as generalization from the training to
the test set. In this section we conduct an experiment where we train the different
models in a subset of 100 Erdos&Renyi graphs and embedding size n = 16 with
the aim to overfit the data. We evaluate the methods on the training data. In this
experiment the GNN is unable to fit the training data properly while the EGNN
can achieve perfect reconstruction and Noise-GNN close to perfect. We sweep
over different pe sparsity values from 0.1 to 0.9 since the symmetry limitation is
more present in very sparse or very dense graphs. We report the F1 scores of this
experiment in the right plot of Figure 7.
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In this experiment we showed that E(n) equivariance improves performance
when embedding graphs in a continuous space as a set of nodes in dimension n.
Even though this is a simple reconstruction task, we think this can be a useful step
towards generating graphs or molecules where often graphs (i.e. edges) are de-
coded as pairwise distances or similarities between nodes e.g. (Kipf and Welling,
2016b; Liu et al., 2019; Grover et al., 2019), and these metrics (e.g. Eq. 48) are
E(n) invariant. Additionally this experiment also showed that our method can
successfully perform in a E(n) equivariant task for higher dimensional spaces
where n > 3.

5.5.3 Molecular Data | QM9

The QM9 dataset (Ramakrishnan et al., 2014) has become a standard in machine
learning as a chemical property prediction task. The QM9 dataset consists of
small molecules represented as a set of atoms (up to 29 atoms per molecule),
each atom having a 3D position associated and a five dimensional one-hot node
embedding that describe the atom type (H, C, N, O, F). The dataset labels are
a variety of chemical properties for each of the molecules which are estimated
through regression. These properties are invariant to translations, rotations and
reflections on the atom positions. Therefore those models that are E(3) invariant
are highly suitable for this task.

We imported the dataset partitions from (Anderson et al., 2019), 100K molecules
for training, 18K for validation and 13K for testing. A variety of 12 chemical prop-
erties were estimated per molecule. We optimized and report the Mean Absolute
Error between predictions and ground truth.

implementation details : Our EGNN receives as input the 3D coordinate
locations of each atom which are provided as x0i in Equation 42 and an embed-
ding of the atom properties which is provided as input node features h0

i . Since
this is an invariant task and also x0i positions are static, there is no need to update
the particle’s position xi by running Equation 43 as we did in previous experi-
ments. Consequently, we tried both manners and we didn’t notice any improve-
ment by updating ix. When not updating the particle’s position (i.e. skipping
Equation 43), our model becomes E(n) invariant, which is analogous to a stan-
dard GNN where all relative squared norms between pairs of points ∥xi − xj∥2
are inputted to the edge operation (eq. 42). Additionally, since we are not pro-
vided with an adjacency matrix and molecules can scale up to 29 nodes, we use
the extension of our model from Section 5.3.3 that infers a soft estimation of the
edges. Our EGNN network consists of 7 layers, 128 features per hidden layer and
the Swish activation function as a non-linearity. A sum-pooling operation pre-
ceded and followed by two layers MLPs maps all the node embeddings hL

i from
the output of the EGNN to the estimated property value. Further implementation
details are reported in Appendix. B.3. We compare to NMP (Gilmer et al., 2017),
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Table 8: Mean Absolute Error for the molecular property prediction benchmark in QM9

dataset. *DimeNet++ uses slightly different train/val/test partitions than the other works
listed here.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE

Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.50

Schnet .235 63 41 34 .033 .033 14 14 .073 19 14 1.70

Cormorant .085 61 34 38 .038 .026 20 21 .961 21 22 2.03

L1Net .088 68 46 35 .043 .031 14 14 .354 14 13 1.56

LieConv .084 49 30 25 .032 .038 22 24 .800 19 19 2.28

DimeNet++* .044 33 25 20 .030 .023 8 7 .331 6 6 1.21

TFN .223 58 40 38 .064 .101 - - - - - -

SE(3)-Tr. .142 53 35 33 .051 .054 - - - - - -

EGNN .071 48 29 25 .029 .031 12 12 .106 12 11 1.55

Schnet (Schütt et al., 2017b), Cormorant (Anderson et al., 2019), L1Net (Miller et
al., 2020), LieConv (Finzi et al., 2020b), DimeNet++ (Klicpera et al., 2020a), TFN
(Thomas et al., 2018b) and SE(3)-Tr. (Fuchs et al., 2020).

results : Results are presented in Table 8. Our method reports very compet-
itive results in all property prediction tasks while remaining relatively simple,
i.e. not introducing higher order representations, angles or spherical harmonics.
Perhaps, surprisingly, we outperform other equivariant networks that consider
higher order representations while in this task, we are only using type-0 rep-
resentations (i.e. relative distances) to define the geometry of the molecules. In
Appendix B.5 we prove that when only positional information is given (i.e. no
velocity or higher order type features), then the geometry is completely defined
by the norms in-between points up to E(n)-transformations, in other words, if
two collections of points separated by E(n) transformations are considered to
be identical, then the relative norms between points is a unique identifier of the
collection.

5.6 conclusions

Equivariant graph neural networks are receiving increasing interest from the nat-
ural and medical sciences as they represent a new tool for analyzing molecules
and their properties. In this chapter, we have introduced a new E(n) equivariant
deep architecture for graphs that is computationally efficient, easy to implement,
and significantly improves over the current state-of-the-art on a wide range of
tasks. We believe these properties make it ideally suited to make a direct impact
on topics such as drug discovery, protein folding and the design of new materials,
as well as applications in 3D computer vision.
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In particular, after its publication (Satorras et al., 2021b), the Equivariant Graph
Neural Network (EGNN) introduced in this chapter has been used in a wide
variety of applications in the literature of molecular sciences as mentioned in
the Subsequent Impact Section 1.3. And it will be our architecture of choice to
build equivariant generative models in the following chapters. A benefit of the
EGNN in the context of generative models is its high efficiency, which is partic-
ularly advantageous in the generative models used in the next chapters such as
Normalizing Flows or and Diffusion Models that require multiple calls of the
network to generate a single sample or a batch of samples.

Following the development of the EGNN, many new E(3) and SE(3) equivariant
models have been proposed in literature providing better accuracy (e.g. Schütt
et al., 2021; Thölke and De Fabritiis, 2022; Brandstetter et al., 2021). Nevertheless,
the EGNN continues to be the architecture of choice in certain works due to its
speed and simplicity as noted in Abanades et al., 2022.
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This Chapter is based on the content of:
Victor Garcia Satorras*, Emiel Hoogeboom*, Fabian B. Fuchs, Ingmar Posner, Max Welling (2021).

“E(n) Equivariant Normalizing Flows.” In: Advances in Neural Information Processing Systems 34

6.1 introduction

In the previous chapter, we introduced an equivariant graph neural network
for discriminative tasks, named the E(n) Equivariant Graph Neural Network
(EGNN). In this and subsequent chapters, we build upon the EGNN to design
equivariant generative models.

Generative models have made a significant impact in the domains of image and
text generation (Ramesh et al., 2021), and they are promising candidates to impact
the field of drug discovery through molecular modelling. Molecules inherently
exist within a 3-dimensional space, subjecting them to Euclidean symmetries,
such as rotations and translations. Leveraging these symmetries can enhance the
generalization capabilities of generative models for molecular structures. For in-
stance, forces on a molecule derived from its interatomic potentials are rotation
equivariant with respect to the positional coordinates of their atoms.

As discussed in Chapter 5, considering these symmetries has substantially im-
proved performance for discriminatory machine learning tasks on 3D coordinate
data (Thomas et al., 2018b; Anderson et al., 2019; Finzi et al., 2020a; Fuchs et
al., 2020; Klicpera et al., 2020b; Satorras et al., 2021b). However, for generative
tasks, such as sampling new molecular structures, at the time of this work (Sator-
ras et al., 2021a), the development of efficient yet powerful rotation equivariant
approaches, despite making great progress, was still in its infancy.

In this chapter, we introduce a generative model equivariant to Euclidean symme-
tries: E(n) Equivariant Normalizing Flows (E-NFs). To construct E-NFs, we take
the discriminative E(n) Graph Neural Networks and integrate them as a differ-
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Figure 15: Overview of our method in the sampling direction. An equivariant invertible
function gθ has learned to map samples from a Gaussian distribution to molecules in 3D,
described by x, h.

ential equation to obtain an invertible equivariant function. More specifically, we
parameterize a continuous-time flow, where the first-order derivative is modeled
by an EGNN. We also present minor improvements in the EGNN architecture
to improve stability when used as a derivative. We show that our proposed flow
model significantly outperforms its non-equivariant counterparts and previous
equivariant generative methods (Köhler et al., 2020a). Additionally, we apply our
method to molecule generation and demonstrate that our method can generate
realistic molecules when trained on the QM9 dataset.

6.2 acknowledgement of contributions

The work (Satorras et al., 2021a), upon which this chapter is based, was equally
contributed to by Victor Garcia Satorras and Emiel Hoogeboom. Both authors
contributed to the majority of the ideas, conducted the experiments, and wrote
the paper. As for the parts of the model in Section 6.5 that define the Model
Dynamics and Modeling Discrete Properties, these sections were primarily con-
tributed by Victor and Emiel, respectively.

6.3 background

6.3.1 Notation Clarification

In the Background Section 2.1, we indicated that vectors are represented by bold-
face lowercase letters (x, y, z) and matrices by boldface uppercase letters (X, Y, Z).
However, in this and the subsequent chapters, we slightly deviate from this nota-
tion and represent both in lowercase. That is, a set of points x = (x1, . . . , xM) ∈
RM×n is represented as x instead of X. We have chosen this notation in these
chapters because our primary focus will be on the point cloud x ∈ RM×n when
defining the generative models, rather than the individual points/nodes xi ∈ Rn.
This choice is more consistent with the notation used in related literature on gen-
erative models (Kobyzev et al., 2020; Ho et al., 2020; Kingma et al., 2021).
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6.3.2 Normalizing Flows

In Background Section 2.6 we discussed in high level the basics of a generative
models and we explained how we can approximate a probability distribution
by minimizing the negative log-likelihood of the data with respect to the model
parameters. In this section we explain the basics of Normalizing Flows and how
the optimization of the log-likelihood is formalized for this family of model.

A basic base distribution pZ(z), such as a normal distribution, together with a
learnable invertible transformation x = gθ(z), results in a complex distribution
pX(x). By defining fθ as the inverse of gθ, i.e., fθ = g−1

θ , we can calculate the
likelihood of a data point x under pX with the change of variables formula, as
follows:

pX(x) = pZ(z) |det Jf(x)| , where z = f(x), (49)

where Jf is the Jacobian of fθ. A particular type of normalizing flows are continuous-
time normalizing flows (Chen et al., 2017; Chen et al., 2018b; Grathwohl et al.,
2018). These flows use a conceptual time direction to denote an invertible trans-
formation in the form of a differential equation. The first order differential is
predicted by a neural network ϕ, referred to as the dynamics. The formulation
for continuous-time change of variables is given by:

logpX(x) = logpZ(z) +
∫1
0

Tr Jϕ(x(t))dt, where z = x +

∫1
0
ϕ(x(t))dt, (50)

Here, x(0) = x and x(1) = z. In practice, the trace is estimated using Hutchinson’s
trace estimator as suggested by (Chen et al., 2018b; Grathwohl et al., 2018), and
the integrals can be straightforwardly computed using the torchdiffeq package
developed by Chen et al. (2018b). Regularizing the dynamics is often desired
for faster training and more stable solutions (Finlay et al., 2020). In the context
of designing a generative equivariant model, continuous-time normalizing flows
are desirable because the constraints that need to be enforced on ϕ are relatively
mild: ϕ only needs to be high order differentiable and Lipschitz continuous, with
a possibly large Lipschitz constant.

6.3.3 Equivariance in Normalizing Flows

The concept of equivariance concerning Euclidean symmetries was introduced
in the Background Section 2.5. In the context of probability distributions, the
property of interest is often invariance, whereas for transformations gθ we are
interested in equivariance. To give an example, the likelihood of a molecule with
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coordinates x = (x1, . . . , xM) should remain constant under any orientation, im-
plying that p(x) = p(Rx), with no orientation being more likely than another.1

Specifically, if a function gθ is equivariant and a base distribution pZ(z) is invari-
ant, then the distribution pX given by x = gθ(z) where z ∼ pZ(z) will also be
invariant (Köhler et al., 2020a). Consequently, one can create expressive invariant
distributions by combining an invariant base distribution pZ with an equivariant
function gθ. Furthermore, when gθ is restricted to be bijective and fθ = g−1

θ ,
then equivariance of gθ implies equivariance of fθ. Additionally, the likelihood
pX can be directly computed using the change of variables formula.

6.4 related work

Group equivariant neural networks (Cohen and Welling, 2016; Cohen and Welling,
2017; Dieleman et al., 2016) have demonstrated their effectiveness in a wide va-
riety of tasks. A growing body of literature is finding neural networks that are
equivariant to transformations in Euclidean space (Thomas et al., 2018b; Fuchs
et al., 2020; Horie et al., 2020; Finzi et al., 2020a; Hutchinson et al., 2020; Satorras
et al., 2021b). These methods have proven their efficacy in discriminative tasks
and modeling dynamical systems. On the other hand, graph neural networks
(Bruna et al., 2013; Kipf and Welling, 2016a) can be seen as networks equivariant
to permutations. Often, the methods that study Euclidean equivariance operate
on point clouds embedded in Euclidean space, and so they also incorporate per-
mutation equivariance.

Normalizing Flows (Rippel and Adams, 2013; Rezende and Mohamed, 2015b;
Dinh et al., 2015) are an attractive class of generative models since they admit ex-
act likelihood computation and can be designed for fast inference and sampling.
Notably, Chen et al., 2018a; Chen et al., 2018b; Grathwohl et al., 2018 introduced
continuous-time normalizing flows, a flow that is parametrized via a first-order
derivative over time. This class of flows is useful because of the mild constraints
on the parametrization function compared to other flow approaches (Dinh et al.,
2017; Kingma and Dhariwal, 2018).

There are several specialized methods for molecule generation: Gebauer et al.,
2019 generate 3D molecules iteratively via an autoregressive approach, but dis-
cretize positions and use additional focus tokens which makes them incompa-
rable in log-likelihood. Gómez-Bombarelli et al., 2016; You et al., 2018; Liao et
al., 2019 generate discrete graph structures instead of a coordinate space and Xu
et al., 2021a generate molecule positions only. Some flows in the literature Noé

1 To be precise, in matrix multiplication notation (Rx1, . . . , RxM) = xRT , for simplicity we use the
notation Rx = (Rx1, . . . , RxM) and see R as an operation instead of a direct multiplication on the
entire x.
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lift to continuous

z

ode_integrateode_integrate

Figure 16: Overview of the training procedure: The discrete h is lifted to continu-
ous h. Then the variables x,h are transformed by an ODE to zx, xh. To get a lower
bound on logpV (x, h) we sum the variational term − logq(h|h), the volume term from
the ODE

∫1
0 Tr Jϕ(z(t))dt, the log-likelihood of the latent representation on a Gaussian

logpZ(zx, xh), and the log-likelihood of the molecule size logpM(M). To train the model,
the sum of these terms is maximized.

et al., 2018; Li et al., 2019; Köhler et al., 2020a model positional data, but not in
combination with discrete properties.

Recently various forms of normalizing flows for equivariance have been pro-
posed: Köhler et al., 2019; Köhler et al., 2020a propose flows for positional data
with Euclidean symmetries, Rezende et al., 2019 introduce a Hamiltonian flow
which can be designed to be equivariant using an invariant Hamiltonian func-
tion. Liu et al., 2019; Biloš and Günnemann, 2020 model distributions over graphs,
with flows equivariant to permutations. Boyda et al., 2021 introduce equivariant
flows for SU(n) symmetries. For adversarial networks, Dey et al., 2021 introduced
a generative network equivariant to 90 degree image rotations and reflections.
Our work differs from these approaches in that we design a general-purpose
normalizing flow for sets of nodes that contain both positional and invariant fea-
tures while remaining equivariant to E(n) transformations. This combination of
positional and non-positional information results in a more expressive message
passing scheme that defines the dynamics of our ODE. A by-product of our gen-
eral approach is that it also allows us to jointly model features and structure of
molecules in 3D space without any additional domain knowledge.

6.5 method : e(n) equivariant normalizing flows

In this section we propose our E(n) Equivariant Normalizing Flows, a probabilis-
tic model for data with Euclidean symmetry. The generative process is defined
by a simple invariant distribution pZ(zx, zh) (such as a Gaussian) over a latent
representation of positions zx ∈ RM×n and a latent representation of invariant
features zh ∈ RM×nf from which an invertible transformation gθ(zx, zh) = (x, h)
generates V = (x, h). These nodes consist of node features h ∈ RM×nf and po-
sition coordinates x ∈ RM×n embedded in a n-dimensional space. Together, pZ
and gθ define a distribution pV over node positions and invariant features.
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Since we will restrict gθ to be invertible, fθ = g−1
θ exists and allows us to map

from data space to latent space. This makes it possible to directly optimize the
implied likelihood pV of a datapoint V utilizing the change of variables formula:

pV (V) = pV (x, h) = pZ(fθ(x, h))|det Jf| = pZ(zx, zh)|det Jf|, (51)

where Jf =
d(zx,zh)

dV is the Jacobian, where all tensors are vectorized for the Ja-
cobian computation. The goal is to design the model pV such that translations,
rotations and reflections of x do not change pV (x, h), meaning that pV is E(n)
invariant with respect to x. Additionally, we want pV to also be invariant to per-
mutations of (x, h). A rich family of distributions can be learned by choosing pZ
to be invariant, and fθ to be equivariant.

6.5.1 The Normalizing Flow

As a consequence, multiple constraints need to be enforced on fθ. From a proba-
bilistic modelling perspective 1) we require fθ to be invertible, and from a sym-
metry perspective 2) we require fθ to be equivariant. One could utilize the EGNN
(Satorras et al., 2021b) which is E(n) equivariant, and adapt the transformation
so that it is also invertible. The difficulty is that when both these constraints are
enforced naïvely, the space of learnable functions might be small. For this reason
we opt for a method that only requires mild constraints to achieve invertibil-
ity: neural ordinary differential equations. These methods require functions to
be Lipschitz (which most neural networks are in practice, since they operate on
a restricted domain) and to be continuously differentiable (which most smooth
activation functions are).

To this extent, we define fθ to be the differential equation, integrated over a con-
ceptual time variable using a differential predicted by the EGNN ϕ. We redefine
x, h as functions depending on time, where x(t = 0) = x and h(t = 0) = h in the
data space. Then x(1) = zx, h(1) = zh are the latent representations. This admits
a formulation of the flow f as the solution to an ODE defined as:

zx, zh = f(x, h) = [x(0), h(0)] +
∫1
0
ϕ(x(t), h(t))dt. (52)

The solution to this equation can be straightforwardly obtained by using the
torchdiffeq package, which also supports backpropagation. The Jacobian term
under the ODE formulation is log |det Jf| =

∫1
0 Tr Jϕ(x(t), h(t))dt as explained

in Section 6.3, Equation 50. The Trace of Jϕ has been approximated with the
Hutchinson’s trace estimator.
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6.5.2 The Dynamics

The dynamics function ϕ in Equation 52 models the first derivatives of x and
h with respect to time, over which we integrate. Specifically: d

dtx(t), d
dth(t) =

ϕ(x(t), h(t)). This derivative is modelled by the EGNN of L layers introduced in
Chapter 5:

d
dt

x(t),
d
dt

h(t) = xL(t) − x(t), hL(t) where xL(t), hL(t) = EGNN[x(t), h(t)].
(53)

Notice that we directly consider the output hL from the last layer L of the EGNN
as the differential d

dth(t) of the node features, since the representation is invariant.
In contrast, the differential of the node coordinates is computed as the difference
between the EGNN output and intput d

dtx(t) = xL−x(t). This choice is consistent
with the nature of velocity-type equivariance: although d

dtx(t) rotates exactly like
x, it is unaffected by translations as desired when computing velocities or forces.

The original EGNN equations from (Satorras et al., 2021b) are unstable when
utilized in an ODE because the coordinate update from Equation 43 would easily
explode. To counter this, we propose a simple extension in Equation 54 that
normalizes the relative difference of two coordinates xli − xlj by their norm plus a
constant C to ensure differentiability. In practice we set C = 1 and found this to
give stable results. The full definition of the EGNN, considering this update, is
provided in Appendix C.1.

xl+1
i = xli +

∑
j̸=i

(xli − xlj)

∥xli − xlj∥+C
ϕx

(
mij

)
(54)

6.5.3 Translation Invariance

Recall that we want the distribution pV (V) to be translation invariant with respect
to the overall location and orientation of positional coordinates x. For simplicity,
let’s assume only a distribution pX(x) over positions and an invertible function
z = f(x). Translation invariance is defined as pX(x+ t) = pX(x) for all t: a constant
function. However, this cannot be a distribution since it cannot integrate to one.
Instead, we have to restrict pX to a subspace.

To construct a translation invariant pX, we can restrict the data, flow fθ and
prior pZ to a translation invariant linear subspace, for instance by centering the
nodes so that their center of gravity is zero. Then the positions x ∈ RM×n lie on
the (M− 1)× n-dimensional linear subspace defined by

∑M
i=1 xi = 0. However,

from a modelling perspective it is easier to represent node positions as M sets
of coordinates that are n-dimensional in the ambient space. In short, we desire



74 e(n) equivariant normalizing flows

the distribution to be defined on the subspace, but with the representation of the
nodes in the ambient space. To limit the flow to the subspace, in practice only
the mean of the output of the dynamics network ϕ is removed, following (Köhler
et al., 2020a). Additionally, we can find the proper normalization constant for the
base distribution.

6.5.4 The Base Distribution

Next we need to define a base distribution pZ. This base distribution can be
divided in two parts: the positional part p(zx) and the feature part p(zh). We will
choose these parts to be independent so that p(zx, zh) = p(zx) ·p(zh). The feature
part is straightforward because the features are already invariant with respect to
E(n) symmetries, and only need to be permutation invariant. A common choice
is a standard Gaussian p(zh) = N(zh|0, I). For the positional part recall that zx
lies on an (M− 1)n subspace, and we need to specify the distribution over this
space. Standard Gaussian distributions are reflection and rotation invariant since
||Rzx||2 = zTxRTRzx = zTxRTRzx = ||zx||2 for any rotation or reflection R. Further
more, our particular projection z̃x = Pzx lies in a subspace

∑M
i=1 zxi

= 0 in
which the point cloud is centered at the origin of coordinates. A valid choice for
a rotation invariant base distribution on the subspace is given by:

p(z̃x) = N(z̃x|0, I) =
1

(2π)(M−1)n/2
exp

(
−
1

2
||zx||2

)
, (55)

Which can be directly computed in the ambient space using ||zx||2, with the im-
portant property that the normalization constant uses the dimensionality of the
subspace: (M− 1)n, so that the distribution is properly normalized. A more for-
mal proof to derive this distribution can be found in (Satorras et al., 2021a).

6.5.5 Modelling Discrete Properties

Normalizing flows model continuous distributions. However, the node features
h may contain both ordinal (e.g. charge) and categorical (e.g. atom type) features.
To train a normalizing flow on these, the values need to be lifted to a continu-
ous space. Let h = (hord, hcat) be divided in ordinal and categorical features. For
this we utilize variational dequantization (Ho et al., 2019) for the ordinal features
and argmax flows (Hoogeboom et al., 2021) for the categorical features. For the
ordinal representation hord, interval noise u ∼ qord( · |hord) is used to lift to the
continuous representation hord = hord + u. Similarly, hcat is lifted using a dis-
tribution hcat ∼ qcat( · |hcat) where qcat is the probabilistic inverse to an argmax
function. Both qord and qcat are parametrized using normal distributions where
the mean and standard deviation are learned using an EGNN conditioned on
the discrete representation. This formulation allows training on the continuous
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representation h = (hord,hcat) as it lowerbounds an implied log-likelihood of the
discrete representation h using variational inference:

logpH(h) ⩾ Eh∼qord,cat( · |h)

[
logpH(h) − logqord,cat(h|h)

]
(56)

To sample the discrete h ∼ pH, first sample the continuous h ∼ pH via a flow
and then compute h = (round(hord), argmax(hcat)) to obtain the discrete version.
In short, instead of training directly on the discrete properties h, the properties
are lifted to the continuous variable h. The lifting method depends on whether
a feature is categorical or ordinal. On this lifted continuous variable h the flow
learns pH, which is guaranteed to be a lowerbound via Equation 56 on the dis-
crete pH. To avoid clutter, in the remainder of this chapter no distinction is made
between h and h as one can easily transition between them using qord,qcat and
the round, argmax functions.

6.5.6 Modelling the Number of Nodes

Finally, the number of nodes M may differ depending on the data. In this case
we extend the model using a simple one dimensional categorical distribution
pM of M categories. This distribution pM is constructed by counting the num-
ber of molecules and dividing by the total. The likelihood of a set of nodes is
then pV (x, h,M) = pVM

(x, h|M)pM(M), where pVM
(x, h|M) is modelled by the

flow as before and the same dynamics can be shared for different sizes as the
EGNN adapts to the number of nodes. In notation we sometimes omit the M
conditioning for clarity. To generate a sample, we first sample M ∼ pM, then
zx, zh ∼ pZ(zx, zh|M) and finally transform to the node features and positions
via the flow.

6.6 experiments

6.6.1 DW4 and LJ13

In this section we study two relatively simple systems, DW-4 and LJ-13, presented
in (Köhler et al., 2020a) where E(n) symmetries are present. These datasets have
been synthetically generated by sampling from their respective energy functions
using Markov Chain Monte Carlo (MCMC).

DW4: This system consists of only M=4 particles embedded in a 2-dimensional
space which are governed by an energy function that defines a coupling effect
between pairs of particles with multiple metastable states. More details are pro-
vided in Appendix C.2.

LJ-13: This is the second dataset used in (Köhler et al., 2020a) which is given
by the Leonnard-Jones potential. It is an approximation of inter-molecular pair
potentials that models repulsive and attractive interactions. It captures essential
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Table 9: Negative Log Likelihood comparison on the test partition over different methods
on DW4 and LJ13 datasets for different amount of training samples averaged over 3 runs.

DW4 LJ13

# Samples 102 103 104 105 10 102 103 104

GNF 11.93 11.31 10.38 7.95 43.56 42.84 37.17 36.49

GNF-att 11.65 11.13 9.34 7.83 43.32 36.22 33.84 32.65

GNF-att-aug 8.81 8.31 7.90 7.61 41.09 31.50 30.74 30.93

Simple dynamics 9.58 9.51 9.53 9.47 33.67 33.10 32.79 32.99

Kernel dynamics 8.74 8.67 8.42 8.26 35.03 31.49 31.17 31.25

E-NF 8.31 8.15 7.69 7.48 33.12 30.99 30.56 30.41

physical principles and it has been widely studied to model solid, fluid and gas
states. The dataset consists of M=13 particles embedded in a 3-dimensional state.
More details are provided in Appendix C.2.

Both energy functions (DW4 and LJ13) are equivariant to translations, rotations
and reflections which makes them ideal to analyze the benefits of equivariant
methods when E(n) symmetries are present on the data. We use the same MCMC
generated dataset from (Köhler et al., 2020a). For both datasets we use 1,000

validation samples, and 1,000 test samples. We sweep over different numbers of
training samples {102, 103, 104, 105} and {10, 102, 103, 104} for DW4 and LJ13

respectively to analyze the performance in different data regimes.

implementation details : We compare to the state-of-the art E(n) equiv-
ariant flows "Simple Dynamics" and "Kernel Dynamics" presented in (Köhler et
al., 2020a). We also compare to non-equivariant variants of our method, Graph
Normalizing Flow (GNF), GNF with attention (GNF-att) and GNF with attention
and data augmentation (GNF-att-aug), i.e. augmenting the data with rotations.
Our E-NF method and its non-equivariant variants (GNF, GNF-att, GNF-att-aug)
consist of 3 layers each, 32 features per layer, and SiLU activation functions. All re-
ported numbers have been averaged over 3 runs. Further implementation details
are provided in the Appendix C.2.

results : In Table 9 we report the cross-validated Negative Log Likelihood for
the test partition. Our E-NF outperforms its non-equivariant variants (GNF, GNF-
att and GNF-att-aug) and (Köhler et al., 2020a) methods in all data regimes. It
is interesting to see the significant increase in performance when including data
augmentation (from GNF-att to GNF-att-aug) in the non-equivariant models.
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6.6.2 QM9 Positional

We introduce QM9 Positional as a subset of QM9 that only considers positional
information and does not encode node features. The aim of this experiment is to
compare our method to those that only operate on positional data (Köhler et al.,
2020a) while providing a more challenging scenario than synthetically generated
datasets. QM9 Positional consists only of molecules with 19 atoms/nodes, where
each node only has a 3-dimensional positional vector associated. The likelihood
of a molecule should be invariant to translations and rotations on a 3-dimensional
space which makes equivariant models very suitable for this type of data. The
dataset consists of 13831 training samples, 2501 for validation and 1813 for test.

In this experiment, in addition to reporting the estimated Negative Log Likeli-
hood, we designed a a metric to get an additional insight into the quality of
the generated samples. More specifically, we produce a histogram of relative dis-
tances between all pairs of nodes within each molecule and we compute the
Jensen–Shannon divergence (Lin, 1991) JSdiv(Pgen||Pdata) between the normalized
histograms from the generated samples and from the training set. See Figure 17

for an example.

Figure 17: Normalized histogram of relative distances between atoms for QM9 Positional
and E-NF generated samples.

implementation details : As in the previous experiment, we compare our
E-NF to its non-equivariant variants GNF, GNF-att, GNF-att-aug and to the equiv-
ariant methods from (Köhler et al., 2020a) Simple Dynamics and Kernel Dynam-
ics. The dynamics of our E-NF, GNF, GNF-att and GNF-att-aug consist of 6 con-
volutional layers each, the number of features is set to 64 and all activation layers
are SiLUs. The learning rate is set to 5 · 10−4 for all experiments except for the
E-NF and Simple dynamics which was set to 2 · 10−4 for stability reasons. All ex-
periments have been trained for 160 epochs. The JS divergence values have been
averaged over the last 10 epochs for all models.



78 e(n) equivariant normalizing flows

Table 10: Negative Log Likelihood (NLL) − logpV (x) for the QM9 Positional dataset on
the test data.

# Metrics NLL JS(rel. dist)

Simple dynamics 73.0 .086

Kernel dynamics 38.6 .029

GNF -00.9 .011

GNF-att -26.6 .007

GNF-att-aug -33.5 .006

E-NF (ours) -70.2 .006

Figure 18: Training Negative Log Likelihood (NLL) curves for all methods.

results : In the table from Figure 18 we report the cross validated Negative
Log Likelihood − logpV (x) for the test data and the Jensen-Shannon divergence.
Our E-NF outperforms all other algorithms in terms of NLL of the dataset. Ad-
ditionally, the optimization curve with respect to the number of iterations con-
verges much quicker for our E-NF than for the other methods as shown on
the right in Figure 18. Regarding the JS divergence, the E-NF and GNF-att-aug
achieve the best performance.

6.6.3 QM9 Molecules

QM9 (Ramakrishnan et al., 2014) is a molecular dataset standarized in machine
learning as a chemical property prediction benchmark. It consists of small molecules
(up to 29 atoms per molecule). Atoms contain positional coordinates embedded
in a 3D space, a one-hot encoding vector that defines the type of molecule (H,
C, N, O, F) and an integer value with the atom charge. Instead of predicting
properties from molecules, we use the QM9 dataset to learn a generative distri-
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bution over molecules. We desire the likelihood of a molecule to be invariant
to translations and rotations, therefore, our E(n) equivariant normalizing flow is
very suitable for this task. To summarize, we model a distribution over 3D posi-
tions x, and atom properties h. These atom properties consist of the atom type
(categorical) and atom charge (ordinal).

We use the dataset partitions from (Anderson et al., 2019), 100K / 18K / 13K for
training/validation/test respectively. To train the method, the nodes (x, h) are
put into Equation 52 as x(0), h(0) at time 0 and integrated to time 1. Using the
continuous-time change of variables formula and the base distribution, the (nega-
tive) log-likelihood of a molecule is computed − logpV (x, h,M). Since molecules
differ in size, this term includes − logpM(M) which models the number of atoms
as a simple 1D categorical distribution and is part of the generative model as
described in Section 6.5.

implementation details : We compare our E-NF to the non-equivariant
GNF-att and GNF-att-aug introduced in previous experiments. Notice in this
experiment we do not compare to (Köhler et al., 2020a) since this dataset contains
invariant feature data in addition to positional data. Each model is composed of
6 layers, 128 features in the hidden layers and SilU activation functions. We use
the same learning rates as in QM9 Positional. Note that the baselines can be
seen as instances of permutation equivariant flows (Liu et al., 2019; Biloš and
Günnemann, 2020) but where the GNN architectures have been chosen to be as
similar as possible to the architecture in our E-NFs.

Table 11: Neg. log-likelihood − logpV (x, h,M), atom stability and mol stability for the
QM9 dataset.

# Metrics NLL Atom stability Mol stable

GNF-attention -28.2 72% 0.3%
GNF-attention-augmentation -29.3 75% 0.5%
E-NF (ours) -59.7 85% 4.9%

Data - 99% 95.2%

results (quantitative): Results are reported in Table 11. As in previous
experiments, our E-NF significantly outperforms the non-equivariant models
GNF and GNF-aug. In terms of negative log-likelihood, the E-NF performs much
better than its non-equivariant counterparts. One factor that increases this differ-
ence is the E-NFs ability to capture the very specific distributions of inter-atomic
distances. Since the E-NF is able to better capture these sharp peaks in the distri-
bution, the negative log-likelihood becomes much lower. This effect is also seen
when studying the number of stable atoms and molecules, which is very sensi-
tive to the inter-atomic distances. This stablity metric was computed over 10.000
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Figure 19: Sampled molecules by our E-NF. The top row contains random samples, the
bottom row also contains samples but selected to be stable. Edges are drawn depending
on inter-atomic distance.

samples from the model, for a detailed explanation of stability see Appendix C.4.
Observe that it might also be possible to utilize post-processing to increase the
molecule stability using prior knowledge. However, here we are mainly using
this metric to see how many stable atoms and molecules the E-NF is able to
generate in one shot, only by learning the molecule distribution. The E-NF on
average produces 85% valid atoms, whereas the best baseline only produces 75%
valid atoms. An even stronger improvement is visible when comparing molecule
stability: where the E-NF produces 4.9% stable molecules versus 0.5% by the best
baseline. Interestingly, the percentage of stable molecules is much lower than that
of atoms. This is not unexpected: if even one atom in a large molecule is unstable,
the entire molecule is considered to be unstable.

Finally, we evaluate the Validity, Uniqueness and Novelty as defined in (Simonovsky
and Komodakis, 2018) for the generated molecules that are stable. For this pur-
pose, we map the 3-dimensional representation of stable molecules to a graph
structure and then to a SMILES notation using the rdkit toolkit. All our stable
molecules are already defined as valid, therefore we only report the Novelty and
Uniqueness since the Validity of those molecules that are already stable is 100%.
The Novelty is defined as the ratio of stable generated molecules not present in
the training set and Uniqueness is the ratio of unique stable generated molecules.
Notice that different generated point clouds in 3-dimensional space may lead to
the same molecule in the graph space or SMILES notation. Therefore, even if in
the 3D space, all our generated samples were unique and novel, the underlying
molecule that they represent doesn’t have to be. Using our E-NF, we generated
10.000 examples to compute these metrics. We obtained 491 stable molecules
(4.91%), from these subset 99.80% were unique and 93.28% were novel. Further
analyses are provided in Appendix C.5.

results (qualitative): In Figure 19 samples from our model are shown.
The top row contains random samples that have not been cherry-picked in any
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way. Note that although the molecule structure is mostly accurate, sometimes
small mistakes are visible: Some molecules are disconnected, and some atoms
in the molecules do not have the required number of bonds. In the bottom row,
random samples have been visualized but under the condition that the sample
is stable. Note that atoms might be double-bonded or triple-bonded, which is
indicated in the visualization software. For example, in the molecule located in
the bottom row 4th column, an oxygen atom is double bonded with the carbon
atom at the top of the molecule.

6.7 conclusions , limitations and future work

In this chapter, we have introduced E(n) Equivariant Normalizing Flows (E-NFs):
a generative model equivariant to Euclidean symmetries. E-NFs are continuous-
time normalizing flows that use an EGNN with improved stability as parametriza-
tion. We have demonstrated that E-NFs considerably outperform existing nor-
malizing flows in log-likelihood on DW4, LJ13, QM9, and also in the stability of
generated molecules and atoms.

Despite the positive results, there are some limitations in the proposed model
that could be addressed in future work: 1) The ODE type of flow makes training
computationally expensive, as the same forward operation must be performed
multiple times sequentially to solve the ODE equation. 2) The combination of the
ODE with the EGNN exhibited some instabilities that we had to address (Equa-
tion 54). Although the model was stable in most experiments, we observed some
rare peaks in the loss of the third experiment (QM9) that caused divergence in
one very rare instance. 3) Our likelihood estimation is invariant to reflections,
meaning our model assigns the same likelihood to both a molecule and its mir-
rored version. This could be advantageous or disadvantageous depending on
whether we wish to assign distinct likelihoods to chiral molecules.

In the following chapter, we propose a new equivariant generative model based
on denoising-diffusion models. This model addresses the issues (1) and (2) raised
here and provides additional benefits such as greatly improved performance.
Specifically, 1) it eliminates the need to forward the same sample multiple times
sequentially during training, allowing for faster trainings. 2) The instabilities ob-
served in the combination of the ODE with the EGNN are absent when employ-
ing the denoising-diffusion model.





7
E Q U I VA R I A N T D I F F U S I O N F O R M O L E C U L E G E N E R AT I O N
I N 3D

This Chapter is based on the content of:
Emiel Hoogeboom*, Victor Garcia Satorras*, Clément Vignac*, Max Welling (2022). “Equivariant

diffusion for molecule generation in 3D.” In: International conference on machine learning. PMLR, pp.
8867–8887

7.1 introduction

This chapter introduces an E(3) Equivariant Diffusion Model (EDM) for molecule
generation in 3D. This model builds upon the EGNN from Chapter 5, handling
both continuous coordinates and categorical data (atom types). And it addresses
some of the main limitations present in the previous E(n) Equivariant Flows (E-
NF) from Chapter 6. Particularly, it trains faster than E-NF, resulting in better
scalability and significantly improved results compared to previous models in
literature. To the best of our knowledge, this is the first diffusion model that
directly generates molecules in 3D space.

Deep learning methods are influencing the field of molecular sciences as seen
with the success of AlphaFold in protien folding prediction (AlQuraishi, 2019)
along with a growing literature on silico molecule synthesis. (Simonovsky and
Komodakis, 2018; Gebauer et al., 2019; Klicpera et al., 2020c; Simm et al., 2021).
Molecules inherently exist within a 3-dimensional space, subjecting them to Eu-
clidean symmetries, such as rotations and translations. Leveraging these symme-
tries can enhance the generalization capabilities of generative models for molecu-
lar structures and it has been extensively studied in (Thomas et al., 2018a; Fuchs
et al., 2020; Finzi et al., 2020a)

Previous literature has explored E(3) equivariant layers in generative models such
as autoregressive models (Gebauer et al., 2018; Gebauer et al., 2019) which intro-
duce an artificial order in the atoms and are known to be difficult to scale dur-
ing sampling (Xu et al., 2021c). Alternatively, continuous-time normalizing flows
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Figure 20: Overview of the EDM. To generate a molecule, a normal distributed set of
points is denoised into a molecule consisting of atom coordinates x in 3D and atom types
h. As the model is rotation equivariant, the likelihood is preserved when a molecule is
rotated by R.

such as Köhler et al. (2020b) or E-NF (Satorras et al., 2021a) proposed in the pre-
vious chapter are expensive to train due to the need to integrate a differential
equation, leading to limited performance and scalability.

Our proposed E(3) Equivariant Diffusion Model (EDM) learns to denoise a dif-
fusion process operating on both continuous coordinates and categorical atom
types. EDM does not require a particular atom ordering unlike autoregressive
models, and can be trained much more efficiently than normalizing flows. To
give an example, when trained on QM9, EDMs generate up to 16 times more
stable molecules than E-NFs while requiring half of the training time. This effi-
ciency in scaling allows EDMs to be trained on larger drug-like datasets such as
GEOM-Drugs (Axelrod and Gomez-Bombarelli, 2020).

In summary, this chapter introduces a new equivariant denoising diffusion model
that operates on both atom coordinates and categorical features. We apply this
model to molecule generation, outperforming previous generative models in the
literature. Additionally, we demonstrate that we can generate molecules with
certain desired properties when conditioned accordingly.
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Figure 21: Overview of the Equivariant Diffusion Model. To generate molecules, coordi-
nates x and features h are generated by denoising variables z(t) starting from standard
normal noise z(T). This is achieved by sampling from the distributions p(z(t − 1)|z(t))
iteratively. To train the model, noise is added to a datapoint x, h using q(z(t)|x, h) for the
step t of interest, which the network then learns to denoise.

7.2 acknowledgement of contributions

The work (Hoogeboom et al., 2022), upon which this chapter is based, was equally
contributed to by Emiel Hoogeboom, Victor Garcia Satorras, and Clement Vignac.
These three authors contributed significantly to the majority of the ideas, con-
ducted the experiments, and wrote the paper. There was a division of tasks in
certain sections: Victor was responsible for the conditional model experiments
and EGNN integration. Emiel and Clement carried out the experiment on the
Geom-drugs dataset. A summary of the results from the Geom-drugs experi-
ment is still included in this thesis with the co-authors’ consent, to exemplify the
model’s scalability. Additionally, the original paper contains a probabilistic anal-
ysis that enables likelihood computation with discrete and continuous features,
which was formalized by Emiel. As this analysis falls outside of the scope of this
thesis, it has been omitted but can be found in Section 3 of the paper. Finally, all
remaining experiments and model sections, such as the primary model design
and the QM9 experiment, were significantly contributed to by all authors.

7.3 background

7.3.1 Notation Clarification

In this section we adhere to the same notation used in previous Chapter 6 in
which we represent both vectors and matrices with lower lowercase letters. For
example, x = (x1, . . . , xM) ∈ RM×n. This differs from what was stated in the
Background Section 2.1.

7.3.2 Diffusion Models

Diffusion models learn distributions by modeling the reverse of a diffusion pro-
cess, termed a denoising process. Given a data point x, the diffusion (forward)
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process is defined as a Markov chain of T steps that gradually adds Gaussian
noise to the sample x. Because the sum of Gaussian distributed variables remains
Gaussian, we can define the probability distribution of an intermediate noisy step
z(t) for t ∈ [0, . . . , T ] as the following multivariate normal distribution:

q(z(t)|x) = N(z(t)|αtx,σ2t I), (57)

where αt ∈ R+ and σt ∈ R+ control how much signal is retained and how
much noise is added respectively. In general, αt is modelled by a function that
smoothly transitions from α0 ≈ 1 towards αT ≈ 0. A special case of noising
process is the variance preserving process (Sohl-Dickstein et al., 2015; Ho et al.,

2020), for which αt =
√
1− σ2t . Following Kingma et al. (2021), we define the

signal to noise ratio SNR(t) = α2t/σ
2
t , which simplifies notations. This diffusion

process is Markov and can be equivalently written with transition distributions
as:

q(z(t)|z(s)) = N(z(t)|αt|sz(s), σ2t|sI), (58)

for any t > s with αt|s = αt/αs and σ2
t|s

= σ2t − α2
t|s
σ2s . The entire noising

process is then written as:

q(z(0), z(1), . . . , z(T)|x) = q(z(0)|x)
∏T

t=1
q(z(t)|z(t− 1)). (59)

The posterior of the transitions conditioned on x gives the inverse of the noising
process, the true denoising process. It is also normal and given by:

q(z(s)|x, z(t)) = N(z(s)|µt→s(x, z(t)),σ2t→sI), (60)

where the definitions for µt→s(x, z(t)) and σt→s can be analytically obtained as

µt→s(x, z(t)) =
αt|sσ

2
s

σ2t
z(t) +

αsσ
2
t|s

σ2t
x and σt→s =

σt|sσs

σt
.

7.3.3 The Generative Denoising Process

In contrast to other generative models, in diffusion models, the generative pro-
cess is defined with respect to the true denoising process. The variable x, which
is unknown to the generative process, is replaced by an approximation x̂ =

ϕ(z(t), t) given by a neural network ϕ. Then the generative transition distribu-
tion p(z(s)|z(t)) is chosen to be q(z(s)|x̂(z(t), t), z(t)). Similarly to Eq. 60, it can
be expressed using the approximation x̂ as:

p(z(s)|z(t)) = N(z(s)|µt→s(x̂, z(t)),σ2t→sI). (61)
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With the choice s = t− 1, a variational lower bound on the log-likelihood of x
given the generative model is given by:

logp(x) ⩾ L0 +Lbase +
∑T

t=1
Lt, (62)

where L0 = logp(x|z(0)) models the likelihood of the data given z(0), Lbase =

−KL(q(z(T)|x)|p(z(T))) models the distance between a standard normal distribu-
tion and the final latent variable q(z(T)|x), and

Lt = −KL(q(z(s)|x, z(t))|p(z(s)|z(t))) for t = 1, . . . , T .

While in this formulation the neural network directly predicts x̂, Ho et al. (2020)
found that optimization is easier when predicting the Gaussian noise instead.
Intuitively, the network is trying to predict which part of the observation z(t) is
noise originating from the diffusion process, and which part corresponds to the
underlying data point x. Specifically, if z(t) = αtx+σtϵ, then the neural network
ϕ outputs ϵ̂ = ϕ(z(t), t), so that:

x̂ = (1/αt) z(t) − (σt/αt) ϵ̂ (63)

As shown in (Kingma et al., 2021), with this parametrization Lt simplifies to:

Lt = Eϵ∼N(0,I)

[1
2
(1− SNR(t− 1)/SNR(t))||ϵ− ϵ̂||2

]
(64)

In practice the term Lbase is close to zero when the noising schedule is defined in
such a way that αT ≈ 0. Furthermore, if α0 ≈ 1 and x is discrete, then L0 is close
to zero as well.

7.3.4 E(n) Equivariant Graph Neural Networks (EGNNs)

In this chapter, we will model the dynamics ϕ of the diffusion model, introduced
in Section 7.3.3, using the EGNN (Satorras et al., 2021b) from Chapter 5. However,
we introduce a further modification to the network that slightly improves its
performance. Given a fully connected graph G with nodes vi ∈ V, each node vi
is endowed with coordinates xi ∈ R3 as well as features hi ∈ Rd. We define this
new EGNN layer as:

mij = ϕe

(
hl
i, hl

j ,d2ij, aij
)

, hl+1
i = ϕh(hl

i,
∑
j̸=i

ẽijmij),

xl+1
i = xli +

∑
j̸=i

xli − xlj
dij + 1

ϕx

(
hl+1
i , hl+1

j ,d2ij, aij
)

, (65)
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where l indexes the layer, and dij = ∥xli − xlj∥2 is the euclidean distance between
nodes (vi, vj). Note that the difference (xli − xlj) in Equation 65 is normalized
by (dij + 1) as we previously did in 6 for improved stability. Additionally, in
this chapter, we modify the coordinate update function inputs ϕx, which now
takes as arguments (hl+1

i , hl+1
j ,d2ij, aij). In chapters 5 and 6, this function took

as an argument the output of the function ϕe. This modification results in less
parameter sharing and has shown slightly better performance.

The details on how the EGNN is integrated within the diffusion model are ex-
plained in the method Section 7.4. All learnable components (ϕe, ϕh, ϕx and
ϕinf) are parametrized by fully connected neural networks specified in Ap-
pendix D.1.1.

7.4 edm : e(3) equivariant diffusion model

In this section, we describe the EDM, an E(3) Equivariant Diffusion Model. EDM
defines a noising process for both node positions and features, and it uses the E(n)
Equivariant Graph Neural Network to learn the generative denoising process.

7.4.1 The Diffusion Process

We first define an equivariant diffusion process for coordinates xi with atom
features hi that adds noise to the data. Recall that we consider a set of points
{(xi, hi)}i=1,...,M, where each node has associated to it a coordinate representa-
tion xi ∈ Rn and an attribute vector hi ∈ Rnf. Let [·, ·] denote a concatenation. We
define the equivariant noising process on latent variables z(t) = [z(t)(x), z(t)(h)]

as:

q(z(t)|x, h) = Nxh(z(t)|αt[x, h],σ2t I) (66)

for t = 1, . . . , T where Nxh is concise notation for the product of two distributions,
one for the noised coordinates Nx and another for the noised features N given
by:

Nx(z(t)(x)|αtx,σ2t I) ·N(z(t)(h)|αth,σ2t I) (67)

These equations correspond to Equation 57 in a standard diffusion model. Also,
a slight abuse of notation is used to aid readability: technically x, h, z(t) are two-
dimensional variables with an axis for the point identifier and an axis for the
features. However, in the distributions they are treated as if flattened to a vector.

As explained in the previous chapter, Section 6.5.3, it is impossible to have a
non-zero distribution that is invariant to translations, as it cannot integrate to
one. However, one can use distributions on the linear subspace where the center
of gravity is always zero. Following (Xu et al., 2022), which showed that such a
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Algorithm 1 Optimizing EDM

Input: Data point x, neural network ϕ
Sample t ∼ U(0, . . . , T), ϵ ∼ N(0, I)
Subtract center of gravity from ϵ(x) in ϵ = [ϵ(x), ϵ(h)]
Compute z(t) = αt[x, h] + σtϵ
Minimize ||ϵ−ϕ(z(t), t)||2

Algorithm 2 Sampling from EDM

Sample z(t) ∼ N(0, I)
for t in T , T − 1, . . . , 1 where s = t− 1 do

Sample ϵ ∼ N(0, I)
Subtract center of gravity from ϵ(x) in ϵ = [ϵ(x), ϵ(h)]

zs = 1
αt|s

z(t) −
σ2
t|s

αt|sσt
·ϕ(z(t), t) + σt→s · ϵ

end for
Sample x, h ∼ p(x, h|z(0))

linear subspace can be consistently used in diffusion, Nx is defined as a normal
distribution on the subspace defined by

∑
i xi = 0. Recalling the definition from

previous Chapter 6.5.4, Nx

(
x | µ,σ2I

)
= (

√
2πσ)−(M−1)·n exp

(
− 1

2σ2 ∥x− µ∥2
)

.

Since the features h are invariant to E(n) transformations, the noise distribution
for these features can be the conventional normal distribution N.

7.4.2 The Generative Denoising Process

To define the generative process, the noise posteriors q(z(s)|x, h, z(t)) of Equa-
tion 66 can be used in the same fashion as in Equation 60 by replacing the data
variables x, h by neural network approximations x̂, ĥ:

p(z(s)|z(t)) = Nxh(z(s)|µt→s([x̂, ĥ], z(t)),σ2t→sI) (68)

where x̂, ĥ depend on z(t), t and the neural network ϕ. As conventional in mod-
ern diffusion models, we use the noise parametrization to obtain x̂, ĥ. Instead of
directly predicting them, the network ϕ outputs ϵ̂ = [ϵ̂(x), ϵ̂(h)] which is then
used to compute:

[x̂, ĥ] = z(t)/αt − ϵ̂t · σt/αt (69)

If ϵ̂t is computed by an equivariant function ϕ then the denoising distribution
in Equation 68 is equivariant. To see this, observe that rotating z(t) to Rz(t)
gives Rϵ̂t = ϕ(Rz(t), t). Furthermore, the mean of the denoising equation rotates
Rx̂ = Rz(t)(x)/αt − Rϵ̂

(x)
t σt/αt and since the noise is isotropic, the distribution

is equivariant as desired.
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To sample from the model, one first samples z(t) ∼ Nxh(0, I) and then iteratively
samples z(t− 1) ∼ p(z(t− 1)|z(t)) for t = T , . . . , 1 and then finally samples x, h ∼

p(x, h|z(0)), as described in Algorithm 2.

7.4.3 Optimization Objective

Recall that the likelihood term of this model is Lt = −KL(q(z(s)|x, z(t))||p(z(s)|z(t))).
Analogous to Equation 64, in this parametrization the term simplifies to:

Lt = Eϵt∼Nxh(0, I)
[1
2
w(t) ||ϵt − ϵ̂t||

2
]
, (70)

where w(t) = (1− SNR(t− 1)/SNR(t)) and ϵ̂t = ϕ(z(t), t). This is convenient:
even though parts of the distribution of Nxh operate on a subspace, the simplifi-
cation in Equation 64 also holds here, and can be computed for all components
belonging to x and h at once. There are three reason why this simplification re-
mains true: firstly, Nx and N within Nxh are independent, so the divergence can
be separated into two divergences. Further, the KL divergence between the Nx

components are still compatible with the standard KL equation for normal dis-
tributions, as they rely on a Euclidean distance (which is rotation invariant) and
the distributions are isotropic with equal variance. Finally, because of the simi-
larity in KL equations, the results can be combined again by concatenating the
components in x and h. An overview of the optimization procedure is given in
Algorithm 1.

Following (Ho et al., 2020) during training we set w(t) = 1 as it stabilizes training
and it is known to improve sample quality for images. Experimentally we also
found this to hold true for molecules: even when evaluating the probabilistic vari-
ational objective for which w(t) = (1− SNR(t− 1)/SNR(t)), the model trained
with w(t) = 1 outperformed models trained with the variational w(t).

In summary, we have defined a diffusion process, a denoising model and an
optimization objective between them. To further specify our model, we need to
define the neural network ϕ that is used within the denoising model.

7.4.4 The Dynamics

We learn the E(n) equivariant dynamics function [ϵ̂
(x)
t , ϵ̂(h)

t ] = ϕ(z(t)(x), z(t)(h), t)
of the diffusion model using the equivariant network EGNN introduced in Sec-
tion 7.3.4 in the following way:

ϵ̂
(x)
t , ϵ̂(h)

t = EGNN(z(t)(x), [z(t)(h), t/T ]) − [z(t)(x), 0 ]
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Notice that we simply input z(t)(x), z(t)(h) to the EGNN with the only difference
that t/T is concatenated to the node features. The estimated noise ϵ̂

(x)
t is given by

the output of the EGNN from which the input coordinates z(t)(x) are removed.
Importantly, since the outputs have to lie on a zero center of gravity subspace, the
component ϵ̂(x)t is projected down by subtracting its center of gravity. This then
satisfies the rotational and reflection equivariance on x̂ with the parametrization
in Equation 69. Additional details about the dynamics are provided in Appendix
D.1.1

7.4.5 Categorical Features

For categorical features such as atom type, the aforementioned integer represen-
tation is unnatural and can introduce bias. Instead of using integers for these
features, we operate directly on a one-hot representation. Suppose h is an ar-
ray with values representing categories in c1, ..., cd, such as atom types. Then,
h is encoded with a one-hot function, h 7→ honehot, such that honehoti, j =

1hi = cj. The noising process over z(t)(h) can then be directly defined using
the one-hot representation honehot, similar to its definition for integer values, i.e.,
q(z(t)(h)|h) = N(z(t)(h)|αthonehot,σ2t I). The only difference is that z(t)(h) has
an additional dimension axis with a size equal to the number of categories. Since
the data is discrete and the noising process is assumed to be well defined, we
can define probability parameters p to be proportional to the normal distribu-
tion integrated from 1− 1

2 to 1+ 1
2 using the same reasoning as for integer data.

Intuitively, when a small amount of noise is sampled and added to the one-hot
representation, the value corresponding to the active class will almost certainly
fall between 1− 1

2 and 1+ 1
2 :

p(h|z(0)(h)) = C(h|p), p ∝
∫1+ 1

2

1− 1
2

N(u|z(0)(h),σ0)du

Where p is normalized to sum to one and C represents a categorical distribution.
In practice, this distribution will almost certainly equal one for values of z(0)(h)

that were sampled from the diffusion process given h.

7.4.6 Scaling Features

Coordinates and atom types each represent different physical quantities. Conse-
quently, we can establish a relative scaling among them. While normalizing these
features simplifies their processing for the neural network, relative scaling has
a more profound impact on the model. For instance, when the features h are
defined on a smaller scale than the coordinates x, the denoising process tends
to initially determine rough positions and only decide on the atom types after-
wards. Our empirical findings indicate that defining the input to our EDM model
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as [x, 0.25 honehot] significantly enhances performance compared to non-scaled in-
puts

7.4.7 Modelling the Number of Atoms

In the above sections we have considered the number of atoms M to be known
beforehand. To accommodate molecules of varying sizes, we calculate the categor-
ical distribution p(M) of molecule sizes based on the training set. To sample from
the model p(x, h,M), we first sampleM ∼ p(M), and then sample x, h ∼ p(x, h|M)

from the EDM. Although this conditioning on M is often omitted for clarity, it
remains an important part of the generative process.

7.4.8 Conditional Generation

In this section we describe a straightforward extension to the proposed method to
do conditional generation x, h ∼ p(x, h|c) given some desired property c. We can
define the optimization lower bound for the conditional case as logp(x, h|c) ⩾
Lc,0 + Lc,base +

∑T
t=1 Lc,t, where the different Lc,t for 1 ⩽ t < T − 1 are de-

fined similarly to Equation 70, with the important difference that the function
ϵ̂t = ϕ(z(t), [t, c]) takes as additional input a property c which is concatenated
to the nodes features. Given a trained conditional model we define the gener-
ative process by first sampling the number of nodes M and a property value
c from a parametrized distribution c,M ∼ p(c,M) defined in Appendix D.5.
Next, we can generate molecules x, h given c, M using our Conditional EDM
x, h ∼ p(x, h|c,M).

7.5 related work

Diffusion models (Sohl-Dickstein et al., 2015) are generative models that have
been recently connected to score-based methods through denoising diffusion
models (Song and Ermon, 2019; Ho et al., 2020). This new family of generative
models has proven to be very effective in generating data such as images (Ho
et al., 2020; Nichol and Dhariwal, 2021).

In molecule generation, there are some recent methods that generate molecules
directly in their 3D form. G-Schnet (Gebauer et al., 2019) defines an autoregres-
sive distribution from which atoms can be iteratively sampled, and can be used
for targeted generation (Gebauer et al., 2021). E-NF (Satorras et al., 2021a, Chap-
ter 6) defines an equivariant normalizing flow via a differential equation. Instead
of integrating a differential equation, our method learns to denoise a diffusion
process, which scales more favourably during training.
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Figure 22: Selection of samples generated by the denoising process of our EDM trained
on QM9 (up) and GEOM-DRUGS (down).

A related branch of literature is concerned with predicting coordinates from
molecular graphs, referred to as the conformation. Examples of such methods uti-
lize conditional VAEs (Simm and Hernández-Lobato, 2019), Wasserstein GANs
(Hoffmann and Noé, 2019), and normalizing flows (Noé et al., 2019), with adap-
tations for Euclidean symmetries in (Köhler et al., 2020b; Xu et al., 2021b; Simm
et al., 2021; Ganea et al., 2021; Guan et al., 2021) resulting in performance im-
provements. In recent works (Shi et al., 2021; Luo et al., 2021; Xu et al., 2022), it
was shown that score-based and diffusion models are effective at coordinate pre-
diction, especially when the underlying neural network respects the symmetries
of the data. Our work can be seen as an extension of these methods that incor-
porates discrete atom features, and further derives the equations required for
log-likelihood computation. In the context of diffusion for discrete variables, un-
related to molecule modelling, discrete diffusion processes have been proposed
(Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021). However,
for 3D molecule generation these would require a separate diffusion process for
the discrete features and the continuous coordinates. Instead, we define a joint
process for both of them.

Tangentially related, other methods generate molecules in graph representation.
Examples include autoregressive methods such as (Liu et al., 2018; You et al.,
2018; Liao et al., 2019), and one-shot approaches such as (Simonovsky and Ko-
modakis, 2018; De Cao and Kipf, 2018; Bresson and Laurent, 2019; Kosiorek et al.,
2020; Krawczuk et al., 2021). However, such methods do not provide conformer
information, which is useful for many downstream tasks.

7.6 experiments

7.6.1 Molecule Generation | QM9

QM9 (Ramakrishnan et al., 2014) is a standard dataset that contains molecular
properties and atom coordinates for 130k small molecules with up to 9 heavy
atoms (29 atoms including hydrogens). In this experiment, we train EDM to un-
conditionally generate molecules with 3-dimensional coordinates, atom types (H,
C, N, O, F), and integer-valued atom charges. We use the train/val/test partitions
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Table 12: Neg. log-likelihood − logp(x, h,M), atom stability and molecule stability with
standard deviations across 3 runs on QM9, each drawing 10000 samples from the model.

# Metrics NLL Atom stable (%) Mol stable (%)

E-NF -59.7 85.0 4.9
G-Schnet N.A 95.7 68.1

GDM -94.7 97.0 63.2
GDM-aug -92.5 97.6 71.6
EDM (ours) −110.7±1.5 98.7±0.1 82.0±0.4

Data 99.0 95.2

introduced in (Anderson et al., 2019), which consist of 100K/18K/13K samples
respectively for each partition.

metrics : Following (Satorras et al., 2021a), we use the distance between pairs
of atoms and the atom types to predict bond types (single, double, triple or
none). We then measure atom stability (the proportion of atoms that have the
right valency) and molecule stability (the proportion of generated molecules for
which all atoms are stable).

baselines : We compare EDM to two existing E(3) equivariant models: G-
Schnet (Gebauer et al., 2019) and Equivariant Normalizing Flows (E-NF) (Sator-
ras et al., 2021a). For G-Schnet, we extracted 10000 samples from the publicly
available code to run the analysis. To demonstrate the benefits of equivariance,
we also perform an ablation study and run a non-equivariant variation of our
method that we call Graph Diffusion Models (GDM). The Graph diffusion model
is run with the same configuration as our method, except that the EGNN is
replaced by a non-equivariant graph network defined in Appendix D.2. We also
experiment with GDM-aug, where the GDM model is trained on data augmented
with random rotations. All models use 9 layers, 256t features per layer, and SiLU
activations. They are trained using Adam with a batch size of 64 and a learning
rate of 10−4.

results : Results are reported in Table 12. Our method outperforms previous
methods (E-NF and G-Schnet), as well as its non-equivariant counterparts on all
metrics. It is interesting to note that the negative log-likelihood of the EDM is
much lower than other models, which indicates that it is able to create sharper
peaks in the model distribution.

Further, EDMs are compared to one-shot graph-based molecule generation mod-
els that do not operate on 3D coordinates: GraphVAE (Simonovsky and Ko-
modakis, 2018), GraphTransformerVAE (Mitton et al., 2021), and Set2GraphVAE
(Vignac and Frossard, 2021). For G-Schnet and EDM, the bonds are directly
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Table 13: Validity and uniqueness over 10000 molecules with standard deviation across 3
runs. Results marked (*) are not directly comparable, as they do not use 3D coordinates
to derive bonds. H: model hydrogens explicitly

Method H Valid (%) Valid and Unique (%)

Graph VAE (*) 55.7 42.3
GTVAE (*) 74.6 16.8
Set2GraphVAE (*) 59.9±1.7 56.2±1.4

EDM (ours) 97.5±0.2 94.3±0.2

E-NF ✓ 40.2 39.4
G-Schnet ✓ 85.5 80.3
GDM-aug ✓ 90.4 89.5
EDM (ours) ✓ 91.9±0.5 90.7±0.6

Data ✓ 97.7 97.7

derived from the distance between atoms. We report validity (as measured by
RDKit) and uniqueness of the generated compounds. Following (Vignac and
Frossard, 2021) novelty is not included here. For a discussion on the issues with
the novelty metric, see Appendix D.2. As can be seen in Table 13, the EDM is
able to generate a very high rate of valid and unique molecules. This is impres-
sive since the 3D models are at a disadvantage in this metric, as the rules to
derive bonds are very strict. Interestingly, even when including hydrogen atoms
in the model, the performance of the EDM does not deteriorate much. A possible
explanation is that the equivariant diffusion model scales effectively and learn
very precise distributions, as evidenced by the low negative log-likelihood.

7.6.2 Conditional Molecule Generation

In this section, we aim to generate molecules targeting some desired properties.
This can be of interest towards the process of drug discovery where we need to
obtain molecules that satisfy specific properties. We train our conditional diffu-
sion model from Section 7.4.8 in QM9 conditioning the generation on properties
α, gap, homo, lumo, µ and Cv described in more detail in Appendix D.5. In order
to assess the quality of the generated molecules w.r.t. to their conditioned prop-
erty, we use the property classifier network ϕc from Satorras et al. (2021b). We
split the QM9 training partition into two halves Da,Db of 50K samples each. The
classifier ϕc is trained on the first half Da, while the Conditional EDM is trained
on the second halfDb. Then, ϕc is evaluated on the EDM conditionally generated
samples. We also report the loss of ϕc on Db as a lower bound named "QM9 (L-
bound)". The better EDM approximates Db the smaller the gap between "EDM"
and "QM9 (L-bound)". Further implementation details are reported in Appendix
D.5.
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Figure 23: Generated molecules by our Conditional EDM when interpolating among dif-
ferent Polarizability α values with the same reparametrization noise ϵ. Each α value is
provided on top of each image.

Table 14: Mean Absolute Error for molecular property prediction by a EGNN classifier ϕc

on a QM9 subset, EDM generated samples and two different baselines "Naive (U-bounds)"
and "# Atoms".

Task α ∆ε εHOMO εLUMO µ Cv

Units Bohr3 meV meV meV D cal
mol K

Naive (U-bound) 9.01 1470 645 1457 1.616 6.857
#Atoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
QM9 (L-bound) 0.10 64 39 36 0.043 0.040

baselines : We provide two baselines in which molecules are to some extent
agnostic to their respective property c. In the first baseline we simply remove any
relation between molecule and property by shuffling the property labels in Db

and then evaluating ϕc on it. We name this setting "Naive (Upper-Bound)". The
second baseline named "#Atoms" predicts the molecular properties inDb by only
using the number of atoms in the molecule. If "EDM" overcomes "Naive (Upper-
Bound)" it should be able to incorporate conditional property information into
the generated molecules. If it overcomes "#Atoms" it should be able to incorporate
it into the molecular structure beyond the number of atoms.

results (quantitative): Results are reported in Table 14. EDM outper-
forms both "Naive (U-bound)" and "#Atoms" baselines in all properties (except µ)
indicating that it is able to incorporate property information into the generated
molecules beyond the number of atoms for most properties. However, we can see
there is still room for improvement by looking at the gap between "EDM" and
"QM9 (L-bound)".

results (qualitative): In Figure 23, we interpolate the conditional genera-
tion among different Polarizability values α while keeping the noise ϵ fixed. The
Polarizability is the tendency of a molecule to acquire an electric dipole moment
when subject to an external electric field. We can expect less isometrically shaped
molecules for large α values. This is the obtained behavior in Figure 23 – we
show that this behavior is consistent across different runs in Appendix D.5.
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Table 15: Neg. log-likelihood, atom stability and Wasserstein distance between generated
and training set energy distributions.

# Metrics NLL Atom stability (%) W

GDM − 14.2 75.0 3.32
GDM-aug − 58.3 77.7 4.26
EDM −137.1 81.3 1.41

Data 86.5 0.0

7.6.3 GEOM-Drugs

While QM9 features only small molecules, GEOM (Axelrod and Gomez-Bombarelli,
2020) is a larger scale dataset of molecular conformers. It features 430, 000molecules
with up to 181 atoms and an average of 44.4 atoms. For each molecule, many con-
formers are provided along with their energy. From this dataset, we retain the 30
lowest energy conformations for each molecule. The models are trained to gener-
ate the 3D positions and atom types of these molecules. All models use 4 layers,
256 features per layer, and are trained using Adam with a batch size of 64 and a
learning rate of 10−4.

Since molecules in this dataset are larger and have more complex structures, pre-
dicting the bond types using the atom types and the distance between atoms
with lookup tables results in more errors than on QM9. For this reason, we only
report the atom stability, which measures 86.5% stable atoms on the dataset. In-
tuitively, this metric describes the percentage of atoms that have bonds within
typical ranges – ideally, generative models should generate a comparable num-
ber of stable atoms. In Table 15 we can see that the EDM outperforms its non-
equivariant counterparts on all metrics. In particular, EDM is able to capture the
energy distribution well, as seen in the histograms in Appendix D.2.

7.7 conclusions

In this chapter, we introduced an E(3) Equivariant Diffusion Model (EDM) for
3D molecule generation. This model builds upon the E(n) Equivariant Graph
Neural Networks from Chapter 5 and addresses the primary scalability limita-
tions found in Equivariant Normalizing Flows from Chapter 6. To the best of our
knowledge, EDM is the first diffusion model for 3D molecule generation, estab-
lishing a new benchmark in literature. We demonstrate that our model provides
superior results to previous molecular generative models and scales to larger
molecular data such as GEOM-DRUGS.
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Deep learning generative methods hold potential to impact the field of molec-
ular sciences. Particularly, subsequent to this work, numerous diffusion models
for molecule generation are influencing application such as molecule-ligand in-
teractions (Igashov et al., 2022; Schneuing et al., 2022), drug discovery (Isert et al.,
2023) and material design (Zeni et al., 2023).



8
C O N C L U S I O N S

8.1 summary of conclusions

The main contribution of this thesis has been the enhancement of Graph Neural
Networks (GNNs) through the incorporation of physics-based inductive biases,
yielding significant improvements across a range of applications, with a particu-
lar emphasis on molecular modeling.

The initial part of the thesis explores the combination of recent advances in GNNs
with more traditional methods of graphical inference. The result is a hybrid al-
gorithm that benefits from both the inductive bias of graphical models and the
high expressivity in data-driven inference of neural networks. The proposed hy-
brid algorithm demonstrates better performance than its individual components
when run in isolation on a variety of tasks such as estimating chaotic trajectories.

Subsequently, the thesis presents a GNN designed to be equivariant to Euclidean
transformations in a 3D space, a symmetry group with many important real-
world applications such as molecular modeling. We named this model E(n) Equiv-
ariant Graph Neural Networks (EGNN). This EGNN is computationally efficient,
simple to implement, and outperforms more expensive equivariant networks in
molecular property prediction and dynamics forecasting. The efficiency and ef-
ficacy of the EGNN have made the network a valuable tool adopted in a wide
variety of subsequent works in the context of molecular sciences, as mentioned
in Section 1.3.

Further advancing the field of deep learning for molecular modeling, the thesis
extends the EGNN to build E(n) Equivariant Generative Models, with a focus on
molecular structure generation in three dimensions. The E(n) Equivariant Nor-
malizing Flows (E-NFs) and the E(3) Equivariant Diffusion Model (EDM), the lat-
ter offering superior performance and scalability than previous literature. These
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advancements in generative models have begun to influence applications in drug
design and material sciences.

8.2 research questions

Having introduced our work, we can now attempt to answer the research ques-
tions:

Research Question 1: How can we benefit from both the expressivity of GNNs and the
generalization and data efficiency of graphical models?

This thesis has demonstrated that it is possible to leverage the generalization
capabilities of graphical models with the expressivity of GNNs. Through the de-
sign of a hybrid message-passing framework, we achieved better performance
and generalization than pure graphical inference or pure GNN data-learned in-
ference in a variety of tasks, such as estimating chaotic trajectories.

Research Question 2: How can we build effective and yet fast graph neural networks
that are equivariant to Euclidan transformations?

By developing E(n) Equivariant Graph Neural Networks (EGNNs), we have demon-
strated that it is possible to obtain an equivariant GNN that is both efficient and
effective. This thesis has demonstrated the competitive performance of the EGNN
in a variety of tasks such as molecular property prediction and the design of new
equivariant generative models. Additionally, the EGNN’s adoption in many sub-
sequent works highlights its utility in addressing practical challenges in fields
where Euclidean symmetries are inherent in the data.

Research Question 3: How can we construct E(3) equivariant generative models and
what advancements do they offer in the generation of molecular structures?

This thesis made substantial contributions to the field of generative modeling
in 3D Euclidean spaces by introducing E(n) Equivariant Normalizing Flows (E-
NFs) and E(3) Equivariant Diffusion Models (EDMs). These methods represent a
significant step forward in the generation of 3D molecular structures. The EDM,
in particular, has set a new benchmark in 3D molecule generation, demonstrating
better performance and scalability than previous literature. The impact of these
models is beginning to influence applications in drug discovery and material
design, holding potential to revolutionize molecular sciences.
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8.3 limitations and future work

Despite the meaningful contributions presented in this thesis, they are just a
small step towards the potential that machine learning has to disrupt a field such
as molecular sciences.

Machine learning can potentially disrupt high-impact applications within molec-
ular sciences, such as drug discovery, material design, and modeling chemical
reactions, all of which can have a significant and hopefully positive impact in
the real world. To reach a turning point where machine learning methods out-
perform classical chemistry methods, these models may need to become more
accurate than the ones proposed in this thesis and more efficient than current
methods used in computational chemistry.

For instance, if we could scale up a diffusion generative model, as presented in
Chapter 7, to generalize across a wide variety of systems and provide highly ac-
curate structures when conditioned on desired properties or structures, it would
be an invaluable tool in tasks like material design, finding ligands given protein
structures or catalysts for a desired chemical reaction. However, the methods pre-
sented in this thesis, such as Equivariant Diffusion Models (EDM) using E(n)
Equivariant Graph Neural Networks, are limited to a small training domain, e.g.,
QM9 or Geom-Drugs.

While in domains like Computer Vision and Natural Language Processing, a
solution to obtain more accurate machine learning models has been to simply
scale up models with deeper networks and more training samples (Ramesh et
al., 2021). In molecular sciences, we often face a slightly different paradigm re-
garding the nature of training samples. For instance, in Computer Vision, data
is obtained from the real world and is accessible in huge quantities online. In
contrast, in chemistry, the QM9 dataset used in the experiments of Chapters 5, 6,
7 was obtained with costly ab initio methods, such as Density Functional Theory
computations based on quantum mechanics.

This reliance on classical methods for data generation to train machine learn-
ing models can result in a ’chicken and egg’ problem, wherein the goal of the
machine learning model is to approximate a similar distribution as the one we
can already model with classical methods but more efficiently. However, this
limitation also comes with a potential benefit: we have access to the equations
that define these ab initio methods. Throughout this thesis, we have shown how
to leverage prior knowledge, specifically, in Chapters 3 and 4 we have shown
how to combine both physics equations with machine learning models, inferring
more accurate trajectories of a Lorenz oscillator with fewer samples by leverag-
ing the differential equations that define the trajectories. We have also leveraged
Euclidean symmetry constraints in Chapters 5, 6, and 7.
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This brings us to new research questions: Can we further leverage symmetries
or prior knowledge present in physics, such as the energy conservation law,
pre-defined interactions in force fields, or the anti-symmetry of electron inter-
actions? Can we define better machine learning models that are efficient and
accurate enough to significantly disrupt the field of molecular sciences through
these newly defined inductive biases?
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A P P E N D I C E S





A
H Y B R I D I N F E R E N C E I N M A R K O V C H A I N S

a.1 equation details the for linear dynamics experiment

Linear and Gaussian dataset matrices:

The differential equations that describe the dynamics are (c = 0.06, τ = 0.17):

∂p
∂t

= v,
∂v
∂t

= a − cv,
∂a
∂t

= −τv (71)

Therefore, the dynamics matrix is defined as:

ẋ = Ax =

0 1 0

0 −c 1

0 −τ 0


p

v

a

 (72)

Using the following Taylor expansion we find the transition matrix F̃

F̃ = I +
K∑

k=1

(A∆t)k

k!
(73)

The transition matrix F̃ for each dimension is:

F̃ =

1 ∆t− c
2∆t

2 ∆t2

2

0 1− c∆t+ c2−τ
2 ∆t2 ∆t− c

2∆t
2

0 −τ∆t+ τc
2 ∆t

2 1− τ
2∆t

2

 (74)
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Then, the transition matrix and noise distributions are:

F =

[
F̃ 0

0 F̃

]
,Q̃ =

∆t/3 0 0

0 ∆t 0

0 0 3∆t

 , Q = 0.12
[

Q̃ 0

0 Q̃

]
,

The measurement matrix and noise distribution are:

G =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
, R = 0.52

[
1 0

0 1

]

Linear and Gaussian matrices used for hybrid and GM-messages models:

The differential equations that describe the dynamics are:

∂p
∂t

= v,
∂v
∂t

= 0,
∂a
∂t

= 0 (75)

Then the transition matrix given the last equations is:

F̃ =

[
1 ∆t

0 1

]
(76)

And the transition matrix and noise distributions are:

F =

[
F̃ 0

0 F̃

]
,Q̃ =

[
∆t 0

0 ∆t

]
Q =

[
σ2Q̃ 0

0 σ2Q̃

]
,

(77)

Finally the measurement distribution matrices are:

G =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
, R = 0.52

[
1 0

0 1

]
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Such that the only parameter to optimize from the graphical model is the variance
of the transition noise distribution σ

a.1.1 Equation details for the NCLT dataset

For the NCLT dataset we use the uniform velocity motion equations. The differ-
ential equations that describe the dynamics are:

∂p
∂t

= v,
∂v
∂t

= 0,
∂a
∂t

= 0 (78)

Such that the transition matrix for one component is:

F̃ =

[
1 ∆t

0 1

]
, (79)

And the transition matrix and noise distribution are:

F =

[
F̃ 0

0 F̃

]
,Q̃ =

[
∆t 0

0 ∆t

]
Q =

[
σ2Q̃ 0

0 σ2Q̃

]
,

(80)

Finally the measurement distribution matrices are:

G =

[
1 0 0 0

0 0 1 0

]
, R = λ2

[
1 0

0 1

]

Such that the only parameters to optimize from the graphical model is the vari-
ance of the noise and measurement distributions σ and λ.





B
E ( N ) E Q U I VA R I A N T G R A P H N E U R A L N E T W O R K S

b.1 equivariance proof

In this section we prove that our model is translation equivariant on X =

(x1, . . . , xM) ∈ RM×n for any translation vector g ∈ Rn and it is rotation and
reflection equivariant on X for any orthogonal matrix Q ∈ Rn×n. Let QX be
shorthand for (Qx1, . . . , QxM) and X + g be shorthand for (x1 + g, . . . , xM + g).
We will prove the model satisfies:

QXl+1 + g, Hl+1 = EGCL(QXl + g, Hl)

We will analyze how a translation and rotation of the input coordinates propa-
gates through our model. We start assuming H0 is invariant to E(n) transforma-
tions on X, in other words, we do not encode any information about the absolute
position or orientation of X0 into H0. Then, the output mij of Equation 42 will be
invariant too since the distance between two particles is invariant to translations
∥xli + g − [xlj + g]∥2 = ∥xli − xlj∥

2, and it is invariant to rotations and reflections
∥Qxli −Qxlj∥

2 = (xli − xlj)
⊤Q⊤Q(xli − xlj) = (xli − xlj)

⊤I(xli − xlj) = ∥xli − xlj∥
2 such

that the edge operation becomes invariant:

mi,j = ϕe

(
hl
i, hl

j ,
∥∥∥Qxli + g − [Qxlj + g]

∥∥∥2 , aij

)
= ϕe

(
hl
i, hl

j ,
∥∥∥xli − xlj

∥∥∥2 , aij

)

The second equation of our model (eq. 43) that updates the coordinates xi is E(n)
equivariant. Following, we prove its equivariance by showing that an E(n) trans-
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formation of the input leads to the same transformation of the output. Notice
mij is already invariant as proven above. We want to show:

Qxl+1
i + g = Qxli + g +C

∑
j ̸=i

(
Qxli + g − [Qxlj + g]

)
ϕx

(
mi,j

)

Derivation.

Qxli + g +C
∑
j̸=i

(
Qxli + g − Qxlj − g

)
ϕx

(
mi,j

)
= Qxli + g + QC

∑
j ̸=i

(
xli − xlj

)
ϕx

(
mi,j

)

= Q

xli +C
∑
j̸=i

(
xli − xlj

)
ϕx

(
mi,j

)+ g

= Qxl+1
i + g

Therefore, we have proven that rotating and translating xli results in the same
rotation and translation on xl+1

i at the output of Equation 43.

Furthermore equations 44 and 45 only depend on mij and hl
i which as saw at the

beginning of this proof, are E(n) invariant, therefore the output of Equation 45

hl+1
i will be invariant too. Thus concluding that a transformation Qxli + g on xli

will result in the same transformation on xl+1
i while hl+1

i will remain invariant
to it such that QXl+1 + g, Hl+1 = EGCL(QXl + g, Hl) is satisfied.
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b.2 re-formulation for velocity type inputs

In this section we write down the EGNN transformation layer Hl+1, Xl+1, Vl+1 =

EGCL[Hl, Xl, Vinit,E] that can take in velocity input and output channels. We also
prove it remains E(n) equivariant.

mij = ϕe

(
hl
i, hl

j ,
∥∥∥xli − xlj

∥∥∥2 , aij

)
vl+1
i = ϕv

(
hl
i

)
vinit
i +C

∑
j̸=i

(
xli − xlj

)
ϕx

(
mij

)
xl+1
i = xli + vl+1

i

mi =
∑
j̸=i

mij

hl+1
i = ϕh

(
hl
i, mi

)

b.2.1 Equivariance proof for velocity type inputs

In this subsection we prove that the velocity types input formulation of our model
is also E(n) equivariant on X. More formally, for any translation vector g ∈ Rn

and for any orthogonal matrix Q ∈ Rn×n, the model should satisfy:

Hl+1, QXl+1 + g, QVl+1 = EGCL[Hl, QXl + g, QVinit,E]

In Appendix B.1 we already proved the equivariance of our EGNN (Section 5.3)
when not including vector type inputs. In its velocity type inputs variant we only
replaced its coordinate updates (Eq. 43) by Equation 46 that includes velocity.
Since this is the only modification we will only prove that Equation 46 re-written
below is equivariant.

vl+1
i = ϕv

(
hl
i

)
vinit
i +C

∑
j̸=i

(
xli − xlj

)
ϕx

(
mij

)
xl+1
i = xli + vl+1

i

First, we prove the first line preserves equivariance, that is we want to show:

Qvl+1
i = ϕv

(
hl
i

)
Qvinit

i +C
∑
j ̸=i

(
Qxli + g − [Qxlj + g]

)
ϕx

(
mij

)
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Derivation.

ϕv

(
hl
i

)
Qvinit

i +C
∑
j ̸=i

(
Qxli + g − [Qxlj + g]

)
ϕx

(
mij

)
(81)

= Qϕv

(
hl
i

)
vinit
i + QC

∑
j̸=i

(
xli − xlj

)
ϕx

(
mij

)
(82)

= Q

ϕv

(
hl
i

)
vinit
i +C

∑
j̸=i

(
xli − xlj

)
ϕx

(
mij

) (83)

= Qvl+1
i (84)

Finally, it is straightforward to show the second equation is also equivariant, that
is we want to show Qxl+1

i + g = Qxli + g + Qvl+1
i

Derivation.

Qxli + g + Qvl+1
i = Q

(
xli + vl+1

i

)
+ g

= Qxl+1
i + g

Concluding we showed that an E(n) transformation on the input set of points re-
sults in the same transformation on the output set of points such that Hl+1, QXl+1+

g, QVl+1 = EGCL[Hl, QXl + g, QVinit,E] is satisfied.

b.3 implementation details

In this Appendix section we describe the implementation details of the experi-
ments. First, we describe those parts of our model that are the same across all
experiments. Our EGNN model from Section 5.3 contains the following three
main learnable functions.

The edge function ϕe (Eq. 42) is a two layers MLP with two Swish non-linearities:
Input −→ {LinearLayer() −→ Swish() −→ LinearLayer() −→ Swish() } −→ Output.

The coordinate function ϕx (Eq. 43) consists of a two layers MLP with one non-
linearity: mij −→ {LinearLayer() −→ Swish() −→ LinearLayer() } −→ Output.

The node function ϕh (Eq. 45) consists of a two layers MLP with one non-linearity
and a residual connection: [hl

i, mi] −→ {LinearLayer() −→ Swish() −→ LinearLayer()
−→ Addition(hl

i) } −→ hl+1
i .

These functions are used in our EGNN across all experiments. Notice the GNN
(Eq. 39) also contains and edge operation and a node operation ϕe and ϕh re-
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spectively. We use the same functions described above for both the GNN and the
EGNN such that comparisons are as fair as possible.

b.3.1 Implementation details for Dynamical Systems

b.3.1.1 Dataset

In the dynamical systems experiment we used a modification of the Charged
Particle’s N-body (N=5) system from Kipf et al., 2018. Similarly to Fuchs et al.,
2020, we extended it from 2 to 3 dimensions customizing the original code from
(https://github.com/ethanfetaya/NRI) and we removed the virtual boxes that
bound the particle’s positions. The sampled dataset consists of 3.000 training tra-
jectories, 2.000 for validation and 2.000 for testing. Each trajectory has a duration
of 1.000 timesteps. To move away from the transient phase, we actually generated
trajectories of 5.000 time steps and sliced them from timestep 3.000 to timestep
4.000 (1.000 time steps into the future) such that the initial conditions are more
realistic than the Gaussian Noise initialization from which they are initialized.

In our second experiment, we sweep from 100 to 50.000 training samples, for this
we just created a new training partition following the same procedure as before
but now generating 50.000 trajectories instead. The validation and test partition
remain the same from last experiment.

b.3.1.2 Models

All models are composed of 4 layers, the details for each model are the following.

EGNN: For the EGNN we use its variation that considers vector type inputs
from Section 5.3.2. This variation adds the function ϕv to the model which is
composed of two linear layers with one non-linearity: Input −→ {LinearLayer() −→
Swish() −→ LinearLayer() } −→ Output. Functions ϕe, ϕx and ϕh that define our
EGNN are the same than for all experiments and are described at the beginning
of this Appendix B.3.

GNN: The GNN is also composed of 4 layers, its learnable functions edge opera-
tion ϕe and node operation ϕh from Equation 39 are exactly the same as ϕe and
ϕh from our EGNN introduced in Appendix B.3. We chose the same functions
for both models to ensure a fair comparison. In the GNN case, the initial posi-
tion P0 and velocity V0 from the particles is passed through a linear layer and
inputted into the GNN first layer H0. The particle’s charges are inputted as edge
attributes aij := cicj. The output of the GNN HL is passed through a two layers
MLP that maps it to the estimated position.

Radial Field: The Radial Field algorithm is described in the Related Work 5.4, its
only parameters are contained in its edge operation ϕrf() which in our case is
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a two layers MLP with two non linearities Input −→ {LinearLayer() −→ Swish()
−→ LinearLayer() −→ Tanh } −→ Output. Notice we introduced a Tanh at the end
of the MLP which fixes some instability issues that were causing this model to
diverge in the dynamical system experiment. We also augmented the Radial Field
algorithm with the vector type inputs modifications introduced in Section 5.3.2.
In addition to the norms between pairs of points, ϕrf() also takes as input the
particle charges cicj.

Tensor Field Network: We used the Pytorch implementation from https://github.

com/FabianFuchsML/se3-transformer-public. We swept over the parameters, de-
gree ∈ {2, 3, 4}, number of features ∈ {12, 24, 32, 64, 128}. We got the best per-
formance in our dataset for degree 2 and number of features 32. We used the
Relu activation layer instead of the Swish for this model since it provided better
performance.

SE(3) Transformers: For the SE(3)-Transformer we used code from https://github.

com/FabianFuchsML/se3-transformer-public. Notice this implementation has
only been validated in the QM9 dataset but it is the only available implemen-
tation of this model. We swept over different hyperparamters degree ∈ {1, 2, 3, 4},
number of features ∈ 16, 32, 64 and divergence ∈ {1, 2}, along with the learning
rate. We obtained the best performance for degree 3, number of features 64 and
divergence 1. As in Tensor Field Networks we obtained better results by using
the Relu activation layer instead of the Swish.

b.3.1.3 Other implementation details

In Table 6 all models were trained for 10.000 epochs, batch size 100, Adam opti-
mizer, the learning rate was fixed and independently chosen for each model. All
models are 4 layers deep and the number of training samples was set to 3.000.

b.3.2 Implementation details for Graph Autoneoders

b.3.2.1 Dataset

In this experiment we worked with Community Small (You et al., 2018) and
Erdos&Renyi (Bollobás, 1998) generated datasets.

• Community Small: We used the original code from You et al., 2018 (https:
//github.com/JiaxuanYou/graph-generation) to generate a Community
Small dataset. We sampled 5.000 training graphs, 500 for validation and
500 for testing.

• Erdos&Renyi is one of the most famous graph generative algorithms. We
used the "gnp_random_graph(M, p)" function from (https://networkx.org/)
that generates random graphs when povided with the number of nodes M

https://github.com/FabianFuchsML/se3-transformer-public
https://github.com/FabianFuchsML/se3-transformer-public
https://github.com/FabianFuchsML/se3-transformer-public
https://github.com/FabianFuchsML/se3-transformer-public
https://github.com/JiaxuanYou/graph-generation
https://github.com/JiaxuanYou/graph-generation
https://networkx.org/
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and the edge probability p following the Erdos&Renyi model. Again we
generated 5.000 graphs for training, 500 for validation and 500 for testing.
We set the edge probability (or sparsity value) to p = 0.25 and the number
of nodes M ranging from 7 to 16 deterministically uniformly distributed.
Notice that edges are generated stochastically with probability p, therefore,
there is a chance that some nodes are left disconnected from the graph,
"gnp_random_graph(M, p)" function discards these disconnected nodes
such that even if we generate graphs setting parameters to 7 ⩽ M ⩽ 16

and p = 0.25 the generated graphs may have less number of nodes.

Finally, in the graph autoencoding experiment we also overfitted in a small par-
tition of 100 samples (Table 14) for the Erdos&Renyi graphs described above. We
reported results for different p values ranging from 0.1 to 0.9. For each p value
we generated a partition of 100 graphs with initial number of nodes between
7 ⩽M ⩽ 16 using the Erdos&Renyi generative model.

b.3.2.2 Models

All models consist of 4 layers, 64 features for the hidden layers and the Swish ac-
tivation function as a non linearity. The EGNN is defined as explained in Section
5.3 without any additional modules (i.e. no velocity type features or inferring
edges). The functions ϕe, ϕx and ϕh are defined at the beginning of this Ap-
pendix B.3. The GNN (Eq. 39) mimics the EGNN in terms that it uses the same
ϕh and ϕe than the EGNN for its edge and node updates. The Noise-GNN is
exactly the same as the GNN but inputting noise into the H0 features. Finally the
Radial Field was defined in the Related Related work Section 5.4 which edge’s
operation ϕrf consists of a two layers MLP: Input −→ { Linear() −→ Swish() −→
Linear() } −→ Output.

b.3.2.3 Other implementation details

All experiments have been trained with learning rate 10−4, batch size 1, Adam
optimizer, weight decay 10−16, 100 training epochs for the 5.000 samples sized
datasets performing early stopping for the minimum Binary Cross Entropy loss
in the validation partition. The overfitting experiments were trained for 10.000
epochs on the 100 samples subsets.

b.3.3 Implementation details for QM9

For QM9 Ramakrishnan et al., 2014 we used the dataset partitions from Ander-
son et al., 2019. We imported the dataloader from his code repository (https:
//github.com/risilab/cormorant) which includes his data-preprocessing. Addi-
tionally all properties have been normalized by subtracting the mean and divid-
ing by the Mean Absolute Deviation.

https://github.com/risilab/cormorant
https://github.com/risilab/cormorant
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Table 16: Analysis of the % of wrong edges and F1 score for different n embedding sizes
{2, 4, 8 } for the GNN, Noise-GNN and EGNN in the Community Small dataset.

Community Small
n=4 n=6 n=8

% Err. F1 % Err. F1 % Err. F1

GNN 1.45 0.977 1.29 0.9800 1.29 0.980
Noise-GNN 1.94 0.970 0.44 0.9931 0.44 0.993
EGNN 2.19 0.966 0.42 0.9934 0.06 0.999

Our EGNN consists of 7 layers. Functions ϕe and ϕh are defined at the beginning
of this Appendix B.3. Additionally, we use the module ϕinf presented in Section
5.3.3 that infers the edges . This function ϕinf is defined as a linear layer followed
by a sigmoid: Input −→ {Linear() −→ sigmoid()} −→ Output. Finally, the output
of our EGNN hL is forwarded through a two layers MLP that acts node-wise,
a sum pooling operation and another two layers MLP that maps the averaged
embedding to the predicted property value, more formally: hL −→ {Linear() −→
Swish() −→ Linear() −→ Sum-Pooling() −→ Linear() −→ Swish() −→ Linear} −→ Property.
The number of hidden features for all model hidden layers is 128.

We trained each property individually for a total of 1.000 epochs, we used Adam
optimizer, batch size 96, weight decay 10−16, and cosine decay for the learning
rate starting at at a lr=5 · 10−4 except for the Homo, Lumo and Gap properties
where its initial value was set to 10−3.

b.4 further experiments

b.4.1 Graph Autoencoder

In this section we present an extension of the Graph Autoencoder experiment
5.5.2. In Table 16 and 17 we report the approximation error of the reconstructed
graphs as the embedding dimensionality n is reduced n ∈ {4, 6, 8} in the Com-
munity Small and Erdos&Renyi datasets for the GNN, Noise-GNN and EGNN
models. For small embedding sizes (n = 4) all methods perform poorly, but as
the embedding size grows our EGNN significantly outperforms the others.
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Table 17: Analysis of the % of wrong edges and F1 score for different n embedding sizes
{2, 4, 8 } for the GNN, Noise-GNN and EGNN in the Erdos&Renyi dataset.

Erdos&Renyi
n=4 n=6 n=8

% Err. F1 % Err. F1 % Err. F1

GNN 7.92 0.844 5.22 0.894 4.62 0.907
Noise-GNN 3.80 0.925 2.66 0.947 1.25 0.975
EGNN 3.09 0.939 0.58 0.988 0.11 0.998

b.5 sometimes invariant features are all you need

Perhaps surprisingly we find our EGNNs outperform other equivariant networks
that consider higher-order representations. In this section we prove that when
only positional information is given (i.e. no velocity-type features) then the ge-
ometry is completely defined by the invariant distance norms in-between points,
without loss of relevant information. As a consequence, it is not necessary to
consider higher-order representation types of the relative distances, not even the
relative differences as vectors. To be precise, note that these invariant features
still need to be permutation equivariant, they are only E(n) invariant.

To be specific, we want to show that for a collection of points {xi}Mi=1 the norm
of in-between distances ℓ2(xi, xj) are a unique identifier of the geometry, where
collections separated by an E(n) transformations are considered to be identical.
We want to show invariance of the norms under E(n) transformations and unique-
ness: two point collections are identical (up to E(n) transform) when they have
the same distance norms.

Invariance. Let {xi} be a collection of M points where xi ∈ Rn and the ℓ2 dis-
tances are ℓ2(xi, xj). We want to show that all ℓ2(xi, xj) are unaffected by E(n)
transformations.

Proof. Consider an arbitrary E(n) transformation Rn → Rn : x 7→ Qx + t where
Q is orthogonal and t ∈ Rn is a translation. Then for all i, j:

ℓ2(Qxi + t, Qxj + t) =
√
(Qxi + t− [Qxj + t])T (Qxi + t− [Qxj + t])

=
√
(Qxi − Qxj)T (Qxi − Qxj)

=
√
(xi − xj)TQTQ(xi − xj) =

√
(xi − xj)T (xi − xj) = ℓ2(xi, xj)

This proves that the ℓ2 distances are invariant under E(n) transforms.

Uniqueness. Let {xi} and {yi} be two collection of M points each where all in-
between distance norms are identical, meaning ℓ2(xi, xj) = ℓ2(yi, yj). We want to
show that xi = Qyi + t for some orthogonal Q and translation t, for all i.
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Proof. Subtract x0 from all {xi} and y0 from all {yi}, so x̃i = xi − x0 and ỹi =
yi− y0. As proven above, since translation is an E(n) transformation the distance
norms are unaffected and:

ℓ2(x̃i, x̃j) = ℓ2(xi, xj) = ℓ2(yi, yj) = ℓ2(ỹi, ỹj).

So without loss of generality, we may assume that x0 = y0 = 0. As a direct
consequence ||xi||2 = ||yi||2. Now writing out the square:

xTi xi − 2xTi xj + xTj xj = ||xi − xj||22 = ||yi − yj||
2
2 = yT

i yi − 2yT
i yj + yT

j yj

And since ||xi||2 = ||yi||2, it follows that xTi xj = yT
i yj or equivalently written as

dot product ⟨xi, xj⟩ = ⟨yi, yj⟩. Notice that this already shows that angles between
pairs of points are the same.

At this moment, it might already be intuïtive that the collections of points are
indeed identical. To finalize the proof formally we will construct a linear map A
for which we will show that (1) it maps every xi to yi and (2) that it is orthogonal.
First note that from the angle equality it follows immediately that for every linear
combination:

||
∑
i

cixi||2 = ||
∑
i

ciyi||2 (∗).

Let Vx be the linear span of {xi} (so Vx is the linear subspace of all linear combina-
tions of {xi}). Let {xij }

d
j=1 be a basis of Vx, where d ⩽ n. Recall that one can define

a linear map by choosing a basis, and then define for each basis vector where it
maps to. Define a linear map A from Vx to Vy by the transformation from the
basis xij to yij for j = 1, ...,d. Now pick any point xi and write it in its basis
xi =

∑
j cjxij ∈ Vx. We want to show Axi = yi or alternatively ||yi −Axi||2 = 0.

Note that Axi = A
∑

j cjxij =
∑

j cjAxij =
∑

j cjyij . Then:

||yi −
∑
j

cjyij ||
2
2 = ⟨yi, yi⟩− 2⟨yi,

∑
j

ciyij⟩+ ⟨
∑
j

ciyij ,
∑
j

ciyij⟩

(∗)
= ⟨xi, xi⟩− 2⟨xi,

∑
j

cixij⟩+ ⟨
∑
j

cixij ,
∑
j

cixij⟩ = ⟨xi, xi⟩− 2⟨xi, xi⟩+ ⟨xi, xi⟩ = 0.

Thus showing that Axi = yi for all i = 1, . . . ,M, proving (1). Finally we want to
show that A is orthogonal, when restricted to Vx. This follows since:

⟨Axij ,Axij⟩ = ⟨yij , yij⟩ = ⟨xij , xij⟩

for the basis elements xi1 , ..., xid . This implies that A is orthogonal (at least when
restricted to Vx). Finally A can be extended via an orthogonal complement of Vx
to the whole space. This concludes the proof for (2) and shows that A is indeed
orthogonal.
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c.1 experiment details

In this Appendix section, we provide additional details about the implementation
of the experiments. Initially, we define the neural networks used to formulate the
dynamics of our proposed equivariant normalizing flow and the baselines used
in the experiments. Specifically, we focus on E(n) Equivariant Flow dynamics (E-
NF), Graph Normalizing Flow dynamics (GNF), Graph Normalizing Flow with
attention (GNF-att), and Graph Normalizing Flow with attention and data aug-
mentation (GNF-att-aug). In the following sections, we explicitly describe the
dynamics used for the ENF, GNF, GNF-att, and GNF-att-aug baselines:

- E-NF (Dynamics): We can write the E-NF dynamics as the original EGNN
5.3 with the modification proposed in Section 6.5.2:

mij = ϕe

(
hl
i, hl

j ,
∥∥∥xli − xlj

∥∥∥2) (85)

xl+1
i = xli +

∑
j̸=i

(xli − xlj)

∥xli − xlj∥+ 1
ϕx

(
mij

)
(86)

mi =
∑
j̸=i

ϕinf(mij)mij, (87)

hl+1
i = ϕh

(
hl
i, mi

)
(88)

- GNF: The dynamics for this method are a standard Graph Neural Network
(Section 2.3), which can also be interpreted as a variant of the EGNN with-
out equivariance. The dataset coordinates x are treated as h features; there-
fore, they are provided as input to h0 through a linear mapping before its
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first layer. Since our datasets do not consider adjacency matrices, we let
eij = 1 for all ij.

mij = ϕe

(
hl
i, hl

j

)
(89)

mi =
∑
j ̸=i

eijmij, (90)

hl+1
i = ϕh

(
hl
i, mi

)
(91)

- GNF-att: This model is almost identical to GNF, with the only difference
being that it infers the edges through eij = ϕinf(mij), which can also be
interpreted as a form of attention.

- GNF-att-aug: This is the exact same model as GNF-att. The only difference
lies in the pre-processing of the data since we perform data augmentation
by rotating the node positions before inputting them to the model.

The EGNN module described here consists of four Multilayer Perceptrons (MLPs):
ϕe, ϕx, ϕh, and ϕinf. The GNF baseline is characterized by two MLPs, ϕe and
ϕh, which are also present in the EGNN. Thus, we utilized the exact same ar-
chitecture for these two functions. The design for all MLPs, with the exception
of ϕx, was adopted from the original EGNN work (Satorras et al., 2021b). The
descriptions of the modules are as follows:

- ϕe (edge operation): consists of a two-layer MLP with two SiLU (Nwankpa
et al., 2018) activation functions that takes as input (hi, hj, ∥xi − xj∥2) and
outputs the edge embedding mij.

- ϕx (coordinate operation): consists of a two layers MLP with a SiLU acti-
vation function in its hidden layer and a Tanh activation function at the
output layer. It takes as input the edge embedding mij and outputs a scalar
value.

- ϕh (node operation): consists of a two layers MLP with one SiLU activation
function in its hidden layer and a residual connection: [hl

i, mi] −→ {Linear()
−→ SiLU() −→ Linear() −→ Addition(hl

i) } −→ hl+1
i .

- ϕinf (edge inference operation): Connsists of a Linear layer followed by a
Sigmoid layer that takes as input the edge embedding mij and outputs a
scalar value.
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c.2 dw4 and lj13 experiments

In the following we report the DW4 (equation 92) and LJ13 (equation 93) energy
functions introduced in (Köhler et al., 2020a):

uDW(x) =
1

2τ

∑
i,j

a
(
dij − d0

)
+ b

(
dij − d0

)2
+ c

(
dij − d0

)4 (92)

uLJ(x) =
ϵ

2τ

∑
i,j

((
rm

dij

)12

− 2

(
rm

dij

)6
) (93)

Where dij = ∥xi − xj∥ is the distance between two particles. The design parame-
ters a, b, c, d and temperature τ from DW4 and the design parameters ϵ, rm and
τ from LJ13 are the same ones used in (Köhler et al., 2020a).

implementation details All methods are trained with the Adam opti-
mizer, weight decay 10−12, batch size 100, the learning rate was tuned inde-
pendently for each method which resulted in 10−3 for all methods except for the
E-NF model which was 5 · 10−4.

In tables 18 and 19 we report the same DW4 and LJ13 averaged results from
Section 6.6.1 but including the standard deviations over the three runs.

c.3 qm9 positional and qm9

Both experiments QM9 and QM9 positional have been trained with batch size
128 and weight decay 10−12. The learning rate was set to 5 · 10−4 for all methods
except for the E-NF and Simple dynamics where it was reduced to 2 · 10−12.

Table 18: Negative Log Likelihood comparison on the test partition of DW4 dataset for
different amount of training samples. Averaged over 3 runs and including standard devi-
ations.

DW4
# Samples 102 103 104 105

GNF 11.93 ± 0.41 11.31 ± 0.07 10.38 ± 0.11 7.95 ± 0.17
GNF-att 11.65 ± 0.39 11.13 ± 0.38 9.34 ± 0.29 7.83 ± 0.15
GNF-att-aug 8.81 ± 0.23 8.31 ± 0.19 7.90 ± 0.04 7.61 ± 0.06
Simple dynamics 9.58 ± 0.05 9.51 ± 0.01 9.53 ± 0.02 9.47 ± 0.06
Kernel dynamics 8.74 ± 0.02 8.67 ± 0.01 8.42 ± 0.00 8.26 ± 0.03
E-NF 8.31 ± 0.05 8.15 ± 0.10 7.69 ± 0.06 7.48 ± 0.05
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Table 19: Negative Log Likelihood comparison on the test partition of LJ13 dataset for
different amount of training samples. Averaged over 3 runs and including standard devi-
ations.

LJ13
# Samples 10 102 103 104

GNF 43.56 ± 0.79 42.84 ± 0.52 37.17 ± 1.79 36.49 ± 0.81
GNF-att 43.32 ± 0.20 36.22 ± 0.34 33.84 ± 1.60 32.65 ± 0.57
GNF-att-aug 41.09 ± 0.53 31.50 ± 0.35 30.74 ± 0.86 30.93 ± 0.73
Simple dynamics 33.67 ± 0.07 33.10 ± 0.10 32.79 ± 0.13 32.99 ± 0.11
Kernel dynamics 35.03 ± 0.48 31.49 ± 0.06 31.17 ± 0.05 31.25 ± 0.12
E-NF 33.12 ± 0.85 30.99 ± 0.95 30.56 ± 0.35 30.41 ± 0.16

Table 20: Neg. log-likelihood averaged over 3 passes, variance from dequantization and
trace estimator.

NLL

GNF-attention -28.2 ± 0.49
GNF-attention-augmentation -29.3 ± 0.02
E-NF (ours) -59.7 ± 0.12

The flows trained on QM9 have all been trained for 30 epochs. Training these
models takes approximately 2 weeks using two NVIDIA 1080Ti GPUs. The flows
trained on QM9 Positional have been trained for 160 epochs in single NVIDIA
1080Ti GPUs. Simple Dynamics would train in less than a day, Kernel Dynamics
around 2 days, the other methods can take up to 7 days. The training of the mod-
els becomes slower per epoch as the performance improves, due to the required
steps in the ODE solver. For QM9, the model performance is averaged over 3 test
set passes, where variance originates from dequantization and the trace estimator,
see Table 20.

c.4 stability of molecules benchmark

In the QM9 experiment, we also report the % of stable molecules and atoms. This
section explains how we test for molecule stability. In addition, we explain why
there is not a set of rules that will judge every molecule in the dataset stable. First
of all, we say that an atom is stable when the number of bonds with other atoms
matches their valence. For the atoms used their respective valencies are (H: 1,
C: 4, N: 3, O: 2, F: 1). A molecule is stable when all of its atoms are stable. The
most straightforward method to decide whether atoms are bonded is to compare
their relative distance. There are some limitations to this method. For instance,
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QM9 contains snapshots of molecules in a single configuration, and in reality
atoms of a molecule are constantly in motion. In addition, the type of molecule
can also greatly influence the relative distances, for instance due to collisions, the
Van der Waals force and inter-molecule Hydrogen bonds. Further, environmental
circumstances such as pressure and temperature may also affect bond distance.
For these reasons it is not possible to design a distance based rule that considers
every molecule in QM9 stable, based only on a snapshot. To find the most optimal
rules for QM9, we tune the average bond distance for every atom-type pair to
achieve the highest molecule stability on QM9 on the train set with results in
95.3% stable molecules and 99% stable atoms. On the test set these rules result in
95.2% stable molecules and 99% stable atoms.

The specific distances that we used to define the types of bond (SINGLE, DOU-
BLE TRIPLE or NONE) are available in the code and were obtained from http://

www.wiredchemist.com/chemistry/data/bond_energies_lengths.html. Notice the
type of bond depends on the type of atoms that form that bond and the relative
distance among them. Therefore, given a conformation of atoms, we deterministi-
cally compute the bonds among all pairs of atoms. Then we say an atom is stable
if its number of bonds with other atoms matches its valence.

c.5 further qm9 analysis | validity, uniqueness , novelty

Validity is defined as the ratio of molecules that are valid from all the generated
ones. Uniqueness is defined as the number of valid generated molecules that are
unique divided by the number of all valid generated molecules. Novelty is defined
as the number of valid generated molecules that are not part of the training
set divided by the total number of valid generated molecules. In our case, all
stable molecules are valid, therefore, we only report the Uniqueness and Novelty.
Absolute and percentage values are reported when generating 10.000 examples.
Metrics have been computed as in (Simonovsky and Komodakis, 2018) with rdkit
https://www.rdkit.org/.

In addition to the previous metrics, in Figure 24, we plot a histogram of the
number of atoms per molecule and also of the type of atoms for both the stable
generated molecules and the ground truth ones.

Figure 24: Number of atoms per molecule distributions and atom type distribution for the
stable generated molecules and the training (ground truth) molecules.

http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
https://www.rdkit.org/
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d.1 additional details for the method

d.1.1 The Dynamics

In Section 7.4.4 we explained that the dynamics of our proposed Equivariant
Diffusion Model (EDM) are learned by the EGNN introduced in Section 7.3.4.
The EGNN consists of a sequence of Equivariant Graph Convolutional Layers
(EGCL). The EGCL is defined in Eq. 65. All its learnable components ϕe, ϕh, ϕx,
ϕinf by Multilayer Perceptrons:

Edge operation ϕe. Takes as input two node embeddings. The squared distance
d2ij = ∥xli − xlj∥

2
2, and the squared distance at the first layer as the optional at-

tribute aij = ∥x0i − x0j ∥
2
2 and outputs mij ∈ Rnf.

concat[hl
i, hl

j ,d2ij, aij] −→ {Linear(nf · 2+ 2, nf) −→ Silu −→ Linear(nf, nf) −→ Silu} −→
mij

Edge inference operation ϕinf. Takes as input the message mij and outputs a scalar
value ẽij ∈ (0, 1).
mij −→ {Linear(nf, 1) −→ Sigmoid} −→ ẽij

Node update ϕh Takes as input a node embedding and the aggregated messages
and outputs the updated node embedding.
concat[hl

i, mij] −→ {Linear(nf · 2, nf) −→ Silu −→ Linear(nf, nf) −→ add(·, hl
i)} −→ hl+1

i

Coordinate update ϕx. Has the same inputs as ϕe and outptus a scalar value.
concat[hl

i, hl
j ,d2ij,aij] −→ {Linear(nf · 2+ 2, nf) −→ Silu −→ Linear(nf, nf) −→ Silu −→

Linear(nf, 1)} −→ Output
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d.1.2 Baseline model

While our EDM model is parametrized by an E(3) equivariant EGNN network,
the GDM model used for the ablation study uses a non equivariant graph net-
work. In this network, the coordinates are simply concatenated with the other
node features: h̃0

i = [xi, h]. A message passing neural network (Gilmer et al.,
2017) is then applied, that can be written:

h̃l+1
i = ϕh(h̃l

i,
∑
j̸=i

ẽijmij) for mij = ϕe

(
h̃l
i, h̃l

j ,aij
)

The MLPs ϕe, ϕh are parametrized in the same way as in EGNN, with the sole
exception that the input dimension of ϕe in the first layer is changed to accom-
modate the atom coordinates.

d.2 additional details on experiments

d.2.1 QM9

On QM9, the EDM and GDMs are trained using EGNNs with 256 hidden features
and 9 layers. The models are trained for 1100 epochs, which is around 1.7 million
iterations with a batch size of 64. The models are saved every 20 epochs when
the validation loss is lower than the previously obtained number. The diffusion
process uses T = 1000. Training takes approximately 7 days on a single NVIDIA
GeForce GTX 1080Ti GPU. When generating samples the model takes on average
1.7 seconds per sample on the 1080Ti GPU. The EDM that only models heavy
atoms and no hydrogens has the same architecture but is faster to train because
it operates over less nodes: it takes about 3.2 days on a single 1080Ti GPU for
1100 epochs and converges even earlier to its final performance.

d.2.2 GEOM-DRUGS

On GEOM, the EDM and GDMs are trained using EGNNs with 256 hidden fea-
tures and 4 layers. The models are trained for 13 epochs, which is around 1.2
million iterations with a batch size of 64. Training takes approximately 5.5 days
on three NVIDIA RTX A6000 GPUs. The model then takes on average 10.3 sec-
onds to generate a sample.

bond distances In order to check the validity and stability of the generated
structures, we compute the distance between all pairs of atoms and use these
distances to predict the existence of bonds and their order. Bond distances in
Table 21, 22 and 23 are based on typical distances in chemistry12. In addition,

1 http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
2 http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf

http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf
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margins are defined for single, double, triple bonds m1,m2,m3 = 10, 5, 3 which
were found empirically to describe the QM9 dataset well. If an two atoms have a
distance shorter than the typical bond length plus the margin for the respective
bond type, the atoms are considered to have a bond between them. The allowed
number of bonds per atom are: H: 1, C: 4, N: 3, O: 2, F: 1, B: 3, Al: 3, Si: 4, P: [3,
5], S: 4, Cl: 1, As: 3, Br: 1, I: 1. After all bonds have been created, we say that an
atom is stable if its valency is precisely equal to the allowed number of bonds.
An entire molecule is considered stable if all its atoms are stable. Although this
metric does not take into account more atypical distances or aromatic bonds, it
is still an extremely important metric as it measures whether the model is posi-
tioning the atoms precisely enough. On the QM9 dataset it still considers 95.2%
molecules stable and 99.0% of atoms stable. For Geom-Drugs the molecules are
much larger which introduces more atypical behaviour. Here the atom stability,
which is 86.5%, can still be used since it describes how many atoms satisfy the
typical bond length description. However, the molecule stability is 2.8% on the
dataset, which is too low to draw meaningful conclusions.

Table 21: Typical bond distances for a single bond.

H C O N P S F Si Cl Br I B As

H 74 109 96 101 144 134 92 148 127 141 161 119 152

C 109 154 143 147 184 182 135 185 177 194 214 − −

O 96 143 148 140 163 151 142 163 164 172 194 − −

N 101 147 140 145 177 168 136 − 175 214 222 − −

P 144 184 163 177 221 210 156 − 203 222 − − −

S 134 182 151 168 210 204 158 200 207 225 234 − −

F 92 135 142 136 156 158 142 160 166 178 187 − −

Si 148 185 163 − − 200 160 233 202 215 243 − −

Cl 127 177 164 175 203 207 166 202 199 214 − 175 −

Br 141 194 172 214 222 225 178 215 214 228 − − −

I 161 214 194 222 − 234 187 243 − − 266 − −

B 119 − − − − − − − 175 − − − −

As 152 − − − − − − − − − − − −
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Table 22: Typical bond distances for a double
bond.

C O N P S

C 134 120 129 − 160

O 120 121 121 150 −

N 129 121 125 − −

P − 150 − − 186

S − − − 186 −

Table 23: Typical bond distances for
a triple bond.

C O N

C 120 113 116

O 113 − −

N 116 − 110

d.3 samples from our models

Additional samples from the model trained on QM9 are depicted in Figure 25

and, and samples from the model trained on GEOM-DRUGS in Figure 26. These
samples are not curated or cherry picked in any way. As a result, their structure
may sometimes be difficult to see due to an unfortunate viewing angle.

Figure 25: Random samples taken from the EDM trained on QM9.

The samples from the model trained on the drugs partition of GEOM show im-
pressive large 3D structures. Interestingly, the model is sometimes generating
disconnected component, which only happens QM9 models in early training
stages. This may indicate that further training and increasing expressitivity of
the models may further help the model bring these components together.
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Figure 26: Random samples taken from the EDM trained on geom drugs. While most
samples are very realistic, we observe two main failure cases: some molecules that are
disconnected, and some that contain long rings. We note that the model does not feature
any regularization to prevent these phenomena.

Figure 27 depicts the generation of molecules from a model trained on GEOM-
Drugs. The model starts at random normal noise at time t = T = 1000 and
iteratively sample z(t− 1) ∼ p(z(t− 1)|z(t)) towards t = 0 to obtain x, h, which is
the resulting sample from the model. The atom type part of z(t)(h) is visualized
by taking the argmax of this component.

Figure 27: Selection of sampling chains at different steps from a model trained on GEOM-
Drugs. The final column shows the resulting sample from the model.
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d.4 ablation on scaling features

In Table 24 a comparison between the standard and proposed scaling is shown.
Interestingly, there is quite a large difficulty in performance when measuring
atom and molecule stability. From these results, it seems that it is easier to learn
a denoising process where the atom type is decided later, when the atom coordi-
nates are already relatively well defined.

Table 24: Ablation study on the scaling of features of the EDM. Comparing our proposed
scaling to no scaling.

# Metrics Scaling NLL Atom stable (%) Mol stable (%)

EDM (ours) [x, 1.00 honehot, 1.0 hatom charge] -103.4 95.7 46.9

EDM (ours) [x, 0.25 honehot, 0.1 hatom charge] −110.7±1.5 98.7±0.1 82.0±0.4

Data 99.0 95.2

d.5 conditional generation

d.5.1 Conditional Method

The specific definition for the loss components Lc,t is given in Equation 94. Es-
sentially, a conditioning on a property c is added where relevant. The diffusion
process that adds noise is not altered. The generative denoising process is condi-
tioned on c by adding it as input to the neural network ϕ:

Lc,t = Eϵt∼Nxh(0,I)
[1
2
(1− SNR(t− 1)/SNR(t))||ϵt −ϕ(z(t), t, c)||2

]
,

L
(h)
c,0 = logp(h|z(0)(h)) ≈ 0,

L
(x)
c,0 = logp(x|z(0), c) = Eϵ(x)∼N(0,I)

[
logZ−1 −

1

2
||ϵ(x) −ϕ(x)(z(0), 0, c)||2

]
,

Lc,base = Lbase = −KL(q(z(T)|x, h)|p(z(T))) ≈ 0.

(94)

Given a trained conditional model p(x, h|c,M), we define the generative process
by first sampling c,M ∼ p(c,M) and then x, h ∼ p(x, h|c,M). We compute c,M ∼

p(c,M) on the training partition as a parametrized two dimensional categorical
distribution where we discretize the continuous variable c into small uniformly
distributed intervals.
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d.5.2 Implementation details:

In this conditional experiment, our Equivariant Diffusion Model uses an EGNN
with 9 layers, 192 features per hidden layer and SiLU activation functions. We
used the Adam optimizer with learning rate 10−4 and batch size 64. Only atom
types (categorical) and positions (continuous) have been modelled but not atom
charges. All methods have been trained for ∼ 2000 epochs while doing early
stopping by evaluating the Negative Log Likelihood on the validation partition
proposed by (Anderson et al., 2019).

Additionaly, the obtained molecule stabilities in the conditional generative case
was similar to the the ones obtained in the non-conditional setting. The reported
molecule stabilities for each conditioned property evaluated on 10K generated
samples are: (80.4%) α, (81.73%) ∆ε, (82.81%) εHOMO, (83.6 %) εLUMO, (83.3%) µ,
(81.03 %) Cv.

d.5.3 QM9 Properties

α Polarizability: Tendency of a molecule to acquire an electric dipole moment
when subjected to anexternal electric field.

εHOMO: Highest occupied molecular orbital energy.

εLUMO: Lowest unoccupied molecular orbital energy.

∆ε Gap: The energy difference between HOMO and LUMO.

µ: Dipole moment.

Cv: Heat capacity at 298.15K

d.5.4 Conditional generation results

In this Section we sweep over 9 different α values in the range [73.6, 101.6] while
keeping the reparametrization noise ϵ fixed and the number of nodes M = 19.
We plot 10 randomly selected sweeps in Figure 28 with different reparametriza-
tion noises ϵ each. Samples have been generated using our Conditional EDM. We
can see that for larger Polarizability values, the atoms are distributed less isotrop-
ically encouraing larger dipole moments when an electric field is applied. This
behavior is consistent among all reported runs.
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Figure 28: Molecules generated by our Conditional EDM when interpolating among dif-
ferent α polarizability values (from left to right). α’s are reported on top of the image. All
samples within each row have been generated with the same reparametrization noise ϵ.


