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Chapter 1

Introduction

1.1 Motivation

The need for optimization in healthcare is driven in no small part by the rapidly
rising costs of healthcare. In more economically developed countries, these
rising costs are met in part by increased spending on healthcare as a percentage
of gross domestic product (GDP). Take, for example, the Netherlands, where
this rose from 7.7% in 2000 to just over 11% in 2020 (World Health Organization
2023). In less economically developed countries, rising healthcare costs are
particularly concerning as spending on healthcare as a percentage of GDP often
does not increase accordingly, and in the case of India has even decreased. In
the South Asian countries of Bangladesh, India and Pakistan, together home
to more than 1.8 billion people, this figure was below 3% as of 2020 (World
Health Organization 2023). As a result, in these countries, budgets remain the
same while costs continue to increase, necessitating even the rationing out of
healthcare services (Fazal et al. 2022).

Healthcare provided to individuals can be divided into the levels primary
and secondary care. With some local modifications, the following is the system
applied in, among others, the Netherlands (Schäfer et al. 2010), the United
Kingdom (NHS 2022) and the United States of America (Phillips 2005). The
first port of call for a patient is primary care, often known as a general prac-
titioner or family doctor. If the patient’s complaint cannot be resolved at this
level, a referral follows to secondary care, where the patient will first be seen
at an outpatient department. After consultation at an outpatient department,
a decision is made to discharge the patient, book a follow-up appointment, or
refer the patient to surgical care or other specialist care. Surgical care can be
either outpatient surgery, in which case the patient is discharged the same day,
or inpatient surgery, in which case the patient remains in a ward overnight
for observation. While surgery is counted as part of secondary care, it will
be convenient for the purposes of this dissertation to distinguish between pri-
mary care, outpatient care, and surgical care, due to differences in optimization
approaches between these settings. We consider the recovery ward to be in sup-
port of surgery, so for the purposes of this dissertation group it under surgical
care. Specialist inpatient services other than a recovery ward can be, for exam-
ple, intensive care or neonatal care. Note that we do not consider either such
inpatient services or emergency care in this dissertation, as these are special
settings with their own unique demands.

1



2 Chapter 1. Introduction

At the primary care and outpatient care levels we are mostly concerned
in this dissertation with the effective distribution of a set amount of time and
capacity; to be more specific, how frequently and in what order patients should
be seen by a doctor so as to minimize the healthcare provider’s wasted time,
while avoiding excessive waiting times for patients. In surgical care, not only
are healthcare provider’s wasted time and the patient’s waiting time important,
but the incredibly high costs of running a surgical suite and caring for patients
before and after surgery must also be addressed.

Alongside this provision of healthcare to individuals, we also find large
scale public health initiatives, the most extreme example of which no doubt
being the complete eradication of smallpox in the wild via a worldwide vacci-
nation program. Of course, such programs are incredibly expensive to run and
are concerned with reaching as many people as possible, while not overwhelm-
ing the facilities available.

Having motivated the need to improve efficiency in healthcare and having
established the scope of this dissertation, we will now take a step back from just
primary, outpatient, and surgical care to look at a wider range of healthcare
settings to which optimization has been applied. These settings include, among
many other examples: the placement of blood distribution centers; the testing
of donated blood for disease; the choosing of nurse-staffing levels; the locating
(and relocating) of ambulances; the scale of healthcare provision for clinics;
the allocation of surgeries to operating rooms; and the creation of appointment
schedules. (respectively, Wemelsfelder et al. 2022, Bar-Lev et al. 2017, Kortbeek
et al. 2015, Van Buuren et al. 2018, Zacharias and Armony 2017, Denton et al.
2010a, Ahmadi-Javid et al. 2017).

This call to improve efficiency comes with a cautionary tale. Decision
makers should carefully consider what it is that they want to minimize or
maximize, and ask whether this choice achieves their wider goals and what its
unintended consequences may be. For the past twenty years or so, improving
efficiency in healthcare in the Netherlands has meant minimizing costs. This
has come at the expense of capacity and flexibility, which were much needed
when the Dutch healthcare system was hit by a severe demand shock in the
spring of 2020 (Kuiper et al. 2022).

The techniques laid out in this dissertation aim to contribute to the exis-
tent literature and applications for improving efficiency in healthcare, enabling
limited funds and time to be used more effectively. For primary care, outpatient
care, and large scale public health initiatives, this will be done by providing
appointment schedules which make optimal use of limited resources such as
the time available or the number of healthcare providers. And, at the level of
surgical care, it will be done by showing how a master surgery schedule can be
designed and implemented which maximizes production and tackles the high
costs of healthcare while conforming to a hospital’s many constraints. We will
now take a brief look at the basic details of appointment scheduling and master
surgery scheduling. We then finish this introduction with an overview of how
this dissertation contributes to the literature on healthcare efficiency.
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1.2 The Appointment Scheduling Problem

The study of appointment scheduling begins with Welch and Bailey (1952)
who, at a time when physician was king, pled in The Lancet on behalf of the
patient:

“It is not uncommon to find that patients are there for over an
hour before being seen by the doctor with whom they have an ap-
pointment. During much of that time many just sit, often under
conditions which do not permit the time being usefully or even
pleasantly occupied. To keep patients waiting longer than is really
necessary is clearly undesirable on humanitarian grounds.”

Of course, Welch and Bailey were not indifferent to the concerns of the doctor:

“We propose ... to show how an appointment system can be used
to save the time of the patient without wasting the time of the
consultant.”

That is, Welch and Bailey wanted to show that with the clever determination
of when patients should arrive, one could drastically reduce the waiting time of
patients while hardly increasing the idle time of the physician, this being time
the physician spends waiting for a patient to arrive.

We will now take a look at one of the most simple formulations of the
appointment scheduling problem, and the problem upon which three out of
the four following chapters in this dissertation expand. Recall that we wish
to find a balance between a patient’s waiting time and a physician’s idle time.
Let there be n patients, numbered i = 1, ..., n. Let x = (x1, x2, . . . , xn) be a
vector of non-negative interarrival times, i.e. the time between when a patient
i and a patient i + 1 arrives. It is a convention to begin the day with the
first patient already in place, which we do by letting x1 = 0. Let the random
variables Bi be the service time associated with patient i (the time the patient
spends with the doctor, also called busy time), Wi be patient i’s waiting time,
Ii be the period of idle time experienced just prior to patient i’s arrival, and
Si be the sojourn time of patient i (the total time that the patient spends in
the system, that is both in waiting and in service). Lastly, let 0 < ω ≤ 1 be
the importance attributed to idle time. A starting point for the appointment
scheduling problem is then to minimize a combination of expected idle and
waiting times as given by the expression:

min
x

n∑
i=1

ωE[Ii] + (1− ω)E[Wi], (1.1)

where E[Ii] and E[Wi] can be calculated from the random variables found via
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the Lindley recursion (Lindley 1952):

Si = Bi +Wi,

Ii+1 = max{xi − Si, 0},
Wi+1 = max{Si − xi, 0}.

As already mentioned, by convention we suppose that we start the day with
the first patient already in place, x1 = 0, and as this patient will see no waiting
time, nor incur any idle time, we also let I1 =W1 = 0.

An optimal solution to this problem, x∗, has a so-called dome-shaped
pattern, where the lengths of the interarrivals increase at the beginning of
the schedule, tending towards a plateau, after which they gradually decrease
(Ahmadi-Javid et al. 2017).

Note that this is a multidimensional optimisation problem with n cus-
tomers and n− 1 decision variables, due to x1 being fixed. Note also that the
sojourn time Si = Bi +Wi is the convolution of two random variables, which
in general cannot be expressed in closed form. The art is thus in finding an
appropriate representation for sojourn times. To give some flavor, this might
be done by assuming exponentially distributed (and thus memoryless) service
times as in Jansson (1966), by phase types as in Kuiper and Lee (2022), heuris-
tic methods such as in De Kok (1989) and Lee and Kuiper (2024), or, of course,
by simulation.

A convenient feature of the Lindley recursion is that the objective function
(1.1) is convex in x and so we are guaranteed to eventually find a minimum
(Kuiper et al. 2023). This recursion, however, may only be used in the case of a
single server, or in healthcare terms under the assumption of continuity of care:
that one patient will always see the same practitioner. In this dissertation, this
assumption is relaxed, and not only must we consider how to model sojourn
times, but we are also confronted by the question of whether the problems
we tackle are convex and thus whether we can guarantee that an optimum is
found.

Another common assumption that we relax is that all patients have iden-
tically distributed service times to one another. If this is not the case, then the
order in which patients 1, 2, . . . , n are seen is also important. This is the matter
of sequencing, which we will also address and which has been shown through
experimentation to in fact have more impact on the quality of the solution than
the schedule itself (Çayırlı et al. 2006).

Above, we listed some approaches for dealing with the randomness in ap-
pointment scheduling. These methods all require an assumed probability dis-
tribution for patients’ service times. If this distribution in reality deviates from
the assumption, then the quality of the solution could suffer. This motivates
the use of robust optimization to minimize the worst-case performance of an
appointment schedule. The most frequently applied robust method in appoint-
ment scheduling literature is distributionally robust optimization. Under this
method, one aims to minimize the expected cost as in display (1.1) subject to a
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worst-case distribution based usually upon the first two moments of the service
time distribution. This method has found application in works by Mak et al.
(2015) Zhang et al. (2017), and Lee and Kuiper (2024).

Robust optimization also offers an alternative to appointment scheduling
in the form of robust appointment scheduling ; a method which replaces the
stochastic elements entirely with a so-called uncertainty set, defined, for exam-
ple, by lower and upper bounds on how long an appointment might last. One
then finds a solution which has the lowest worst-case performance across all
possible realisations within the uncertainty set. This approach has been de-
veloped and utilized by Mittal et al. (2014), Schulz and Udwani (2019), Bandi
and Gupta (2020), and Gao et al. (2022).

1.3 The Master Surgery Scheduling Problem

In surgical care, not only is time limited, but we must also consider operating
rooms, surgeons, other operating room personnel, recovery ward personnel,
and limited and expensive equipment. Creating a schedule which takes all
these resources into account quickly becomes very complex. To keep track of
these assignments, a hospital will make use of a master surgery schedule, a tool
which assigns surgical specialties (e.g., urology) or even individual surgeons to
a particular operating room at a particular time. This combination of room
and time is called a block, such that specialties or surgeons are assigned to
blocks.

The choice of how many and which types of operations to perform within
a block is generally left open, and specialties often make these decisions for
themselves. The leaving open of this decision places master surgery scheduling
at the tactical level of decision making. We can distinguish three such levels
of decision making: Strategic decisions, such as how many operating rooms
to maintain, constrain tactical decisions, such as which specialty should be
assigned an operating room, which in turn constrain operational decisions,
such as which surgery is to be performed when. This last level is also the
level at which appointment scheduling resides, as its solutions dictate schedules
on a day-by-day or even minute-by-minute basis. It should be reiterated that
appointment scheduling is employed in primary and outpatient care; the related
field of surgery scheduling (Guda et al. 2016), which we touch upon only briefly
in this dissertation, is its analogue within surgical care.

There are three main strategies to assign specialties to blocks, all forms
of master surgery schedule (Fei et al. 2010). Open scheduling is a first come
first served system (Main 1995) where all blocks are “released” several months
in advance and any surgeon may claim any open block in which to operate.
Block scheduling is a strategy where specialties are assigned to specific blocks
usually within a cyclic schedule, that is one which repeats, with a four-week
cycle being a common choice. This cyclic schedule may remain in place for mul-
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tiple years, with little if any modification during that time. The last strategy
is modified block scheduling, which is built upon block scheduling, but which
allows a fraction of blocks to be treated as if in a first come first served system.
Each of these of course has its advantages and disadvantages, although block
and modified block scheduling continue to be the most frequently applied (Fei
et al. 2010). Unfortunately, there is a shortage of applied works in literature,
so it is difficult to ascertain why particular scheduling strategies are chosen,
what decisions hospitals frequently face, or the reasons why the development
of a given schedule succeeded or failed (Cardoen et al. 2010).

In this dissertation we describe in detail the development and implemen-
tation of a master surgery schedule for a medium sized regional hospital in the
Netherlands. This schedule makes use of a block scheduling strategy, and we
describe the development and implementation of this schedule in detail.

1.4 Overview of the Contribution of this Dis-
sertation

In Chapter 2 we consider the joint question of sequencing and scheduling, that
is, we ask in what order patients with differing characteristics in service time
should arrive, and how much time there should be between two arrivals. We
consider two variants of the scheduling problem in a setting with one physician:
that from display (1.1) and the sequential problem of Kemper et al. (2014). Ap-
plying the heuristic of De Kok (1989) to calculate the convolutions required for
the sojourn times Si, we derive sequencing rules to be used in both cases. We
also show an equivalence between objectives of the sequential problem and the
surgery scheduling problem (Guda et al. 2016), which concerns the scheduling of
individual patients to surgery, and is distinct from the master surgery schedul-
ing problem. Finally in this chapter, we present robust optimization results
for the sequential problem, namely we show how to minimize the worst-case
expected waiting and idle times both when the distribution of service times is
not known, and when the ideal weight to place on idle time is not known.

This work is relevant for the primary and outpatient care settings where
both new and return patients are often scheduled, with new patients in general
having both greater expected service times and variance in service time. This
approach can also be extended to planning the order and duration of surgeries
thanks to the increased use of statistical learning techniques for estimating
surgery duration.

In Chapter 3 we investigate the effect of relaxing continuity of care within a
healthcare setting by considering, by means of phase-type distributions, sched-
ules in which a patient may be seen by any one of multiple healthcare providers.
In this chapter we report significant savings that can be had from pooling
healthcare, and exhibit the shapes of the optimal schedules, which are no longer
guaranteed to always follow the dome-shaped pattern mentioned earlier.
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The impressive saving that can be had from pooling healthcare providers
motivates the claim that unless continuity of care is strictly necessary in a given
setting, it should be abandoned. This chapter presents a general method for
doing so that is suitable for all reasonable means and variances of service time
distribution that occur in appointment scheduling.

Chapter 4 takes the theme of Chapter 2 one step further by considering
the case where one not only has multiple providers, but also permits multiple
patients to arrive at one time. We examine this setting through queueing theo-
retical approaches, namely assuming exponential service times and by looking
at the system in steady state. For this setting, we are able to prove convexity of
the objective function, a combination of expected idle and waiting times. This
setting enjoys nearly the same savings as in Chapter 2’s setting, while having
certain advantages in ease of implementation versus Chapter 2’s setting, such
as a unique appointment book per physician.

This chapter is inspired by large scale settings such as testing and vacci-
nation programs in a public health context, but also extends to more general
settings, such as timed entry slots to museums, sports facilities, or even exam
reviews.

Chapter 5 differs from the previous three chapters in that while they focus
on appointment scheduling, Chapter 5 details the development and implemen-
tation of a master surgery schedule for a medium sized hospital in the Nether-
lands. The hospital’s primary objective was to minimize the number of split
blocks. A split block occurs when a surgical specialty is scheduled to either the
morning or the afternoon, but not the full day. Split blocks are undesirable, as
they require refitting the operating room between specialties and thus eat into
productivity. When assigned a whole block, a specialty can operate throughout
the entirety of the working day.

Mixed integer linear optimization was used to tackle this problem and
provided a solution which reduced the number of split blocks from 40 to 14
across a 4 week cyclical schedule. This improvement frees up surgery time
for 50 patients a year, or 300 000 Euro in revenue. This project demonstrates
both the pressure felt by healthcare providers to become more efficient, and a
method that aids in achieving this goal.

The contribution of this chapter is threefold: it provides valorization
through the marked improvement of the master surgery schedule at the Red
Cross Hospital; it provides an exposé on a successful application of Operations
Research in practice, which as mentioned by Cardoen et al. (2010) is particu-
larly lacking in the field of master surgery scheduling; and, lastly, it provides a
theoretical contribution in demonstrating a method of tackling the symmetries
inherent in many linear programming models of the master surgery scheduling
problem.
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1.5 Personal Contribution to Chapters

This dissertation is based upon the four following pieces:

Chapter 2 Lee, R. H. and Kuiper, A. (2024). Optimal sequencing
using a scheduling heuristic. Computers & Operations
Research, 161.

Chapter 3 Kuiper, A. and Lee, R. H. (2022). Appointment
scheduling for multiple servers. Management Science,
68(10):7422–7440.

Chapter 4 Lee, R.H. and Kuiper, A. On the design of appointment
books in the case of multiple servers. Work in process.

Chapter 5 van Ham, V., Lee, R. H., and Kuiper, A. (2023).
Optimizing and implementing a new master surgery
schedule: Increasing productivity and balancing out-
flow. Available at SSRN: abstract id 4634128.

Each chapter contains ideas from all of its contributors. All analysis and
numerical experiments of Chapters 2, 4, and 5 are my own, with those of
Chapter 3 being joint work. The writing of Chapters 2 and 4 is my own, while
the writing of Chapters 3 and 5 is joint.



Chapter 2

On Sequencing and Scheduling

2.1 Introduction

Since the introduction of the scheduling problem in Welch and Bailey (1952),
the literature has predominantly focused on finding schedules that minimize a
linear combination of the sum of expected idle and waiting times. Idle time is
defined as the time that a server (e.g., a physician) has to wait for clients, and
waiting time as the time that a client has to wait before being served. The
difficulty lies in the fact that service-time durations are random, for example,
following a log-normal distribution (May et al. 2000, Çayırlı et al. 2006). This
makes the problem generally intractable, although it can be expressed in brief
as

x̄ = argmin
x

F (x;ω)

= argmin
x

ω

n∑
i=1

E[Ii(x)] + (1− ω)

n∑
i=1

E[Wi(x)], (2.1)

in which ω ∈ (0, 1) is a value chosen by the practitioner, and Ii and Wi

are idle and waiting times associated with the ith client. The objective
function F (x;ω) is minimized over the possible inter-arrival times x =

(x1, . . . , xn−1), which determine scheduled arrival epochs by tj =
∑j−1
i=1 xi for

j = 1, . . . , n with the convention that an empty sum equals zero, so that t1 = 0.
The scheduling problem displayed in Equation (2.1) is computationally ex-

pensive, requiring multi-dimensional optimization and a series of convolutions
to determine clients’ sojourn-time distributions. Alternatively, one can use
the sequential approach of Kemper et al. (2014) which permits an analytical
solution and can be solved without the use of optimization packages.

x∗i = argmin
xi

Fi(xi;ω) = argmin
xi

E[ω Ii+1(xi) + (1− ω)Wi+1(xi)]. (2.2)

Analogously, for surgery scheduling the problem is framed as minimizing
an objective in terms of earliness Ej and tardiness Tj , which are related to the
client’s completion times Cj and due dates dj , e.g., Guda et al. (2016). The
optimal due dates d̄ are to be found as a result of, again, a minimization:

d̄ = argmin
d

G (d;ω) = argmin
d

n∑
j=1

E [ωEj(dj) + (1− ω)Tj(dj)] . (2.3)

9
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The key difference between the surgery scheduling problem and that of ap-
pointment scheduling is that the former assumes no delays or server idling:
once a surgery is completed the next one starts right away (Guda et al. 2016).
However, we show that the problems displayed in equations (2.1) and (2.3) are
equivalent when one composes a schedule sequentially, i.e., the setting displayed
in (2.2).

The application of a moment-iteration method which uses the first two
moments of a client’s service time distribution to iteratively build each client’s
sojourn-time distribution is extremely scalable. This approach also permits
clients with heterogeneous service time distributions, in which case one must
also consider the sequence in which clients are scheduled. Finding the best
sequence to minimize cost is deemed one of the most important open problems
in the field of scheduling, see Ahmadi-Javid et al. (2017). Using the moment-
iteration method we derive optimal sequencing rules, which augment results
presented in Wang (1999), Kemper et al. (2014) and Choi and Wilhelm (2020);
showing under sequential optimization and with exponential service times that
lowest mean (or variance) first is optimal and classifying in which cases similar
rules hold for the log-normal distribution.

In the next section, we review relevant literature on the typical appoint-
ment scheduling problem. In the subsequent section, Section 2.3, we compare
simultaneous and sequential schedules, highlighting various merits of sequential
scheduling, such as the resemblance to the problem of due date determination
as common in surgery scheduling. Thereafter, in Section 2.4, we elaborate on
the moment-iteration method applied to our approach, specifically to the case
of exponentially and log-normally distributed service times, allowing tractabil-
ity. In Section 2.5, we show how to combine sequential schedules with the
moment-iteration method. In Section 2.6, we examine how varying the mo-
ments (mean and standard deviation) of the service-time distribution affects
the optimal cost for sequential schedules, allowing the generation of sequencing
rules. In Section 2.7, we assess the approach numerically, and, in Section 2.8,
we extend the approach in several directions including the extension to the case
when no distributional information is available. We conclude and discuss our
results in Section 2.9.

2.2 Literature Review

For comprehensive reviews on appointment scheduling and optimization meth-
ods developed we refer to Çayırlı and Veral (2003) and Ahmadi-Javid et al.
(2017). Below we point out works that are especially relevant to our contribu-
tion.
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2.2.1 Modelling Service Times

In this paper we primarily focus on the case of exponential or log-normally
distributed service times. The former has attractive properties, i.e., mem-
orylessness, and is often used in literature, see for example Kaandorp and
Koole (2007) and Hassin and Mendel (2008). The latter, however, is the com-
mon choice when modelling real-life service times; for which we further refer
to Klassen and Rohleder (1996) for an exposition on theoretical grounds and
empirical evidence. Also, in recent papers, the log-normal distribution is used
to model service-time distributions of both new and return clients (Çayırlı
et al. 2006, Table 2) and Çayırlı et al. (2008, Section 2.3). Similarly, surgery
durations are often modelled by means of log-normal variables, see May et al.
(2000).

We will introduce a method of iteratively re-estimating the waiting-time
distribution by matching moments to the field of optimized appointment
scheduling. This method approximates intractable convolutions for waiting
times, which can only be numerically evaluated by reducing the lag to which
extent you take the history into consideration (Vink et al. 2015). De Kok (1989)
shows that this moment-iteration method results in accurate approximations
for G/G/1 queues for the typical distributions chosen in queueing theory. Adan
et al. (1995) use this method to examine D/G/1 queues with discrete service
time distributions finding ‘excellent’ performance. As our method relies on
the procedure outlined by De Kok (1989), we also refer to the work of Fen-
ton (1960), who shows that a sum of log-normally distributed variables can be
approximated well by a single log-normally distributed variable by matching
the first two moments. Furthermore, based on their experiments, Ho and Lau
(1992) state that performance of appointment scheduling rules is unaffected by
the skewness and kurtosis of the service-time distribution. Indeed, Kuiper et al.
(2015) achieve good performance when matching phase-type distributions to
approximate service-times based on the first two moments only.

2.2.2 Sequential Scheduling

The solution from Eq. (2.1) must be found with numerical methods. As each
element xi of the vector x is solved for concurrently, we refer to such a solution
as a simultaneous schedule. The resulting schedules have a notable dome shape,
with inter-arrival times that first increase and then decrease towards the end of
the session (Stein and Côté 1994, Wang 1999, Denton and Gupta 2003, Hassin
and Mendel 2008, Kaandorp and Koole 2007, Kuiper et al. 2015).

Instead of jointly minimizing the objective function in Eq. (2.1), opti-
mization can also be performed in a sequential manner, as studied in Wang
(1993), Kemper et al. (2014), and Kuiper et al. (2015). In this approach the
ith inter-arrival time xi is determined to minimize a weighted sum of idle and
waiting times of only its successor. In this way the problem can be recognized
as iteratively solving a newsvendor problem (see also Weiss 1990, Mak et al.
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2014):
Fi(xi;ω) = ω E[Ii+1(xi)] + (1− ω)E[Wi+1(xi)]

for a specific choice of ω ∈ (0, 1), with waiting times and idle times to be seen
as overage and underage. So, for i = 1, . . . , n−1 the following partial objective
function is solved iteratively

x∗i = argmin
xi

Fi(xi;ω) = argmin
xi

ω E[Ii+1(xi)] + (1− ω)E[Wi+1(xi)].

The result is a sequentially optimized schedule in which expected idle and
waiting times grow proportionately throughout the schedule. This lends a
uniformity of performance measures which, as is pointed out in Çayırlı and
Veral (2003), may be desirable, especially when compared to the performance
measures resulting from simultaneous optimization. Similarly, Ho and Lau
(1992) find that schedules with fixed intervals are unfair in the sense that
clients scheduled earlier experience less waiting time. They thus propose to vary
appointment intervals such that clients early in the session are to arrive earlier,
whereas clients later in the session should arrive later, which is accounted for
in the scheduling rule proposed by Yang et al. (1998), reducing the variance of
the waiting times.

One can also consider some alternative objectives that might achieve a
similar goal. For example, Millhiser and Veral (2015) argue in favor of a policy
which restricts the probability of a client experiencing an excessive waiting
time, i.e., a waiting time of greater than 20 min, which corresponds to using
a quantile objective as studied in Sang et al. (2021). Yan et al. (2015) impose
service fairness on the schedule by implementing a constraint formulated as the
difference between the maximum and minimum average waiting time among
clients.

2.2.3 Sequencing Clients

Sequencing of clients is recognized as one of the key open challenges in ap-
pointment scheduling (Ahmadi-Javid et al. 2017); the importance for practice
is emphasized in Vanden Bosch and Dietz (2000) who compare the objective
function under pair-wise swaps and distil optimal policies for dealing with het-
erogeneous client groups. Furthermore, Çayırlı et al. (2006, 2008) show in their
experiments that sequencing has a more profound impact on performance than
deriving the optimal schedule. Salzarulo et al. (2011) show for a large primary
care facility that the performance of an appointment schedule can be improved
from 5% up to 25% through the application of sequencing rules.

Various papers have claimed that sequencing in order of Smallest Variance
First (SVF) is optimal, e.g., Klassen and Rohleder (1996), Denton et al. (2007),
and Mak et al. (2015) for robust schedules. However even for two clients, which
is equivalent to the classical newsvendor problem, it is shown that counterex-
amples can be constructed, see Ridder et al. (1998). Recently, De Kemp et al.
(2021) provide worst-case bounds on the performance of SVF.
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Mancilla and Storer (2012) use sample-average approximations in combi-
nation with linear programming to show that their solutions result in a (small)
improvement over the SVF heuristic in a practical setting. Also, Kong et al.
(2016) show by constructing counterexamples, often with a considerable num-
ber of clients, that the SVF rule is not optimal. Since most of their exam-
ples follow an equidistant schedule for tractability, they call for more research
when schedules are optimized over the arrival times as well. Jafarnia-Jahromi
and Jain (2020) show through the use of counterexamples and by defining
equivalence classes that a general optimal sequencing rule for the appointment
scheduling problem does not exist.

Besides introducing the moment-iteration method to the field of ap-
pointment scheduling, this paper derives, under the sequential optimization
paradigm, rigorous sequencing rules which go further then simplistic settings
of only 2 or 3 clients, see Weiss (1990) and Gupta (2007). It specifically ex-
tends on the exponential case as studied in Wang (1999) and Choi and Wilhelm
(2020) who, also considering the exponential case, show that SVF is best when
schedules are composed as cumulative sums of expected service times of prior
clients. These schedules are called proportional and bear a resemblance to the
sequential optimization framework; the authors even call for extending their
work to the log-normal case. Furthermore, Kemper et al. (2014) study se-
quencing, but focus only on scale families which have the restriction that the
coefficient of variation equals a constant. Our approach and sequencing rules
carry over to surgery scheduling, as there is a direct connection between the
problem of appointment scheduling and that of surgery scheduling, in which
earliness and tardiness are minimized by finding optimal due dates. In that
regard we also augment the results of Guda et al. (2016), who show for various
distributions that the SVF heuristic is optimal.

2.3 Sequential Optimization Modelling Frame-
work

The challenge in appointment scheduling is to determine arrival times for n
clients, for example, by minimizing an objective function as displayed in Eq.
(2.1). Another approach that aligns well with the underlying idea of the
moment-iteration method is sequential optimization, which iteratively solves
the partial objective, permitting an analytical solution and which can thus be
programmed without the use of optimization packages. Furthermore, it has
some attractive features (full control of cost, a natural online version, and di-
rect connection to surgery scheduling) and combined with the moment-iteration
method it results in a fast and scalable optimization procedure, for which se-
quencing rules can be derived.
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2.3.1 Determining Inter-Arrival Times in Appointment
Scheduling

To fully understand the benefits of the sequential optimization approach of
Eq. (2.2), note that it can be rewritten as:

x∗i = argmin
xi

ω

∫ xi

0

FSi(s) ds+ (1− ω)

∫ ∞

xi

(1− FSi(s)) ds, (2.4)

where FSi
(·) denotes the cumulative distribution function of Si. Using the

above equation we observe that the per-client optimization procedure depends
fully on the sojourn-time distribution of his or her predecessor. In that sense
such a schedule is a sequential optimization problem and it holds that all n− 1
optimization problems are convex in xi. The optimal inter-arrival times for
the problem are now found by taking the derivative in Eq. (2.4) and setting it
equal to zero to arrive at

x∗i = F−1
Si

(1− ω). (2.5)

A computational advantage of sequential optimization is that it does not
require the use of opaque numerical methods which can confound interpreta-
tion, and is much faster to calculate. Finally, by combining sequential optimiza-
tion with a moment-iteration method, which is described in the next section
(Section 2.4), both a further speed-up of calculation and optimal sequencing
rules can be attained. Furthermore, the approach allows a new client to be ap-
pended to the current schedule if required without impairing optimality—and
thus can also be used online. Finally, the sequentially optimized inter-arrival
times coincide with departure times in surgery scheduling, allowing many of
our results to carry over to the problem of surgery scheduling, as shown in the
next section, Section 2.3.2.

2.3.2 Equivalence with Due Date Determination in
Surgery Scheduling

Soroush (1999) introduced the problem of the single-machine earliness/ tardi-
ness problem with stochastic job durations (SET). The goal in such a setting is
to find the optimal due dates that minimize a linear combination of early and
late times. Guda et al. (2016) applied this framework to operating rooms. They
argue that, due to tremendous scarcity of these facilities, idle time is entirely
eliminated and as a consequence all jobs (clients) are available from the start
of the session. As a consequence, each surgery begins as soon as the previous
one is finished, resulting in a problem in which only due dates which minimize
earliness and tardiness need to be determined. Idle times are fully neglected
in their approach, but they do call for a unifying method which includes idle
and waiting times. Interestingly enough the two problems, surgery scheduling
and appointment scheduling, are equivalent under the sequential optimization
approach, as we will show.
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Let Ci =
∑i
j=1Bj be the completion time of client i, and di be the planned

due date of client i. So, earliness of client i as Ei = (di − Ci)
+ and tardiness

as Ti = (Ci − di)
+ are the inputs of the objective in Eq. (2.3). Letting

FCi
be the CDF for the completion time of client i, the optimal due date is

d∗i = F−1
Ci

(1− ω), analogous to the sequential optimization case, cf. Eq. (2.5).
However, in the surgery scheduling setting, there is no idling from subsequent
clients having yet to arrive.

Nevertheless, there is a link between these problems. In a sequentially
optimized schedule the optimal arrival time of client i, chosen to minimize a
linear combination of idle and waiting time, is equal to the due date of client
i− 1, chosen to minimize a linear combination of earliness and tardiness with
the same coefficients. We present and prove the statement formally in the next
proposition.

Proposition 2.1. Under the sequential scheduling paradigm the objective and
optimal solution of the appointment scheduling problem and surgery scheduling
are equivalent, i.e.,

min
xi

Fi(xi;ω) = min
di

Gi(di;ω),

so that:

x∗i = argmin
xi

Fi(xi;ω) = argmin
di

Gi(di;ω) = d∗i .

Proof. Writing out the partial objective Gi of the surgery scheduling problem
from Eq. (2.2) in terms of earliness and tardiness gives:

min
di

Gi(di;ω) = min
di

E [ωEi + (1− ω)Ti]

= min
di

E
[
ω (di − Ci)

+ + (1− ω) (Ci − di)
+
]
.

In appointment scheduling the completion time of client i is its arrival time
plus its sojourn time: ti + Si =

∑i−1
j=1 xj + Si, so that the problem becomes

min
di

Gi(di;ω) = min
di

E

ω
di − i−1∑

j=1

xj

 − Si

+

+ (1− ω)

Si −
di − i−1∑

j=1

xj

+ .
Define xi :− di−

∑i−1
j=1 xj and recalling that under the sequential optimization

framework the inter-arrival times of previous clients are already determined
(di = xi +

∑i−1
j=1 x

∗
j ), we have:

min
di

Gi(di;ω) = min
xi

E[ωIi+1(xi) + (1− ω)Wi+1(xi)]
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= min
xi

Fi(xi;ω), (2.6)

which completes the equivalence.

Besides the fact that the sequential approach controls the distribution of
costs, the optimized inter-arrival times coincide with departure times. Eq. (2.6)
shows that the objective is the same, but also the due date that is found for
client i is the arrival epoch of the next client, i.e., the sum of the first i inter-
arrival times. So, the point at which it is optimal for the new client to arrive
matches the point at which it is optimal for the preceding client to depart.
This implies that tardiness corresponds to waiting, and earliness to idling.

2.3.3 Including Overtime and No-Shows

Besides idle and waiting times, overtime is also considered an important metric
for assessing the performance of a schedule. It is defined as the time that a
session is prolonged beyond its scheduled end time. Recall that Ci is defined
as the time when the ith client is finished, which is mathematically defined as:

Ci =

i∑
j=1

(Bj + Ij) , (2.7)

i.e., the sum of service and idle times. Overtime is defined as the time that a
session exceeds a targeted session-end time, T. Consequently, it relates to the
finish time of the last client, or the session’s makespan via

O = max {Cn − T, 0} .

Noting that overtime is built of idle times, we can relate the overtime to the
weight placed on idle time — a behavior which has previously been pointed out
by Kuiper et al. (2023). This notion makes it possible to incorporate overtime
in our sequential framework by emphasizing individual idle times more. In the
case of overtime we can write the following objective function:

F (x;ω, γ) = ω

n∑
i=1

E[Ii(x)] + (1− ω)

n∑
i=1

E[Wi(x)] + γ E[O], (2.8)

where γ is often set to 1.5 the value of idle time, i.e., 1.5ω (Çayırlı and Yang
2014). This is also the value that we shall be using in this paper. Note that
F (x;ω) = F (x;ω, γ) if and only if γ = 0 or T = ∞.

Due to the iterative procedure of sequential optimization, it is difficult to
elicit a term for overtime in the inter-arrival time for client i, xi, and indeed
impossible if one wants to maintain the elegance of the solution. However, to
resolve this consider the case where T = 0, then O reduces to just a sum of idle
times, which provides an upper bound on the ω value. Alternatively, one can
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let T tend to infinity so that overtime never occurs and the original objective
function is obtained, providing a lower bound. So, in summary, choosing the
weight of expected overtime to be γ = αω, e.g., α = 1.5, we have the interval
(ω, ω(1+α)/1+αω) in which some ωo lies such that overtime is accounted for in
the objective function.

To incorporate no-shows, note that since a no-show is essentially a service-
time of 0 time units, we incorporate this source of randomness by adapting
the mean and variance on which the schedule is built accordingly. Given a
client’s no-show percentage, qi, the mean and variance can be modified by
E[B̄i] = (1− qi)E[Bi] and Var [B̄i] = (1− qi)Var [Bi] + qi(1− qi)E[Bi]2. These
updated quantities can then be substituted in the approach, more specifically by
adapting Equations (2.10) and (2.11). The first two moments can be similarly
adapted for walk-ins, see Kuiper et al. (2023).

2.4 Moment Iteration Method

In this section we lay out the moment-iteration method for approximating the
sojourn-time distributions. Define the ith client’s service duration as Bi, and
sojourn time as Si = Wi + Bi, where S1 = B1, then by virtue of the Lindley
recursion the idle and waiting times in the objective functions of (2.1) and (2.2)
can be determined recursively, for i = 1, . . . , n− 1:

Ii+1 = max{xi − Si, 0}, and Wi+1 = max{Si − xi, 0}. (2.9)

Note that I1 and W1 are equal to zero as we assume that the session starts
with the arrival of the first client. The method is based on approximating the
convolution Si = Bi +Wi by fitting a distribution of the same type as chosen
for the Bi s. Naturally, the number of moments to fit equals the number of
parameters that determine the probability distribution function. In case of the
exponential distribution that is only the mean, but typically in appointment
scheduling the use of two moments is warranted. The log-normal distribution
has two parameters, so that both the mean and variance need to be matched:

E[Si] = E[Wi] + E[Bi]; (2.10)

Var [Si] = Var [Wi] + Var [Bi]. (2.11)

If a service time Bi for all i = 1, . . . , n follows a log-normal distribution,
i.e., Bi ∼ LN (µi, σ

2
i ) then the µi and σi represent the location and scale

parameter for the corresponding normally distributed variables: log(Bi). The
probability density function of Bi is given by

fBi(t) =
1

tσi
√
2π

e
− (log t−µi)

2

2σ2
i 1(0,∞)(t).

So, at time zero, we have that S1 = B1. For i = 2, we approximate the sojourn-
time distribution by a log-normal distribution with the same mean and variance
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as B2 +W2. We then use this newly fitted distribution for S2 to likewise infer
S3 and so on for all i ≥ 2, evaluating the parameters as in Equations (2.14)
and (2.15). In this way, we have

Si ≈ LN (νi, τ
2
i )

= LN
(
log

(
E[Si]2√

Var[Si] + E[Si]2

)
, log

(
1 +

Var [Si]
E[Si]2

))
. (2.12)

The laborious part is computation of the first two moments of the waiting-time
distribution. For that purpose we give the kth partial moment of a random
variable X as mX(a, k) =

∫∞
a
xkfX(x) dx. Since Si−1 follows a log-normal

distribution with parameters (νi−1, τ
2
i−1) the kth partial moment of client i’s

sojourn time is given by

mSi
(xi, k) =

∫ ∞

xi

skfSi
(s) ds =

∫ ∞

log(xi)

ekz eνi+τiz φ(z) dz

= ek νi+
1
2 (k τi)

2

Φ

(
νi − log(xi)

τi
+ k τi

)
. (2.13)

where Z denotes a standard normally distributed variable, with density φ(z)
and cumulative distribution function Φ(z), so that the moments of the approx-
imating log-normal distribution become

E[Si] = E[Wi] + E[Bi]

=

(
mSi−1

(xi−1, 1)− xi−1mSi−1
(xi−1, 0)

)

+

(
eµi+

1
2σ

2
i

)
; (2.14)

Var [Si] = Var [Wi] + Var [Bi]

=

(
mSi−1

(xi−1, 2)− 2xi−1mSi−1
(xi−1, 1) + x2i−1mSi−1

(xi−1, 0)

−
(
mSi−1

(xi−1, 1)− xi−1mSi−1
(xi−1, 0)

)2)
+
(
e2µi+σ

2
i

(
eσ

2
i − 1

))
. (2.15)

For the purposes of optimization, we also wish to evaluate expected idle
time E[Ii] and expected overtime E[O]. The expected idle time for client i is
straightforwardly calculated as

E[Ii] = E[Si]− E[Bi] +
i−1∑
j=1

(xj − E[Bj ]− E[Ij ]) , (2.16)
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where one can obviously maintain the term
∑i−1
j=1 (xj − E[Bj ]− E[Ij ]) itera-

tively to ease computation. Expected overtime is derived from the observation
that the completion time of client n, Cn =

∑n−1
i=1 xi+Sn. When

∑n−1
i=1 xi > T,

the last client arrives after the session-end time, in which case

E[O] =

n−1∑
i=1

xi + E[Sn]− T, (2.17)

while in the other case
∑n−1
i=1 xi ≤ T, so that

E[O] =

∫ ∞

T−
∑n−1

i=1 xi

(
s−

(
T−

n−1∑
i=1

xi

))
fSn(s)ds

= mSn

(
T−

n−1∑
i=1

xi, 1

)

−
(
T−

n−1∑
i=1

xi

)
·mSn

(
T−

∑
i

xi, 0

)
. (2.18)

So, applying the approach to log-normal service times, we approximate
each sojourn time Si with a log-normal distribution, analogous to the Fenton
approximation (Fenton 1960). As waiting times Wi do not follow a log-normal
distribution, one might be concerned that is not a valid approximation; this,
along with an extension to other distributions, is briefly discussed next. To
help the reader, we provide an overview of the notation that we use in Table
2.1.

Decision Variables

x∗ – Optimal sequential solution.
x̄ – Optimal simultaneous solution.
x∗MIM, x̄MIM – Optimal solutions found via the Moment-

Iteration Method.
x∗SIM, x̄SIM – Optimal solutions found via simulation opti-

mization.

Cost Functions

Fi(xi ;ω) – Sequential cost function for client i.
F (x;ω) – Simultaneous cost function without overtime.
F (x;ω, γ) – Simultaneous cost function with overtime.

Table 2.1: Select notation.
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2.4.1 Empirical Grounding

Consider a case with two clients. Suppose that the first client has a log-normally
distributed service time B1 with parameters µ1 and σ1, and CDF F1. After
time x the second client arrives, with log-normally distributed service time B2

with parameters µ2 and σ2, and CDF F2. LetW2 denote the waiting time of the
second client, and S2 his or her sojourn time. AsW2 = max{0, B1−x} we have
that the second client sees waiting time zero with probability p = F1(x), and
with probability 1− p the second client experiences positive waiting time. We
will now describe the pdf of W2 conditional upon W2 > 0, which we abbreviate
as W2|W2>0,

fW2|W2>0
(t) =

1
(t+x)σ1

√
2π
e

−(log(t+x)−µ1)2

2σ2
1

1− F1(x)
.

Note that this is very similar to the three-parameter log-normal distri-
bution as given in Kleiber and Kotz (2003). With probability p the second
client’s sojourn time distribution will simply equal that of B2, which is log-
normally distributed, and with probability 1 − p it will be the convolution of
the distributions of W2|W2>0 and B2. Let us denote the pdf of such a distri-
bution by fS2

(t) = pfB2
(t) + (1 − p)fS2|W2>0

(t). In line with the well known
Fenton approximation, to approximate the distribution given by fS2 we con-
sider the log-normal density. To scrutinize this choice, we simulated the above
two-client example and compared the resulting empirical CDF to a log-normal
distribution fitted via the method described in Section 2.5.1.
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Figure 2.1: The empirical CDF of S2 found by simulation (solid line) compared to a
log-normal CDF fitted by the first two moments (dashed line). In this example, the
two distributions were differed by letting the first client have a standard deviation of
0.35 and the second 0.6.



2.4. Moment Iteration Method 21

In these examples, both clients were given a mean service time of one. We
let the second client have a standard deviation of 0.6 (in the middle of our
range), and let the first client have either a low standard deviation (0.35, in
Figure 2.1) or a high standard deviation (0.85, in Figure 2.2). In both cases,
assuming a weight on idle time of 0.8, we optimize the first inter-arrival time
(only), i.e. minimizing F1(x1;ω) of Eq. (2.2).

The reason behind the high idle weight of 80% is to encourage a large inter-
arrival time and to understand how well the approximation works in such situ-
ations. In both cases we compare the optimal inter-arrival to x = 0 (i.e., simply
the convolution of two log-normal distributions) to see how well the fit com-
pares to the Fenton approximation. Both cases that we show are cases to
which we might expect our approach to be applied, and in both cases we find
a good fit. Therefore, we conclude that we can reasonably approximate the
sojourn time distribution via a log-normal distribution, given that the service
times are themselves log-normally distributed. Repeating this process for each
client completes the argument that the moment-iteration moment works as an
approximation for each client’s sojourn time distribution, which is needed in
Eq. (2.9).
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(Fenton approximation)
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Figure 2.2: The empirical CDF of S found by simulation (solid line) compared to a
log-normal CDF fitted by the first two moments (dashed line). In this example, the
two distributions were differed by letting the first client have a standard deviation of
0.85 and the second 0.6.

2.4.2 Scheduling Multiple Clients

Now that we have established the goodness of the approximation at the scale of
two subsequent clients, the question remains to be asked how well the moment-
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iteration method performs in the optimization of an entire appointment sched-
ule. We will show how the method performs compared to simulation for the
simultaneous optimization problems for a range of coefficients of variation and
idle-weights: cv ∈ {0.35, 0.85} as in Çayırlı and Veral (2003) and ω ∈ {0.5, 0.8}
as this coincides with our use cases.

The simultaneous optimization problem was solved under simulation by
means of Sample Average Approximation (Kim et al. 2015). The solution was
found by averaging the solutions to 100 runs, each with 20 000 replications.
For each run a ‘sample-optimum’ was found using L-BFGS-B (Zhu et al. 1997)
and the final estimator x̄SIM was found as the average over these sample-optima.
This approach also allows us to estimate x̄SIM

LCB and x̄SIM
UCB , the lower and upper

95% confidence bounds for the solution. The simulation was programmed in
Python, using the package numba to just-in-time compile the main body of the
simulation, which we call the Inner Loop. The package scipy was used for
its implementation of L-BFGS-B. The moment-iteration method was likewise
programmed in Python and likewise solved with L-BFGS-B for the simultane-
ous case. The simulation was significantly slower than the moment-iteration
method to run, though the simulation would doubtless run faster in a compiled
language, and may benefit from variance reduction techniques.

Firstly, we find in Tables 2.2 and 2.3 that the optimal solutions found by
relying on the moment-iteration method x̄MIM also exhibit the typical dome-
shape pattern found in optimal appointment scheduling. Next, we report for
each setting an optimality gap by means of out-of-sample testing. We presume
the simulation to be (arbitrarily close to) the true optimum and define the
optimality gap as (F (x̄MIM)−F (x̄SIM))/F (x̄SIM). Again, we run 100 runs each
of 20 000 replications, yielding over each run of 20 000 replications estimates
for F (x̄SIM) and F (x̄MIM) (using the same random variables in each case) and
over the 100 runs an estimate for the optimality gap.

The point estimators for the optimality gaps range from 0.0051% to
0.5921%. The reader may see this optimality gap of 0.5921% as being ex-
cessively large, but even in settings with high variance the moment-iteration
method has merit. Firstly, as the number of clients grows, the moment-
iteration-method allows one to calculate a schedule extremely quickly. Using
sample average approximation, the increase in the number of clients leads to
an increase of variance in the simulation, requiring many more runs to achieve
good estimates. Secondly, it enables one to compare multiple different settings,
such as a range of estimated coefficients of variation or weights placed on idle
time, in a matter of seconds rather than hours. And thirdly, if solutions are to
be rounded to the nearest minute or five minutes in practice, then the difference
between the solutions given by simulation and the moment-iteration method
disappear.

We now report the procedures for simultaneous optimization. We first
report the simulation procedure as this is the approach most likely familiar
to the reader. The procedure consists of two parts, an Inner Loop given in
Algorithm 1 below, which, for a given vector of interarrivals x, calculates es-
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cv = 0.35

ω = 0.5 ω = 0.8

i x̄SIMi,LCB x̄SIMi,UCB x̄SIMi x̄MIMi x̄SIMi,LCB x̄SIMi,UCB x̄SIMi x̄MIMi

1 1.0467 1.0483 1.0475 1.0477 0.8064 0.8077 0.8071 0.8069
2 1.1894 1.1912 1.1903 1.1867 1.0162 1.0180 1.0171 1.0116
3 1.2104 1.2124 1.2114 1.2111 1.0518 1.0539 1.0529 1.0432
4 1.2170 1.2190 1.2180 1.2199 1.0645 1.0663 1.0654 1.0527
5 1.2173 1.2194 1.2184 1.2223 1.0654 1.0675 1.0664 1.0525
6 1.2167 1.2187 1.2177 1.2201 1.0637 1.0657 1.0647 1.0463
7 1.2089 1.2106 1.2097 1.2123 1.0530 1.0547 1.0538 1.0358
8 1.1954 1.1973 1.1963 1.1951 1.0350 1.0369 1.0359 1.0225
9 1.1659 1.1674 1.1666 1.1613 1.0025 1.0040 1.0033 1.0051
10 1.0799 1.0814 1.0807 1.0915 0.9250 0.9268 0.9259 0.9561

Runtime Opt. Gap Runtime Opt. Gap

MIM: 0.86s
0.0051%

MIM: 1.02s
0.1827%

SIM: 671s SIM: 939s

Table 2.2: A comparison of simulation and the moment-iteration method for simul-
taneously optimized schedules. 100 runs each of 20000 replications. Average runtime
of a single simulation run given ω = 0.5 was 5.54 seconds based on the last 50 runs,
and was 10.28 seconds for ω = 0.8.

timates of
∑n
i=1 E[Ii] and

∑n
i=1 E[Wi] and returns an objective value for, in

our case, 20 000 sample “days”, and an Outer Loop given in Algorithm 2,
which optimizes 100 such repetitions and gives as the estimate of the optimum
x̄SIM = 1

100

∑100
k=1 x̄

(k). For each iteration k of the Outer Loop random vari-

ables B
(r)
i , r = 1, . . . , 20000, i = 1, . . . , n are generated for which an optimum

is found. That is we, do not generate new random variables each time an it-
eration of the minimizer is called, but rather find a minimum over a “frozen”
sample of 20 000 days, which is repeated by the Outer Loop 100 times, each
with a new sample, to yield an estimate for the optimal solution.

Turning our attention to the Moment-Iteration Method, the pseudo-code
given in Algorithm 3 relates how to structure the function that should be passed
to an optimizer. E[Wi] is calculated as in Eq. (2.14), E[Ii] as in Eq. (2.16), and
one can include E[O] via (2.17) and (2.18), if relevant. This algorithm requires
no Outer Loop as it can be called directly with a minimizer.

2.5 Sequentially Optimal Schedules via the Mo-
ment Iteration Method

Next, we present the algorithm that combines sequential optimization with the
moment-iteration method in the exponential and log-normal cases. Note that
this can be extended to other distributions, for example, location-scale families
in which many of the sequencing results which we will show later also hold,
or even distribution-free (Gallego and Moon 1993), as after all the approach
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Algorithm 1 Inner Loop for Simulation

1: Given a vector of inter-arrivals x calculate arrival epochs ti =∑i
j=1 xi

2: Given B
(r)
i ∼ LN (ν, τ2), r = 1, . . . , 20000, i = 1, . . . , n

3: Initialize EI, EW = 0 ▷ Estimators of
∑

i E[I] and
∑

i E[W ]
4: for r = 1, 2, . . . , 20000 do
5: Initialize I, W, time = 0 ▷ I and W, sum of observed idle and

wait times.
6: for i = 2, 3, . . . , n do
7: if time ≤ ti then
8: I = I + ti − time
9: time = ti +B

(r)
i

10: else
11: W = W + time− ti
12: time = time +B

(r)
i

13: end if
14: end for
15: EI = EI + (I − EI)/r ▷ Update estimators of E[I] and E[W ]
16: EW = EW + (W − EW )/r
17: end for
18: Return F = ωEI + (1− ω)EW

Algorithm 2 Outer Loop for Simulation

1: for k = 1, 2, . . . , 100 do

2: Draw B = B
(r)
i ∼ LN (ν, τ2), r = 1, . . . , 20000, i = 1, . . . , n

3: Return x̄(k) = argmin(Inner Loop(B)) ▷ This paper uses
L-BFGS-B

4: end for
5: Return x̄SIM = 1

100

∑100
k=1 x̄

(k)
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Algorithm 3 Procedure for Simultaneous Scheduling via the Moment-
Iteration Method (Log-Normal)

1: Given a vector x = (xi)
n−1
i=1 found by an iteration of an optimization

algorithm of your choice
2: S1 = B1 ∼ LN (ν1, τ

2
1 )

3: for i = 2, 3, . . . , n− 1 do
4: Calculate expected sojourn time: E[Si] = E[Bi] + E[Wi]
5: Calculate variance of sojourn time: Var [Si] = Var [Bi]+Var [Wi]

6: Fit νi = log

(
E[Si]

2√
Var[Si]+E[Si]2

)
7: Fit τ2i = log

(
1 + Var [Si]

E[Si]2

)
8: Fit Si ∼ LN (νi, τ

2
i )

9: Calculate expected idle and waiting times: E[Ii] and E[Wi]
10: end for
11: Return F = ω

∑n
i=1 E[Ii] + (1− ω)

∑n
i=1 E[Wi]

Algorithm 4 Procedure for Sequential Scheduling via the Moment-
Iteration Method (Log-Normal)

1: S1 = B1 ∼ LN (ν1, τ
2
1 )

2: Find optimal inter-arrival time x∗1 = eµ1+σ1Φ−1(1−ω)

3: for i = 2, 3, . . . , n− 1 do
4: Calculate expected sojourn time E[Si] = E[Bi] + E[Wi]
5: Calculate variance of sojourn time Var [Si] = Var [Bi] +Var [Wi]

6: Fit νi = log

(
E[Si]

2√
Var[Si]+E[Si]2

)
7: Fit τ2i = log

(
1 + Var [Si]

E[Si]2

)
8: Fit Si ∼ LN (νi, τ

2
i )

9: Find x∗i = eνi+τiΦ
−1(1−ω)

10: end for
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cv = 0.85

ω = 0.5 ω = 0.8

i x̄SIMi,LCB x̄SIMi,UCB x̄SIMi x̄MIMi x̄SIMi,LCB x̄SIMi,UCB x̄SIMi x̄MIMi

1 0.9860 0.9899 0.9879 0.9962 0.5457 0.5478 0.5468 0.5369
2 1.3733 1.3783 1.3758 1.3469 0.9457 0.9492 0.9474 0.9095
3 1.4576 1.4632 1.4604 1.4138 1.0554 1.0598 1.0576 1.0035
4 1.4895 1.4950 1.4922 1.4353 1.0993 1.1036 1.1015 1.0334
5 1.4946 1.5003 1.4975 1.4367 1.1080 1.1131 1.1106 1.0451
6 1.4933 1.4991 1.4962 1.4236 1.1072 1.1120 1.1096 1.0488
7 1.4678 1.4736 1.4707 1.3988 1.0810 1.0851 1.0831 1.0462
8 1.4220 1.4270 1.4245 1.3624 1.0352 1.0391 1.0372 1.0334
9 1.3266 1.3303 1.3284 1.3010 0.9552 0.9583 0.9567 0.9908
10 1.0788 1.0819 1.0803 1.1133 0.7759 0.7790 0.7775 0.8511

Runtime Opt. Gap Runtime Opt. Gap

MIM: 0.51s
0.3695%

MIM: 0.66s
0.5921%

SIM: 749s SIM: 700s

Table 2.3: A comparison of simulation and the moment-iteration method for simul-
taneously optimized schedules. 100 runs each of 20000 replications. Average runtime
of a single simulation run given ω = 0.5 was 7.82 seconds based on the last 70 runs,
and was 8.03 seconds for ω = 0.8.

reduces the problem to a series of newsvendor problems. The code is simple
to implement in many programming languages to generate fast and accurate
sequentially optimized schedules.

2.5.1 Log-Normal

Assuming log-normally distributed service times, the resulting optimal inter-
arrival times that minimize the objective function defined in Equation (2.2) are
found by

x∗i = eνi+τiΦ
−1(1−ω), (2.19)

where the parameters are given in Eq. (2.12). The technically most complicated
requirement is that values for the inverse normal distribution are available for
calculation of x∗i as per Eq. (2.19). This approach is given in Algorithm 4.
Steps 4 through 8 can be used to apply the moment-iteration method to other
optimization approaches.

In Figure 2.3 we present the simultaneous schedule for 16 clients, each with
mean E[B] = 1 and coefficient of variation cvB = 0.6. We plot the expected idle
and waiting times, E[Ii], E[Wi], for clients i ≥ 2. Note how expected waiting
time increases sharply for clients at the end of the schedule in simultaneous
optimization (Figure 2.3a). This is as a schedule overrun affects fewer clients
and carries less weight than the opposite ambition of reducing expected idle
time. As a result, we see considerably different cost ratios for clients at the
beginning versus the end of the session, making it difficult to determine the
effect of a particular choice of weight parameter. Figure 2.3b depicts this same
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Figure 2.3: Simultaneous optimization and how expected waiting time behaves com-
pared to expected idle time. Here we are looking at a schedule for 16 clients with
ω = 0.5.
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Figure 2.4: Sequential optimization and how expected waiting time behaves compared
to expected idle time. Here we are looking at a schedule for 16 clients with ω = 0.5.

result by plotting each client’s expected waiting time against his or her expected
idle time.

In Figure 2.4, we depict a sequentially optimized schedule. We see how the
expected idle and waiting times grow proportionally with each other throughout
the schedule. In Figure 2.4b, we also see how the trade off between expected
waiting and idle time seems to tend towards a steady-state value. In this way,
a particular value of ω can be paired with a long-run cost ratio. There is
an unavoidable trade-off between clients’ waiting time and the physician’s idle
time, and sequential schedules have the advantage that this trade-off per client
is more transparent. In Section 2.7 we present simultaneous and sequential
schedules in more depth for the reader to compare.

This approach is by no means restricted to the log-normal distribution.
Any distribution for which the partial moments can be calculated can be em-
ployed, although verification as described earlier in this section should be car-
ried out. To illustrate, we extend the approach to the exponential distribution,
and also provide the partial moments for the Weibull and gamma distributions
in Section 2.5.3. Furthermore, it can be extended to a distribution-free setting,
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which is treated in Section 2.8.

2.5.2 Exponential

We now illustrate how to extend application of the moment-iteration method in
combination with the sequential heuristic method to the exponential distribu-
tion. In the case that the service times of the clients are distributed according
to an exponential distribution, we have that Bi ∼ Exp(λi) for i = 1, . . . , n.
As the exponential distribution depends on only one parameter, we choose this
parameter µi (Si ∼ Exp(µi)) to ensure that the expected sojourn time of the
next client matches the mean waiting and service time, rather than focusing
on its second moment, i.e.,

E[Si] = E[Bi] + E[Wi] =
1

λi
+

ω

µi−1
, (2.20)

where the waiting time E[Wi] = E[(Si−1 − xi−1)
+] follows from the sequential

solution of (2.5) for the previous client:

x∗i−1 = − log(ω)

µi−1
. (2.21)

So, the application of the moment-iteration method in combination with the
sequential heuristic method of Section 2.3 results in the following iterative
scheme, note that µ1 = λ1. Based on this scheme, a sequencing rule can be
derived that minimizes the objective sequentially, see Proposition 2.3.

Algorithm 5 Procedure for Sequential Scheduling via the Moment-
Iteration Method (Exponential)

1: S1
D
= B1 ∼ Exp(λ1)

2: Find optimal inter-arrival time x∗1 = − log(ω)
µ1

3: for i = 2, 3, . . . , n− 1 do
4: Calculate expected sojourn time E[Si] = E[Bi] + E[Wi]
5: Fit µi =

1
E[Si]

6: Fit Si ∼ Exp(µi)

7: Find x∗i = − log(ω)
µi

8: end for

2.5.3 Weibull and Gamma

For the Weibull distribution with probability density function f(s) =
α
λ

(
x
λ

)α−1
e−(x/λ)α we arrive at the kth partial moment mS(x, k) =

λkΓ
(
k
α + 1, kα (x/λ)

α
)
by a change of variables t = (s/λ)α. While for the
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gamma distribution with density function f(s) = 1
Γ(α)λα e

−s/λ we arrive at the

kth partial moment, mS(x, k) =
λk

Γ(α)Γ(k+α, x/λ) by integrating
∫∞
x
skf(s)ds

with a change of variables t = s/λ. Both of these expressions contain the upper
incomplete gamma function, Γ(α, x) =

∫∞
x
sα−1e−sds, which can be speedily

retrieved from many numerical packages, such as scipy.special.gammaincc
(indeed with two c-s) and Matlab’s gammainc as well as via ALGLIB and GSL

for C/C++ and Apache Commons for Java.

2.6 Sequencing of Clients

Given heterogeneous clients’ service times, besides the question when to sched-
ule, the question of whom to schedule also comes into play. Consider, for
example, the omnipresent distinction between new and return clients in health-
care (e.g. Çayırlı et al. 2006). Even with two types of clients, the complexity
of the sequencing problem increases rapidly: if there are N new and R return
clients then there are

(
N+ R
N

)
unique sequences in which clients can be scheduled,

each requiring an optimization over the (inter-)arrival times.
The difficulty of this problem can be greatly reduced by integrating the two

approaches presented in Sections 2.4 and 2.3. Under the sequential scheduling
paradigm, i.e., sequential optimization, we only have to consider one client at a
time. At the ith client to be scheduled, the previous arrivals are already sched-
uled and do not interfere with the sequencing decision, which is formalized in
the next proposition. This results in the sequencing and scheduling of the next
client such that the resulting schedule is sequentially optimal, i.e., it minimizes
the additional costs Fi(xi;ω) iteratively.

Proposition 2.2. Consider a set of clients 1, 2, . . . , i − 1, for which a pre-
determined schedule exists. If client i will be appended to the schedule, then the
choice of this client is irrespective of the past, i.e., the clients that are already
scheduled, and impacts client i + 1’s idle and waiting times only via his/her
inter-arrival time xi.

Proof. Define for any ω the non-negative loss function ℓx(t) = ω (x− t)++(1−
ω) (t− x)+ where (·)+ = max{·, 0}, the expected loss for the ith client can be
expressed as

Fi(xi;ω) = ω E[Ii+1] + (1− ω)E[Wi+1] =

∫ ∞

0

ℓxi
(s)fSi

(s) ds

=

∫ ∞

0

ℓxi
(s)

(∫ ∞

0

fBi
(y)fWi

(s− y) dy

)
ds,

=

∫ ∞

0

(∫ ∞

0

ℓxi−t(y)fBi(y) dy

)
fWi(t) dt, (2.22)

where a change of variables is applied. Note for i = 1 that fW1
(t) has mass 1

at t = 0 and mass 0 elsewhere. Observe that the inner integral over the loss
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function is irrespective of the waiting-time distribution fWi
(t). Since previous

inter-arrivals are already determined, we have a vector x̂[1:i−1] = (x̂1, . . . , x̂i−1),
so that:

Wi(x̂[1:i−1]) =max{0, Bi−1 − x̂i−1,

Bi−1 +Bi−2 − (x̂i−1 + x̂i−2), . . . ,

i−1∑
j=1

(Bi−j + x̂i−j)}.

Thus, the density function fWi(t) in Eq. (2.22) does not depend on xi. Thereby,
the decision who to schedule in the ith position does not depend on the i − 1
clients scheduled earlier.

Corollary 2.2.1. In case of heterogeneous clients, there is a sequence of clients
which is sequentially optimal.

Proof. From Proposition 2.2, if i clients are scheduled, the ith sequencing deci-
sion is independent of the previous clients that are scheduled for any scheduling
policy. Hence, from the n−i clients remaining, the client should be selected that
brings about the lowest additional costs, which is obtained via the sequential
optimization procedure, i.e., the client with the lowest Fi(xi;ω).

Determining the next (sequentially) optimal inter-arrival still requires
opaque convolutions. Luckily, with the moment-iteration method of Section
2.4 the next optimal inter-arrival time is readily found. Moreover, relying on
this method one also knows which distribution is used to model the sojourn
time from which the partial costs Fi(x

∗;ω) are obtained. We show that for se-
quential schedules combined with the moment-iteration method, comprehensive
sequencing rules can be found based on the mean, variance and combinations
of both.

Before we substantiate the log-normal case, we briefly handle the exponen-
tial case as its sequencing question also received significant interest (Kaandorp
and Koole 2007, Wang 1999, Choi and Wilhelm 2020).

Proposition 2.3. Using the moment-iteration method and sequential optimiza-
tion in the case of exponential service times, sequencing lowest mean/variance
first is sequentially optimal.

Proof. We consider an arbitrary client i > 1, and for brevity we omit the
subscript i. The objective function as defined in Eq. (2.2) can be written as

F (x;ω) = ωE[(x−B)+] + (1− ω)E[(B − x)+]

= ω(x− E[B]) + E[W ]. (2.23)

Filling in x∗ of Eq. (2.21), we find:

F (x∗;ω) = ω

(
x∗ − 1

λ

)
+

e−λx
∗

λ
= −ω log(ω)

λ
= −ω log(ω)EB. (2.24)



2.6. Sequencing of Clients 31

This function is decreasing in λ. Hence, the client with the highest rate param-
eter λ (lowest mean/variance) is desired to minimize costs. By applying the
Moment Iteration Method at each iteration, each problem of (2.23) becomes
dependent on the exponential distribution with the parameter following from
the expected sojourn time. This expectation is maximized when the client with
highest mean/variance is chosen by Eq. (2.20).

Within appointment scheduling, uncertainty in service times is passed on
to subsequent clients, as the waiting-time distribution is part of the sojourn-
time distribution via the relation of Eq. (2.9). This logic provides grounds
for using the sequencing heuristic SVF, which is shown to be sequentially op-
timal in Proposition 2.3. However, in the previous case mean and variance
are confounded via the single scale parameter characterizing the distribution.
The case of log-normal service times is more involved as both the mean and
variance are free to move in different directions. The machinery of the moment-
iteration method prescribes to re-estimate according to Equations (2.10) and
(2.11), which permits unravelling sequencing results in three directions:

◦ Scale. The means and standard deviation increase with the same mag-
nitude, cf. Proposition 2.3.

◦ Variance. Keep the means constant and have increasing standard devi-
ations.

◦ Mean. Keep the variances constant and have increasing means.

In addition, Section 2.7 offers contour plots for situations that might occur in
practice in which our sequencing rules do not immediately provide an answer.

2.6.1 Sequencing by Standard Deviation

Even though the SVF rule has intuitive grounds, the simulations, e.g. in Çayırlı
and Yang (2014), show that there is no universal rule that works best in prac-
tice. Specifically (Kong et al. 2016) show that, assuming log-normal service
times in equidistant schedules based on service-time averages, the SVF rule is
not optimal when there are more than 80 clients. For our sequential optimiza-
tion approach as outlined in Section 2.3 we prove that, when means are held
equal, clients should be scheduled in increasing order of variance.

Theorem 2.1. For a log-normally distributed variable B, the expected idle and
waiting times are increasing in variance, while the mean is kept constant, for
all inter-arrival times x > 0.

Proof. We consider an arbitrary client i > 1, for brevity we omit the index i.
Note that the mean is E[B] = eµ+σ

2/2 and the squared coefficient of variation is

scvB = eσ
2 − 1, both of which are increasing in σ. Keeping the mean constant

by setting µ = −σ2/2 + logE[B] we will show that

∂E[I]
∂σ

≥ 0 and
∂E[W ]

∂σ
≥ 0.
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First, we rewrite E[I] and E[W ]

E[I] = xFB(x)−
∫ x

0

tfB(t) dt and E[W ] = xFB(x)− x+

∫ ∞

x

tfB(t)dt.

Using the error function erf(x) = 2√
π

∫ x
0
e−t

2

dt we find that∫ b

a

tfB(t)dt =

E[B]

2

(
erf

(
log(b/E[B])− σ2

2√
2σ

)
− erf

(
log(a/E[B])− σ2

2√
2σ

))

for 0 ≤ a ≤ b, which can be found by a change of variables u = log t−µ+σ2

√
2σ

.

Combined with the definition

FB(x) =
1

2
erf

(
log(x/E[B]) + σ2

2√
2σ

)
+

1

2
,

this allows us to write

E[I] =
x

2
(erf (y+(σ)) + 1)− E[B]

2
(erf (y−(σ)) + 1) ,

E[W ] =
x

2
(erf (y+(σ))− 1)− E[B]

2
(erf (y−(σ))− 1) ,

(2.25)

where

y+(σ) =
log(x/E[B]) + σ2

2√
2σ

and y−(σ) =
log(x/E[B])− σ2

2√
2σ

.

We are interested in

∂

∂σ
E[I] =

∂

∂σ
E[W ] =

x

2

∂

∂σ
erf
(
y+(σ)

)
− E[B]

2

∂

∂σ
erf
(
y−(σ)

)
,

wherein
∂

∂σ
erf
(
y+(σ)

)
=

2√
π
e−y+(σ)2 ·

σ2

2 − log(x/E[B])√
2σ2

,

and
∂

∂σ
erf
(
y−(σ)

)
=

−2√
π
e−y−(σ)2 ·

σ2

2 + log(x/E[B])√
2σ2

.

Filling in the expressions for ∂y±(σ)
∂σ and cancelling out terms, we arrive at

∂

∂σ
E[I] =

∂

∂σ
E[W ] =

√
xE[B]

2π
e−

4 log(x/E[B])2+σ4

8σ2 > 0.
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Corollary 2.1.1. Using the log-normal approximation method, the objective
functions of Eq. (2.2) are sequentially minimized when lowest variance clients
are scheduled first given that they have equal means.

Proof. Consider an arbitrary client i. Without loss of generality define two
service-time variables B1 and B2 where E[B1] = E[B2], but Var[B1] ≤ Var[B2],
then we have by Theorem 2.1 that

FB1
i (x∗i (B1);ω) =

∫ ∞

0

ℓx∗
i (B1)(t)fB1

(t) dt

≤
∫ ∞

0

ℓx∗
i (B2)(t)fB1

(t) dt ≤ FB2
i (x∗i (B2);ω),

where x∗i (Bj) denotes the inter-arrival time which minimizes the objective func-

tion F
Bj

i (xi;ω) when Bj is taken as the service time of the ith client. Due
to Proposition 2.2, the argument can be iteratively applied to minimize the
objective function sequentially.

Given Theorem 2.1, we are now aware how expected idle and waiting times
increase in the variance of a log-normally distributed service time. By using
the approximation from Section 2.4 of replacing the sojourn-time distribution
by a single log-normal distribution that matches the first two moments, and
by Proposition 2.2, it suffices to look only at the moments of the service time
of the client to be scheduled next. This statement also holds for the following
findings.

2.6.2 Sequencing by Mean and Standard Deviation

Now we proceed to vary the standard deviation as well as the mean. A first
step to doing this is by fixing the squared coefficient of variation

scv =
Var[B]

E[B]2
= eσ

2 − 1, (2.26)

which is a function of σ. In addition, the following results rely on the fact that
we plug in the optimal inter-arrival time x∗.

Proposition 2.4. For a log-normally distributed variable B, if the mean and
standard deviation increase with the same rate, then the expected idle and wait-
ing times increase.

Proof. We consider an arbitrary client i > 1, and for brevity we omit the
subscript i. Since the mean and standard deviation increase with the same
rate, the scv is fixed. This means that by Eq. (2.26) σ also remains constant,
and µ increases.
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Rewriting the waiting time by using Eq. (2.13) and plugging in x∗

of Eq. (2.19) results in

E[W ] = m(x∗, 1)− x∗m(x∗, 0)

= E[B]Φ
(
−Φ−1(1− ω) + σ

)
− x∗Φ(−Φ−1(1− ω))

= eµ
(
Φ
(
σ +Φ−1(ω)

)
e

1
2σ

2 − ω eσΦ
−1(1−ω)

)
, (2.27)

where we used that −Φ−1(1 − ω) = Φ(ω). Taking the derivative in µ shows
that the waiting time increases when µ increases. Furthermore, the idle time
considered in the optimum x∗ can be expressed as

E[I] = x∗ − E[B]− E[W ]

= eµ
(
eσΦ

−1(1−ω)(1 + ω)−
(
1 + Φ

(
σ +Φ−1(ω)

))
e

1
2σ

2
)
,

which obviously increases in µ as well.

From Proposition 2.4 it follows that if the mean increases by α then the
expected idle and waiting times, and thus the objective function, increase by
the same factor. This is no surprise, as the log-normal distribution is a scale
family and apparently this property carries over nicely to idle and waiting
times. Combined with the approximation from Section 2.4 and with Propo-
sition 2.2, we know that, when minimizing the schedule sequentially, clients
with a lower cv should precede clients with a higher cv, as long as the mean
is non-decreasing; see Figure 2.5 for a sketch of the situation.

Example 2.1. Typically in healthcare, appointments for new clients require
more time and have relatively more variation than for return clients. An in-
stance that fits these characteristics is found in Çayırlı et al. (2006), where
new clients have longer service times and more variation compared to return
clients; cv 0.360 vs. 0.325 and mean 19.09 vs. 15.50 minutes. The sequential
optimization approach as well as the sequencing rule can therefore be used to
generate a schedule for a given number of new and return clients.

2.6.3 Sequencing by Mean

We focus on the case where we keep the standard deviation fixed while changing
the mean, so that we move in the horizontal direction in Figure 2.5. Interest-
ingly, an increase in the mean can only be guaranteed to have an increasing
effect on the objective function when ω is chosen to be at least one half.

Theorem 2.2. For a log-normally distributed variable B and ω ≥ 0.5, the
minimized objective function is increasing in the mean, while standard deviation
is kept constant.
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Coefficient of variation (cv) constant

Fi(x;ω), E[W ], E[I] increase for all ω

Only Fi(x;ω) increases, given ω ≥ 0.5

Figure 2.5: Situation sketch. Along the horizontal axis we denote the mean and along
the vertical the standard deviation. The service time distributions for both a return
and a new client as in Example 2.1 have been plotted. The diagonal where cv is
fixed delineates two regions. Above the diagonal, the expected idle and waiting times
increase; whereas in the cone below the diagonal, it is known that only the objective
function will increase as long as ω ≥ 0.5.
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Proof. Using Eq. (2.27) we obtain

F (x∗;ω) =
(
Φ
(
σ +Φ−1(ω)

)
− ω

)
eµ+

1
2σ

2

. (2.28)

Writing Eq. (2.28) out in mean and variance, we find that

F (x∗;ω) =

(
Φ

(√
log

E[B]2 + Var [B]

E[B]2
+Φ−1(ω)

)
− ω

)
E[B].

So that, when taking the derivative in the mean E[B], we arrive at

∂F (x∗;ω)

∂E[B]
=
(
Φ
(
σ +Φ−1(ω)

)
− ω

)
− Var [B]

E[B]2 + Var [B]

1

σ
φ
(
Φ
(
σ +Φ−1(ω)

))
= Φ

(
Φ−1(ω) + σ

)
− Φ

(
Φ−1(ω)

)
− 1− e−σ

2

σ
φ
(
Φ−1(ω) + σ

)
. (2.29)

Using the fact that ω ≥ 0.5 we note that the function Φ(x) is concave for x ≥ 0.
Now, let f be a function, concave for all x ≥ a− b, with b ≥ 0:

f(a)− f(a− b) ≥ b · f ′(a),
i.e., the tangent at a = Φ−1(ω) + σ lies above the CDF at a − σ = Φ−1(ω),
and so Φ

(
Φ−1(ω) + σ

)
− Φ

(
Φ−1(ω)

)
is at least as great as σφ

(
Φ−1(ω)

)
, and

strictly greater when σ > 0, so that

∂F (x∗;ω)

∂E[B]
≥ σφ

(
Φ−1(ω) + σ

)
− 1− e−σ

2

σ
φ
(
Φ−1(ω) + σ

)
=

(
σ − 1− e−σ

2

σ

)
φ
(
Φ−1(ω) + σ

)
. (2.30)

For this to be positive, σ2+e−σ
2

must be greater than 1. Let h(σ) = σ2+e−σ
2

,
then h(0) = 1 and its derivative is non-negative, thus Eq. (2.30) is always non-
negative, and strictly positive when σ > 0.

Applying the approximation method of Section 2.4 and by Proposition 2.2
we see that scheduling with the lowest mean first is optimal when variances are
equal and ω is at least a half. Summarizing the results in Figure 2.5, we see
that a return client should precede any client with a higher mean and standard
deviation. In addition, the diagonal where cv is fixed delineates two regions.
Above the diagonal the expected idle and waiting times increase, whereas in
the cone below the diagonal it is known only that the objective function will
increase as long as ω ≥ 0.5.

Example 2.2. Typically in healthcare, the value of ω is close to 1, see Robinson
and Chen (2011). So, even in the case that the variances of both new and return
clients of Example 2.1 were alike, it is still sequentially optimal to schedule
return clients first.
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2.7 Numerical Assessments

In the previous section, we proved that increasing mean or increasing the stan-
dard deviation increases the sequentially minimized objective function. The
cases in which one of them increases and the other decreases are intractable
for any mathematical formulation. For these instances we rely on numerical
computations of the behavior of the minimized objective function.

By the approximation of Section 2.4 and Proposition 2.2 it suffices to
look at one client at a time by recomputing the moments, so we provide the
following contour plots for ω = 0.5 and 0.8 in Figure 2.6. The contours in
the plot depict levels on which the minimized objective function has the same
value. In addition, the lighter the area is, the higher the value of the minimized
objective function.

In the case of Figure 2.6a, the isocost curves of the minimized objective
function are characterized by

SD[B] = E[B]

√
eΦ

−1( 2C+E[B]
E[B] )

2

− 1,

in which C is the value of the minimized objective function, see Eq. (2.28).
These isocost curves can be used to address the sequencing question further
than just increases in the mean or standard deviation. In practice, due to the
speed of fitting moments it would also suffice to compare the losses for all as-yet
unscheduled clients and to schedule the most advantageous client next. The
contour plots in this case serve to aid visualization of the relationships between
different prospective clients. By iteratively estimating the moments via the
moment-iteration method, one can determine which client to schedule next as
to minimize the objective function.

(a) ω = 0.5. (b) ω = 0.8.

Figure 2.6: Isocost curves of the minimized objective function with along the horizon-
tal the mean and along the vertical axis the standard deviation. The cost difference
between each curve equals 0.5 units.

In Theorem 2.2 we showed that the cost is always increasing in the mean
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when ω ≥ 0.5, a reasonable presumption in appointment scheduling. Table 2.4
compares losses for E[B] = 1 and E[B]′ = E[B] + 0.01 while holding variance
constant, and depicts the sign of the change. This table shows examples of
the inverse, where cost decreases while mean increases, which is important
behavior to note if dealing with instances where it is reasonable to anticipate
an ω < 0.5. This effect is most pronounced when the coefficient of variation is
small. It suffices to construct this table for only one value of E[B] = eµ+σ

2/2

and for different values of the coefficient of variation, cv =
√
eσ2 − 1, as we

have shown in Eq. (2.29) that the derivative of the optimal cost in the mean
does not depend upon the parameter µ.

cv
ω

0.01 0.1 0.3 0.4 0.45 0.5
1/20 − − − − − +
1/10 − − − − + +
1/5 − − − + + +
1/2 − − + + + +
1 − + + + + +

Table 2.4: The effect of increasing the mean for various combinations of cv and
ω ≤ 0.5.

Tables 2.5 and 2.6 compare simultaneous and sequential schedules. To
make the two schedules comparable we make the choice to fix the makespans
of the two schedules, represented via the last client’s completion time: E[C10].
This enables us to capture the effect of including overtime in the objective
function F (x;ω, γ), supporting the proposition in Section 2.3.3 that one can
control overtime implicitly through the parameter ω.

In Table 2.5 we consider a schedule without regard for overtime. ω = 0.8
has been chosen for the simultaneous schedule as it is considered a reasonable
reflection of practice. As in Figures 2.3 and 2.4, we also consider the cost
ratios which are defined for client i by ρi :− E[Ii]/E[Wi]. In Table 2.6 we
consider a schedule with a weight on overtime of γ = 1.5ω. This leads to
an anticipated reduction in expected overtime. It is interesting to note that
simply by matching makespans we are able to reduce expected overtime for the
sequential schedule as well, and that weighting overtime in the simultaneous
schedule brings its solution closer to that of the sequential schedule.

Previously we considered sequential optimality, which involved generating
a sequence by appending the client who would add the lowest additional cost
at each iteration. To do so we derived sequencing rules, but these rules are not
yet a guarantee that under the sequential optimization paradigm this sequence
yields the lowest total cost as in Eq. (2.2). So, it leaves the question whether
the sequencing rule in our moment-iteration framework is also overall optimal.

For the case of log-normal service times the optimality of the SCF rule
cannot be established, rather we focus on a typical healthcare setting (Example
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Simultaneous schedule Sequential schedule
with ω = 0.8 with ω = 0.7047

i x̄i E[Ii] E[Wi] ρi x∗i E[Ii] E[Wi] ρi

1 0.6548 0 0 - 0.6364 0 0 -
2 0.9622 0.0562 0.4014 0.1401 0.9174 0.0506 0.4143 0.1222
3 1.0179 0.0882 0.5273 0.1672 0.9856 0.0712 0.5681 0.1253
4 1.0331 0.0982 0.6077 0.1616 1.0150 0.0796 0.6620 0.1202
5 1.0360 0.1006 0.6752 0.1490 1.0326 0.0848 0.7318 0.1158
6 1.0325 0.0990 0.7382 0.1341 1.0448 0.0885 0.7878 0.1124
7 1.0236 0.0948 0.8005 0.1184 1.0539 0.0914 0.8344 0.1096
8 0.9991 0.0885 0.8653 0.1022 1.0611 0.0938 0.8742 0.1073
9 0.9037 0.0774 0.9437 0.0821 1.0669 0.0957 0.9089 0.1053
10 - 0.0500 1.0900 0.0459 - 0.0974 0.9394 0.1037

Session E[C10] = 10.7530 E[O] = 0.9048 E[C10] = 10.7530 E[O] = 0.8888

Table 2.5: Comparing a simultaneous to a sequential schedule by setting makespan
equal. E[Bi] = 1, cv = 0.6, for all i. Planned session due date, T =

∑
i E[Bi] = 10.

No overtime included in the objective function, as in Eq. (2.1).

2.1) to make a numerical assessment of all possible permutations under the
sequential optimization procedure to conclude that our sequencing result likely
holds. However, for the case of exponential service times, the SCF rule is indeed
overall optimal as we will show at the end of the next section.

Log-Normal

Unfortunately, even using the tractable moment-iteration method, the partial
objectives in case of the log-normal distribution do not nicely add up. So, to
get a better grip on the overall sequencing question here, we compare all sched-
ules in a case study. Using the algorithm outlined in Section 2.4 to schedule
3 new (N) and 6 return (R) clients with the same characteristics as in the ex-
ample. Furthermore we choose ω = 0.8 and do not include overtime, γ = 0.
In Figure 2.7, for all

(
9
3

)
= 84 possible sequences the total cost has been com-

puted for sequentially optimized schedules, as to complete the comparison also
the schedules obtained by simultaneous optimization (Eq. (2.1)) are provided,
which depict the same behavior.

In Example 2.1 we learned that a return should precede a new client to
minimize the sequential objective function, Fi(x

∗
i ;ω). Comparing the simul-

taneous objective function with sequential schedule F (x∗;ω) we see that each
time a new client is put further towards the end of the schedule, the objec-
tive function decreases. This explains the characteristic ‘sawtooth’ behavior in
the figure; starting from N N N R R R R R R and finally arriving at the sequence of
R R R R R R N N N, resulting in a 14% reduction in the objective function.

Exponential

In case of exponential service times, the clients’ sojourn-time distributions do
not reduce to exponential distributions, but to phase-types (Wang 1999, Kuiper
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16.0 16.5 17.0 17.5 18.0 18.5 19.0
F (x̄;ω), F (x∗;ω)

R R R R R R N N N
R R R R R N R N N
R R R R R N N R N
R R R R R N N N R
R R R R N R R N N
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Figure 2.7: Aggregate, i.e. simultaneous, costs of all possible sequential schedules
x∗ (solid) with 3 new and 6 return clients, with client characteristics in line with
Example 2.1. For comparison, also the schedules x̄ (dashed) from simultaneous opti-
mization are added.
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Simultaneous schedule Sequential schedule
with ω = 0.8 with ω = 0.7854

i x̄i E[Ii] E[Wi] ρi x∗i E[Ii] E[Wi] ρi

1 0.5433 0 0 - 0.5531 0 0 -
2 0.8725 0.0273 0.4840 0.0565 0.8510 0.0294 0.4763 0.0617
3 0.9472 0.0467 0.6583 0.0710 0.9301 0.0432 0.6685 0.0647
4 0.9722 0.0544 0.7655 0.0711 0.9629 0.0490 0.7874 0.0623
5 0.9834 0.0577 0.8510 0.0678 0.9821 0.0526 0.8770 0.0599
6 0.9886 0.0588 0.9264 0.0635 0.9951 0.0551 0.9501 0.0580
7 0.9904 0.0585 0.9962 0.0587 1.0048 0.0572 1.0121 0.0565
8 0.9890 0.0572 1.0630 0.0538 1.0124 0.0588 1.0661 0.0552
9 0.9805 0.0550 1.1290 0.0487 1.0185 0.0602 1.1139 0.0540
10 - 0.0513 1.1998 0.0427 - 0.0614 1.1567 0.0531

Session E[C10] = 10.4669 E[O] = 0.7699 E[C10] = 10.4669 E[O] = 0.7657

Table 2.6: Comparing a simultaneous to a sequential schedule by setting makespan
equal. E[Bi] = 1, cv = 0.6, for all i. Planned session due date, T =

∑
i E[Bi] = 10.

Overtime included in the objective function with weight γ = 1.5ω as in Eq. (3.3).

et al. 2015). However, by using the moment-iteration method we do end up
with an exponential distribution each time, which we can exploit in Theorem
2.3. This result augments on the work by Choi and Wilhelm (2020), in which
sequencing results for three or more clients are obtained in case of equidistant
schedules.

Theorem 2.3. Using sequential scheduling in combination with the
moment-iteration method for exponential service times, sequencing lowest
mean/variance first is also overall optimal.

Proof. First note that an expression for the ith client’s finish time is:

Ci =

i−1∑
j=1

xj + Si =

j∑
i=1

(Bi + Ii) ,

so that subtracting two subsequent finish times, i.e., Ci − Ci−1, leads to the
following equation

Ii = xi−1 +Wi − Si−1,

given that we are under the sequential optimization paradigm we evaluate the
sequential solution of Eq. (2.21) to get (cf. Eq. (2.24))

Fi(x
∗
i ;ω) = ωx∗i + EWi+1(x

∗
i )− ω ESi = −ω log(ω)

µi
. (2.31)

At the same time because of the moment-iteration method, the following rela-
tion can be deduced

1

µi
=

i∑
j=1

ωi−j

λj
, (2.32)
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which can be plugged into the sum of the partial objectives displayed in
Eq. (2.31) to reformulate the overall objective as

F (x∗;ω) = −ω logω

n∑
i=1

i∑
j=1

ωi−j

λj
= −ω logω

n∑
j=1

1

λj

n∑
i=j

ωi−j

= −ω logω

1− ω

n∑
j=1

1− ωn+1−j

λj
.

Because ω ∈ (0, 1), the term 1− ωn+1−j becomes smaller when j → n. So, to
minimize the objective the client with the greatest λj should precede, which
constitutes scheduling clients with smallest mean/variance first.

2.8 Robust Sequential Optimization

In Mak et al. (2015) robust optimization is employed to deal with incomplete
information about the service-time distribution. To that end we propose an
approach that straightforwardly fits in the sequential optimization framework.
Another relevant question is how to obtain schedules that are robust against
mis-specification of the weight parameter ω of Eq. (2.1). This value has to be
set by the practitioner and we will show that there exists a value to guarantee
a worst-case performance, which can be used as a starting point when relying
on sequential optimization.

2.8.1 Sequential Optimization with Limited Distribu-
tional Information

In Gallego and Moon (1993) a robust variant of the newsvendor problem is
introduced which minimizes the worst-case distribution. It is also shown that
this distribution, a two-point distribution, is unique. Translating that result
to our sequential optimization framework and combining it with the moment-
iteration method, we can apply it to our case, which iteratively yields the
sequentially optimal scheduling and sequencing decision.

As established, the optimal inter-arrival time that minimizes the worst-
case distribution is

x∗ = E[B] +

√
Var[B]

2

(√
1− ω

ω
−
√

ω

1− ω

)
. (2.33)

Using this optimal inter-arrival that minimizes the worst-case distribution, the
worst-case distribution for a variable B becomes:

fB(t) =

E[B]−
√
Var[B] ω

1−ω if t = 1− ω,

E[B] +
√
Var[B] 1−ωω if t = ω.

(2.34)
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Employing these expressions for the sojourn-time distribution at each iteration,
we replace B by Si−1, we arrive at the following update scheme for the moment-
iteration method:

E[Si] = E[Bi] +
√

Var[Si−1]

√
ω

2
√
1− ω

; (2.35)

Var[Si] = Var[Bi] + Var[Si−1]

√
ω
√
1− ω

4
. (2.36)

Theorem 2.4. Using the worst-case distribution with the moment-iteration
method, smallest variance clients should be sequentially scheduled first.

Proof. The expected idle and waiting times are

E[Ii] =
√
Var[Si−1]

√
1− ω

2
√
ω

and E[Wi] =
√
Var[Si−1]

√
ω

2
√
1− ω

,

so that the total cost at each iterand becomes:

Fi(x
∗
i ;ω) =

√
Var[Si−1]

√
ω
√
1− ω

2
.

So, the costs for client i solely depend on the variance—not the mean—of the
sojourn time of its predecessor. Observing Eq. (2.36) we find that (higher)
variances are propagated to subsequent clients:

F (x∗;ω) =

√
ω
√
1− ω

2

n∑
i=1

√√√√Var[Bi] +
i−1∑
j=1

(√
ω
√
1− ω

4

)i−j
Var[Bj ].

From which we immediately deduce that these costs are minimal when se-
quenced SVF.

To ensure non-negative arrival times, we afterwards apply the (·)+ opera-
tor on the inter-arrival times x∗. Note that a negative value only occurs when
ω > 0.5 and we deal with a relative high coefficient of variation cv, that is,

cvSi−1
:−

√
Var[Si1

]

E[Si−1]
>

2
√

(1−ω)ω
2ω−1 . Practically, in these cases there is no idling;

instead a buffer of waiting clients is built up. Finally, note that the worst-case
distribution is a location-scale family and that Theorem 2.4 can be general-
ized to hold for any location-scale family. So, under sequential optimization,
sequencing SVF also applies to the case of, for example, normal and uniform
distributions as sometimes used in scheduling (Denton and Gupta 2003).

2.8.2 Guaranteed Worst-Case Performance

To guarantee a worst-case performance, we assess schedules obtained by the
sequential optimization approach in terms of the overall objective of minimizing
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sums of idle and waiting times as in Eq. (2.1) for different weight parameters
ω.

Suppose that the true desired weighting parameter of the optimization
problem is uncertain. In Figure 2.8, for example, we first generate sequen-
tial solutions x∗(ψ) (defined by x∗i (ψ) = F−1

Si
(1 − ψ)) for varied ψ and plot

the simultaneous objective function F (x∗(ψ);ω, γ) for candidate true weights
ω = {0.05, 0.5, 0.95}, with γ = 1.5ω. The resulting costs are the costs of the
simultaneous objective function for each value of ω, using the solution x∗(ψ).
Note that there appears to be a point where all three of these lines cross,
i.e., there is some point ψ∗ for which the simultaneous objective functions all
return the same value, regardless of ω. This point can be identified as mini-
mizing the regret under misspecification of ω, as at any other point ψ ̸= ψ∗

there is some ω for which the cost will be higher. ψ∗ thus describes:

inf
ψ∈Ψ

sup
ω∈Ω

(F (x∗(ψ);ω, γ)− F ∗(x∗(ψ); γ)) = 0,

where F ∗(x∗(ψ); γ) = infω∈Ω F (x∗(ψ);ω, γ). The existence of such a point
under mild conditions is proven in the next theorem.

Theorem 2.5. There is a point ψ∗ ∈ (0, 1) such that the schedule generated by
the sequential approach results in the same aggregate, i.e., simultaneous, cost
without overtime, F (x∗;ω), for all choices of weight ω.

Proof. The existence of a sequential schedule which balances expected idle and
waiting time can be shown by looking at the fraction D(x∗(ψ)) =

∑
EWi/

∑
EIi,

which should equal 1 to balance both costs such that any ω will result in the
same cost. Since limψ↑1D(x∗(ψ)) = ∞ and limψ↓0D(x∗(ψ)) = 0, we invoke
the intermediate value theorem to guarantee existence of such a ψ∗. Now, since
waiting times are monotonically increasing whilst idle times decreasing in ψ we
have uniqueness.

Conditions can also be derived for which the above result extends to the
aggregate, i.e., simultaneous, cost including overtime, F (x∗;ω, γ). Let

DO(x
∗(ψ)) =

∑n
i=1 E[Wi]∑n

i=1 E[Ii] + αE[O]
,

(where again γ = αω) this fraction must again be somewhere equal to 1 for the
existence of a robust point. Consider a target session-end time of T = 0, as this
maximizes overtime. We have again on the one hand that limψ↓0DO(x

∗(ψ)) =
0, but on the other hand limψ↑1DO(x

∗(ψ)) =
∑n

i=1(n−i)E[Bi]/γE[O]. As long
as neither E[Bn] nor γ are too large this will hold to be greater than one.
The resulting sequential schedules constructed with the resulting value ψ∗ are
robust against choosing a wrong value for ω and thereby offer a guaranteed
worst-case performance.
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Figure 2.8: Calculating the aggregate, i.e. simultaneous, cost of a sequential schedule
taking overtime into account. Each client has a mean of 1 and a cv of 0.6.

2.9 Conclusion and Discussion

We provide an efficient approach to optimize the appointment scheduling prob-
lem. First, assuming that service times are distributed according to a distri-
bution, e.g., exponential or log-normal, we apply a moment-iteration method
to the appointment scheduling problem to make it computationally feasible.
The method is based on iteratively approximating the sojourn time by, for
example, a log-normal distribution with the same moments, but can be ap-
plied to any type of distribution. In this way we provide accurate solutions
near instantaneously, and the solutions result in the well-known dome-shape
pattern (Denton and Gupta 2003, Kaandorp and Koole 2007, Kuiper et al.
2015). Second, we establish guidelines to help practitioners decide in which
order to schedule clients. Such a comprehensive consideration of the prob-
lem is quintessential in healthcare where clients visit physicians, or are to be
scheduled an MRI, CT-scan or X-ray.

Focusing on the sequential version of the appointment scheduling prob-
lem (Wang 1993, Kemper et al. 2014, Kuiper et al. 2015), which entails mini-
mizing the objective function for each client enabling full control over the dis-
tribution of costs per client, we consider the setting of heterogeneous clients;
a particularly challenging problem in literature. Using the moment-iteration
method, we gain insights into who and when to schedule next by considering
the mean, variance or both. Zooming in on the practically relevant case of
log-normal service times, we show that amplifying variance always increases
expected idle and waiting times. Also, when the mean and standard deviation
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increase at the same rate the expected idle and waiting times rise when con-
sidered in the optimum. Finally, when only the mean increases, we prove that
when the weight parameter ω is chosen such that idle time is reflected to be
more or equally important than waiting time, which is easily met in healthcare,
it is sequentially optimal to schedule lower-mean clients first. When mean and
standard deviation move in opposing directions we provide contour plots for
typical weightings of idle and waiting time.

In addition, our results extend to the setting of surgery scheduling (Guda
et al. 2016), as we show that under the sequential scheduling paradigm there is a
straightforward connection between the problems of finding appointment times
and due date determination. It uncovers an attractive property of sequential
optimization, namely that the due date, i.e., the expected finish time of a client,
will be the moment that the next client arrives.

As the approach depends on the choice of distribution to approximate the
sojourn time distribution and a weight parameter in the cost function, we show
how to utilize the approach when these elements are unknown. First, when
no distributional information is available, but only the mean and variance are
known, we amend the approach with a distribution-free model by incorporating
a worst-case distribution (Gallego and Moon 1993). Next, we demonstrate the
existence of sequential solutions that are robust against misspecification of the
weighting parameter.

One of the limitations of the study is that it focuses on a sequential
optimization setting of the problem, in which by means of the moment-
iteration method interesting sequencing results are obtained. A natural ques-
tion is to investigate whether in different optimization frameworks or by using
other scheduling heuristics similar results, such as sequencing clients smallest-
mean/variance first, can be obtained. It is however known that in the tradi-
tional optimization framework of appointment scheduling, in which the objec-
tive function is jointly minimized over all clients’ arrivals (see Eq. (2.1)), the
answer is negative (Jafarnia-Jahromi and Jain 2020, Kong et al. 2016).

A direction for future research is to expand to a more integrated rendering
of the problem that outpatient healthcare clinics face by including capacity
constraints and client flow within a clinic. For example, along the lines of
the research by Gul et al. (2011) and White et al. (2011), who use discrete-
event simulation to find out how various factors and heuristics interact. Their
experiments reaffirm that, in practice, it is wise to schedule low mean and low
variation clients first. Also, one can consider a multi-server setting, as the
one studied in Kuiper and Lee (2022). Lastly, the consideration of different
performance metrics is an avenue for further research; for example, to consider
a quantile objective (Sang et al. 2021) or incorporate quadratic idling or waiting
costs as explored in Kuiper et al. (2023).



Chapter 3

On Scheduling Multiple Servers

3.1 Introduction

Appointment schedules are often used in settings where resources are scarce; as
a consequence appointment schedules are used in healthcare. Current literature
mainly focuses on the single-server setting. In healthcare such a setting is often
appropriate as continuity of care is obeyed: patients see the same physician
during the course of their treatments.

Some settings, however, do not fit well into this framework, such as mag-
netic resonance imaging (MRI), X-ray facilities and operating rooms. Each of
these cases has multiple resources that are present and it is logical that the next
patient will be served by the first resource to become available. Other examples
can be found in (e.g., El-Sharo et al. 2015, Soltani et al. 2019), such as legal
counselling, technical support appointments, visa application processes, dental
hygiene services and medical rehabilitation services. Especially in healthcare,
our analysis will demonstrate the benefits when relaxing the continuity of care
restraint in situations where multiple service providers are able to provide the
same service. In fact Green et al. (2013) conclude that, to fulfil the growing
need of primary care in the near future, pooling of physicians is inevitable.

The benefits of increased flexibility by pooling resources are assumed re-
duction of patient or client waiting times and increased utilization. The decision
whether to pool resources, such as MRIs or physicians, is of a tactical nature,
as it concerns the assignment of clients to resources, see Hulshof et al. (2012)
and Ahmadi-Javid et al. (2017).

A complicating factor in appointment scheduling is random service
times (Ho and Lau 1992, Çayırlı and Veral 2003). This randomness is reflected
in a combination of:

• Idling resources due to having excessive capacity, resulting in idle time.

• Session overruns due to insufficient capacity towards the end of the sched-
ule, creating overtime.

• Waiting clients as a result of insufficient capacity, resulting in waiting
time.

An appointment schedule tries to find a balance by minimizing a weighted sum
of these ramifications of under- and over-capacity.

To define the problem in a mathematical framework, let there be s servers
and n > s clients to be scheduled. Let ti and Bi be the arrival and service
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time of the i-th client. Assume that each server starts by serving one of the
initial s clients, so t1 = t2 = . . . = ts = 0, so that for each subsequent client
i ∈ {s + 1 . . . , n}, Wi denotes the waiting time, and Ii the idle time, which
is the time that resources are idle before the i-th client’s arrival. In addition,
define the overtime O as the time that the session runs over the scheduled
session-end time T. The objective is to determine a schedule, given by arrival
epochs (ts+1, . . . , tn) of the n − s subsequent clients as to minimize the total
expected idle time, waiting time and overtime over the session. By considering
the inter-arrival time between two appointment epochs xs+i := ts+i − ts+i−1,
the problem can equivalently be formulated as:

min
(xs+1,...,xn)

n∑
i=s+1

(cIEIi + cWEWi) + cOEO, (3.1)

wherein cI , cW and cO are weight parameters to be chosen at the discretion of
the practitioner.

The computation of these metrics is typically done by considering the
evolution of the schedule as a queue. In our case the resulting queueing system
is, using Kendall’s notation, a D/G/s queue: deterministic inter-arrival times
(not necessarily uniformly spaced), general service times, and s servers.

Our methodology relies on the fact that service times can be approxi-
mated well by mixtures of exponentials, i.e., phase-type distributions, wherein
each exponential distribution can be thought of as a state of the system. Such
a description can be extended to the multi-server setting for which we de-
rive a tractable recursive procedure by exploiting its semi-Markovian nature
to keep track of the system, allowing evaluation of the objective function. For
optimized multi-server appointment schedules we find that the resulting inter-
arrival times feature singular patterns that do not appear in the single-server
setting. Further, comparing equivalent configurations in number of servers,
the potential gains of pooling in appointment scheduling with random service
times are quantified, as well as the impact of various environmental and free
parameters, such as randomness of the service times, the impact of the weight
parameters, and the occurrence of no-shows.

3.2 Literature Review

We divide literature on appointment scheduling into two streams: single-server
systems and multi-server systems. The former class has been studied exten-
sively; we refer for comprehensive reviews on these efforts to Çayırlı and Veral
(2003), Gupta and Denton (2008), Ahmadi-Javid et al. (2017). Study on multi-
server systems has usually been restricted to the domain of multi-stage settings.
Few works have focused on the single-stage, multi-server setting for appoint-
ment scheduling, i.e., the D/G/s queue which is analytically explored in this
paper. Below we highlight work that relates to our research.
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3.2.1 Single-Server, Single-Stage Environments

The single server setting, that is s = 1, is naturally applicable to the single
stage case. This does not, however, constrain the framework from being appli-
cable to a multi-stage setting, for example when other stages have more than
sufficient capacity not to be a bottleneck, e.g., a reception. In Welch and Bailey
(1952) the single-server environment was first formulated. These authors also
formulated the well-known Bailey-Welch appointment rule, which assigns mul-
tiple clients to the first slot to circumvent possible idle time in early stages of
the schedule. Ho and Lau (1992) study variations on this appointment rule and
find that among important environmental factors affecting the performance of
an appointment schedule the most important are the number of clients to be
scheduled, service-time variability and no-shows.

Another stream of research aside from the study of appointment rules is
that of developing methods for finding optimal arrival epochs. An example
is the work by Denton and Gupta (2003), who introduce a sequential bound-
ing approach in which the problem is framed as a linear program. Using the
L-shaped algorithm, they successively partition the outcome space to approxi-
mate an optimal solution. Klassen and Yoogalingam (2009) use simulation in
conjunction with optimization to address the single-stage appointment schedul-
ing problem. Another paradigm is to solve this problem over a discrete grid,
such as in Kaandorp and Koole (2007), who assume exponential service times.
Zacharias and Yunes (2020) show the concept of multi-modularity to hold for
general stochastic service times, which guarantees the success of efficient opti-
mization algorithms.

A common method to obtain tractability is the use of phase-type dis-
tributions (Asmussen et al. 1996), which have proven to provide good levels
of accuracy. In the context of appointment scheduling, Wang (1997) is the
first work which employs phase-type distributions to derive a recursive system.
In the same stream, Bosch and Dietz (2001) use phase-type distributions to
analyze the waiting time and overtime over a grid of schedules and show sub-
modularity to assure convergence. Kuiper et al. (2015) introduce a general
method to approximate service times by a phase-type counterpart, allowing
computation of relevant queue metrics and facilitating steady-state analyses.
They show that it provides good approximations for both the log-normal and
Weibull distributions.

Another approach is to discretize time, such an approach is followed by
De Vuyst et al. (2014) and Begen and Queyranne (2011) to facilitate evaluation
and optimization. Lastly we name the work by Mak et al. (2015), who study
appointment scheduling considering worst-case distributions, which we show to
be closely related to our results obtained in steady state.

Focusing on the solutions that these approaches produce, many have
reported that the optimized inter-arrival times depict a dome-shape pattern
(Wang 1997, Denton and Gupta 2003, Kaandorp and Koole 2007, Hassin and
Mendel 2008, Klassen and Yoogalingam 2009, Kuiper et al. 2015). Appoint-
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ments early in the session and towards the end are more condensed, whereas
in the middle the inter-arrival times between appointments are lengthier.

3.2.2 Multi-Stage Environments

As noted in Çayırlı and Veral (2003) and Ahmadi-Javid et al. (2017) the major-
ity of the literature focuses on single-server appointment scheduling. However,
multi-server settings are nevertheless prevalent in healthcare. The first ex-
tension to consider is the addition of servers in series, creating a multi-stage
environment. For example, a client may first have an X-ray and then have an
appointment with a specialist.

Rising et al. (1973) study a system of multiple stages at a university outpa-
tient clinic by means of Monte Carlo simulation. Cox et al. (1985) develop and
simulate a queueing model for the multi-stage setting found in an ear, nose &
throat outpatient clinic. Also relying on simulation, White et al. (2011) study
a system in which – besides introducing capacity constraints – they distinguish
between two patient types, one of which requires an X-ray before appointment.
In surgery scheduling, Saremi et al. (2013) use simulation optimization in order
to address a multi-stage operating room scheduling problem, incorporating the
availability of surgeons.

Another sequential service setting is studied in Zhou and Yue (2019), in
which they introduce a stochastic linear program, which is solved by combin-
ing a sample average approximation and linear programming (cf. Denton and
Gupta 2003). A two-stage, tandem setting is studied analytically in Kuiper
and Mandjes (2015). Klassen and Yoogalingam (2019) study by means of sim-
ulation the clinic’s effectiveness when part of the physician’s work is taken over
in an earlier stage by assistants.

Finally, we mention research that considers systems with multiple stages
and servers. Most of this work is case specific and relies on simulation, e.g., Côté
and Stein (2007). Another example is the work by Alvarez-Oh et al. (2018),
who study a simple system in which patients have to be seen by one of two
nurses and then a dedicated provider (single server). Mandelbaum et al. (2020)
develop a data-driven robust optimization approach based on uncertainty sets
that accommodates a multi-server setting with various patient flows. They
apply their model on a cancer center’s infusion units and report a 15% to 40%
reduction of waiting and overtime costs.

3.2.3 Multiple Parallel Servers

Another extension of the single-server framework is that of servers in parallel.
In the specific setting where there is server preference we refer to (Section 5.1
Ahmadi-Javid et al. 2017) and references therein. Here we focus on the case
where clients are indifferent to servers.

Denton et al. (2010b) study the problem of scheduling surgeries to multiple
operating rooms (parallel servers), where in a first stage it is decided how
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many servers to open, such that in the second stage surgeries are assigned
to specific operating rooms. Once assigned, each operating room acts as a
single-server system. El-Sharo et al. (2015) consider a model to decide how
many clients should be overbooked to slots in a multi-server setting. For each
server a separate appointment schedule is made. Only when a patient becomes
an overflow patient, or a patient is failed to be served in his or her initially
assigned slot, will that patient be allocated to any other server.

As the two examples above still make a schedule assigned to a specific re-
source we find a closer resemblance to our setting in Swisher et al. (2001). They
apply discrete event simulation to a clinic to study its performance in a steady
state, in this setting the patient does not go to a specific physician. Further-
more Harper and Gamlin (2003) study by means of simulation the impact of
various appointment rules. Sickinger and Kolisch (2009) study an appointment
schedule with two computer tomography (CT) scanners. These scanners serve
the same queue which consists of three patient classes, namely outpatients, for
whom the schedule is built, and inpatient and emergency patients, who provide
the randomness to be tackled by the design of an appointment schedule. They
find that a generalized Bailey-Welch rule performs well.

Zacharias and Pinedo (2017) offset no-shows by providing a recursive
method to compute various performance metrics which are optimized by a
local search algorithm. Soltani et al. (2019) focus on a legal counselling center
where service times are random and model this randomness by matching the
first two moments by a discrete service-time distribution; assigning probabili-
ties to multiples of the slot size. More importantly, as optimization turns out
to be computationally intensive, a load-based appointment scheduling heuristic
is proposed, which provides a performance increase of 16%.

3.2.4 Contribution and Organization

Our approach augments the current literature on multi-server appointment
scheduling by providing a computational approach in continuous time that
incorporates service-time variability and the occurrence of no-shows, which are
considered the major sources of variation that affect the performance of an
appointment schedule (Ho and Lau 1992, Hassin and Mendel 2008).

Relying on phase-type approximations, we extend the phase-type recursion
introduced for the single server setting (Wang 1997) to the multi-server setting
by compressing the state space. For performance measures of interest, such as
idle and waiting time, we obtain semi-analytical derivations. After optimiza-
tion, the inter-arrival times exhibit some striking patterns at the beginning
and end of the session that deviate from the dome-shape pattern reported in
literature. Further, the approach enables us to quantify the benefits of pool-
ing in appointment scheduling, which addresses the tactical decision on how to
allocate resources; an unchallenged question in the literature on appointment
scheduling in healthcare (Ahmadi-Javid et al. 2017).
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We extend the work to steady state, which enables the evaluation of the
performance gain for large numbers of clients and servers effectively. Inter-
estingly, since appointment schedules are often employed in high-utilization
environments, we find that the problem cast in the heavy-traffic regime cap-
tures the steady state accurately. This insight underpins that the performance
improves by a factor of

√
s when pooling s servers.

The structure of the paper is as follows. In the subsequent Section 3.3, we
state the general scheduling problem for the multi-server setting and show the
intrinsic complexity of the problem compared to the single-server setting, and
we demonstrate our approach to make the problem tractable. In Section 3.4,
we explain in detail how the phase-type distribution of a system with s parallel
servers can be obtained and how it facilitates computation of key performance
metrics. In Section 3.5, we use the methodology to compute optimal schedules
for a given number of clients under various settings, so that we can study
the form of the optimal solution as well as the gain from combining servers.
Then, in Section 3.6, we extend our phase-type methodology to steady state
and consider a corresponding heavy-traffic analysis, which enables us to gain a
better insight in the benefits of pooling. Finally, we conclude in Section 3.7.

3.3 Problem Definition

Empirical research reports that patients arrive early more often than late and
therefore it is typical to assume that patients are punctual (Cox et al. 1985,
Çayırlı and Veral 2003). In the interest of generality we will henceforth refer
consistently to clients and servers. Further, we restrict our model to identical
servers and homogeneous clients except for a short discussion on the ramifica-
tions of relaxing these assumptions. We assume that servers start non-empty
and that there are n clients to be scheduled. Furthermore, in line with ap-
pointment scheduling literature, clients are served according to a first-come
first served discipline, and there is no pre-emption nor sharing of servers.

3.3.1 Single-Server Performance Metrics

In the single-server setting, assuming punctuality we start a session with the
first client to arrive at time t1 = 0. Define the inter-arrival time between the
i-th client and his predecessor as xi := ti − ti−1 for i = 2, . . . , n. Furthermore,
let x1 = 0. Then it is standard by the Lindley recursion (Lindley 1952) that
the waiting times are defined recursively by the following equation:

Wi = max{Bi−1 +Wi−1 − xi−1, 0} = max{Si−1 − xi−1, 0}, (3.2)

where the sojourn time Si = Wi + Bi. Obviously S1 = B1 as the first client
does not have to wait. The session end time, also known as the makespan,
is defined as the moment when the final client leaves the system, which is at
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tn+Sn, which is equal to the sums of idle and service times, i.e.,
∑n
i=1(Bi+Ii).

So that the sum of idle times and overtime are deduced from:

n∑
i=1

Ii = tn + Sn −
n∑
i=1

Bi and O = max {tn + Sn − T, 0} , (3.3)

wherein T is the pre-defined targeted session-end time. There have been many
methods proposed to compute these metrics (Ahmadi-Javid et al. 2017). Once a
method is found, these metrics can be used to evaluate the objective function in
display (3.1).

3.3.2 Complexity of a Multi-Server System

Unfortunately in a multi-server setting, despite the fact that the waiting queue
is shared these recursions do not apply, as noted in the seminal work by Kiefer
and Wolfowitz (1955). One of the critical issues is that the i-th departure is
not necessarily by the i-th client. Since clients are served by several servers
in parallel there can be overtaking; a client is still in service whilst another
server can become available to serve the subsequent client, so that eventually
the subsequent client can leave the system earlier than his predecessor. Thus
the waiting time of one client does not exclusively depend on the sojourn time
of its predecessor, which makes the problem considerably more challenging and
the Lindley recursion inapplicable.

As phase-type distributions have a state-space representation, they permit
keeping track of the system. In detail, it is possible to keep track of which client
is being served by which server, for this purpose we need to consider tuples of
s dimensions, where 0 denotes a server as empty. The domain of each element
in the tuple is in the simplest case just the number of possible clients. For
example, in Table 3.1 we show the number of configurations when there are
two servers and 5 clients to be served. The shaded, empty cells cannot be
reached as they contain cases where both servers are serving the same client
(black) or that a client jumps from one server to another (gray). A simple
computation of the number of possible client configurations reveals that this
number increases by n2 − n+ 2, where n is the number of clients. In general,
in a similar way it can be shown that for s servers the number of possible
configurations is O(ns).

3.3.3 Compressing the State Space

In line with literature, we assume homogeneous servers and clients. First,
without loss of generality we normalize the mean service time to one for all
clients, that is, EBi = µi = 1. Second, we express the service-time variability
in terms of the squared coefficient of variation:

scv =
VarBi
(EBi)2

= VarBi. (3.4)
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(0, 0) (0, 2) (0, 3) (0, 4) (0, 5)

(1, 0) (1, 2)∗ (1, 3) (1, 4) (1, 5)

(3, 0) (3, 2) (3, 4) (3, 5)

(4, 0) (4, 2) (4, 3) (4, 5)

(5, 0) (5, 2) (5, 3) (5, 4)

Table 3.1: The 22 possible configurations of five clients on two servers, the starting
state is indicated by the asterisk; client 1 on the first server and client 2 on the second
server.

As clients are served according to a fist-come first-served discipline, it suffices
for the i-th client to keep track of the work ahead of him, that is number of
clients in and the status of the system upon and after his arrival; for these
purposes define the variables Yi and Zi respectively. Since the status of the
system is given by the current phase(s) of the client(s) in service, Zi is often
multidimensional. Its dimension depends on the number of clients that are
currently in service. Keeping track of these variables allows the computation
of waiting times and also session-end time. As an example, client-i’s waiting
time Wi can be inferred from the moment a server comes available for the i-th
client, i.e., when there are fewer than s clients in service:

Wi = inf{t ≥ 0|Yi(t) ≤ s} = inf{t ≥ 0|Yi−1(t+ xi) < s}. (3.5)

Idle time requires more thought. The makespan denotes the session-end time,
multiplying this quantity by s gives the servers’ total capacity over the course
of the session and evidently contains all idle times.

Obviously, in a multi-server setting it is possible that there is no need to
keep all servers active throughout the entire session. In Section 3.5.2 we discuss
the impact of this additional feature and why not to include this in the objective
function. Lastly, referring to Eq. (3.3), the notion of session overtime will be
carried over to the multi-server case. In the next section we propose a method
that enables tracking of the system in continuous time and thus computation
of these performance metrics in expectation.

3.4 Methodology

In this section we outline the method that enables computation of the system.
We do so by relying on phase-type distributions, which has been a widely
accepted method in queueing (Neuts 1981, Tijms 1986, Asmussen et al. 1996),
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and appointment scheduling in specific (Wang 1997, Bosch and Dietz 2001,
Kuiper et al. 2015). To keep track of the multi-server system we exploit the
property that a convolution of multiple phase-type distributions can again be
described by a phase-type distribution.

A service-time distribution Bi is approximated by a phase-type counterpart

Bi ∼ PH(α,S), (3.6)

with α a row vector describing initial probabilities, and S the transition matrix.
Following the standard approach, a mixture of two Erlang distributions is

advised in case the service-time distribution has an scv smaller than 1, that is
Ek−1,k(µ; p), requiring k phases. Furthermore, a hyperexponential distribution,
H2(µ1, µ2; p) with balanced means is used in case of an scv larger than 1, this
has k = 2 phases. The middle case scv = 1 corresponds to the exponential
distribution and has just one phase. Without loss of generality the service
times are set to 1, as in the single server case in Kuiper et al. (2015).

3.4.1 Phase-Type Recursion

We are interested in the bivariate process (Ys+i(t),Zs+i(t)) for i = 0, . . . , n− s
that describes the full evolution of the system, where we have:

• Ys+i(t) ∈ 0, 1, . . . , s+i clients in the system, as we start with s clients in
service, and

• Zs+i(t) = (Z1(t), . . . , Zξ(t)), where ξ = min{Ys+i(t), s}, and for each
ℓ = 1, . . . , ξ, Zℓ(t) ∈ 1, . . . , k.

The k denotes the number of phases of the phase-type counterpart. Zℓ can
be seen without loss of generality as the ℓ-th server, because of homogeneous
servers. There are at most ξ servers to record, as there are either Ys+i clients
to be served or all s servers are active.

Since there is no distinction between which server serves which client,
the number of unique combinations of states depends only on the number of
servers and possible phases. The maximum number of states required turns
out to be

∑n
i=1 k

min{i,s}, which is O(n); a remarkable reduction compared to
naively considering all unique routings, cf. O(ns) as in Section 3.3.2.

Corresponding to the bivariate process, we define the probabilities of find-
ing j clients in the system, j ∈ {0, . . . , s+ i}, and the server(s) in phase(s)
mℓ ∈ {1, . . . , k} for ℓ ∈ {1, . . . , ξ}:

p
(s+i)
j,(m1,...,mξ)

(t) = P [(Ys+i(t),Zs+i(t)) = (j, (m1, . . . ,mξ))] .

Define the row vector that contains all possible phases for j clients in service
by

p
(s+i)
j (t) =

(
p
(s+i)
j,(k,...,k)(t), . . . , p

(s+i)
j,(k,...,1)(t), · · · ,

p
(s+i)
j,(1,...,k)(t), . . . , p

(s+i)
j,(1,...,1)(t)

)
,

(3.7)
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which is a vector of size kmin{j,s}. The quantity p
(s+i)
j (t)1 is the probability

that j clients remain in the system t time units after client (s + i)’s arrival,
where 1 is a column vector of appropriate size.

In the special case that all service times are exponentially distributed, the
workload vector Ys+i(t) is only needed to describe the evolution of the system,
because each client’s service comprises just a single phase. Consequently, the

p
(s+i)
j (t) become singletons that describe the probabilities that j clients remain
t amount of time after the arrival of the i-th client.

For the general case, the probabilities by Eq. (3.7) describe the evolution
of the system. Since each server starts by serving a client and no new clients
have yet arrived, the initial probability vector of the system is given by the
following concatenation: αs = (α⊗ · · · ⊗α,0∑s−1

j=1 k
j ); the Kronecker product

in this vector is applied exactly (s − 1) times. The transition matrix is given
by

Ss =



S(s) U (s) 0 · · · 0

0 S(s−1) . . .
. . .

...
...

. . .
. . . U (3) 0

0 · · · 0 S(2) U (2)

0 · · · 0 0 S(1)

 , (3.8)

where S(ℓ) (diagonal) and U (ℓ) (upper diagonal) are defined recursively (1 <
ℓ ≤ s) by

S(ℓ) = I|S| ⊗ S(ℓ−1) + S ⊗ I|S(ℓ−1)|, (3.9)

U (ℓ) = I|U(ℓ−1)| ⊗U (1) +U (ℓ−1) ⊗ I|U(1)|. (3.10)

with S(1) = 1, U (1) = −S1, |A| being the number of rows in matrix A, and I|·|
an identity matrix with | · | rows and columns. In fact, U (1) is the traditional
phase-type exit vector that corresponds to service completion. The elements
of the transition matrix in Eq. (3.8) can be understood as S(ℓ) describing the
transitions between states in which ℓ servers are busy and U (ℓ) the exit matrix
that defines the transitions to only ℓ−1 servers being busy, and thus one server
becoming idle.

The vector p(s)(t) is fully described by a phase-type distribution
PH(αs,Ss).

p(s)(t) =
(
p(s)
s (t),p

(s)
s−1(t), . . . ,p

(s)
1 (t)

)
= αs exp (Sst) , (3.11)

For a phase-type representation of the system after the arrival of all other
clients a recursive procedure will be proposed. In the same fashion as for
the initialisation, we are interested in the vector after the (s+ i)-th client has
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entered the system, with i = 1, . . . , n− s; using Eq. (3.7) we find:

p(s+i)(t) =
(
p
(s+i)
s+i (t),p

(s+i)
s+i−1(t), . . . ,

p
(s+i)
s+1 (t),p(s+i)

s (t),p
(s+i)
s−1 (t), . . . ,p

(s+i)
1 (t)

)
.

(3.12)

Furthermore, the probability of being in the absorbing state of an empty system
is found by

p
(s+i)
0 (t) = 1− p(s+i)(t)1.

To find an expression that tracks these probabilities over time we introduce
a phase-type distribution (αs+i,Ss+i) for each client i ∈ {1, . . . , n − s}. The
transition matrix Ss+i is found by extending Ss by i times, adding S(s) along
the diagonal. In addition, we also need to describe the flow from one client
being finished to the next one being served. For this purpose we place the
transition matrix T (s) along the upper diagonal, which will be defined below,

Ss+i =



S(s) T (s) 0 · · · 0 0 0

0 S(s) T (s) . . .
... ... ...0 0

. . .
. . . 0

...
. . .

. . . S(s) T (s) 0
0 0 · · · 0 S(s) T (s) 0

0 Ss


, (3.13)

=:

(
Swait
i T

(s)
s

0 Ss

)
, (3.14)

where T (s) follows from the recursion

T (ℓ) = I|T (ℓ−1)| ⊗ T (1) + T (ℓ−1) ⊗ I|T (1)|, with T (1) = −S1⊗α.

Thus each block S(s) added to the diagonal in Eq. (3.13) corresponds to states
where one might find an additional client in the waiting queue. E.g., after the
(s+i)-th client’s arrival there can be at most i−s clients waiting. Analogously,
the exit matrix T (s) describes transitions from a saturated system with j > s
clients in the system to one with precisely j−1 ≥ s, cf. U (ℓ) for ℓ ∈ 2, . . . , s, see
Eq. (3.10), which correspond each time to the ℓ-th server becoming available.

The initial probability vector αs+i, for i = 1, . . . , n − s, captures the
intrinsic recursivity of the approach. Since on arrival of a subsequent client
the system can be saturated, all s servers are busy and the client enters the
waiting queue, or is accepted by an available server. The corresponding vector
αs+i can be derived from p(s+i−1)(xs+i) as defined in Eq. (3.11) and reads for
client s+i who arrives xs+i time after his predecessor:

αs+i = f
(
p(s+i−1)(xs+i),α

)
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:=
(
p
(s+i−1)
s+i−1 (xs+i), . . . ,p

(s+i−1)
s+1 (xs+i),p

(s+i−1)
s (xs+i),

α⊗ p
(s+i−1)
s−1 (xs+i), . . . ,α⊗ p

(s+i−1)
1 (xs+i),

α⊗ p
(s+i−1)
0 (xs+i)

)
,

(3.15)

wherein the states in the first line of (3.15) correspond to saturation and in the
second line of (3.15) to the start of service for the new client. Furthermore, note
that this vector has ks entries more than its predecessor. Thus after arrival
of the (s+i)-th client the evolution of the system as in Eq. (3.12) is described
by PH(αs+i,Ss+i).

3.4.2 Computation of Performance Metrics

Knowing the phase-type representation of the system after each client’s arrival,
we can compute his waiting time by considering an embedded phase-type dis-
tribution. For this purpose we specifically look at the probabilities that corre-
spond to instances in which clients are waiting. Thus for clients i = 1, . . . , n−s:

p
(s+i)
wait (t) :=

(
p
(s+i)
s+i (t),p

(s+i)
s+i−1(t), . . . ,p

(s+i)
s+1 (t)

)
, (3.16)

these probabilities adhere to the recursion earlier, and naturally one can de-

fine a start vector on arrival by αwait
i = p

(s+i)
wait (0). Furthermore, the transi-

tions between these probabilities over time are described by Swait
i as defined in

Eq. (3.14):

FWs+i
(t) = 1− p

(s+i)
wait (t)1 = 1−αwait

i exp
(
Swait
i t

)
1,

where 1 is a column vector of appropriate size. Also, for phase-type distri-
butions the moments can readily be obtained by using its representation, so
that

n∑
i=s+1

EWi =

n−s∑
i=1

−αwait
i (Swait

i )−11. (3.17)

For idle and overtime, define FMs+i(t) as the cumulative distribution function
of the makespan of finishing the first s + i clients t time units after ts+i (i =
1, . . . , n− s), this is given by

FMs+i(t) = p
(s+i)
0 (t) = 1− p(s+i)(t)1 = 1−αs+i exp (Ss+i t)1,

so that EMs+i = −αs+iS
−1
s+i1. In particular, the makespan corresponding to

having all n clients served demarcates the session, and so the sum of all idle
times can be described as the total time available in the system minus time
spent in service. Similarly, overtime is incurred for all servers if a client remains
in service after the targeted session-end time, T. Thus metrics for the servers’
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idle times, respectively overtimes, are given by

EI(s) = s (EMn + tn)−
n∑
i=1

EBi; (3.18)

EO(s) = s

∫ ∞

0

max {t+ tn − T, 0} dFMn(t). (3.19)

The targeted session-end time in the multi-server case is set to the sum of mean
service times divided by the number of servers, as such it becomes equivalent to
the single-server case. Note that the performance measures are superscripted,
as to indicate that in a multi-server, setting idle time and overtime are incurred
by all servers until the last server finishes the last client.

3.4.3 Convexity

For the single-server appointment scheduling problem in continuous time,
strong stochastic convexity arguments can be invoked to prove that the wait-
ing times are convex in the inter-arrivals. This follows from the fact that the
Lindley recursion of Eq. (3.2) consists of convex operators, see Theorem (2.15)
of Shanthikumar and Yao (1991). Other performance metrics can be expressed
as convex functions of waiting times to establish convexity of the objective
function (3.1), see for example Wang (1993) and Kuiper et al. (2023) for a
proof that does not rely on stochastic convexity arguments.

For the multi-server queue, recursive systems exist which keep track of
the workload per server, e.g. Kiefer and Wolfowitz (1955). Unfortunately, not
all operators in this system are convex. As a consequence strong stochastic
convexity arguments can not be applied to show convexity for general service-
time distributions. Indeed, Harel (1990) found a counterexample which shows
in stationarity that expected waiting times as a function of the inter-arrival time
in the D/G/s queue are not convex, using a bimodal service time distribution:
with 2/3 probability the service-time equals 5 and with 1/3 it equals 11 time
units.

For phase-type distributions it is widely known that they can be used to
approximate any non-negative distribution arbitrarily closely. The counterex-
ample of Harel (1990) can easily be replicated by using a combination of two
Erlang distributions with appropriate means, and many phases. Hence waiting
times are not convex in inter-arrival times for the subclass D/PH/s either.

However, our phase-type distributions are unimodal, and we have strong
reason to believe that our solutions are global optima as various starting points
led to the same solutions. Finally, as considered in Section 3.6, we show that
the optimization problem considered in the heavy-traffic regime, to which in
essence many of the problems converge, is convex.

For the discrete analogue of the single-server appointment scheduling prob-
lem Zacharias and Yunes (2020) establish multi-modularity to guarantee that
a global minimum is found. Our methodology can be used to show that multi-



60 Chapter 3. On Scheduling Multiple Servers

modularity does not extend to the multi-server setting. For this purpose con-
sider a schedule of equal slots, the first s clients arrive at the first slot starting at
time zero and all subsequent clients arrive according to the equidistant schedule
xs+i = EB/s. Then, choosing n = 10 and considering phase-type distributed
service times with scv = 1.5 and number of servers s = 2, 3, 4, or scv = 0.75
and number of servers s = 3, 4 we find that neither the expected idle times
of Eq. (3.18) nor the ones corrected for early leave (see Eq. (3.22) in Section
3.5.2) adhere to the first property as stated in Lemma 1 of Zacharias and Yunes
(2020). Indeed, upon inspection, the proofs of multimodularity of the single-
server performance metrics rely on keeping track of the workload per slot by
means of the Lindley recursion, but this principle fails, as the variables for
clients’ waiting times and servers’ workload do not coincide in a multi-server
setting (Daley 1998).

3.5 Multi-Server Appointment Scheduling in
Transient Settings

In this section, we employ our methodology to compute appointment
schedules for the multi-server setting and contrast that with implementing a
complementary set-up of optimized single-server appointment schedules. In
addition, the impact of service-time variability, no-shows and some relevant
modifications to the objective functions, such as early leave of servers, are
studied.

In our analyses we examine the optimal solutions found when appoint-
ments are scheduled for multiple servers. For our computations we relied on a
standard machine and our programs are written in MATLAB. For minimization
MATLAB’s built-in routine fmincon is employed. We use the metrics as defined
in Section 3.4.2 and set the cost of waiting time to one, cW = 1, so that the cost
ratio of idle to waiting time simplifies to cI . Hence, our minimization becomes

min
(xs+1,...,xn)

cI EI(s) +
n∑

i=s+1

EWi + cO EO(s), (3.20)

so that the non-trivial arrival epochs follow from ts+i =
∑i
j=1 xs+j .

The explicit expressions for the metrics given in Section 3.4.2 facilitate
computation. Note that if cO = 0, the objective function reduces to a closed-
form expression. Research by Klassen and Yoogalingam (2014) suggests that
including overtime into the objective function has roughly the same impact
as increasing the weight put on idle time. As a consequence most of our ex-
periments concentrate on the case of idle and waiting time only, although in
Section 3.5.2 we specifically study the inclusion of overtime. We verified the
optimizations by choosing as different starting points vectors consisting of only
zeros, ones, average service rates (1/s), and the heavy-traffic solution as ob-
tained in Section 3.6.2.
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3.5.1 Structure of the Optimal Solution

Studying the patterns of the optimal inter-arrival times of multi-server appoint-
ment schedules for various numbers of clients, the characteristic dome-shape
plateau to which solutions converge can be identified. For example, in Fig-
ure 3.1, for s = 1 clear dome shapes appear. For the pooled schedules, so
where s = 2, 3 or 4, the middle solutions converge to steady-state values,
encompassing the long-term balance between idling and waiting. Note that
because the number of clients to be scheduled is fixed, there is one inter-arrival
fewer to be determined if the number of servers s increases.
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s = 1; s = 2; s = 3; s = 4

Figure 3.1: In both panels scv = 0.25 (approximated by mixture of Erlang service
times) and cI = 1, left there are 12 clients to be scheduled whereas in the right panel
24. The graphs in each panel show the pattern of inter-arrival times, wherein from
top to bottom the number of servers is increased from one to four.

At the start of a session, as seen in Figure 3.1 and also in Figure 3.2, we
observe a reversed bullwhip in the inter-arrival times; a steep decline in the
inter-arrival times is followed by a damping pattern of iteratively increasing
and decreasing inter-arrival times. The reason for this pattern is that the
synchronized start of service is completely absorbed by the randomness in the
system if there are sufficient clients to be scheduled. Comparing Figures 3.1
and 3.2, the extent of this effect is amplified for lower values of scv. In the
extreme case of no uncertainty (i.e., the D/D/s queue) the optimal schedule
for s servers would be the arrival of a batch of s clients after each mean service
time.

If scv equals one these patterns disappear, see Figure 3.3, possibly due
to memorylessness of the exponential service times that are used to model the
service times: aside from the number of clients in the system at each arrival
no additional information is revealed about how far along each service time is.
In case of scv greater than one, a mixture of exponential service times is used,
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Figure 3.2: In both panels scv = 0.5 (approximated by mixture of Erlang service
times) and cI = 1, left there are 12 clients to be scheduled whereas in the right panel
24. The graphs in each panel show the pattern of inter-arrival times, wherein from top
to bottom the number of servers is increased from one to four, cf. legend Figure 3.1.

1 5 10
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

i

x̄
s+

i

1 5 10 15 20

i

Figure 3.3: In both panels scv = 1 (approximated by exponential service times) and
cI = 1, left there are 12 clients to be scheduled whereas in the right panel 24. The
graphs in each panel show the pattern of inter-arrival times, wherein from top to
bottom the number of servers is increased from one to four, cf. legend Figure 3.1.
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which contains even greater variability than the exponential case, and so as in
Figure 3.4 the dome-shape pattern stands out.

Focusing on the session end, fluctuating inter-arrival times are apparent
in a bullwhip pattern for low scv values. In particular, analogously to the
start-up, these patterns are stronger for lower scv cases, and evidently the
effect disappears for scv ≥ 1. The explanation for this behavior is that unused
capacity on other servers is penalized as idle time, so the optimization tries to
synchronize the servers’ end times at the expense of the desired reduction in
waiting times. Waiting time becomes less important towards the end of the
session as there will be fewer clients who would be affected by a tight schedule.

3.5.2 Session-End Revisited

One can opt to include session overtime in the framework, which is computed by
Eq. (3.19). In Figure 3.5 we report the optimized inter-arrival times that result
from an objective function that is composed of only waiting time and overtime.
Here we choose cO = 1.5, 1.5 times the value chosen for cI in Figure 3.2, which
is typical as argued in Çayırlı et al. (2012). In Figure 3.5 we added to the
optimal solutions the solutions from Figure 3.2, which incorporated idle time
instead of overtime. Remarkably, for any number of servers a comparison of
the shape of the curves reveals that including overtime has a similar impact as
idle time, which echoes the conclusions of Klassen and Yoogalingam (2014) for
the single-server case.

Another salient feature of a multi-server appointment schedule is that
servers can finish earlier when there is insufficient work left, that is there are
fewer clients in the process and in the appointment schedule than the num-
ber of servers. For example, in Figure 3.6(b) servers two and three can finish
earlier. By allowing this early leave, the idle time of servers waiting until the
last client has finished service can be reduced, this time is indicated by the
diagonal lines. So far this feature is not incorporated in the objective function
as it would cause unsynchronized endings to not be penalized, and thus lead
to unnecessary underutilization of a session. Naturally, in a system of single-
server appointment schedules a server leaves when there is no client left, as
seen in the system in Figure 3.6(a). So in order to have a balanced compari-
son, also in terms of idle times, between a system of single-server systems and
a multi-server setting a correction for early leave of servers is necessary.

After optimizing over the objective function in display (3.20), the addi-
tional gain of allowing early leave of servers can be computed. Obviously a
server can only finish if it is certain that the server will not be required in the
future. So if there are ξ servers busy (ξ ∈ {1, 2, . . . , s}) and one finishes, it can
be released if and only if there are exactly ξ−1 clients remaining to be served,
that is those currently in service plus the ones still scheduled. To highlight the
subtlety, note that the third server in Figure 3.6(b) can only leave after the
10-th client has left and no sooner, which is after the cross with dots. At that
time there is one client yet to start and one still in service.
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Figure 3.4: In both panels scv = 4 (approximated by hyperexponential service times)
and cI = 1, left there are 12 clients to be scheduled whereas in the right panel 24.
The graphs in each panel show the pattern of inter-arrival times, wherein from top
to bottom the number of servers is increased from one to four, cf. legend Figure 3.1.
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Figure 3.5: In both panels the fully opaque marks represent scv = 0.25 and cO = 1.5
(cI = 0), which contrast to the semi-transparent marks originally from Figure 3.1 in
which cI = 1 (cO = 0). Left there are 12 clients to be scheduled whereas in the right
panel 24. The graphs show the pattern of inter-arrival times, wherein from top to
bottom the number of servers is increased from one to four, cf. legend Figure 3.1.
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The expected finish time of a server in a pooled system (numbered in
reversed order of leaving) can be computed by constructing elements of a cu-
mulative distribution function. The ℓ-th server (ℓ ∈ {1, . . . , ξ}) can finish in
a time t ∈ [0, xn−ℓ+j+1) after the (n−ℓ+j)-th arrival for j ∈ {1, . . . , ℓ} with
xn+1 := ∞, so there are ℓ − j clients yet to arrive, if there are fewer than j
clients in service. This leads to

FEℓ,j
(t) = 1−

n−ℓ+j∑
i=j

p
(n−ℓ+j)
i (t)1,

recall that p
(n−ℓ+j)
i describes the phases after the arrival of the (n−ℓ+j)-th

client for which i clients remain in the system, see Eq. (3.7). The expected
finish time of server ℓ and server specific overtime can be computed via the
numerical integration of:

EEℓ =
ℓ∑
j=1

∫ xn−ℓ+j+1

0

(t+ tn−ℓ+j) dFEℓ,j
(t);

EOℓ =
ℓ∑
j=1

∫ xn−ℓ+j+1

0

max{t+ tn−ℓ+j − T, 0} dFEℓ,j
(t). (3.21)

The session-end metrics defined in Eqs. (3.18) and (3.19) relate accordingly:
EI(s) ≡ sEE1 −∑n

i=1 EBi and EO(s) ≡ sEO1. Since servers leave when no
longer needed, the expected idle times throughout the schedule are computed
by

n∑
i=s+1

EIi =
s∑
ℓ=1

EEℓ −
n∑
i=1

EBi. (3.22)

This re-visitation of the session end extends Eq. (3.3) to the multi-server set-
ting, allowing a comparison to equivalent systems of single servers, i.e., to study
the impact of pooling.

Figure 3.6: A visualization of two appointment systems which serve 12 clients on
three servers; on the left singly operating servers (each with the same schedule) and
on the right in parallel. The crosses indicate idle time; the diagonal lines the gain
won by allowing early leave; Bi are the service times and T the session-end time.
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3.5.3 Benefits of Pooling

Besides studying the structure of the optimal solutions we are also interested
in a comparison of performance between having server-dedicated appointment
schedules versus pooled, multi-server appointment schedule. As reported for
call centers (e.g., van Dijk and van der Sluis 2008), we anticipate that the
pooling of resources will be highly beneficial.

n = 12 n = 24 n = 48

Expected costs in an optimized system of s single servers (a)

s
∑

EIi
∑

EWi
∑

EOℓ
∑

EIi
∑

EWi
∑

EOℓ
∑

EIi
∑

EWi
∑

EOℓ

2 3.4118 3.4602 3.4118 8.9153 7.2742 8.9153 20.2858 14.6852 20.2858
3 2.6000 3.1740 2.7369 7.8055 7.1316 7.8055 19.0337 14.6337 19.0337
4 1.9706 2.8264 2.5451 6.8236 6.9204 6.8236 17.8307 14.5483 17.8307

Expected costs in an optimized system of s pooled servers (b)

2 2.4315 2.3272 2.4415 6.2922 4.8752 6.2922 14.2322 9.8381 14.2322
3 1.5421 1.6861 1.8252 4.5390 3.7538 4.5393 10.9165 7.6884 10.9165
4 1.0314 1.2768 1.7097 3.4807 3.0745 3.5521 8.8986 6.4358 8.8986

Performance gains (a−b/a)

2 28.73% 32.74% 28.44% 29.42% 32.98% 29.42% 29.84% 33.01% 29.84%
3 40.69% 46.88% 33.31% 41.85% 47.36% 41.84% 42.65% 47.46% 42.65%
4 47.66% 54.83% 32.82% 48.99% 55.57% 47.94% 50.09% 55.76% 50.09%

Table 3.2: In these experiments scv is set to 0.5 and cI = 1, i.e., idle and waiting time
are valued equally importantly. Overtimes are computed after optimization with the
aforementioned settings using T = n/s.

To understand the merits of pooling, we compare the performance of our
multi-server appointment schedules to those in which an equivalent system of
single-server schedules are employed. In order to have a balanced comparison
we compute the expected overtimes per server and idle times throughout the
session by using Eqs. (3.21) and (3.22) after the optimization, as to examine
how an individual server benefits from being in a pooled system. Varying the
number of clients in multiples of 12, divisible by two, three or four (servers),
we report the expected performance in Table 3.2.

The performance improvement is striking, and significant reductions in
each performance dimension appear; up to around 55% when four servers are
pooled. Note that in some cases the sum of overtimes and idle times are the
same, which naturally occurs when the last client is scheduled after the targeted
session-end time:

∑n−s
i=1 x̄s+i = tn > T.

In appointment scheduling, the servers’ time is often considered to be more
valuable than that of clients. In healthcare, for example, waiting time is valued
considerably less than idle time (Robinson and Chen 2011). Therefore we
experiment here with settings in which the cost parameter cI takes a high value
in the objective (3.20). Besides depicting the baseline schedule of Figure 3.1,
wherein cI = 1, the optimal schedules are shown in Figure 3.7 for cI = 5, in
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cI = 1 (equal costs); cI = 2; cI = 5; cI = 20

Figure 3.7: Extending on the setting of Figure 3.1, n = 24 and scv = 0.25, the
optimal appointment schedules when pooling two (left) or four (right) servers whilst
varying cI in the objective function of display (3.20).

accordance with the middle setting of Çayırlı et al. (2012), and cI = 20 as
an extreme case, albeit in line with the observations of Robinson and Chen
(2011). Besides moving the dome-shape pattern down, i.e., tightening the
schedule, placing a lower value on waiting time damps the distinctive start and
end patterns of a multi-server schedule.

Considering the gains achieved by pooling in Table 3.3 in the case of cI =
5, we observe that the improvements on the servers’ account lag behind in
the smaller instances. This effect is due to the imbalanced effort that is now
put on reducing idling, and consequently overtime, resulting in tight schedules
in the corresponding system of s single servers. Contrariwise the expected
waiting times decrease greatly, see Table 3.2. For n = 48, moving away from
dominating transient effects, we conclude that the performance improvement
for idle and overtime mimics those reported earlier. This is backed by our
analysis in Section 3.6 wherein the performance improvement in the long run
turns out to be a factor of

√
s.

3.5.4 No-Shows

No-shows are recognized as an important environmental factor to be accounted
for in appointment schedules (e.g., Ho and Lau 1992, Çayırlı and Veral 2003)
and are also studied in detail for multi-server systems in Zacharias and Pinedo
(2017). To accommodate for the impact of no-shows, which occur with proba-
bility q, in our framework, we only have to adapt the initial probability vectors.
With probability (1−q) we have a client whose service time is approximated by
a phase-type distribution and with probability q a client who does not show-up
at all.
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n = 12 n = 24 n = 48

Expected costs in an optimized system of s single servers (a)

s
∑

EIi
∑

EWi
∑

EOℓ
∑

EIi
∑

EWi
∑

EOℓ
∑

EIi
∑

EWi
∑

EOℓ

2 0.7593 9.1779 1.5273 2.6319 21.3441 2.8663 7.3178 44.2482 7.3178
3 0.4742 7.6170 1.7530 1.9720 19.9379 2.8714 6.1683 43.7249 6.2061
4 0.3085 6.2159 1.9732 1.5185 18.3558 3.0546 5.2639 42.6882 5.7325

Expected costs in an optimized system of s pooled servers (b)

2 0.5876 6.3901 1.1895 1.9504 14.7088 2.1586 5.2899 30.3613 5.2899
3 0.3306 4.3396 1.2471 1.2623 11.1103 1.8984 3.7485 24.1044 3.8288
4 0.2042 3.0992 1.3759 0.8922 8.8466 1.8916 2.8589 20.2124 3.2533

Performance gains (a−b/a)

2 22.62% 30.38% 22.12% 25.89% 31.09% 24.69% 27.71% 31.38% 27.71%
3 30.29% 43.03% 28.86% 35.99% 44.28% 33.89% 39.23% 44.87% 38.31%
4 33.81% 50.14% 30.27% 41.25% 51.80% 38.07% 45.69% 52.65% 43.25%

Table 3.3: In these experiments scv is set to 0.5 and cI = 5, i.e. idle time is
valued as five times more important than waiting time. Overtimes are computed
after optimization with the aforementioned settings using T = n/s.

Define αqs,j = (α ⊗ · · · ⊗ α)(1 − q)jq(s−j)
(
s
j

)
, where the Kronecker

product is applied exactly j times. Now the start vector reads αqs =
(αqs,s,α

q
s,s−1, . . . ,α

q
s,1), and when a subsequent client should arrive, the lines

in Eq. (3.15) that define the recursion are replaced by:

αqs+i = (1− q)
(
f
(
p(s+i−1)(xs+i),α

))
+ q

(
0ks ,p

(s+i−1)(xs+i)
)

(3.23)

using the f(·,α) function as also defined in Eq. (3.15). Analyzing Eq. (3.23)
shows that with probability (1− q) the (s+i)-th client is added to the system,
either in service or in the queue, and with probability q the system remains
unchanged as the client did not show up. Using the earlier transition matrices,
the possible transitions remain unchanged, we conclude that PH(αqs+i,Ss+i)
describes the system after the (s+i)-th client’s arrival on which we apply the
developed machinery; Eq. (3.22) should be adapted accordingly to account for
no-shows by subtracting (1− q)

∑n
i=1 EBi instead.

On top of the baseline setting of Figure 3.1, we implemented no-shows to
occur with probabilities 10%, 20%, and 40% in Figure 3.8 for different numbers
of servers and cost parameters. The no-show levels chosen cover the range re-
ported in Çayırlı et al. (2012). Due to the occurrence of no-shows, a scheduled
client effectively brings in less work, so we observe that the dome is pushed
downwards by approximately the fraction with which no-shows occur. This
happens irrespectively of the weight chosen for idle time in the objective func-
tion, cI .

More interestingly, with no-shows we see that at the beginning the opti-
mization counter-acts the possibility of server idling; the first inter-arrival(s)
decrease and even become zero, which means starting a session with more
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clients scheduled than the number of servers s. This overbooking will typically
be followed by a relatively high inter-arrival time, as several panels in Figure 3.8
clearly show. In single-server equivalents an overbooking to the first slot only
occurs at a no-show probability of 40%, after which the dome-shape pattern
commences. Overbooking is more persistent when more servers are pooled as
for multiple servers it hedges against the possibility of idling without costing
more in terms of waiting time, since the queue is serviced by more than one
server.

At the end of the schedules in Figure 3.8, we see that no-shows dampen
the idiosyncratic fluctuations. Comparing the top to the bottom panels, we
observe that the schedule has tightened, and overbooking has occurred at more
occasions and with greater severity. This is the result of valuing idle time
more importantly in the objective function. Still, we see that also in these
cases a relatively long inter-arrival time follows, demonstrating that the effect
of no-shows cannot be dismissed.
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(a) s = 2 & cI = 1. (b) s = 4 & cI = 1.
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(c) s = 2 & cI = 5.
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(d) s = 4 & cI = 5.

q = 0 (without no-shows); q = 0.1; q = 0.2; q = 0.4

Figure 3.8: Extending on the setting of Figure 3.1, n = 24, scv = 0.25, with varying
no-show probability q for different numbers of pooled servers s and cost parameter
cI .
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3.6 Multi-Server Appointment Scheduling in
Steady-State Settings

As noted in Çayırlı and Veral (2003) steady-state is never reached in a real
clinical session with a small number of clients. However, as seen in the various
figures that depict the optimal transient schedule the middle-most values con-
verge quickly to a stationary plateau. Therefore, the steady-state counterparts
of these systems provide relevant insight for the transient setting and are ap-
propriate for the majority of clients. Indeed, studying the clinic in steady state
has lead to a fruitful stream of research (Lindley 1952, Jansson 1966, Swisher
et al. 2001, Kuiper et al. 2017).

The reason why the plateau of each dome converges to the corresponding
optimal steady-state inter-arrival time is intuitive, since transient effects found
at the start and end of a session favour service providers. Therefore waiting
time is valued less in a transient setting. In steady state these transient effects
are neglected, as the session has run forever, so that the extent of waiting
time propagates to possibly all clients, which results in the optimal stationary
inter-arrival time bounding the plateau of the dome from above.

In a stationary analysis the transient effects at the start and toward the end
of the session are neglected. As a consequence, the objective function reduces
to an elegant combination of idle time, which can be expressed as excessive
capacity sx−EB, versus clients’ waiting times EW . Let x be the steady-state
inter-arrival time then, given without loss of generality cW ≡ 1, we find:

argmin
x

cI EI(x) + cW EW (x) = argmin
x
cI sx+ ES(x), (3.24)

with S(x) the sojourn-time distribution that obviously depends on the station-
ary inter-arrival time x. Given the fact that we minimize an objective function
with cI < ∞ the utilization will never reach a fully loaded system so that
the existence of a steady-state solution is guaranteed (Kiefer and Wolfowitz
1955, Whitt 1982). In the next sections we propose two methods that provide
solutions in this limiting regime.

3.6.1 Phase-Type Approach

The transition matrix that is obtained in Section 3.5 can be used to compute
the equilibrium distribution, π, by considering the system’s embedded Markov
chain. Consider the system slightly before a new client’s arrival, then the
system jumps to a state with an additional client, then after x amount of
time the system should have returned to its equilibrium distribution. The full
system contains an infinite number of states, but since the probability of having
n clients in the system goes rapidly to zero as n grows large, we cut-off the
number of clients to be allowed in the system at n; in our experiments n = 40
has worked well. This allows the computation of the steady-state distribution
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for a given x by solving:

π
(n)
0 = f

(
π(n),α

)
Pn, where Pn = [exp(Sn+1x), 1− exp(Sn+1x)1] ,

with π
(n)
0 :=

(
π(n), π

(n)
0

)
and thus π(n) having similar states as p(n)(x) of

Eq. (3.12), so that the function f(·,α) as defined in Eq. (3.15) can be applied.
Subsequently the transition matrix extended with the transitions to the empty
state can be used to obtain the steady-state probabilities for each of the states
in the vector πn by solving the above system; cutting off the transitions to

states with n+ 1 clients and imposing the normalization equation: π
(n)
0 1 = 1.

This non-singular system for the steady state can be solved by exploiting,
e.g., MATLAB’s built-in routines to compute the matrix exponential and solve
the system of linear equations. Then πn can be used as the initial probability
vector αn and the transition matrix is just Sn, so that the performance metrics
of Section 3.4.2 can be computed and filled into the objective function of (3.24).
Optimization over x provides us the optimal stationary inter-arrival time x̄pt.

In Figure 3.9, where an equal cost ratio is chosen (cI = 1), we observe
a decreasing pattern in the expected idle and waiting times when the number
of servers increases. As seen, the marginal decreases in idle and waiting times
are less for higher values of s, which is in line with the theoretical result for
waiting times in G/G/s queues derived in Weber (1980). Furthermore, we see
that the performance gain achieved by pooling is greater when the scv is larger;
scv varies from 0.5 (reflecting healthcare environments) up to 1 (exponential
service times).

In the next section we make an interesting connection with appointment
scheduling studied in a heavy-traffic regime and compare the stationary solu-
tions obtained by the phase-type approach with those obtained under heavy
traffic for which elegant expressions are derived.

3.6.2 Robust Schedules

The goal in many appointment scheduling problems is to reduce waiting time
while keeping utilization at a high level, so that no capacity is wasted. Con-
sequently, the idle time should be low so that the load of the system is close
to 1. This observation warrants consideration of the problem in a heavy-traffic
regime. In our cases, this entails a steady-state inter-arrival time x only slightly
larger than the mean service time divided by the number of servers, i.e., EB/s.

In fact, when s increases, our steady-state results using the method out-
lined above converge to the results obtained in the heavy-traffic regime. Be-
cause the variability accrued is spread over multiple servers, expected waiting
and idle times will be lower than in an equivalent system of single servers.
Consequently, higher utilizations are achieved; the inter-arrival times are much
closer to the service rate. Moreover, as for the single-server case, as idle time is
evaluated more importantly, inter-arrival times tend to the service rate, see also
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Figure 3.9: The expected waiting and idle times corresponding to the optimal station-
ary solutions for s ∈ {1, . . . , 8} using the embedded Markov chain from the phase-type
approach; cI = 1, while scv is set to 0.5 and 1.

our numerical results in the previous section. So it should generally hold that
in these two scenarios a heavy-traffic approximation will provide an accurate
approximation.

Using the steady-state result for the G/G/s under a heavy-traffic regime,
see for example Theorem 2 in Köllerström (1974) or Section 5 in Whitt (1983),
we have

2s(sx−W )

scv
∼ Exp(1), when x ↓ EB/s.

Specifically, since the means are normalized, we can rewrite the optimization
problem of (3.24) for given cI , which is easily solved using straightforward
calculus:

x̄ht =
1

s

(
1 +

√
scv

2cIs

)
= argmin
x∈(EB/s,∞)

cI(sx− 1) +
scv

2s(sx− 1)
.

Furthermore, since the second derivative in x is positive, a global optimum is
guaranteed. We observe that the margin to account for randomness on top of
the average service rate is a multiplication of 1/

√
s, which tends to zero as s

increases.
Studying the optimal solution as a function of the inter-arrival times, we

observe in Figure 3.10 that for cI values greater than 1, given that scv is
not too large, the heavy-traffic and the solutions obtained by the phase-type
approximation are nearly the same. In fact, the graphs depicted in Figure 3.11
show that for low scv values, say scv < 1, heavy-traffic solutions provide
accurate approximations even when cI equals 1.

In addition, the corresponding expected idle and waiting times provide
insight into the patterns observed in Figure 3.9, and are explicitly given by:

EIht =
√

scv

2s cI
and EWht =

√
scv cI
2s

. (3.25)
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Figure 3.10: For scv = 0.5 the optimal stationary solutions for a wide range of cI
values, cost ratios vary from 5:1 to 1:10, using the phase-type approach x̄pt or the
heavy-traffic approximation x̄ht.

For a decision-maker these expressions reveal how the operational benefits of
pooling can be concentrated on either one of the performance dimensions. If
utilization is the primary concern, idle times can even be reduced by a factor
of s, keeping waiting times the same, by multiplying cI with s when servers
are pooled. Conversely, when waiting times are of paramount importance cI
should be divided by s.

Note that the set-up discussed here is robust against misspecification of
the distribution and only depends on the first two moments. Moreover the
waiting times in heavy-traffic coincide with the conjectured upper bound on
the waiting times for multi-server queues (Daley 1998), equating the heavy-
traffic results to that obtained whilst minimizing the objective function under
the worst-case distribution, cf. Mak et al. (2015).

3.7 Conclusion and Discussion

In this work the intensively studied single-server appointment schedule problem
is extended to a multi-server setting. The multi-server setting introduces many
obstacles to tracking and convexity that are not present when only one server
is considered. Due to this fact, this case is not studied in an analytical manner
in the literature, although it features in many service systems. We offer a
computational approach to the multi-server setting relying on the tractability
of phase-type distributions, which is employed to gain insight in the optimal
solution in multi-server appointment schedules.

The impact of deviating from the class of phase-type distributions in the
transient setting would be a logical avenue for further research. Furthermore
it remains open whether in each instance a global optimum is found. By the
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Figure 3.11: The optimal stationary solutions when cI = 1 for a range of scv values,
using the phase-type approach or the heavy-traffic approximation; the solutions are
differentiated according to the same legend as in Figure 3.10.

fact that our optimizations converged to the same solution when varying start
vectors and that in corresponding heavy-traffic regimes convexity can be shown,
we have strong reason to believe that the problems considered are convex. Of
course this remains a challenging line of research for queueing theorists. Lastly,
confining the solutions over discrete points in time might be an extension that
might be of particular value to practice; such a model is studied for a single
server in Zacharias and Yunes (2020).

A well-known result of the single-server appointment scheduling is the
dome-shape pattern. Contrasting with the multi-server setting there are some
discrepancies that arise at the start and the end of a session for cases in which
scv is below one; typical in many service systems such as in healthcare (Çayırlı
and Veral 2003). These patterns arise due to multiple servers starting syn-
chronously, each serving one client. The apparent pattern is characterized by
a damped bullwhip, which converges in the middle to a steady-state plateau as
the randomness in the service times gradually suppresses these effects. At the
end of the session, the optimization tries to achieve a synchronous ending of
the servers, which culminates in a similar but reversed pattern in the optimal
inter-arrival times.

These patterns gradually decrease when scv tends to one; if scv equals one
(or is higher), the exponential distribution (or a mixture) is used for which a
dome-shape pattern appears for multiple servers as well. The inclusion of over-
time has the same impact as incorporating idle time in the optimization. If idle
time is valued more importantly, pooled appointment schedules are tightened
and the atypical start and end of session patterns are damped. Experiments
further reveal that including no-shows lowers the plateau by the fraction in
which they occur and the striking multi-server patterns at the end are damped.
At the start of the session, no-shows result in overbooking, which in the case
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of low scv values is followed by an extremely large inter-arrival time. This
idiosyncratic initialization behavior persists even for higher cost parameters.

In addition, a relevant selection of cases provides practitioners insight
into the decisions and trade-offs that arise. In detail, the performance gains
of pooled appointment systems versus equivalent systems of singly operating
servers are analyzed in a framework that incorporates service-time variation.
Focusing on the waiting times, the analysis shows that the expected waiting
times reduce by about 31% when two servers are pooled, and for four servers by
an astounding 53%. Similar double-digit reductions are reported for expected
idle time and overtime. In healthcare, for example, the comparison unravels
the implicit cost of continuity of care.

The optimal stationary schedule is also studied, which approximates the
dome-shape plateau arising in the transient setting. Notice that with more
servers the variation in the system is reduced and thus a heavy-traffic regime
becomes an appropriate modeling framework. The optimal solution in this
regime has an algebraic expression. Moreover, this regime elucidates that the
expected idle or waiting times decrease by a factor of

√
s when s servers are

pooled. Finally, it is likely that the heavy-traffic solution coincides with the
conjectured upper bound (Daley 1998) on the expected waiting time in a multi-
server setting and is thus robust. As such, this study provides a comprehensive
account of the multi-server appointment scheduling problem, which was as yet
unaccounted for in the field.





Chapter 4

On Scheduling Multiple Patients

4.1 Introduction

There is a great variety of designs in manufacturing, communication, and ser-
vice systems. We will distinguish in particular two queueing structures: a
system operated by a single server, and one operated by multiple servers in
parallel, in which case it is unclear a-priori by which server a customer will be
served.

Combining multiple servers in parallel can be termed pooling. This pooling
carries with it significant efficiency gains. See van Dijk and van der Sluis
(2008) for an example in a call center context and Benjaafar (1995) for an
overall performance analysis. However, pooling and its merits have received
little attention in the sub-domain of appointment scheduling. Appointment
scheduling is the specific domain in which customers arrive according to an
appointment book. This domain has traditionally centered on the single-server
setting, which is primarily motivated in the healthcare setting by a desire for
continuity of care, where one patient will always see the same physician, but
also by the fact that multi-server settings are intrinsically more complex to
analyze.

Relaxing this assumption is in many scheduling situations not unreason-
able, as described in the recent work by Soltani et al. (2019). Cases where
this may occur are performing blood tests, inoculations, or when a customer
needs only a single appointment, e.g., a COVID-test, see for example Hanly
et al. (2021) where they analyse a queueing network for mass vaccination hubs,
supposing that patients arrive singly at 10 minute intervals, or in batches of
120 within a 60-minute interval.

Even in situations where continuity of care does play a role, there are sev-
eral studies pointing out that in practice this single-server paradigm is violated,
such as Liu and Liu (1998) and Balasubramanian et al. (2010), who report that
patients prefer seeing a different physician if this reduces their waiting time.
Moreover, the recent COVID pandemic transformed many situations from ones
were customers were free to choose their own arrival time to ones governed by
appointment books in which there is a limited number of slots to be filled.
All these developments have resulted in multi-server appointment schedules
becoming more prevalent.

When considering multi-server systems, there are different variants of ap-
pointment book design. First, we make the distinction between multiple, par-
allel single-server systems and pooled systems with one arrival process, but
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≈ 10 min

≈ 30 min

≈ 30 min

≈ 30 min

Figure 4.1: A comparison of a pooled system to parallel single-server systems

≈ 30 min

Figure 4.2: A system under batch-pooling

multiple servers. This latter system we term pure pooling. A representation of
this comparison is given in Figure 4.1 where customers arrive approximately
once every 10 minutes to the pooled system, and once every 30 minutes to each
of the single parallel servers.

In this pure pooled case, however, there is the disadvantage that each
individual server’s appointment book cannot be distilled in advance with any
confidence. Moreover, it is reported that in practice a single-queue structure
in such a multi-server case has a detrimental effect on the average service
times (Song et al. 2015, Shunko et al. 2018). However, by having customers
arrive in batches, e.g., 3 customers arriving every 30 minutes as in Figure 4.2,
we may be able to derive many of the benefits of pooling while still enjoying
the managerial advantages of having a unique appointment book per server,
such as synchronized appointments and unique appointment books per server.
The appointment book will not be as certain or detailed as in a single-server
system, but it will be more regular than in a multi-server queue with singular
arrivals. Furthermore, a significant reduction in expected waiting or idle times
from pooling may still be achieved. Queues with batch arrivals may thus strike
a desirable balance between the two extremes of the single server queue and
the multi-server queue with singular arrivals.

The rest of the paper proceeds as follows. In Section 4.2, we summarize rel-
evant literature. In Section 4.3, we formally describe the problem, develop our
model, extend it to include no-shows, and establish convexity of the objective
function. Using the model, we run a comprehensive selection of experiments
in Section 4.4. Finally, in Section 4.5, we provide managerial insights and con-
clude. Throughout this paper we will use the term customer to refer to those
served by the queue, unless we are referring to an explicit healthcare setting.
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4.2 Literature

This paper specifically addresses the theoretical component of constructing a
Db/M/c system with deterministic batches of size b which can grant insight
and serve as a point of comparison for further numerical study. We employ
similar techniques to those used in Kendall (1953) and Tijms (2003) and we
follow the notational conventions of the latter. In the remainder of this re-
view, we consider the field of appointment scheduling literature through the
lenses of batch and multi-server settings and will consider works that have a
methodological resemblance.

4.2.1 Single Server Systems with Singular Arrivals

The single server appointment scheduling problem that has centered on the
minimization of idle and waiting times has been extensively studied, resulting
in a wide and dense field of available approaches Ahmadi-Javid et al. (2017),
ever since the first analytical study of the D/M/1 queue in Jansson (1966).
Relevant convexity properties for optimization of the single server setting have
been proven, see e.g., Theorem 1 in Kuiper et al. (2023), in which the expected
waiting and idle times are shown to be convex in the inter-arrival times — for
the discrete equivalent of the appointment scheduling problem, see Theorem 3
in Zacharias and Yunes (2020).

In this paper we consider the system in stationarity, see for example Kuiper
et al. (2017). This is not a strong assumption, as can be seen in Hassin and
Mendel (2008) where it is found that restricting a schedule to be equally spaced
has little negative effect on the cost of the schedule and echoes the statement of
Stein and Côté (1994) that equally spaced inter-arrivals are a realistic restric-
tion to the scheduling problem. Additionally, Kuiper et al. (2015) show that
the plateau of the dome-shaped solution rapidly approaches the steady state
solution as the number of customers increases.

4.2.2 Parallel Server Systems with Singular Arrivals

Multi-server systems in which servers operate in parallel are generally in-
tractable as the Lindley recursion fails to apply. As a consequence keeping
track of the system is more complicated, see Kiefer and Wolfowitz (1955), and
thus waiting times become intractable. As pointed out by Grassmann (1988),
there are different frameworks available to analyze these types of queues with
reasonable accuracy. The presented approaches, however, do not adequately
cover the framework of appointment scheduling in which the arrival moments
of customers, or even batches of customers, have to be optimized.

Various studies have centered on settings with multiple resources in par-
allel, see Denton et al. (2010b) for a two-stage study. El-Sharo et al. (2015)
considers an overbooking model in which each server has its own appointment
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schedule, but overbooked customers or customers not seen in their allotted slot
will be ‘shared’ and can thus be seen by any server. Discrete event simulation is
a popular method to study multiple server systems with parallel resources see,
among others, Vanden Bosch and Dietz (2000), Sickinger and Kolisch (2009),
Sun et al. (2011), Rohleder and Klassen (2002).

A notable attempt of deriving an optimization framework for multi-server
appointment scheduling is found in Zacharias and Pinedo (2017), wherein they
rule out service-time variability and consider no-shows as the single source of
variation; under some settings the resulting schedules indeed feature a batch
structure. Another approach, which encompasses both sources of variation, is
to use realized schedules and apply machine learning to derive a load-based
appointment scheduling heuristic that renders near optimal solutions for the
multi-server case as done in Soltani et al. (2019). In Chapter 3 of this disser-
tation, also published as Kuiper and Lee (2022), a complete methodology for
both service-time variation and no-shows is provided that relies on phase-type
distributed service times such that the queue and status of the system can be
tracked at all times, allowing evaluation and optimisation of an objective func-
tion. Furthermore, they show that solutions quickly converge to a steady-state,
which is nearly equivalent to schedules obtained by considering a heavy-traffic
regime; echoing the finding for the single-server case in Kuiper et al. (2017).

Analyzing a queueing system in stationarity has resulted in a considerable
stream of works. In particular Kendall (1953) investigated GI/M/c queues by
means of their embedded Markov chains, using a geometric tail approach to
solve the problem of an infinite state space. We extend Kendall’s (1953) work to
accommodate batch arrivals in a deterministic, appointment scheduling setting.

4.2.3 Server Systems with Batch Arrivals

In the creation of an appointment schedule, batches may also be of a determined
size. In fact, the eponymous ‘Rule of Bailey’ derived from Bailey (1952) stip-
ulates beginning an appointment schedule with a batch size of two. Not long
after the works of Bailey (1952) and Welch and Bailey (1952), Soriano (1966)
compared two scheduling systems: singular arrivals versus batches of two pa-
tients arriving at a time, relying on the fact that serving two patients can be
modelled as two stages of a single service time. In Fries and Marathe (1981),
variable-sized multiple batch appointment system are studied by means of a
dynamic programming approach assuming a single server with exponentially
distributed service times, in which the arrivals of batches are equally spaced.
Recently, these types of systems have received attention by Srinivas and Choi
(2022). Note that the global optimality of the solution in these system is guar-
anteed by the results of Zacharias and Yunes (2020) as long as the intervals are
equally sized, which has been the case in the aforementioned works.

There is also a wide field of analytical work that accounts for batch ar-
rivals in a general multi-server model. For example Liu and Liu (1998) run
experiments varying the number of servers in case of different block appoint-
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ment schedules to eventually come to a sub-optimal heuristic. Most analytical
research into batch arrivals has in fact looked at batches of random size. This is
understandable as in most applications of queueing theory the arrivals process
is considered to be beyond the practitioner’s control. For example, Zhao (1994)
uses generating functions to investigate the GIX/M/cmodel, a queue with gen-
erally distributed arrivals of batches of varying size X, with multiple servers
that have memoryless service times. Laxmi and Gupta (2000) and Chaudhry
and Kim (2016) extend this model to additionally include a buffer of finite size.
Rather than generating functions, they derive the transition probabilities ex-
plicitly and conduct a series of experiments to study the loss-probability of the
system. They do not consider idle times, nor give the explicit form of the wait-
ing time distribution, nor consider how the queue may be used in optimized
appointment schedules. Gontijo et al. (2011) extend the framework beyond
simple arrival distributions by approaching the inter-arrival distribution with
kernel-density estimates and apply it to a call center setting. All the works
focus on finding elegant methods for characterising batch queues rather than
investigating optimal appointment schedules and so they also do not consider
additional questions pertaining to appointment scheduling.

4.2.4 Contribution

For a commonly chosen objective function we develop a tractable appointment
scheduling model for multi-servers and batch arrivals, i.e., we study Db/M/c
in the three directions: b the size of arriving batches, c the number of servers,
and x the inter-arrival time between two subsequent batches. Employing this
model we are able to analyse various and relevant appointment book design
choices, such as varying the batch size and number of servers on an (optimal)
appointment schedule, while also being able to account for the environmental
factors of no-shows and walk-ins. This provides practitioners a tool with which
to study with great detail the different design choices available in a multi-server
appointment scheduling framework. We pay particular attention to the case
of multiple servers and singular arrivals (pure pooling), and the case where the
number of servers and the batch size are matched (batch pooling). Comparing
these settings and contrasting it to the baseline of a set-up with a parallel
number of single-server queues, we find that batch pooling reaps nearly all of
the benefits of pooling, while having a desirable structure for implementation
in practice.
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4.3 Problem and Model Formulation

4.3.1 Preliminaries

In a system with singular arrivals we seek to minimize the objective function

F(x) = E[W (x)] + ωE[I(x)],

Where E[W (x)] and E[I(x)] are the expected long run waiting and idle teams
respectively in some inter-arrival time x. Note that in a system with batch
arrivals each batch member will experience their own expected waiting time.
Denote batch members by m = 1, . . . , b, let E[Wm(x)] be batch member m’s

expected waiting time, and denote by W := 1
b

∑b
m=1 E[Wm(x)] the mean av-

erage long run expected waiting time for a batch; W is now a cost in terms of
each individual customer. Also considering idle time in terms of cost generated
per customer and writing this as I for consistency we write the optimization
problem for batch arrivals as:

min
x

F(x) =W + ωI. (4.1)

Throughout the rest of this paper we omit the argument x.
In this paper we extend the work of Kendall (1953) by considering a queue

with deterministic arrivals, multiple memoryless servers and, in our case, ar-
rivals in batches of size b. In the remainder of this section we shall first revisit
Kendall’s model for the D/M/c queue. We then extend this approach in Sec-
tion 4.3.2, where we derive the balance equations for the steady state as well
as the waiting time distributions, idle times and other performance metrics.
In Section 4.3.3 we include no-shows and walk-ins. Lastly, in Section 4.3.4 we
demonstrate that the objective function is convex in the inter-arrival time.

The Embedded Markov chain

Before considering Db/M/c queues in depth, it will be convenient to recount
Kendall’s approach (Kendall 1953) to analysing D/M/c queues. Let πk be the
steady-state probability that an arriving customer observes k customers present
in the system. The probabilities π0, π1, π2, . . . are the limiting distribution of
an embedded Markov chain, i.e. embedded between two customer arrivals. If
a customer arrives to find k other customers in the system, then the system is
in state k, so that the number of customers served until the next arrival in x
units of time ranges from 0 to k+1. If 0 customers are served in this period of
time, then we increment the state by one, from k to k + 1; if k + 1 customers
are served the system will be empty upon the arrival of the next customer. Let
pkj be the probability of starting in state k and ending in state j by the next
arrival, i.e. of there being exactly k + 1− j departures in time x.

Kendall (1953) constructs the limiting distribution of the embedded
Markov chain as (adapting the notation only slightly):

(π0, π1, . . . , πc−2, πc−1, ηπc−1, η
2πc−1, . . .), (4.2)



4.3. Problem and Model Formulation 83

where η, η2, . . . form the geometric tail, a discussion on which can be found in
Tijms (2003, p. 111) and whose derivation will be given later in this chapter
in Section 4.3.1. This geometric tail allows the balance equations to be written
as a finite system of linear equations:

πj =

c−2∑
k=j−1

πkpkj + πc−1p
∗
c−1,j , 1 ≤ j ≤ c− 1

c−2∑
j=0

πj +
πc−1

1− η
= 1. (4.3)

Transition Probabilities

Let FA be the cumulative distribution function of the inter-arrival random-
variable. Throughout this paper we will suppose deterministic inter-arrival
duration, but in some cases we will use the notation FA to indicate where the
inter-arrival process comes into play.

Case I: We consider the pkj from display (4.3) for k ≤ c − 1, j ≤ k + 1.
We go from state k to state j if there are k + 1− j departures in time x. The
probability of a single departure in time x is given by 1 − e−µx. By virtue of
deterministic inter-arrivals, the total number of departures in this time period
is binomially distributed:

pkj =

∫ ∞

0

(
k + 1

j

)
e−µtj(1− e−µt)k+1−jdFA(t)

det.
=

(
k + 1

j

)
e−µxj(1− e−µx)k+1−j . (4.4)

Case II: We now turn our attention to the p∗c−1,j . First consider that if all
servers are occupied so that the next arrival must join the queue we first need
to service k + 1 − c customers until only c remain and then we continue as in
display (4.4). Note that the time to service k+1− c customers is Erlangk+1−c
distributed; and in the time remaining a further c−j customers must be served,
this yields:

pkj =

∫ ∞

0

∫ t

0

(
c

j

)
e−µ(t−u)j(1− e−µ(t−u))c−j

· (cµ)k+1−c uk−c

(k − c)!
e−cµu du dFA(t)

det.
=

(
c

j

)
e−jµxcµ

∫ x

0

(cµu)k−c

(k − c)!
(e−µu − e−µx)c−j du, (4.5)

for 0 ≤ j ≤ c ≤ k.
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Writing out the expression for the p∗c−1,j from (4.3), we find the following,
where pc−1,j is as in display (4.4), and the pkj , k ≥ c are as in display (4.5):

p∗c−1,j = pc−1,j + ηpc,j + η2pc+1,j + . . .

= pc−1,j +

∞∑
ℓ=0

ηℓ+1

(
c

j

)
e−jµxcµ

∫ x

0

(cµt)ℓ

ℓ!
(e−µt − e−µx)dt

= pc−1,j + cµη

(
c

j

)
e−jµx

∫ x

0

ecµηt
(
e−µt − e−µx

)c−j
dt. (4.6)

Geometric Tail

To find η we use the one-step transitions πj =
∑∞
k=0 πkpkj and consider j ≥ c,

in particular and without loss of generality j = c.

πc =

∞∑
k=c−1

πkpkc

= πc−1pc−1,c + πcpc,c + πc+1pc+1,c + . . .

⇒ η = pc−1,c + ηpc,c + η2pc+1,c + . . . (4.7)

Note pc−1,c is the probability of no departures between two arrivals, pc,c is
the probability of one departure, and so on. Also note that there are always
enough customers in the queue to replenish servers which complete service and
so these p are Poisson distributed. Letting the duration of inter-arrivals A have
distribution FA, we have

η =

∞∑
ℓ=0

ηℓ
∫ ∞

0

(cµt)ℓ

ℓ!
e−cµtdFA(t)

(∗)
=

∫ ∞

0

∞∑
ℓ=0

ηℓ
(cµt)ℓ

ℓ!
e−cµtdFA(t)

=

∫ ∞

0

e−(1−η)cµtdFA(t)

det.
= e−(1−η)cµx. (4.8)

Where step (∗) may be performed when (1 − η)cµt > 0, which is when η =∫∞
0
e−(1−η)cµtdFA(t) has a root in (0, 1).

Waiting Times

Here we report the waiting time distributions for the customers in Kendall’s
model. We again refer to Tijms (2003, p. 400). A customer who waits must
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wait until k + 1− c others have been served. This yields:

1−W (t) =

∞∑
k=c

πj

k−c∑
j=0

e−cµt
(cµt)j

j!
=

η

1− η
πc−1e

−cµ(1−η)t,

where
∑k−c
j=0 e

−cµt (cµt)k
k! is the probability that fewer than k + 1− c customers

are served in time t. It is easy to see that the probability that the steady-state
customer must wait is η

1−ηπc−1. The expectation is found quite straightfor-
wardly as

E[W ] =

∫ ∞

0

1−W (t)dt =
ηπc−1

cµ(1− η)2
. (4.9)

4.3.2 The Extension to Batches

Balance Equations

We extend the geometric tail approach of Kendall (1953). We will construct
a finite system of equations by beginning the geometric tail from some M ;
Kendall chooses M = c − 1. As in our case satisfactory values of M must be
found by experimentation, we will consider this value only in general terms
during the following derivations. We thus amend (4.2) to be of the form

(π0, π1, . . . , πM−1, πM , ηπM , η
2πM , . . .). (4.10)

Under Db/M/c, when a batch of size b arrives to find k customers already
in the system we increment the state from k to k+ b, and then drain customers
until the next arrival. Let (α)+ := max{α, 0} be the positive part of argument
α. The general form of the balance equations for both single arrivals and
batches is given by

πj =

M−1∑
k=(j−b)+

πkpkj + πMp
∗
Mj , 1 ≤ j ≤M

M−1∑
j=0

πj +
πM
1− η

= 1. (4.11)

As the value ofM is uncertain (indeed it is free to be chosen by the practitioner)
we must not only amend the probabilities from Section 4.3.1, but we must also
consider additional cases as we must explicitly consider the one-step transition
probabilities for a saturated system (k > c) in the balance equations.

Transition Probabilities

There are five possible cases that we must consider, these are summarized in
Figure 4.3. We first consider j ≤ c, in which case we must differentiate k+b ≤ c
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Figure 4.3: The five possible cases in which a different probability distribution is
required.

(case I), c < k + b < M + b (case II), and k + b = M + b (case III). We then
consider j > c, in which case we must differentiate k + b < M + b (case IV),
and k + b = M + b (case V). We explicitly write k + b to emphasize that k is
the state of the Markov chain immediately prior to an arrival.

Case I: j ≤ c, k + b ≤ c. That is after the arrival of a batch, we have c or
fewer customers in the system. We term the resulting distribution Binomial.

pkj =

(
k + b

j

)
e−µxj(1− e−µx)k+b−j . (4.12)

Case II: j ≤ c, c < k+ b < M + b. Now after the arrival of a batch we have
more than c customers in the system, and we wish to know the probability that
we drain down to some j ≤ c. We must first service k + b − c customers, and
then service the remaining c − j. Proceeding as in equation (4.5) we find the
following, terming this distribution Erlang-Conditioned Binomial, or ECB.

pkj =

(
c

j

)
e−jµxcµ

∫ x

0

(cµu)k+b−c−1

(k + b− c− 1)!
(e−µu − e−µx)c−j du, (4.13)

0 ≤ j ≤ c ≤ k.

Case III: j ≤ c, k+b =M+b. The boundary case for the embedded Markov
chain is found when k = M . As this case captures the infinite state-space, we
term the resulting distribution Infinite ECB.

p∗Mj =

∞∑
ℓ=0

ηℓpM+ℓ,j

=

∞∑
ℓ=0

ηℓ
(
c

j

)
e−jµxcµ

∫ x

0

(cµu)M+ℓ+b−c−1

(M + ℓ+ b− c− 1)!
(e−µu − e−µx)c−jdu
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=

(
c

j

)
e−jµxcµηc−M−b+1

·
∫ x

0

(
ecµuη −

M+b−c−2∑
ℓ=0

(cµuη)ℓ

ℓ!

)
(e−µu − e−µx)c−jdu. (4.14)

Case IV: j > c, k+ b < M + b. If j > c we remain at all times in a system
with all servers occupied and as such there are always customers in the system
who can replenish servers. The time taken to service k + b − j customers is
thus Poisson distributed, and we term this distribution simply Poisson.

pkj = e−cµx
(cµx)k+b−j

(k + b− j)!
. (4.15)

Case V: j > c, k + b = M + b. We again find ourselves in the boundary
case. This we term Infinite Poisson.

p∗Mj = pMj +

∞∑
ℓ=1

ηℓe−cµx
(cµx)M+ℓ+b−j

(M + ℓ+ b− j)!

= ηj−M−be−cµx

[
ecµxη −

M+b−j−1∑
ℓ=0

(cµxη)ℓ

ℓ!

]
. (4.16)

Geometric Tail

We find the geometric tail from expression (4.10):

xM+b =

∞∑
k=M

xk

∫ ∞

0

(cµt)k−M

(k −M)!
e−cµtdFA(t)

⇒ ηb =

∞∑
ℓ=0

ηℓ
∫ ∞

0

(cµt)ℓ

ℓ!
e−cµtdFA(t)

det.⇒ η = e−(1−η) cµx
b ,

as long as cµx/b > 1.

Performance Measures

For the purpose of optimisation we are interested in long run average waiting
time and long run average idle time. The long run average waiting time requires
the most derivation and discussion and is derived first.

When a batch of customers indexed m = 1, 2, . . . , b arrives (who are seen
in order of their index) the first customer must wait if there are at least c
servers occupied, the second if there are at least c − 1, and so on, the general
form being c −m + 1 (of course if c −m + 1 is negative then 0 is “at least”
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c−m+1). In deriving the waiting times for the D/M/c queue we made use of
the fact that πj = ηj−c+1πc−1 for j ≥ c− 1, i.e., we made use of the geometric
tail. In general, for batch arrivals we cannot be guaranteed that πc−m+1 is part
of this geometric tail, prohibiting a simple expression. We can, however, still
write this succinctly:

1−Wm(t) =

∞∑
j=0

πj

j−c+m−1∑
k=0

e−cµt
(cµx)k

k!

=

M∑
j=0

πj

j−c+m−1∑
k=0

e−cµt
(cµt)k

k!

+ πM

∞∑
j=M

ηj−M
j−c+m−1∑

k=0

e−cµt
(cµt)k

k!
.

Where we let the contents of an empty sum equal 0. Integrating this expression
from zero to infinity and rewriting for closed form we find:

E[Wm] =

 M∑
j=0

πj
(j − c+m)+

cµ


+

ηπM
cµ(1− η)2

[
(M +m− c)(1− η) + 1

]
. (4.17)

We will consider the mean expected waiting time for a batch, W :=
1
b

∑b
m=1 E[Wm], though one could for example consider the variables W 1 or

W b to investigate the waiting time distributions for priority customers or the
worst-off customer respectively.

For optimisation we are also interested in idle times. In a G/G/1 queue
with singular arrivals it is simple to calculate idle time as x−1/µ and utilization
as 1/(xµ). In a multi-server system with batch arrivals we find an idle time
over n arrivals of n(cx − b/µ) which divided by the number of customers bn

gives E[I] = limn→∞
n(cx−b/µ)

nb = c
bx− 1

µ . We also have utilization u = b
cxµ and

throughput per unit of service time T = b/x.

4.3.3 Including Environmental Factors: No-Shows and
Walk-Ins

Let N be the number of no-shows from a batch of size b. N is then
Binomial(b, q) distributed, where q is an individual arrival’s no-show proba-
bility. Let G be the random variable representing batch size (one can imagine
G as standing for group, we avoid B as this is often used for busy period). In
the case of no-shows G = b − N . Let U(t) be the number of walk-ins over a
period of time t. This gives us G(t) = b−N +U(t). It is reasonable to let U(t)
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be Poisson distributed with some rate dependent upon t. In practice we will
truncate the domain of U(t) to {0, . . . , n} where P (U(t) = n + 1) ≤ 10−6 as
this lends G(t) a finite domain. Lastly, let νγ = P(G = γ) be the probability
that a batch contains γ customers.

Amendments to the Probabilities

We continue to use the balance equations as in Display (4.11), but with slightly
amended transition probabilities. To amend the transition probabilities to
permit a random batch G on support γ ∈ {0, . . . , |G|}, we write for each pkj
from Section 4.3.2 a superscript γ such that in the deterministic case pkj := pbkj .
For random batches we then get

pkj =

|G|∑
γ=0

pγkj , and

p∗Mj =

|G|∑
γ=0

p∗γMj .

The geometric tail is now found as follows:

xM+b =

b∑
γ=0

νγ

∞∑
k=M+b−γ

xk

∫ ∞

0

(cµt)k−M−b+γ

(k −M − b+ γ)!
e−cµtdFA(t)

⇒ ηb =

b∑
γ=0

νγη
b−γ

∞∑
ℓ=0

ηℓ
∫ ∞

0

(cµt)ℓ

ℓ!
e−cµtdFA(t)

det.⇒ ηb

/
b∑

γ=0

νγη
b−γ = e−(1−η)cµx. (4.18)

Performance Measures

Under no-shows and walk-ins, as we do not count the waiting time of people
who do not turn up the expected long run waiting time becomes

W =

|G|∑
γ=1

νγ

γ∑
m=1

E[Wm]/γ,

which is the sum of the expected long run average waiting times for each
scenario γ, weighted by the probability of that scenario occurring. Expected
idle time then becomes E[I] = c

E[G]x− 1
µ .

In our experiments we will also consider the detail of the expected waiting
times per batch member. While νγ is the probability that γ customers arrive in
a batch, let ξm be the probability that the batch that arrives contains at least
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m customers. That is we let ξ0 = 1 and ξm = ξm−1 − νm−1 for m > 0. Then
with probability ξm batch member m arrives and experiences expected waiting
time E[Wm]. To give an honest reflection of the expected waiting times of
those customers who do in fact arrive, we will report batch members’ expected
waiting times as ξmE[Wm].

4.3.4 Convexity of the Objective Function

In our optimisation we apply a variant of golden-section search. If the function
that we are minimising is convex, we are guaranteed that a unique minimum
exists and golden-section search will eventually converge on this minimum. We
now turn to the question of whether our objective function is indeed convex
in the inter-arrival time that we choose. Expected idle time E[I] = c

bx − 1
µ

is clearly linear and thus convex in x and the objective function F is a linear
combination of idle and waiting times. We must thus ask whether expected
waiting time is also convex in x.

Let x := A(θ) be an arrival process depending upon parameter θ. Let
Nk(θ) denote the number of customers in the system at arrival of the k-th
batch and let Wm

k (θ) denote the waiting time of member m of the k-th batch.
Furthermore, let D(n, t) be the number of survivors at time t in a pure death

process, starting with n survivors at time 0. Let the symbol
st
= denote stochas-

tically equal.
We apply Theorem 6.2 of Shaked and Shanthikumar (1990), which states:

Lemma 4.1 (Th. 6.2 of S. & S.). Suppose {A(θ), θ ∈ Θ} ∈ SDCV (sp),
i.e., it is stochastically decreasing and concave in the sample path sense. If
{N0(θ), θ ∈ Θ} ∈ SICX(sp), i.e., stochastically increasing and convex in the
sample path sense, then

1. {Nk(θ), θ ∈ Θ} ∈ SICX(sp), and

2. {Wm
k (θ), θ ∈ Θ} ∈ SICX(sp).

This theorem first establishes convexity of Nk(θ) and extends this via clo-

sure properties to Wk(θ)
st
=
∑[Nk(θ)−c]+
i=1 Bi, with Bi exponentially distributed

random variables with rate µc.
The above theorem applies Theorem 6.3 of Shaked and Shanthikumar

(1990) as a lemma to establish convexity of the pure death process, and thus
Nk(θ) (the three expressions given at the end of Theorem 6.3 being conditions
for convexity when the initial conditions are satisfied). Let γ(n) be the death
rate (i.e., service rate) for a number of customers n.

Lemma 4.2 (Th. 6.3 of S. & S.). Suppose γ(n) is increasing and concave in
n. Then for any choice of (yi, ti), i = 1, 2, 3, 4, such that y1 ≤ y2 ≤ y3 ≤ y4,
y1+y4 = y2+y3, t1 ≤ min{t2, t3}, t4 ≥ max{t2, t3}, and t1+ t4 = t2+ t3, there
exist four random variables X̂i, i = 1, 2, 3, 4, defined on a common probability
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space such that

X̂i
st
= D(yi, ti), i = 1, 2, 3, 4,

max{X̂1, X̂2, X̂3} ≤ X̂4, almost surely, and

X̂1 + X̂4 ≥ X̂2 + X̂3 almost surely.

The appropriate choice of γ(n) is γ(n) := min{n, c}µ. We now formalize
our theorem and proof:

Theorem 4.1. Nk(θ) and Wm
k (θ) are stochastically increasing and convex in

the sample path sense in the inter-arrival time x(θ) := A(θ).

Proof. In Lemma 4.1 we choose x := A(θ) = θ̂ − θ, which is decreasing and

linear and therefore concave, and let θ̂ → ∞. We draw your attention to the
fact that the (in)equalities in Lemma 4.2 are unchanged by the addition of a
batch size b to each yi. Note lastly that when we start with an empty system
N0(θ) = 0 for all values of θ, satisfying the initial condition of Lemma 4.1 and
thus proving the desired convexity properties for Nk(θ). Consider now that
batch member m’s waiting time is given by

Wm
k (θ)

st
=

[Nk(θ)+b−1−c]+∑
i=1

Bi,

which adheres to the closure properties, thereby demonstrating the desired
convexity properties for batch member m’s waiting time.

Remark 4.1. Sample path convexity applies for the random variables Nk(θ)
andWm

k (θ) and thus also applies for their expectations E[Nk(θ)] and E[Wm
k (θ)].

Let k → ∞ for the long run expected waiting time.

Remark 4.2. This proof holds for no-shows, as by the sample-path argument b
may stand in for any draw from the distribution G. It is however as yet unclear
how convexity holds for walk-ins as both the inter-arrival time and the size of
the batch depend upon the same time parameter.

Remark 4.3. We have shown convexity of batch k’s waiting time in the inter-
arrival times preceding their arrival. This extends to the steady state and an-
swers an open question given in Chapter 3 of this dissertation. This does not,
however, translate to the transient case where one must find an optimal vector
(xk)

n
k=1.
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4.4 Results

4.4.1 A Trade-Off between Utilization and Waiting Time

In Figure 4.4 we compare the mean average waiting times for 5 systems for
different values of utilization. From top to bottom we graph the waiting times
for: a single server with singular arrivals; 2 servers with batches of 2 (batch
pooling); 2 servers with singular arrivals (pure pooling); 4 servers with batches
of 4 (batch pooling); and 4 servers with batches of 1 (pure pooling). We see
that mean average waiting times increase far steeper for the singular system
than for all other systems. There also appears to be little distinction between
batch and pure pooling for multiple servers, at least when compared with a
single server.
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Figure 4.4: Mean average waiting times for a fixed 90% utilization, comparing a
singular system to pure and batch pooling.

In Figure 4.5, we compare these same five systems with one another when
optimized for different costs of idle time in equation (4.1). From top to bottom,
we graph the waiting times (increasing) and idle times (decreasing) in the same
order as reported in Figure 4.4. Both pure and batch pooling outperform a
singular system in both idle and waiting times for all values of the cost of idle
time. Batch pooling always has a greater waiting time than pure pooling for
the same number of servers and a slightly higher idle time.



4.4. Results 93

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Cost Coefficient of Idle Time, ω

C
os
t
C
om

p
on

en
ts
,
W

a
n
d
I

c = 1, b = 1
c = 2, b = 2
c = 2, b = 1
c = 4, b = 4
c = 4, b = 1

Figure 4.5: Mean average waiting time (increasing) and idle time (decreasing) in an
optimised system for different values of ω. Comparing a singular system to pure and
batch pooling for c = 2 and c = 4.

c

1 2 4 8 16 32 64

b

1 4.1787 1.9330 0.8612 0.3629 0.1404 0.0475 0.0129

2 4.4790 2.0143 0.8859 0.3703 0.1426 0.0480 0.0130

4 5.1957 2.3054 0.9828 0.4003 0.1512 0.0503 0.0134

8 6.8118 3.0534 1.2951 0.5131 0.1861 0.0595 0.0154

16 10.3150 4.7552 2.0800 0.8479 0.3120 0.0980 0.0243

32 17.7080 8.4133 3.8447 1.6616 0.6628 0.2321 0.0642

64 33.0242 16.0444 7.6044 3.4668 1.4942 0.5914 0.2020

Table 4.1: Mean expected long-run waiting time with 90% utilization.

4.4.2 Configuring the Appointment Book: Varying Batch
Size and Number of Servers

Table 4.1 reports mean expected long run waiting times for varying batch
sizes and number of servers for a fixed utilization of 90%. The bold printed
values in Table 4.1 are combinations of batch size and number of servers of
particular interest, namely all cases with b = 1 (pure pooling) and all cases
where b = c (batch pooling). The italic printed values correspond to those
from Figure 4.4 when utilization is 90%. Fixing utilization fixes idle time per
customer, such that 32 parallel servers will have the same throughput and the
same accumulated idle time as a single system of 32 servers, holding batch size
equal. We see in this table how singular systems are heavily outperformed in
waiting time by any pooled system. We also see how for smaller values of c the
difference in long run expected waiting times between pure and batch pooling
are small. Also note that expected waiting times are lowest when b = 1 and c
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is as large as possible. Therefore, optimization of our objective function in b
and c is trivial.

In Tables 4.2 through 4.5 we consider performance measures at optimality,
given costs of idle time of ω = 1 and ω = 5, for a single server system with
singular arrivals, the single server system with dual arrivals that Soriano (1966)
examines, and pure and batch pooling for 2, 4, and 8 servers. In Tables 4.3
and 4.5 we report for each choice of ω for each member of a batch what his or
her expected waiting time would be.

In both Tables 4.2 and 4.4, pure pooling enjoys the lowest mean average
waiting and idle times (and thus highest throughput and utilization), but these
values are closely followed by those for batch pooling. The similarity in utiliza-
tion between the pure and batch pooling settings in Table 4.4 are remarkable.
In all examples both the batch and the pure pooling examples significantly
outperform the single server case.

In Tables 4.3 and 4.5 we see how the expected waiting time per batch
member grows as the batch member index grows. This is under the implicit
assumption that all batch members arrive simultaneously, and in practice the
observed waiting times may be lower. The waiting time of the lowest indexed
(i.e. first) batch member is lower even than that of a customer in the equivalent
pure pooled setting. This has managerial implications for systems with triage,
where customers are assigned a position in the batch upon arrival, according to
the severity of their situation. Table 4.3 also shows that the expected waiting
times of all but the last batch members are still superior to those of a customer
in the single server system. For the higher cost coefficient ω = 5 in Table 4.5 this
even holds for the last batch member. This demonstrates how batch pooling
can capture the benefit of pure pooling in terms of utilization (and thus related
metrics), while also still performing better from the customer’s perspective than
the singular system.

To compare with Soriano (1966), we also consider in Tables 4.2 and 4.4 the
case where c = 1 and b = 2, i.e. dual arrivals to a single server. Corresponding
to what was found by Soriano, c = 1, b = 2 benefits the server in terms of
idle time (and slightly increases throughput), but at significant expense for
customer waiting time; the second customer in the batch of course having to
wait for the first customer to be served, as can be seen in Tables 4.3 and 4.5.

4.4.3 Designing Appointment Books in the Case of No-
Shows or Walk-Ins

No-Shows

No-shows are generally detrimental to an appointment schedule, as they in-
troduce variance into the system. Remarkably, batches work to mitigate the
negative effects of no-shows when the cost placed on idle time, ω is low, that is
ω ≤ 1. This is summarized in Table 4.6, where we see that for c = 1, b = 2 and
c = 8, b = 8 the cost Fq is decreasing in all q. For all systems the cost decreases
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c b x∗ W I η T u

1 1 1.6803 0.4660 0.6803 0.3179 0.5952a 0.5952

1 2 3.2985 0.8681 0.6492 0.3327 1.2127 0.6063

2 1 0.7325 0.2858 0.4650 0.4407 1.3652 0.6826

2 2 1.4738 0.3448 0.4738 0.4347 1.3570 0.6785

4 1 0.3301 0.1785 0.3205 0.5574 3.0291 0.7573

4 4 1.3360 0.2617 0.3359 0.5433 2.9943 0.7486

8 1 0.1528 0.1144 0.2222 0.6599 6.5453 0.8182

8 8 1.2444 0.2157 0.2444 0.6348 6.4289 0.8036

Table 4.2: Equivalent systems, ω = 1. a Throughput for each single server in isolation;
multiply a by c to receive throughput for a system of c parallel servers. All other
throughputs are reported for the entire system of servers.

E[Wm] Batch member, m

1 2 3 4 5 6 7 8

Servers, c

1 0.3681 1.3681 · · · · · ·
2 0.2017 0.4879 · · · · · ·
4 0.0840 0.1579 0.2963 0.5084 · · · ·
8 0.0316 0.0500 0.0800 0.1279 0.1993 0.2951 0.4094 0.5324

Table 4.3: Expected waiting times for each batch member, b = 2, 4, or 8; ω = 1.
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c b x∗ W I η T u

1 1 1.3133 1.2949 0.3133 0.5643 0.7615a 0.7615

1 2 2.6184 1.6446 0.3092 0.5681 1.5276 0.7638

2 1 0.6097 0.8449 0.2194 0.6632 1.6402 0.8201

2 2 1.2201 0.9187 0.2201 0.6623 1.6392 0.8196

4 1 0.2885 0.5599 0.1540 0.7456 3.4662 0.8666

4 4 1.1556 0.6688 0.1556 0.7434 3.4614 0.8654

8 1 0.1385 0.3764 0.1083 0.8111 7.2182 0.9023

8 8 1.1107 0.5154 0.1107 0.8075 7.2026 0.9003

Table 4.4: Equivalent systems, ω = 5. a Throughput for a each single server in
isolation; multiply a by c to receive throughput for a system of c parallel servers. All
other throughputs are reported for the entire system of servers.

E[Wm] Batch member, m

1 2 3 4 5 6 7 8

Servers, c

1 1.1446 2.1446 · · · · · ·
2 0.7261 1.1113 · · · · · ·
4 0.4062 0.5493 0.7426 0.9771 · · · ·
8 0.2253 0.2792 0.3471 0.4314 0.5321 0.6461 0.7677 0.8922

Table 4.5: Expected waiting times for each batch member, b = 2, 4, or 8; ω = 5.
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c = 1 c = 1 c = 2 c = 2 c = 4 c = 4 c = 8 c = 8

b = 1 b = 2 b = 1 b = 2 b = 1 b = 4 b = 1 b = 8

F0 1.1462 1.5173 0.7508 0.8186 0.4990 0.5975 0.3366 0.4601

F0.1 1.1643 1.4853 0.7624 0.8368 0.5069 0.5996 0.3420 0.4500

F0.2 1.1741 1.4581 0.7682 0.8527 0.5107 0.6044 0.3446 0.4430

F0.3 1.1727 1.4332 0.7666 0.8646 0.5096 0.6111 0.3439 0.4392

Table 4.6: Total cost of systems subject to various no-show rates q when ω = 1. Bold
entries are less than the entry in the cell above, that is the cost of these systems is
decreasing in q.

q = 0.1 q = 0.2 q = 0.3

c b xNS W I xNS W I xNS W I

1 1 1.5135 0.4826 0.6817 1.3411 0.4977 0.6764 1.1643 0.5095 0.6633

1 2 3.0296 0.8022 0.6831 2.7365 0.7478 0.7103 2.4205 0.7043 0.7289

2 1 0.6600 0.2957 0.4667 0.5855 0.3044 0.4638 0.5095 0.3110 0.4556

2 2 1.3414 0.3463 0.4905 1.2028 0.3492 0.5035 1.0581 0.3531 0.5115

4 1 0.2975 0.1848 0.3220 0.2641 0.1903 0.3204 0.2302 0.1944 0.3152

4 4 1.2126 0.2523 0.3474 1.0870 0.2457 0.3587 0.9586 0.2417 0.3695

8 1 0.1376 0.1185 0.2235 0.1223 0.1221 0.2225 0.1067 0.1248 0.2191

8 8 1.1259 0.1990 0.2510 1.0059 0.1856 0.2574 0.8846 0.1755 0.2637

Table 4.7: The effect of various no-show rates, ω = 1. a Throughput for a each single
server in isolation; multiply a by c to receive throughput for a system of c parallel
servers. All other throughputs are reported for the entire system of servers.

in the no-show rate once this rate becomes sufficiently large as frequent no-
shows result in very few customers waiting and allow very close inter-arrivals,
reducing idle time. We see this beginning for some systems from q = 0.3. The
division of this cost over expected waiting and idle times is shown in Table 4.7.

In Table 4.7 we see how pure pooling generally preserves idle time as the
rate of no-shows increases, while batch pooling preserves waiting times; indeed
expected waiting times even improve as q increases. There is a caveat to this,
however: the expected waiting time of the first customer to arrive worsens in
no-shows no matter what, as can be seen by comparing Table 4.8 with Table 4.3.
This is particularly pertinent in a system with priority customers, where the
advice would be to separate these customers from systems with a high risk of
no-shows whenever possible. Indeed, if we follow a special priority customer
who we imagine arrives with certainty to the steady state system — i.e. we
consider E[W 1] and not ξ1E[W 1] — then we see that this customer in particular
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suffers; we illustrate with the case c = b = 8, where the uncorrected expected
waiting time of the first batch member E[W 1] is 0.1490 (c.f. 0.0601 in Table 4.8
and 0.0316 in Table 4.3)

It is also worth noting that these (optimized) systems see little effect on
throughput from no-shows as the optimal inter-arrival time is adjusted accord-
ingly. Comparing Tables 4.2 and 4.7 confirms the rule as reported in Çayırlı
et al. (2012) that the optimal inter-arrival time given no-shows can be well
approximated as xNS ≈ (1 − q)x∗. This approximate rule was also seen for
different values of ω not shown here.

ξmE[Wm] Batch member m

1 2 3 4 5 6 7 8

Servers c

1 0.4593 0.3046 · · · · · ·
2 0.2747 0.7373 · · · · · ·
4 0.1331 0.2086 0.2508 0.1455 · · · ·
8 0.0601 0.0876 0.1277 0.1789 0.2202 0.2082 0.1265 0.0357

Table 4.8: Expected waiting times for each batch member, b = 2, 4, or 8; ω = 1. We
set q = 0.3 as this extreme example emphasises the effect on the first batch member.

Walk-Ins

We begin our foray into walk-ins by considering in Table 4.9 how pure and
batch pooling compare to an entirely unoptimized system, that is one which
observes exclusively walk-ins. Note also that when c = 1 both pure pooling
and batch pooling are reduced to a single server system. This last system we
model by use of an M/M/c queue, where we choose the arrivals rate λ := 0.9c
so that utilization is constant at 90%. Here we see, predictably, that pure
pooling outperforms both batch pooling and exclusively walk-ins; though as
the number of servers increases, the appointment book becomes meaningless
and very difficult to govern as the inter-arrivals become ever shorter. What
stands out, however, is that under the implicit assumption that all customers
in a batch arrive simultaneously there comes a point where the average waiting
time of the system with exclusively walk-ins is less than that of the batch
pooled system. This all suggests that for sufficiently large systems it may be
attractive simply not to optimize.

W c

1 2 4 8 16 32 64

Pure Pooling 4.1787 1.9330 0.8612 0.3629 0.1404 0.0475 0.0129

Batch Pooling 4.1787 2.0143 0.9828 0.5131 0.3120 0.2321 0.2020

Walk-ins only 9.0000 4.2632 1.9694 0.8769 0.3696 0.1432 0.0485

Table 4.9: Comparison in W to a system of only walk-ins at 90% utilization.
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In Table 4.10, we explore the effects of walk-ins on optimized systems.
We imagine that for designing the appointment book the practitioner has a
fixed number of servers to distribute however they wish, for example in parallel
systems of single servers, with batch pooling, or with pure pooling. The walk-
in rate per system is scaled to the number of servers, so that each parallel
server would see a rate of λ walk-ins per time unit, but two servers in a joint
system would together see a rate of 2λ. We let the number of walk-ins over an
inter-arrival period t have distribution Poisson(tλc). An implicit assumption
in our formulation is that walk-in customers are also subject to the system’s
appointment book, and such are only admitted at regular intervals and are not
seen upon their arrival; we imagine scheduled customers taking priority over
walk-in customers, receiving a lower batch member index.

λ = 0.1c λ = 0.2c λ = 0.3c

c b xWI W I xWI W I xWI W I

1 1 2.0432 0.6211 0.6966 2.5577 0.8288 0.6921 3.2671 1.1424 0.6499

2 1 0.8743 0.3373 0.4883 1.0799 0.3942 0.5083 1.3943 0.4728 0.5183

2 2 1.7509 0.4302 0.4900 2.1304 0.5504 0.4939 2.6466 0.7396 0.4753

4 1 0.3861 0.2009 0.3377 0.4642 0.2232 0.3539 0.5805 0.2477 0.3686

4 4 1.5589 0.3188 0.3487 1.8568 0.4020 0.3540 2.2569 0.5339 0.3457

8 1 0.1760 0.1257 0.2341 0.2073 0.1365 0.2454 0.2520 0.1473 0.2561

8 8 1.4337 0.2612 0.2539 1.6819 0.3281 0.2586 2.0115 0.4293 0.2557

Table 4.10: The effect of various walk-in rates, ω = 1. a Throughput for a each single
server in isolation; multiply a by c to receive throughput for a system of c parallel
servers. All other throughputs are reported for the entire system of servers.

In Table 4.10 we report the optimized inter-arrival times as well as the
average long run expected waiting and idle times. We report these only for
ω = 1 as this is the case where the differences were most apparent. The main
impact of walk-ins is via the optimized inter-arrival time xWI. Walk-ins force
that times must be extended in all cases as compared with Table 4.2. This
brings with it a confounding effect, as the greater xWI the higher the variance in
walk-ins and so the greater the cost to the system. Therefore, while all systems
suffer from walk-ins, batch pooled and parallel systems suffer more than pure
pooled system. The shorter inter-arrival times of pure pooled systems also
mean that these systems see the fraction of walk-in customers. Finally, there
is a slight improvement in long run expected idle time for the batch pooled
systems when λ = 0.3c.

4.4.4 How Short-Run Appointment Schedules Approach
their Long Run Counterparts

In Chapter 3 an analytical model is developed to study the transient problem
of multi-server appointment scheduling, i.e., for a finite number of customers
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an optimal appointment schedule is derived. Their schedules revolve the fully
pooled system without batch arrivals (b = 1). One of their key results is that
the transient solutions quickly converge to a plateau solution, which coincides
with the steady-state solution.

The purpose of the comparison is two-fold. Firstly, using their framework
we can verify our results. Secondly, with this comparison we can illustrate
how the steady state model presented in this paper can serve as a convenient
jumping off point for studying more complicated systems (e.g., batch arrivals)
and computationally intensive settings (e.g., many servers and many customers)
in the steady state.

We can tailor the analytical model given in Chapter 3 to study batch
scheduling in a transient setting. This can be done by restricting the problem
such that in case of a batch size b, after an inter-arrival the next b − 1 inter-
arrival times are set to 0. In detail, where they study the problem (with c the
number of servers) of finding the optimal schedule, the vector x, that describes
the inter-arrival times:

x = min
x

F(x) = min
(xc+1,...,xn)

ω EI(xc+1, . . . , xn)

+

n∑
i=c+1

EW (i)(xc+1, . . . , xn). (4.19)

From this vector, via the relation tc+i =
∑i
j=1 xc+j , and the fact that all

servers start with a customer, i.e., t1 = t2 = · · · = tc = 0, one obtains a regular
schedule t. Since we study the arrivals of a batch of b customers, we impose
some elements of the inter-arrival vector x to be zero:

x =
(
x
(b)
2 ,x

(b)
3 , . . . ,x

(b)

⌈n−c
b ⌉

)
with x

(b)
i = (x(i−2)·b+c+1,0) =: (x

(b)
i ,0).

Note that the vector of zeros in x
(b)
i is of size b − 1, except the last, in which

the batch size denoted by b† equals the remaining customers n − c mod b.
Hence, that vector 0 is of size b† − 1. With this restriction in the scheduling
framework of Kuiper and Lee (2022) we can use optimization routines to find
the optimal schedule for the batches to arrive, which will be given by the

vector x(b) =
(
x
(b)
1 , . . . , x

(b)

⌈n−c
b ⌉

)
to create the following experiments to study

how the short-run appointment schedules compare to their steady-state, long
run counterparts.

We see from Figures 4.6 through 4.8 that the transient solution quickly
approaches the steady state solution, more so for a lower cost of idle time and
for larger systems, as might be expected. An interesting artefact that can be
seen in Figures 4.7(a) and 4.8(a) is that the second batch to arrive arrives very
close to or even after the steady-state solution would suggest and is followed by
a very slight dip. This behavior is not replicated when either arrivals or servers
are singular. We speculate that when arrivals are singular, more control can
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(a) Optimized schedules for batches of size two in a system of two servers (b = c = 2) with
ω = 1 (idling and waiting are equally valued).
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(b) Optimized schedules for batches of size two in a system of two servers (b = c = 2) with
ω = 5 (idling is valued five times more important than waiting).

Figure 4.6: Comparison of transient schedules with their steady-state counterparts
either from Table 4.2 or Table 4.4. In the top panel the cost parameter is set to ω = 1,
while in the bottom panel ω = 5.
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ω = 5 (idling is valued five times more important than waiting).

Figure 4.7: Comparison of transient schedules with their steady-state counterparts
either from Table 4.2 or Table 4.4. In the top panel the cost parameter is set to ω = 1,
while in the bottom panel ω = 5.
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(a) Optimized schedules for batches of size two in a system of two servers (b = c = 8) with
ω = 1 (idling and waiting are equally valued).
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(b) Optimized schedules for batches of size two in a system of two servers (b = c = 8) with
ω = 5 (idling is valued five times more important than waiting).

Figure 4.8: Comparison of transient schedules with their steady-state counterparts
either from Table 4.2 or Table 4.4. In the top panel the cost parameter is set to ω = 1,
while in the bottom panel ω = 5.
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be exacted over idle and waiting time by determining the exact arrival epoch
of the next customer, and that when servers are singular these can likewise be
controlled by deciding when the single server will next become busy. When
both arrivals and servers are plural, however, some control is lost as the next
batch to arrive must be of size b, regardless of how many servers may or may
not be occupied. Thus the first arrival aims to minimize idle time in a sparsely
occupied system where waiting time is not a concern, then the next batch to
arrive is chosen as to reduce the now increasing waiting time, which is why
this phenomenon is not seen when ω = 5. After this peculiarity the schedule
returns to its course.

4.4.5 The Case for Large Batches and Time Windows

Table 4.1 indicates that there may be some promise to be found in large batch
systems, where the number of servers is significantly smaller than the batch
size and when utilization is high. For example, for 8 servers and a batch size
b = 32 the average waiting time reported in Table 4.1 is still less than that of
a customer in the singular system. We look at this setting in more detail in
Table 4.11, also paying attention to the expected waiting time of the highest
numbered batch member.

One of the implicit assumptions of our model is that all customers arrive at
the beginning of their time slot. Even with this assumption in place (and so the
final customer in the batch must wait for all other customers to be served) it
can be seen from Table 4.11 that for a high utilization, the maximum expected
waiting time of a batch member (EW b

q ) for c = 8 and b = 32 or c = 16 and
b = 64 is less than that of even a singular queue.

This also begs the question of what were to happen were we to relax this
assumption and open systems up for time window optimization. For example,
if average service time lasts 10 minutes, then in a system with 16 servers and
batches of 64 to arrive, a window of almost 45 minutes would be offered in
which these 64 customers could arrive at their own convenience.

u = 0.9

c b x Wq EW b
q

1 1 1.1111 4.1787 4.1787

8 32 4.4444 1.6616 3.5584

8 64 8.8888 3.4668 7.3741

16 32 2.2222 0.6628 1.5729

16 64 4.4444 1.4942 3.4156

Table 4.11: Mean average and maximum expected waiting times for a singular system
versus differing large batch systems.
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4.5 Discussion and Conclusion

We have concentrated on the design of appointment books for multiple servers
that operate in parallel. As studied in several works, such as Zacharias and
Pinedo (2017), Soltani et al. (2019), Kuiper and Lee (2022), such systems are
prevalent in various scheduling settings, in which a service may be received from
any of the employees, e.g., Apple’s Genius bar, (COVID) test and vaccination
centers, but also other healthcare settings in which continuity of care is of lesser
importance. This work amends the traditional set-up of appointment schedules
for multiple servers by differentiating between two scheduling paradigms. More
specifically, it coined the terms pure and batch pooling to differentiate between
two scheduling paradigms that are both capable of reaping the benefits of
pooling.

In both batch and pure pooling, the waiting queue is pooled, but the
difference lies in the arrival pattern. In pure pooling the arrivals are singular,
whereas in batch pooling one schedules as many customers as there are servers.
The motivation behind batch pooling is that one hopes to capture many of the
established benefits of pooling, while having the strategic simplicity of parallel
single-server systems, i.e., a unique appointment book for each server—at least
on paper—this helps to have increased ownership and counter adverse effects
of pooling as described in Song et al. (2015).

To study the merits of batch pooling, a classical queueing model for expo-
nential servers is enriched to accommodate batch arrivals. In Kendall’s nota-
tion, we study the Db/M/c queue in steady state, in which Db indicates that
we have batch arrivals of size b arriving at deterministic, yet-to-be-optimized
inter-arrival times x. Aside of the special case of batch pooling (b = c), the
framework permits the computation of expected waiting times under any con-
figuration of batch size, number of servers, and inter-arrival times. Proving
that for parallel servers and any batch size the expected waiting times are
convex in x—an open problem in literature—we leverage our framework in an
objective function composed of expected waiting and idle times to establish
optimal schedules.

We find that batch pooling has many of the server-side benefits of pure
pooling. While not as beneficial to the customer on average as pure pooling,
its expected waiting times are significantly better for the vast majority of cus-
tomers than in the single-server case; especially at high utilizations. Also, the
analytical model is expanded to include no-shows and walk-ins, which indeed
confirm the heuristic that if no-shows occur with a probability of q, inter-
arrivals should be shrunk with a factor (1 − q) based on the assumption that
a no-show can be modelled as a customer with zero waiting time, a heuristic
that is frequently used, e.g., in Çayırlı et al. (2012).

Adapting the methodology found in Chapter 3 we are able to study batch
arrivals in transient scenarios. This allows us to verify our results, showing
that solutions quickly converge to steady state, while featuring the well-known
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dome-shape pattern (Hassin and Mendel 2008, Kuiper et al. 2015). Studying
these schedules in more detail uncovers an unusually higher second inter-arrival,
which arises because of the inflexibility that the workload of an entire batch
brings to an empty waiting queue of a multi-server system. Furthermore, as
transient solutions tighten toward the end, these imply longer waiting for cus-
tomers scheduled at the session end. This might have negative consequences,
like customers balking or abandoning the queue, and thus essentially becoming
no-shows, a setting studied in Zhang et al. (2022). Our solutions can also serve
as a remedy, because they balance idling against waiting in steady state.

As at the arrival of a batch the expected waiting of each batch member can
be computed, we compared the expected waiting times of each batch member
to that of pure pooling. We saw that the lowest numbered batch members
had a waiting time less than that of the pure pooling customer, while the
highest numbered batch members had a waiting time in excess of the pure
pooling customer’s. This has managerial implications for systems with triage,
where customers are upon arrival assigned a position in the batch according to
the severity of their situation. We also compared individual expected waiting
times with those in a single-server system, finding an improvement for almost
all customers.

Since imposing batch arrivals reduces flexibility, increasing the batch size
always comes with additional costs. Even for batch pooling, in which the batch
size grows with the number of servers, at around 20 servers such an appointment
book becomes inferior to organizing it as a walk-in clinic where walk-ins are
modelled as Poisson arrivals. This suggests that for large systems it may be
attractive simply not to optimize.

Besides extending the model to deal with other service-time distributions,
a practical consideration is that of unpunctuality. One can imagine customers
not to arrive all strictly on time. Such an extension would be to consider the
relaxation to more ‘open’ systems, in which there is a time window in which
customers are scheduled to arrive. Still, if one restricts unpunctual customers
to arriving at another batch’s scheduled moment, one can up to some degree
model a customer too late or too early as a no-show for his or her arrival mo-
ment, while a walk-in at another. In all, this work introduces a comprehensive
analytical framework to study and optimize different appointment book de-
signs in terms of number of servers and batch size, and allows the integration
of several relevant features in the field of appointment scheduling.



Chapter 5

On Scheduling Operating Rooms

5.1 Introduction

This case report is carried out at the Red Cross Hospital in Beverwijk (RKZ),
the Netherlands. It concentrates on the design and implementation of a new
master surgery schedule (MSS). This is a 4-week cyclic schedule that allocates
time to surgical specialties. As part of the surgical suite, operating rooms
are scarce, expensive, and vital resources; see May et al. (2011), Childers and
Maggard-Gibbons (2018) and Jung et al. (2019). Their use is of primary in-
terest to hospitals and has spawned a rich literature presenting various models
and optimization methods, see the influential review by Cardoen et al. (2010).
Besides some notable exceptions, the literature is largely concerned with the
development of theoretical models and advancements; introducing additional
features, proposing more efficient approaches, or overcoming new theoretical
challenges. Although these features and challenges are often inspired by prac-
tice, only a handful of works show adoption of operations research in practice,
see also Samudra et al. (2016). This work reports on a case in which operations
research was used to create a new MSS that, after adoption by the hospital,
improved productivity considerably. Besides focusing on the finer points of the
model, we outline the path followed to successfully apply operations research
in the operationally and politically complex healthcare context.

5.1.1 Motivation: Development of a new MSS

In 2006, the Dutch healthcare market was radically reformed by the implemen-
tation of a new law to create regulated competition. The goal was that citizens
would choose insurers and healthcare providers based on the quality of care,
service and price. Under the new law the growth of total healthcare costs was
restricted, and the administrative burden increased significantly, see Jeurissen
et al. (2021). During the COVID-19 crisis, this limitation in growth was felt all
the more harshly as the burden on healthcare increased and many procedures
had to be postponed. However, while affordability is needed to restrict the sub-
stantial growth of expenses in the future, hospitals compete with one another
for qualified personnel in a struggle to meet annual production agreements with
insurance companies.

In 2022, the Dutch government acknowledged that the healthcare market
in the Netherlands was under pressure and published an integral healthcare
agreement stating several challenges to overcome. A shortage of staff limits
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accessibility to and quality of healthcare. The requirement for affordability
restricts the growth of future expenses, while at the same time hospitals must
compete with one another for qualified personnel in a struggle to meet annual
production targets agreed upon with insurance companies. As a result, one of
the main areas for improvement falls on efficient use of resources, as reported
by the Dutch Ministry of Health and Sport (2022).

The effects of the pressure on the healthcare market were noticeable in
the Red Cross Hospital (Rode Kruis Ziekenhuis, RKZ) in Beverwijk in the
Netherlands, where the surgical suite makes up just more than 30% of the
revenue. There is a direct relationship between waiting times and the utilization
of key resources such as staff and operating rooms. Shortages of staff leads to
increased waiting times, and hiring more personnel or opening more facilities
leads to financial concerns as the hospital needs to meet the production targets
negotiated with insurers, which are based on the size of the hospital. As a
consequence, hospitals are focused on matching the production targets in the
most efficient way, as staff shortages persist.

The emphasis placed on efficiency prompted RKZ to start development
of a new MSS that would make efficient use of operating room time while
ensuring quality of care. Concurrently, sufficient time should be reserved to deal
with acute patients, i.e., emergency patients. Lastly, internally, it is preferred
that the outflow of patients is fine-tuned such that the workload of supporting
personnel, such as nurses, is stable.

5.1.2 Contribution: Practice-oriented Research

RKZ maintains a 4-week cyclical block scheduling system, in which two special-
ties may share an operating room on the same day. This induces turnaround
costs, which RKZ wants to minimize, while also fine-tuning the outflow of pa-
tients as mentioned above. As commonly done, we model the problem as a
Mixed Integer Linear Program (MILP), presented in Section 5.7. We addition-
ally break the problem into two stages to mitigate the problem of symmetry
inherent in the formulation of the MSS optimization problem, while incorpo-
rating a multitude of practical constraints.

In finding a fitting solution for the scheduling problem, we discovered that
this was one of the few successfully applied projects in this field and could
contribute to an underdeveloped part of operations research. Therefore, we or-
ganized the report such that it can be read as a roadmap for successful health-
care optimization using operations research. The value thus lies in bringing
the operations research and medical professional communities closer together,
bridging the gap of theory and real-life implementation, articulated in Cardoen
et al. (2010) as: “[...] we encourage the provision of additional information on
the behavioral factors that coincide with the actual implementation. Identifying
the causes of failure or the reasons that lead to success may be of great value to
the research community.” Medical professionals struggle when making sched-
ules manually, and the quality of the solution is low in the case of complex
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schedules. Operations research practitioners grapple to understand the needs
of hospitals: the variety of constraints, the objectives and the way to implement
a new schedule.

Solving a practical problem requires dealing with multiple stakeholders,
ambiguity about requirements and objectives, organizational struggles, and
other barriers. We found the inclusion of a domain expert, the hospital’s ca-
pacity manager, invaluable in enabling the project. The capacity manager
was able to critically assess requested constraints and to provide an extensive
internal evaluation of the project in Section 5.5.3.

We reaffirm that the operations research model is seen as an objective
decision-maker, which simplifies the adoption of a solution in a politically driven
environment. To aid in decision-making we provide at each design round a
Pareto plot, which presents various scenarios and makes it easier for manage-
ment to decide between schedules. We also found that there should be sufficient
time reserved for these design rounds; here, nearly half a year. Lastly, an im-
petus helps to ensure adoption, for example, a drastic change in case mix since
the adoption of the last MSS, mainly as this guarantees commitment of hospital
management, see for example Zenteno et al. (2016).

The paper is structured as follows. First, we outline relevant literature
on the optimization of surgery scheduling, with an additional focus on works
that apply operations research in healthcare. Then, in Section 5.3, we provide
the context of the case and show how the environment is translated to objec-
tives that can be captured as an optimization problem. Next, we show how
scheduling constraints and requirements are obtained and grouped, which are
all put in a mixed integer linear program, which is outlined in Section 5.4, the
mathematical details of which are postponed to Section 5.7. In Section 5.5,
we focus on the implementation process that culminated in the new MSS; over
two design rounds, the model was further tailored to practice. Finally, in Sec-
tion 5.6, we reflect, conclude and provide recommendations for the application
of operations research in healthcare.

5.2 Literature Review

There is a vast amount of literature on surgery scheduling. Therefore, we
decided to scope our review to three themes that help position our contribution.
We first consider general planning and control decisions on different levels in
which we embed our case about the master surgical schedule (MSS). Second,
we outline some classical approaches developed to solve this type of problem
and, third, we provide an overview of the few articles that applied operations
research in practice.
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5.2.1 Planning and Control of the Surgical Suite

Considering the planning and control of the surgical suite, there have been
various influential overviews, for example: Cardoen et al. (2010), May et al.
(2011), and Hulshof et al. (2012) all provide comprehensive overviews of the
decisions revolving around surgical care. Hulshof et al. (2012, Section 3.3) pro-
vide a detailed overview of the strategic, tactical, and operational dimensions
of surgical care. Relevant to this project, they place case mix at the strategic
level; see also the first problem as defined by Gupta (2007). Within the tactical
level Hulshof et al. (2012) place patient group identification, time subdivision
(e.g., MSS ), and staff shift scheduling, placing this project at the tactical level.

Before we delve deeper into the details of the MSS, we next consider the op-
erational level, wherein we find two streams of literature surgical case scheduling
and emergency case scheduling ; the allocations of specific surgeries to a specific
time and place. This is called the surgery scheduling problem in operations re-
search, see Zhu et al. (2019), and aligns with Problems 2 & 3 as described
by Gupta (2007), comprising the scheduling and sequencing of patients. These
decisions are not within the scope of this project, but revolve around minimiz-
ing under- and overtime; see, among others, Denton et al. (2007), May et al.
(2011). The focus on under- and overtime in surgery scheduling also has a
strong connection with the allied problem of appointment scheduling, which
focuses on minimizing idling and waiting, as discussed in Chapter 2 of this
dissertation, also published as Lee and Kuiper (2024).

Besides considering planning and control elements, one can also improve
the surgical suite by the use of Lean as discussed by Kim et al. (2006) or
the combination of Lean Six Sigma as in De Koning et al. (2006). These ap-
proaches are often used as improvement methodologies to improve efficiency
by, among others, eliminating waste in processes. Although there are some
critics about the use of these methodologies in healthcare, see Radnor et al.
(2012) and in relation to COVID-19 outbreak (Kuiper et al. 2022), there have
been considerable successes in improving the performance of the surgical suite
by using Lean. Both Harders et al. (2006) and Collar et al. (2012) report sig-
nificant reductions of approximately 20 minutes of non-operative time between
two operations. In addition, it minimizes the risk of going beyond the targeted
session-end time, e.g., 5 PM, potentially reducing overtime pay, but already by
reducing changearound times, it is estimated that labor costs are reduced signif-
icantly, see Dexter and Epstein (2005). It is also known via Dexter et al. (2019)
that switching from one specialty to another increases the mean turnaround
times, and thus, it is preferred to have one specialty assigned a block.

So, with regard to the organizational decision hierarchy, this project about
the design of a new MSS belongs to the tactical level. It starts right after the
case-mix allocation—a strategic decision—which is a key input for the new
schedule. An MSS allocates blocks (capacity) to clusters, a sub-group of spe-
cialties, but does not a priori prescribe which surgeries have to be executed; this
is left to each assigned cluster to decide, still allowing each cluster to have its
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own autonomy and flexibility to use the allocated time, as noted by Van Oost-
rum et al. (2010). This aligns well with the classical structure in which hos-
pitals have independent physician-entrepreneurs, who get paid a fixed fee for
each procedure—a situation that is typical in healthcare systems in Western
countries, see also Blake and Donald (2002) who describe it in the wording
“the agency relationship is sacrosanct.” This type of problem is not separately
identified as one of the key problems in Gupta (2007), as it is only referred to
as providing OR time allocation to specialties; thereby, it is integrated with
determining the case mix problem.

5.2.2 MSS Optimization in Practice

As articulated by Cardoen et al. (2010), much of the work seems focused on
practice, but remains unclear whether it is and how it is put into practice;
they explicitly state: “Even if the implementation of research can be assumed,
authors hardly provide details on the process of implementation.” A good rea-
son for this is that there is an unclear distinction between theory-oriented and
practice-oriented articles, see for example Table 13 of Samudra et al. (2016).
Also, in a recent review by Wang et al. (2021), it is highlighted that future
work should focus on narrowing the gap between theory and practice. The
value of using an MSS as an advance planning tool is highlighted in Van Oost-
rum et al. (2010). Also, the authors outline possible obstacles that hinder the
implementation of a (new) MSS in a hospital, such as the degree of special-
ization, resistance, and leadership. Scanning the literature, there are many
studies in healthcare that are inspired by practice but are not applied, for ex-
ample, Denton et al. (2010a), which is motivated by real problems at Mayo
Clinic in Rochester, Minnesota. In their works, Beliën et al. (2009) van Essen
et al. (2014), and in a similar vein Guido and Conforti (2017), use a testbed
to demonstrate the potential improvement of using their solutions. Finally,
we mention the work of Marques et al. (2019), who also ask for the input of
the decision maker, after which they optimized the MSS of a medium-sized
Portuguese hospital: The head doctor of the surgical suite was particularly im-
pressed with the study undertaken. He appreciated the solutions at first glance
but a deep understanding requires further analysis which is facilitated by this
kind of methodology. The implementation of this approach in the hospital is
currently under discussion. It underpins that applying operations research in
practice is more than presenting your methods, solutions, and improvement
potential. Such an approach does not pave the ground for actual implementa-
tion. Typically, as noted in Delesie (1998), the operations research community
favors putting forward their models, as we also see in the surgery scheduling
literature. However, practice does not simply adjust to a stylized model, and
practitioners do not conceptualize according to these ways, so instead, opera-
tions researchers can better “lend their ear” to developing and tailoring a model
according to the hospital’s needs.

We now proceed to give an overview of actual applied works in the field
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of optimizing MSSs. From these various papers, we have extracted common
themes that are subject to optimization and have summarised these themes
in Table 5.1. Ward workload is one such theme, present in Zenteno et al.
(2016) and Benchoff et al. (2017) who both aim to minimize congestion in
wards, particularly by means of minimizing peak demand, while Visintin et al.
(2017) and Vanberkel et al. (2011) aim to meet a target utilization, Visintin
et al. (2017) by means of goal programming and Vanberkel et al. (2011) via
a series of informed swapping decisions and inspection of the resulting ward
occupancies. They also report that they applied variants of their model in
three other hospitals. Operating room utilization is another common objective
for which Visintin et al. (2017) aim to directly maximize utilization, while
Zenteno et al. (2016), Benchoff et al. (2017) and Vanberkel et al. (2011) report
improvements in the ward loading, leading to a decrease in the number of
surgery cancellations. The third common theme is the distribution of case mix
hours, which is an objective for Blake and Donald (2002), who aim to give each
specialty the minimum number of operating hours they are promised, while this
theme is considered a constraint by the other papers. Zenteno et al. (2016),
Benchoff et al. (2017) and Visintin et al. (2017) also include other objectives
in their models, but these are specific to each paper and do not constitute
common themes. We have also extracted themes which are not subject to
optimization but are nonetheless interesting. We consider the scale of the
problem, that is, how many operating rooms and specialties were considered
in each case; schedule type, i.e., whether the schedules devised were cyclic or
covered a planning horizon. As Blake and Donald (2002) do not optimize for
ward workload, they do not consider the modeling of bed occupancy at all.

Another theme in the literature in both theoretical and applied works is
bed occupancy, which describes how many patients occupy beds in a ward
at a given point in time, which is crucial in determining ward workload. We
break bed occupancy up into two required pieces of information to be modeled:
outflow, the number of patients operated on in each block who will then be
discharged to a ward; and length of stay or LOS, how long a given patient
lies in a ward. A simple approach would be to take both outflow and LOS
in expectation, yielding an expected bed occupancy. When more accuracy
is desired, however, a probability distribution can be calculated or assumed
for either or both outflow and LOS, yielding either finer-grained conditional
expectations or even full probability distributions for bed occupancy.

Vanberkel et al. (2011) give the most detailed modeling of bed occupancy,
using average outflows from procedures and applying to these a binomially
distributed length of stay to achieve a distribution over the number of beds
needed on any given day of the schedule. Benchoff et al. (2017) use average
outflows from procedures, employing empirical distributions for the lengths of
stay of different patient types to arrive at the expected number of occupied beds
on any given day of the schedule. Zenteno et al. (2016) stratify patients into
groups based upon their length of stay (seemingly in expectation) and calculate
the expected number of days a bed will be occupied for each surgical block
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assigned. Unfortunately, we were not able to discern whether outflow and LOS
were modeled in expectation or via probability distributions. Visintin et al.
(2017), create a scheduler for a short planning horizon and so make an entry
in the schedule for each patient. They therefore know beforehand what the
outflow will be. They model the length of stay with a discretized probability
distribution over the number of days a patient lies in a ward. These values were
then used in a simulation to test the robustness of the solution to variation in
bed occupancy.

5.3 Case Background

We will now present details of the forces which lead to the undertaking of this
project. This serves as a preliminary step in which the context under which the
project is undertaken is analyzed, see also Coughlan and Coghlan (2002). We
will then translate these into objectives important to the hospital. Finally, in
this section, we discuss the formulation of the case mix and the patient group
identification, which were inputs into the operations research model.

RKZ has seven operating rooms, of which one is permanently reserved
for burned skin treatment, an urgent type of care for which surgery-duration
predictions and plannings are hard to make. For this reason, this room is left
out of scope for this project. In fact, the hospital has a national reputation
for being one of the few Dutch hospitals that treats burned skin, a medical
field in which general and plastic surgeons work together. Aside from this
function, the hospital also provides regional care. Available specialties for
surgery are general surgery, orthopedics, plastic surgery, urology, gynecology,
otolaryngology, orthognathic-surgery, and neurosurgery.

Figure 5.1 depicts the general flow of patients receiving surgery in RKZ.
Patients are first administered anesthetics before entering one of the six surgery
rooms. Each day, these rooms runmorning (08:00 - 12:30) and afternoon (12:30
- 17:00) surgery blocks, which combined we call a whole block. Each day one
room’s afternoon block is shortened to keep time available for emergency pa-
tients. Afterwards, surgery patients move on to the Post Anaesthetic Care Unit
(PACU), and later to one of the available wards (outflow). Most surgical pa-
tients go to the daycare or clinical wards where patients from several specialties
are treated together.

5.3.1 Concerns of the Hospital

The hospital wished to meet production targets set by insurers while balancing
the supply of and demand for post-operative care in order to improve the
quality of patient care and stabilise the workload of personnel. This latter goal
would be achieved by balancing outflow of patients from surgery to the wards.
To this end, a new MSS was desired which would replace the previous MSS in
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Surgical suite

Anesthesia

Wards

Daycare
Oncological

Acute Care

Clinical
Children
Gynaecological

Afternoon
(4.5 hours)

Morning
(4.5 hours)OR

PROPRO1
ORT*ORT2
TRANEU3
BARBAR4
GYNGYN5
COSCOS6

Patients

PACU
These two specialties are assigned 
split blocks, while the remaining 
specialties are assigned whole blocks.

ICU

Inflow

The * denotes a two‐
hour reservation for 
emergency surgeries.

The outflow to these wards needs to 
be balanced; the others are handled
via the constraints, if necessary.

Figure 5.1: An overview of the setting and problem description for a single day; the
full schedule consists of 20 days.

use since the end of 2018 (see Table 5.2). The new MSS was to be implemented
by the end of 2022, with its two primary objectives being:

1. Production: There were 40 split blocks (as defined in Figure 5.1) in
the old schedule which caused 20 turnarounds; this can be seen in the
gray shaded cells in Table 5.2. Split blocks necessitate the refitting of
operating rooms from being suited for one cluster to operate into be-
ing suited for another. These incur direct costs from refitting and also
carry the opportunity cost of production as they eat into time that could
otherwise be spent on procedures. Furthermore, as schedulers typically
schedule surgical cases conservatively to avoid overrunning a block, more
split blocks results in more unutilized time. Allocating whole blocks in
the new MSS will minimize total turnaround time and therefore increase
productivity.

2. Balancing Outflow: The outflow of the old schedule to subsequent wards
was not well balanced, meaning that the number of patients admitted
per day deviated too much from the desired pattern. Deviations, as can
be seen in Figure 5.2, can lead to a reduction of quality and speed of
care for patients and create stress and dissatisfaction for staff, or lead
to inefficiencies if resources go unused. To match supply and demand
for nursing capacity, two approaches are possible: adjusting the patient
inflow or modifying the nursing schedule. Due to physical limitations,
this optimization employed the first approach. Three wards share this
problem.

a. The occupation of the clinical ward should be stable over the week-
days and weeks. A high and steady inflow on Mondays helps to
stabilize occupation. Length of stay is presumed constant for all
patients per ward, as data analyses have shown that there are only
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subtle differences in LOS for most specializations.

b. The daycare ward combines surgery and non-surgery inflow. This
ward experienced problems with too many or few patients on spe-
cific days. The sum of non-surgery patients varies strongly, but is
steady per day and week. For this ward a target number of patients
was desired, assuming a fixed number of non-surgery patients per
day.

c. In 2021, a new ward was opened with highly specialized staff for
oncological care. This ward is limited in size and facilitates a spe-
cific group of patients after surgery. In the old schedule, some days
generated problematic outflow: surgeries involving cancer (such as:
breast, bladder, and colon surgery) that take place on the same
day, were required to be better spread out in the new schedule.

Week 1 Week 2 Week 3 Week 4
−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

Days

D
ev
ia
ti
on

or
O
u
tfl
ow

The Old MSS Outflow Profile

Daycare
Clinical
Oncological

Figure 5.2: The corresponding outflow deviations from the target of the MSS for
daycare and clinical as well as the net outflow to the oncological ward, which should
ideally be well below 4. Two violations of this principle are circled.
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OR1 OR2 OR3 OR4 OR5 OR6

W
e
e
k
1

Mon PRO ORT NEU BAR GYN COS

PRO ORT* TRA BAR GYN COS

Tue BRE ORT ENT MAS SWI PLAZ

BRE ORT ENT GEN SWI* PLAZ

Wed URO ORT BAR PLAT

URO* ORT BAR PLAT

Thu ENT ORT ORG GEN IHE PLAW

URO ORT ORG GEN IHE* PLAW

Fri TRA ORT MAS BAR GYN PLAL

TRA* ORT VAS BAR GYN PLAL

W
e
e
k
2

Mon SWI ORT ENT BAR NEU PLAM

SWI ORT ENT* BAR TRA PLAM

Tue URO ORT MAS GEN TRA PLAZ

URO ORT MAS GEN TRA* PLAZ

Wed ORT BAR MAS PLAT

ORT* BAR VAS PLAT

Thu NEU ORT ORG GEN ENT PLAW

GEN ORT ORG GEN ENT* PLAW

Fri COS ORT CHC BAR GYN PLAL

COS VAS TRA BAR GYN* PLAL

W
e
e
k
3

Mon URO ORT CHC BAR PLAT COS

URO* ORT TRA BAR PLAT COS

Tue BAR ORT ENT GEN MAS PLAZ

TRA ORT ENT* GEN MAS PLAZ

Wed ORT MAS BAR GYN PLAT

ORT* MAS BAR GYN PLAT

Thu URO ORT ENT GEN PLAW

URO* ORT NEU BAR PLAW

Fri SWI ORT IHE BAR GYN PLAL

SWI* VAS TRA BAR GYN PLAL

W
e
e
k
4

Mon URO ORT GEN BAR TRA PLAM

URO ORT NEU BAR TRA* PLAM

Tue URO ORT ENT GEN MAS PLAZ

URO ORT ENT* MAS MAS PLAZ

Wed ORT VAS BAR PLAT

ORT MAS BAR PLA*
T

Thu SWI ORT ORG GEN ENT PLAW

SWI ORT ORG* GEN ENT PLAW

Fri COS ORT MAS BAR GYN PLAL

COS VAS TRA BAR GYN PLA*
L

Table 5.2: The old MSS, in which the asterisks (∗) indicate which OR is dedicated to
emergency surgeries.
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5.3.2 Setting the Case Mix

Insurance companies dictate yearly production for hospitals by setting a limit
on the maximum financial compensation a hospital receives. To meet these
targets, RKZ runs 28 surgery blocks per week. The case mix divides available
surgery time over specialties. Formulating a division of case mix time was a
combination of historic data analyses, expectations for the future, and company
strategy. Data analyses showed occupation and utilization of surgery rooms
and trends in waiting lists helped to reveal future demand for specialties. As a
result, orthopedic and plastic surgery hours were adjusted to fit future demand.
The output of the case mix is the number of surgery hours assigned to each
specialty per cyclical schedule of 4 weeks. Besides determining the case mix by
a detailed analysis, one can also solve for economic considerations by using an
operations research model, as in Blake and Carter (2002).

5.3.3 Identification of Patient Groups

Within specialties, there is a large variety in resource utilization, including the
medical knowledge of the surgeon, the need for medical equipment, the ward
to which the patient is discharged after surgery and the number of patients
that are discharged to that ward. The purpose of patient group identification
is to create clusters that are similar in the use of capacity, for more details, we
refer to Schneider et al. (2020). Here, out of eight surgical specialties, 23 differ-
ent clusters were initially distilled, later expanded to 29. These clusters were
primarily based on the medical knowledge of the surgeons and the wards to
which patients would outflow. As an example, bariatrics and proctology share
the same surgeons but are considered different clusters within specialty gen-
eral surgery because outflow varies: bariatrics typically generates five clinical
patients and proctology about ten daycare patients.

Before advancing to the optimization of the MSS, the case mix hours per
specialty needed to be further divided over the newly-created clusters, this
process is called time subdivision by Hulshof et al. (2012). Whereas case mix
division was largely chosen by hospital management, surgeons had more say in
this time subdivision. To aid in this process, suggested time subdivisions were
made based on calculated surgery room occupations and throughput times.

5.4 Project Definition

Here, we describe the project definition and how all input needed for the math-
ematical model was obtained. Higher-level objectives, as given at the end of
Section 5.1.1, for example, efficient production and stable outflow, needed to be
translated into quantitative performance dimensions at the operational level.
Second, the constraints of the stakeholders, the validity of which were assessed
by weighing their influence, were grouped in order to keep the model structured
and organized.
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5.4.1 Choosing an Objective Function

In the case background in Section 5.3 we saw the two objectives of firstly
decreasing the number of turnarounds in order to increase production and sec-
ondly balancing the outflow to the three wards (clinical, daycare, and oncolog-
ical) to match nurse capacity. These two objectives are at odds: by decreasing
the number of split blocks we have less opportunity to refine outflow. There-
fore, we minimize a weighted combination of two objectives: production can be
maximized by minimizing the number of split blocks, while a balanced outflow
can be achieved via goal programming.

It was determined that a patient assigned to the clinical care ward cost 3.3
times as much as a patient assigned to daycare. One large deviation from the
target outflow was considered proportionally worse than many smaller devia-
tions (even when total deviations are equal), therefore larger deviations were
penalized more harshly than smaller deviations. Due to the limited number of
options, the goal for the stability of outflow in the oncological ward was turned
into a constraint. How exactly the outflow imbalance was modelled for incor-
poration into the mixed integer linear program is handled in more detail in
Section 5.7. Multiple optimization runs were performed using various weights
placed on the minimization of split blocks so that different trade-offs between
production and outflow balance could be compared.

Outflow to wards was balanced by minimizing the deviation between the
number of patients admitted to a ward per day and a desired target. Each time
a cluster operated, the expected number of patients who would be discharged to
either of these wards was taken. Variation in length of stay was not considered
as during a previous simulation study at RKZ length of stay was found to be
consistent. Therefore, it was decided to model lengths of stay deterministically,
using average values for the lengths of stay of patients in the clinical and daycare
wards. The end result is an objective function where each day has its own target
outflow per ward independent of other days.

5.4.2 Gathering Constraints from Stakeholders

Constraints were generated by collecting the requirements and wishes of stake-
holders. Surgeons, surgery support staff, nurses, and managers were all con-
sulted on what they felt should be included in the model. This process pre-
sented a number of challenges. For the vast majority of stakeholders, this was
their first encounter with mathematical optimization. This unfamiliarity re-
sulted in stakeholders not immediately knowing what requirements to report,
with them presuming that many important restrictions would be implicitly
met. Another closely related issue to this is that stakeholders would overlook
the literalness of mathematical constraints. Both of these points can be illus-
trated with an example: a cluster which reports it can work on Tuesdays does
not imagine that a mathematical program would schedule them to work only
on Tuesdays if that minimizes the objective (this occurred in one early draft



120 Chapter 5. On Scheduling Operating Rooms

of the schedule) and would not immediately think to report that they are only
happy to work on Tuesdays up to an as-yet undetermined limit. This example
prompts a third difficulty: from the perspective of the modeler, the constraints
appeared to be constantly shifting.

Furthermore, the operational structure of a hospital does not always lend
itself well to mathematical formulation, for example the cluster ENT consisted
of 3 surgeons who all need to be scheduled for a minimum number of hours.
This can be accommodated by creating additional clusters, which was carried
out, bringing the total number of clusters from 23 to 29.

Other challenges lie within the realm of change management. This project
began with a revision of case mix, resulting in a reduction of surgery time
for some specialties as well as knock-on effects such as the requirement to
redesign outpatient department schedules. This contributed to unwillingness
to cooperate with the creation of a new schedule, making it difficult to gather
information about constraints. For this reason, conversations on case mix and
the new MSS were kept distinct where possible to avoid opinions about the one
hindering discussion of the other. Additionally, allowing everyone to include
any demand would have limited the possible outcomes of the model and thus
the savings attainable. A strict attitude towards demands was thus needed,
and the motivation behind them had to be uncovered. For example, weekday
availability based upon working in another hospital was considered a valid
argument, but reluctance to changing days-off was not.

To mitigate the above problem, constraints were divided into must-haves
and would-likes. Must-haves became constraints in the model, while would-
likes, if satisfied by chance, were considered “the icing on the cake”. Even-
tually many staff also saw the benefit of being able to impose mathematical
constraints, for example to smooth workload in a predictable manner or to con-
strain peak demand for their services. Finally, medical staff were convinced that
the new schedule would reduce surgery room turnarounds and better match the
inflow of patients, resulting in improved waiting lists.

5.4.3 Grouping Constraints

Consulting all stakeholders lead to a large list of constraints describing the
current state of the hospitals’ capacities. Hereby an important note should
be made that capacities can be expanded to lift constraints. Equipment can
be bought, and extra people can be hired if the improvements outweigh the
costs. For some restrictive constraints, this option was kept on the table to
be explored further (see Section 5.5.1). All constraints were grouped into the
following classes:

• Availability constraints specify that a cluster can operate a block on a
given week, weekday and time of the day.

• Concurrency constraints forbid two clusters from operating at the same
time. E.g., gynecology and urology cannot operate at the same time
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because they use the same scopic equipment.

• Case mix hours dictate the minimum of OR hours per cluster per cyclic
schedule as agreed in the case mix.

• Similarity constraints require clusters scheduled to a given block in one
week to be scheduled to that same block a number of weeks, usually two
weeks, later. This helps to increase the throughput time of oncology
patients by simplifying the number of outcomes for the OR schedule.

• Other constraints. Include bounds on capacity such as laparoscopic kits
and rolling horizons to facilitate evenly spread-out capacity for semi-
urgent clusters in the form of minimum capacity per week.

5.5 Implementation Process

A mathematical program, as the one described in the previous section, simpli-
fies the real world. Thereby, it does not fully account for all elements that play
a role in the surgical suite. However, it does not have to; the prerequisite is
that a model is sufficiently comprehensive, such that its solutions are useful in
practice; see also the seminal work of Box (1976). To come to such a model, we
followed a timeline as given in Figure 5.3. After the initiation and definition
of the project, we followed several design rounds or cycles, as in Coughlan and
Coghlan (2002). These rounds were particularly helpful because, on the one
hand, they enriched the model with the right, critical, and practical elements
to make it realistic and useful. On the other hand, we found that it introduced
and paved the road for the broad acceptance of the new MSS, leading to the
approval of the final schedule in May 2022. After which the new MSS was
implemented and later evaluated. Operations research professionals from the
university partook from phases ‘Project Definition’ until ‘Approval’.

5.5.1 The First Design Round

The information in terms of objectives and constraints, as gathered and formu-
lated in the previous section, were modelled in Python. Using a state-of-the-art
solver, i.e., Gurobi, solutions were obtained when different weights were chosen
for penalizing split blocks. The possible solutions are illustrated in Figure 5.4
and form a so-called Pareto frontier, no better solution can be obtained for
this specific trade-off of number of split blocks (x-axis) and outflow deviation
(y-axis). In addition, some specific scenarios were run, which were known to
be some open questions and are magnified in the plot. The models in the
frontier have 2540 variables and around 3269 constraints. Note that schedules
below the frontier have fewer constraints, whereas solutions above impose extra
restrictive constraints, e.g.:
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• Scenario 1: The purchase of an additional liposuction machine, allowing
more freedom in where plastic surgery could be placed in the schedule.

• Scenario 2: Limiting the number of laparoscopic kits available per day
to 11.

• Scenario 3: Enforcing any split blocks for gynecology and bariatrics to be
scheduled one after the other in the same operating room. This reduces
the number of times in the week that additional surgical assistants need
to be scheduled.

• Scenario 4: Permitting a particular surgeon to operate within the mas-
tectomy cluster, which in fact restricted the days to which this cluster
could be scheduled.

• Scenario 5: Limiting the bookings of gynecology, bariatrics and ortho-
pedics to a maximum of 9 bookings per week (a booking is either a split
block or a whole block). This provides consistency to the schedule of the
surgical assistants.

The results were discussed with hospital management, clarifying the need
and potential improvement of changing the schedule. This was soon clear to the
management, who were delighted by the possible improvements shown. The
new proposals additionally satisfy constraints not shown in the Pareto plot,
such as dealing with the limited availability of C-bow X-radar machines for
neurosurgery, urology, and trauma and the improved outflow to the oncology
ward. The presentation for management included a table that showed which
constraints were satisfied per schedule.

The costs for a new liposuction machine (scenario 1) were found to be
insignificant when compared to the reduction of split surgery blocks and the
improvement of outflow. Therefore, management decided to purchase a new
liposuction machine that allowed cosmetic plastic surgery to be scheduled
on Mondays. The new schedule ‘2nd liposuction machine’ was sent out as a
proposal to all surgeons, medical support staff and planners.

5.5.2 The Second Design Round

Within a few days after sending the new schedule, several emails arrived, claim-
ing that the newly proposed schedule would be impossible to operate. The
model thus required extra constraints:

• Availability constraints, a number of these were not communicated or
interpreted correctly. E.g., vascular surgery could only operate a maxi-
mum of 3 afternoons and some plastic surgeons would be absent during
certain weeks in each cycle

• A bound on split blocks was used for specific clusters with extra sup-
porting personnel, e.g., bariatrics and gynecology use a third operating
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Figure 5.4: The Pareto frontier corresponds to the first round and is obtained by
varying the weight on half sessions. Five additional scenarios are calculated to aid
the decision-making process.

assistant due to the large number of scopic surgeries. In case of split
blocks this leads to excess staff during the rest of the day.

• Follow-up constraints were introduced to avoid peak demand in the plas-
ter room by preventing plastic surgeons from working subsequent days
(inter-day). Other versions of this constraint avoided clusters of urology
and gynecology following up on each other.

• Rolling horizon constraints were included for urology so that surgery
time was spread equally over the schedule.

These, and other points, led to more than 25 additional demands being
added to the model. With the newly added constraints, a new Pareto frontier
was generated by varying the weight on split blocks and keeping the weights for
clinical and daycare constant. The solutions corresponding to the second round
are shown by the red dotted curve. As seen in Figure 5.5, the new constraints
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Figure 5.5: An overview with the Pareto frontiers of the two rounds; note that Fig-
ure 5.4 is encapsulated in this overview. The starred solution was chosen as the new
schedule by the hospital’s management.

restrict the number of possible solutions further, moving the frontier further
outward, taking the number of features of the model to 2542 variables and 3560
constraints.

Showing the new results to the management of the hospital, it became
clear that they were primarily concerned about hospital production, thereby
preferring the schedule with just 14 split blocks. We brought to their attention
that this solution would worsen the steadiness of the outflow to the wards,
see Figure 5.6. Nevertheless, the outflow deviation was still considered accept-
able, and improving it was subordinated to the goal of increasing production,
which fewer split blocks would enable. As the next step following this meeting,
the newly proposed schedule was sent out to all relevant stakeholders, asking
whether the new schedule, presented in Table 5.3, could be put in operation.
No new obstacles were identified and during the following meeting with the
Board of Surgeons the schedule was considered for approval. They had some
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feedback: Orthopedics complained, but the nature of their complaint related
purely to the reduction of OR time (case mix), not the schedule itself; Plas-
tic surgery was not happy with the large number of changes, but agreed to
implement the new schedule; and lastly, other surgical specialties expressed
happiness to have found a suitable new schedule for the hospital.
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Figure 5.6: The corresponding outflow deviations from the target of the MSS for
daycare and clinical as well as the net outflow to the oncological ward, which should
ideally be well below 4.

5.5.3 Evaluation of the New MSS

Several significant differences can be spotted when comparing the new schedule,
as shown in Table 5.3, with the old one, as shown in Table 5.2 (Section 5.3). One
of the primary considerations reflected by the new schedule is the reduction of
split blocks (gray blocks); it is reduced from 40 to 14—every four weeks—which
was the minimum number of turnarounds while satisfying all the must-have
constraints. This 65% reduction is beneficial for several reasons: it lowers the
workload of supporting staff and frees up surgery time because turnarounds
inherently take time off of the subsequent block. Also, valuable time is won on
the morning blocks, because surgical cases are scheduled with a certain degree
of conservatism not to overrun the session. Only considering the turnaround
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OR1 OR2 OR3 OR4 OR5 OR6

W
e
e
k
1

Mon URO ORT PRO BAR GEN COS

URO* ORT PRO BAR GEN COS

Tue TRA ORT ENT BAR MAS/PLAZ PLAM

TRA ORT ENT BAR MAS/PLAZ PLA*
M

Wed PLAA MAS BAR PLAT

PLA*
A MAS BAR PLAT

Thu URO ORT ORG NEUP BRE PLAL

URO ORT ORG NEU∗
P BRE PLAL

Fri TRA ORT IHE GEN GYN PLAT

TRA ORT VAS GEN GYN PLA*
T

W
e
e
k
2

Mon URO ORT ENT BAR GEN COS

URO ORT ENT* BAR GEN COS

Tue TRA MAS ENT BAR PLAZ PLAT

TRA MAS* ENT BAR PLAZ PLAT

Wed ORT BAR VAS PLAM

ORT BAR GYN PLA*
M

Thu NEUP ORT ORG GEN MAS PLAA

NEU∗
P ORT ORG GEN MAS PLAA

Fri VAS ORT PLAW BAR GYN PLAL

TRA ORT PLAW BAR GYN PLA*
L

W
e
e
k
3

Mon TRA ORT ENT BAR GEN COS

TRA ORT ENT* BAR GEN COS

Tue URO ORT PLAL NEUV MAS PLAZ

URO ORT PLAL NEU∗
V MAS PLAZ

Wed ENT BAR MAS/PLAI PLAT

ENT* BAR MAS/PLAI PLAT

Thu URO ORT ORG GEN IHE PLAT

URO ORT ORG GEN IHE* PLAT

Fri TRA ORT CHC BAR GYN PLAT

TRA ORT VAS BAR GYN PLA*
M

W
e
e
k
4

Mon PLAT ORT GEN BAR GYN COS

PLA*
T ORT GEN BAR GYN COS

Tue URO ORT PED MAS PLAZ PLAT

URO ORT TRA MAS PLAZ PLAT

Wed ORT ENT BAR CHC

ORT ENT* BAR VAS

Thu GEN PLAL ENT BAR MAS PLAA

GEN PLAL ENT* BAR MAS PLAA

Fri TRA ORT IHE VAS GYN PLAW

TRA ORT IHE* BAR GYN PLAW

Table 5.3: The new MSS, in which the asterisks (∗) indicate which OR is dedicated
to emergency surgeries.
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time reduced improves annual production by 75 hours, which is estimated to
increase surgery time by 0.6%—equivalent to surgery for 50 patients, amounting
to 300 000 Euros.

For practitioners, it is important that their choices and corresponding
improvements effectuate in practice when the new schedule is implemented.
Therefore, the new MSS was evaluated after three months of implementation,
December 2022. Users of the new schedule, among others surgeons, nurses
and managers were asked to provide feedback. Summarizing the feedback,
the following four points were distilled—furthermore, note that the typically
positive notes are positive aspects that are not explicitly addressed, as is often
the case with feedback.

1. Increase in production. Indeed, as projected, for the wards and surgery
rooms, an increase in the production was felt and measured: 9.3% more
patients when comparing the period October–November of 2022 to 2019.
A number of measures are thought to have resulted in this increase, and
the implementation of the new MSS was seen as an important one. The
growth of 9.3% in production was a lot more than the expected 0.6%. A
discussion on the positive effects of the MSS on the productivity of the
hospital is given in Section 5.6.1.

2. More early patient admissions. The manager of the clinical ward noted
an increase in early morning hospital admissions, which was confirmed
with additional data analysis. This created a problem in capacity with
the overlap of in-house patients and new intakes. The observation seemed
at odds with the flexibility provided by the reduction in split blocks;
whole blocks allow more options throughout the day to schedule patients
requiring admission. However, after digging deeper, the underlying cause
was simply the surge in production, which could not be offset by exploit-
ing the flexibility of having more whole blocks.

3. Heavy pressure on the recovery room. For instance, surgery blocks with
a high number of children led to peak occupation in the recovery room.
While the model restricts the concurrency of pediatric blocks, no addi-
tional constraints were implemented to limit the occupation. However,
there was no reason to further explore this issue.

4. Missing a constraint. For one of the specialties (ORG), a constraint that
specified the availability was wrongly set to all Thursdays, which should
have been for only three of the four. An issue that was solved internally
without adjusting the schedule or optimization.

5.6 Conclusion and Discussion

We describe the creation and implementation of a new 4-week cyclic schedule
that assigns blocks to (sub)specialties for a mid-sized Dutch hospital. The cre-
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ation of this Master Surgery Schedule is particularly focused on practice and
demonstrates how operations research can be successfully applied in healthcare.
Specific objectives and a multitude of concerns are established in collaboration
with the hospital, resulting in the inclusion of a large number of constraints
regarding availability, concurrency, similarity, follow-up (inter- and intra-day)
and rolling horizon, to ensure continuity of care. In the process, a mathematical
optimization approach is used. The objective function established comprises
tracking split blocks and outflow deviation by means of a tailored goal pro-
gramming approach, taking costs and resource constraints into consideration.
Note that minimizing turnarounds and outflow deviation are conflicting objec-
tives, as the first one reduces the flexibility to accommodate a steadier outflow
to wards.

In the entire development process, there was an active collaboration with
the hospital managers and operations research specialists. This helped to iden-
tify which constraints were needed and which were of lesser importance. Also, it
helped the direct involvement of stakeholders, which we believe has eased the
adoption. To facilitate this, Pareto plots were generated to illustrate trade-
offs, and additional scenarios were considered to keep the hospital managers
involved and in control. In the end, the schedule with the fewest number of
turnarounds was selected in May 2022 to be implemented in September 2022,
reducing the number of turnarounds by a staggering 65% (cf. Table 5.2) freed
up surgery time, resulting in a monetary benefit of 300 000 Euros annually from
extra production.

5.6.1 Assessment of the Implementation Process

Table 5.4 compares the old and new schedules for several indicators. The
new plan did not obtain a better outflow to all wards—daycare remained the
same while the outflow to the clinical ward worsened—because the reduction
of turnarounds superseded the goal of a steadier outflow. It became apparent
during the feedback of the design rounds that management steered toward
reducing turnarounds, or equivalently number of split blocks.

Moreover, for modeling daycare outflow, one target value is chosen per day,
and the model should approach this value as closely as possible. However, dur-
ing the design rounds it became clear that daycare had enough physical space
and that one nurse always cares for five patients. Therefore, an improvement
of the model would have been to target any multiple of five for daycare. To en-
courage multiples of five the outflow targets were fine-tuned which allowed the
daycare manager to schedule one more or one fewer shifts. This can be seen
in Figure 5.7 where the dotted lines imply five alternative staffing occupations,
as structurally applied for the new operating room schedule. Also, note that
the outflow to the oncological ward does not have any violations, because the
outflow targets were put in as a constraint.

According to the evaluation carried out by the hospital following the
project, as detailed in Section 5.5.3, it was observed that there had been a
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Consideration MSS 2018 MSS 2022

Number of split blocks 40 14

Clinical outflow violation 21.1 25.1

Daycare outflow violation 35.0 35.4

Oncology outflow violations 2 0

Method
Manual

(with simulation)
Mathematical
optimization

Project workload
6 months

(24 hours / week)
6 months

(24 hours / week)

Schedules considered 16 Pareto frontier

Design rounds (until implementation) 4 2

Table 5.4: Comparison of the generation of the old (2018) and the new schedule
(2022). The first three rows are the actual numbers of split blocks and outflow
violations; these values were weighted in the objective function.

notable 9.3% increase in production. This observation serves to reinforce the
idea that the reduction in turnaround time has contributed to an improvement
in productivity, as likely has the reduction in time lost to conservative schedul-
ing due to split blocks. This was not the only contributing factor, as there
was a number of other changes that positively impacted productivity, some co-
incidental and some indirect. A coincidental factor, i.e., one not influenced by
the new schedule, was the hospital management’s decision to reduce emergency
surgery time by 37.5% after the implementation. This freed up surgery time
for regular surgery sessions, directly leading to an increase in production.

The indirect benefits from the new schedule are those that are not included
in the objective function, but have had a positive impact. First, the new case
mix gave an updated time division that is better aligned with the inflow of
patients, leading to more blocks being filled. Second, updating availability for
surgeons has decreased the chances of canceled procedures. Third, a number of
new clusters have been formed for patients that were previously difficult to plan
for, such as the combination blocks for mastectomy and plastic surgery, and
clusters that target more specific patient groups, which has reduced changeover
time between patients.

Besides the comparison on the performance dimensions, the processes by
which a solution was found can also be compared. For the old schedule, a
manual approach was used, with the help of simulation to check outflow and
design-support tools to check the satisfaction of constraints. The capacity man-
ager described that finding an appropriate schedule was a “nightmare” akin to
“solving an unsolvable Sudoku puzzle.” A frustrating process as each time a
schedule was computed and proposed new constraints would be brought up,
rendering the proposed schedule unusable. In total, the iterative process re-
sulted in the creation of 16 schedules over roughly four design rounds. The new
schedule was developed via mathematical optimization supported by operations
researchers and was felt to be “far less frustrating” due to the relative ease of
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Figure 5.7: Revisting the outflow deviation to daycare.

including additional constraints. The challenge for the capacity manager was
to collect the constraints as soon as possible—via design rounds—so that they
could be included in the model. Due to these rounds, a clear reduction in the
number of iterations was obtained, with the caveat that the (re)formulation of
the mathematical model required additional time as the timelines were about
the same.

5.6.2 Limitations of the Project

Some standard limitations apply as this work is a single case report; for ex-
ample, it describes a successful implementation for a single Dutch hospital and
how it compares to other or international hospitals. We, however, believe that
the basis for each hospital is the same; only the political playing field, con-
straints, and targets will differ across hospitals. The last two can, of course, be
put in a model.

Next, considering the modeling framework, an optimal solution for a math-
ematical program has some limitations, such as what is chosen as the objective
and which modeling decisions are made. Also, reflecting on the feedback af-
ter the schedule, new challenges arise when a solution is implemented; as the
feedback on the schedule in Section 5.5.3, handling more patients creates a
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new environment with possibly new problems. Furthermore, the development
and input of the model are based on historical information, for example, about
the case mix, outflow per block, and stakeholders’ (working) requirements.
These data are not guaranteed to be the same—in fact, that is highly unlikely.
Moreover, besides variation in the data, the setting can change drastically, for
example, emergency blocks were incorporated into the model but were short-
ened considerably immediately after implementation because of a management
decree to increase production.

One more arguable shortcoming is that we forego explicit modeling of
bed occupancy, which other applied works tend to do in much more detail.
Variation in length of stay was not taken into consideration, although a few
clusters did have longer average stays in the clinical ward. Modeling length of
stay would have required greater granularity of the data and a higher level of
complexity in the modeling (see van Essen et al. (2014), Adan et al. (2009),
and Holte and Mannino (2013)).

Another avenue to deal with the uncertainty is to employ robust optimiza-
tion techniques; for example, Bos et al. (2023) use it when designing a schedule
with downstream capacity constraints. Also, one might wonder whether this
detailed information cannot be better solved in scheduling surgeries at the op-
erational level—so once the block schedule is set, see van den Broek d’Obrenan
et al. (2020). For an integration of both, see, for example, Schneider et al.
(2020), where they consider the operational decisions in the allocation of block
scheduling.

5.6.3 Practical Recommendations

We have so far outlined the implementation of operations research in a challeng-
ing healthcare environment with high stakes and sizeable operational impact.
Here, we want to provide some insight into why embracing operations research
in healthcare decision-making is useful and how one should carry out such
integration and implementation successfully. Reflecting on the trajectory of
the project, we identify some success factors; some of these have already been
mentioned in literature, while others appear to be novel.

Firstly, we consider for hospital management the benefits that operations
research has to the hospital. As is mentioned by Blake and Donald (2002), the
operations research model is seen as an objective decision maker, reducing the
risk that the scheduler is used as a political tool to attain personal wishes —
as did happen in the past, acknowledged by the hospital’s capacity manager
when drafting the old schedule in 2018. Second, also identified by Visintin
et al. (2017), the model can be used to reveal preferences as was done with
the Pareto plots in Section 5.5. This is useful not only for the operations
researcher in developing the model, but can also help hospital management
determine what trade-offs they find important. Third, as also mentioned by
Blake and Donald (2002) and Visintin et al. (2017), once preferences have
been determined, the model can be used to perform scenario analyses, which



5.6. Conclusion and Discussion 133

can depoliticize purchasing decisions, as with the question of the liposuction
machine in Section 5.5.2

We will now consider recommendations for operations researchers by pre-
senting as lessons learned four factors that we feel most helped enable the
project. First, a sufficient degree of commitment or urgency is a prerequisite,
also mentioned by Zenteno et al. (2016), who name commitment of high-level
leadership and engagement of surgical services as essential. Second, a factor
that we feel is very important, but do not see mentioned previously, is the
inclusion of sufficient time to enable the full translation of practice into the
terms of the model, which can be done by working in design rounds whereby
stakeholder input is solicited. Third, at the same time one should be critical
of stakeholder demands, discerning well between a true must-have constraint
and a personal wish, a would-like constraint. Accepting too many constraints
without researching the underlying motivation will drastically reduce the qual-
ity of the solution. This is encouraged by Van Oostrum et al. (2010) and is also
mentioned by Visintin et al. (2017) as being an important factor in their case.
Finally, a recommendation of ours is to be aware of knock-on effects, such as
the requirement to redesign outpatient schedules. This could be handled by
including them as constraints in the model immediately, but typically, they
turn out to be would-likes, and the department could be asked to adapt.

There are also some additional success factors which complement the
above. First, similar to Visintin et al. (2017), we suggest avoiding complex
solution methods. Mixed integer linear optimization was the tool of choice in
this project because there is a plethora of modeling languages and solvers avail-
able for MILPs which helps in swift development of the model. Second, this
project benefited from the involvement of RKZ’s capacity manager, who had
knowledge of the inner workings of the hospital, held political sway, and could
facilitate communication between stakeholders and the operations researchers.
This echoes what can be seen in the work of Benchoff et al. (2017), who fre-
quently refer to the interventions of the hospital’s Associate Physician in Chief.
We hope that these recommendations, together with the ones named above, can
be leveraged by hospital management and operations research practitioners to
stimulate the use of more operations research in healthcare practice.



134 Chapter 5. On Scheduling Operating Rooms

5.7 The Mixed Integer Linear Program

The new MSS presented in the report was found by means of Mixed Integer
Linear Optimization. The general set-up of the Mixed Integer Linear Program
(MILP) is given below, after which we present a number of constraints that
extended the MILP to better suit the particular problem, and which may be
of interest to the applied researcher.

The MILP should minimize the number of split blocks while also balancing
outflow. The solution should satisfy eclectic constraints often unique to each
cluster. It should also ideally be able to be found quickly on a simple computer
so that various scenarios can be investigated. An obvious approach might be
to use decision variables xijk equal to 1 when cluster i is scheduled to block
j in room k and then penalise split blocks directly, however this formulation
introduces symmetries as the exact room k is often not important. Instead
we implement a two-stage program that first assigns clusters to morning and
afternoon blocks, penalising both the number of days on which a cluster is
scheduled and the effect of this scheduling on outflow, and then in the second
stage matches these morning and afternoon blocks to eliminate split blocks.
The underlying logic is that if a cluster is assigned a morning and an afternoon
block on the same day, a split block can be avoided.

In 5.7.1 we will give the baseline first stage sub-program. Constraints
which extend the first stage sub-program can be found in Section 5.7.2. Finally,
the second stage sub-program is presented in Section 5.7.3 together with an
argument for optimality of the two-stage approach.

5.7.1 The Baseline MILP

The following is a standalone first stage MILP which can be expanded upon
using select constraints given later. In the following d ∈ D = {0, 1, . . . , 19}
denotes days, while j ∈ {2d, 2d + 1 | d ∈ D} denotes blocks. Note that there
are 20 days and thus j = 0, 1, . . . , 39 blocks, with even j denoting morning
blocks and odd j denoting afternoon blocks. W = {A,B} denotes the clinical
and daycare wards respectively. The main decision variable for this problem
is yij = 1 when a cluster i is scheduled to block j and 0 otherwise. rid = 1
when a cluster i is scheduled to the emergency reserved block and the variable
tid = 1 when a cluster is scheduled on a day is a book-keeping variable useful
for formulating the objective function and some constraints. The variables δ
(with indices omitted here for brevity) measure the degree of deviation between
realised and target patient outflows for the purpose of goal programming.
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The Mixed Integer Linear Program

min ct
∑
i∈I

∑
d∈D

tid + cA
∑
d∈D

∑
ℓ∈LA

δℓd,A + cB
∑
d∈D

∑
ℓ∈LB

δℓd,B (5.1)

subject to:

rid ≤ 1− yi,2d + yi,2d+1

2
i ∈ I, d ∈ D (5.2)

tid ≥ rid +
yi,2d + yi,2d+1

2
i ∈ I, d ∈ D (5.3)∑

i∈I
rid = 1 d ∈ D (5.4)

∑
i∈I

yi,2d + yi,2d+1 ≤ Kd d ∈ D (5.5)

∑
d∈D

4.5(yi,2d + yi,2d+1) + 7rid ≥ Hi i ∈ I (5.6)

δ+d,w =
∑
i

pd,wi − Td,w d ∈ D,w ∈W (5.7)

δ−d,w = Twd −
∑
i

pd,wi d ∈ D,w ∈W (5.8)

δ++
d,w ≥ δ+d,w − 1 d ∈ D,w ∈W (5.9)

δ−−
d,w ≥ δ−d,w − 1 d ∈ D,w = A (5.10)

yij ∈ {0, 1} i ∈ I, j ∈ J (5.11)

rid ∈ {0, 1} i ∈ I, d ∈ D (5.12)

tid ∈ {0, 1} i ∈ I, d ∈ D (5.13)

δ+d,w, δ
++
d,w , δ

−
d,w ≥ 0 d ∈ D,w ∈W (5.14)

δ−−
d,w ≥ 0 d ∈ D,w = A (5.15)

(5.1) Is the objective function, the first term of which penalises the number
of days on which a cluster is scheduled and the second two terms of
which penalise the mismatch in outflow to each ward, clinical and daycare
(denoted A and B respectively); the notation of which is described in
more detail below.
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(5.2) Prevents a cluster from being scheduled to an emergency-reserved room
and a split block on the same day.

(5.3) Enforces the variable tid to be equal to 1 when a cluster i is scheduled
on day d.

(5.5) Limits the number of blocks that can be scheduled to twice the number
of free operating rooms.

(5.6) Ensures that each cluster is scheduled to a minimum number of hours
per 4-week cycle. These correspond to case mix constraints.

(5.7) Describes for each ward, clinical and daycare, the extent to which outflow
exceeds the target.

(5.8) Describes for each ward the extent to which outflow falls short of the
target.

(5.9) Together with (5.14) defines for both wards variables δ++
d which are

positive when the excess of outflow is greater than one.

(5.10) Together with (5.15) defines (only for the clinical ward) variables δ−−
d

which are positive only when the deficit of outflow is greater than one.

The variables δℓd,B and δℓd,A help define the goal programming component
of the objective, measuring the degree of deviation between realized and target
patient outflows.

∑
i p
d,w
i − Td,w gives, as an example, the outflow to ward w

in excess of the target Td,w on day d, where pd,wi is the number of patients
discharged to ward w by cluster i on day d. The purpose of the levels ℓ ∈ LA
and LB is to approximate in a piece-wise manner a quadratic cost function;
one large deviation on a single day is considered worse than many smaller
deviations on many days. The exception to this is sending too few patients to
daycare, where a single large negative deviation was considered to be equivalent
to many smaller negative deviations. This is as larger unused capacity at
daycare can be filled with extra non-surgery blocks. This results in there being
levels ℓ ∈ LA := {−−,−,+,++} for clinical, but only ℓ ∈ LB := {−,+,++}
for daycare. The cost functions for both clinical and daycare are depicted in
Figure 5.8, where the expected deviation is given on the horizontal axis, and
its corresponding cost on the vertical axis. As described in Section 5.4.1, a
patient discharged to Clinical was determined to cost 3.3 times as much as a
patient discharged to daycare, i.e., cA = 3.3 and cB = 1 in the objective (5.1).
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Figure 5.8: The piece-wise linear cost functions for outflow deviation used in the
Mixed Integer Linear Program.

5.7.2 The Extended MILP

The following gives extensions to the standalone first stage MILP. Each exten-
sion comes with one or more examples. To aid in understanding the indices
used in these examples the following tables are provided. Table 5.5 gives the
days d numbered 0 through 19 for weeks 1 through 4, and Table 5.6 gives the
indices j for the morning and afternoon blocks of each day.

Mon Tue Wed Thu Fri

Week 1 0 1 2 3 4
Week 2 5 6 7 8 9
Week 3 10 11 12 13 14
Week 4 15 16 17 18 19

Table 5.5: The days d ∈ D. For example d = 0, 5, 10, 15 refers to every Monday
throughout the 4 week cycle.

Mon Tue Wed Thu Fri
M A M A M A M A M A

Week 1 0 1 2 3 4 5 6 7 8 9
Week 2 10 11 12 13 14 15 16 17 18 19
Week 3 20 21 22 23 24 25 26 27 28 29
Week 4 30 31 32 33 34 35 36 37 38 39

Table 5.6: The blocks j ∈ {2d, 2d+ 1 | d ∈ D}. For example j = 0, 10, 20, 30 refer to
all Monday morning blocks.
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Extension 1 (Concurrency constraints). The most common constraints in this
problem were the concurrency constraints: preventing clusters from working
simultaneously, and the availability constraints: restrictions on which clusters
may work when. Concurrency constraints are modelled by:∑

i∈I′
y2d,i + rd,i ≤ CC(d, I ′) d ∈ D, I ′ ⊂ I,∑

i∈I′
y2d+1,i + rd,i ≤ CC(d, I ′) d ∈ D, I ′ ⊂ I.

Example 1 (Concurrency constraints). On Tuesdays, Wednesdays and Thurs-
days, of Bariatrics (BAR), Gastroentorolgy (GEN) and Cholecystectomy (CHC)
only two could operate:

y2d,BAR + y2d,GEN + y2d,CHC + rd,BAR + rd,GEN + rd,CHC ≤ 2, and

y2d+1,BAR + y2d+1,GEN + y2d+1,CHC + rd,BAR + rd,GEN + rd,CHC ≤ 2,

for d ∈ {Tue, Wed, Thu}.

Extension 2 (Availability constraints). Availability constraints are very sim-
ple and general, forbidding certain clusters from operating for certain blocks or
on certain days:

y2d,i or y2d+1,i or rd,i or td,i = 0 i ∈ I, d ∈ D.

They can be made more general by enforcing, for example
∑
d∈D̂ ti,d ≥ κ for

some subset of days D̂ ⊂ D, as demonstrated in the second example that follows.

Example 2 (Availability constraints). These constraints were used to prevent
Urology from being scheduled to any slot on Tuesday or Thursday in Weeks 2
and 4 of the cycle:

t6,URO = t8,URO = t16,URO = t18,URO = 0.

This can be made more general, for example Vascular Surgery (VAS) must
be scheduled for a block on a minimum of two Wednesdays (days 2, 7, 12, and
17) and a block on a minimum of two Fridays (days 4, 9, 14, and 19):

tVAS,2 + tVAS,7 + tVAS,12 + tVAS,17 > 2,

tVAS,4 + tVAS,9 + tVAS,14 + tVAS,19 > 2.

Extension 3 (Further Availability Constraints). More complex availability
constraints can be created from combinations of the decision variables. For
example, (5.16) states that a cluster may never have a split block, that is if a
cluster is scheduled for a morning block then it must also be scheduled for an
afternoon block and vice versa; (5.17) states that a cluster may be scheduled to
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a morning block or a whole block, but never only an afternoon block; and (5.18)
permits either a morning or an afternoon block, but forbids whole blocks:

yi,2d = y2d+1,i i ∈ I ′, d ∈ D, (5.16)

yi,2d+1 ≤ y2d,i i ∈ I ′, d ∈ D, (5.17)

yi,2d + y2d+1,i ≤ 1 i ∈ I ′, d ∈ D. (5.18)

Example 3 (Further Availability Constraints). Mastectomy (MAS) was per-
mitted only to operate whole blocks (constraint (5.16)); Ear-Nose-Throat (ENT)
could operate a morning block or a whole block, but never an afternoon block
in isolation (constraint (5.17)); Vascular Surgery (VAS) was only permitted to
operate morning or afternoon blocks exclusively, that is no whole blocks (con-
straint (5.18)).

Extension 4 (Intra-day Follow up constraints). Follow-up constraints prevent
one cluster from being scheduled after another, either on the same day or across
two days, due mainly to safety concerns or staffing levels. Intra-day follow up
constraints are given by the following, stating that cluster i1 given a morning
block may not be followed by cluster i2 on the same day, and vice versa:

yi1,2d + yi2,2d+1 ≤ 1,

yi2,2d + yi1,2d+1 ≤ 1.

Example 4 (Intra-day follow up constraints). Urology and Gynecology were
forbidden from following one another on any day to prevent the possibility that
they may have to share an operating room. This can also be forbidden in the
second stage by preventing a match between Urology and Gynecology split blocks,
albeit it at the expense of additional split blocks:

yGYN,2d + yURO,2d+1 ≤ 1 ∀ d ∈ D,

yURO,2d + yGYN,2d+1 ≤ 1 ∀ d ∈ D.

Extension 5 (Inter-day follow up constraints). Inter-day follow up constraints
prevent one cluster from being scheduled the day after another for select days;
the following forbids cluster i1 from being scheduled to the day after i2 and vice
versa:

ti1,d + ti2,d+1 ≤ 1,

ti2,d + ti1,d+1 ≤ 1.

Example 5 (Inter-day follow-up constraints). PLAM was forbidden from fol-
lowing PLAL and vice-versa on days Tuesday through Friday; this forbids the
pairing of Monday and Tuesday, Tuesday and Wednesday, etc., but permits
the pairing of Friday and the Monday of the next week:

tPLAM,d + tPLAL,d+1 ≤ 1 For all days except Fridays (days 4, 9, 14 & 19),

tPLAL,d + tPLAM,d+1 ≤ 1 As above.
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Extension 6 (Similarity constraints). The following constraints state that if
a cluster from some group of clusters is scheduled to block j1 then some cluster
from that group must also be scheduled to a corresponding block j2. The second
line likewise enforces this for emergency reserved blocks:∑

i∈I′
yi,j1 =

∑
i∈I′

yi,j2 I ′ ⊂ I, (j1, j2) ∈ Ĵ × Ĵ ⊂ J × J,∑
i∈I′

ri,d1 =
∑
i∈I′

ri,d2 I ′ ⊂ I, (d1, d2) ∈ D̂ × D̂ ⊂ D ×D.

Example 6 (Similarity constraints). Mastectomy was held to a two-week cycli-
cal roster for its three component clusters, MAS, MAS/PLAZ, and MAS/PLAI, such
that if one of its component clusters were scheduled to Monday morning (after-
noon) in week 1, then one of its component clusters must also be scheduled to
Monday morning (afternoon) in week 3. For compactness we write MASPZ and
MASPI for MAS/PLAZ, and MAS/PLAI respectively:

yMAS,0 + yMASPZ,0 + yMASPI,0 = yMAS,20 + yMASPZ,20 + yMASPI,20,
yMAS,1 + yMASPZ,1 + yMASPI,1 = yMAS,21 + yMASPZ,21 + yMASPI,21.

Extension 7 (Laprascopic kits). The total number of laparoscopic kits used
by all clusters operating on a given day I ′ must be less than some value Lap
where lapyi is the expected number of laparoscopic kits used by cluster i during
a morning or afternoon block and lapri that used during an emergency reserved
block: ∑

i∈I′
lapyi (y2d,i + y2d+1,i) + lapri rd,i ≤ Lap d ∈ D, I ′ ⊂ I. (5.19)

Example 7 (Laparoscopic kits). The clusters Inguinal Hernia (IHE),
Bariatrics (BAR), Cholecystectomy (CHC), Gastroenterology (GEN), and Gyne-
cology (GYN) should be scheduled such that their expected use of laparoscopic
kits does not exceed 12 units on any given day. This limits which clusters may
operate on the same day:

4 (y2d,IHE + y2d+1,IHE) + 6.22 rd,IHE

+ 3 (y2d,BAR + y2d+1,BAR) + 4.67 rd,BAR

+ 3 (y2d,CHC + y2d+1,CHC) + 4.67 rd,CHC

+ 2 (y2d,GEN + y2d+1,GEN) + 3.11 rd,GEN

+ 1 (y2d,GYN + y2d+1,GYN) + 1.56 rd,GYN ≤ 12

for all d ∈ D.

Extension 8 (Rolling horizon). Rolling horizon constraints enforce upper and

lower bounds on the number of hours a cluster may work in a set of days D̂.
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This permits the model flexibility in assigning (morning or afternoon) blocks.
These constraints were also used extensively:

∑
d∈D̂

4.5(yi,2d + yi,2d+1) + 7rid ≥ Hi(D̂, lo) i ∈ I, D̂ ⊂ D,

∑
d∈D̂

4.5(yi,2d + yi,2d+1) + 7rid ≤ Hi(D̂, hi) i ∈ I, D̂ ⊂ D.

Example 8. Urology (URO) was required to work between 9 and 18 hours across
all Mondays, 18 and 27 hours across all Tuesdays, 18 and 27 hours across
all Thursdays and – the example we depict – a minimum of 21.5 hours per
fortnight. First consider the four possible fortnights in our schedule, numbered
F1 through F4, where each fortnight is constructed from the days numbered 0
to 19 inclusive:

F1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
F2 = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
F3 = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
F4 = {15, 16, 17, 18, 19, 0, 1, 2, 3, 4}.

Then for each fortnight F = F1, F2, F3, F4 we enforce the following:

∑
d∈F

4.5(yURO,2d + yURO,2d+1) + 7rURO,d ≥ 21.5.

5.7.3 Splitting the Optimization

A two-stage approach was employed to avoid the problem of symmetry in the
MILP. In this section we first provide the model, and then prove by contradic-
tion that the two stage method indeed finds the optimal solution.

For a given day d let Id ⊂ I be the subset of clusters to be scheduled.
Let Kd be the number of rooms available on that day, and define by [Kd] :=
{1, 2, . . . ,Kd}. Let J := {M,A} be the morning and afternoon blocks. Let yij
be one if cluster i is assigned to block j on this day. Let xijk = 1 if cluster i is
scheduled to ‘room’ k in block j (the exact choice of room can be made later),
and let si be the number of split blocks that room i is assigned on this day.
The objective here is, once having assigned clusters to morning or afternoon
blocks, to align those morning and afternoon blocks in order to minimize the
number of split blocks in the schedule.
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min
∑
i∈Id

si (5.20)

subject to:∑
k∈[Kd]

xikj = yij i ∈ Id, j ∈ {M,A} (5.21)

∑
i∈Id

xikj ≤ 1 k ∈ [Kd], j ∈ J (5.22)

si ≥ xi,k,M − xi,k,A i ∈ Id, k ∈ [Kd] (5.23)

si ≥ xi,k,A − xi,k,M i ∈ Id, k ∈ [Kd] (5.24)

xikj ∈ {0, 1} i ∈ Id, k ∈ [Kd], j ∈ J (5.25)

si free i ∈ Id (5.26)

Note that we do not care about which cluster is scheduled to which room at
this stage, only that clusters’ morning and afternoon blocks are matched where
possible.

We now address the issue of optimality, for which we provide a proof by
contradiction. Suppose that the first and the second stage MILPs solve to
optima, that is, stage 1 minimizes the number of days to which a cluster is
placed, while stage 2 provides an optimal matching given a stage 1 solution.
Call the schedule from stages 1 and 2 Solution A. Suppose that there is another
Solution B with fewer split blocks than Solution A. There are two cases in
which this can happen. In case 1, a cluster is scheduled to fewer days in
Solution B than in Solution A, which violates the optimality assumption of
Stage 1. In case 2, Solutions A and B designate each cluster the same number
of days, but there are fewer mis-matched morning and afternoon blocks in
Solution B than Solution A, violating the optimality assumption of Stage 2.
Therefore, the two-stage approach minimizes the number of split blocks in the
schedule. Furthermore, for a given minimum number of days to which a cluster
is scheduled, the program in Stage 1 also minimizes the mismatch in outflow.
Therefore the two-stage approach solves the complete problem to optimality.
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5.8 Glossary of Cluster Names

Cluster Abbreviation Cluster Abbreviation

Bariatrics BAR Orthopedic Surgery ORT
Breast Reconstruction BRE Pediatric Surgery PED
Cholecystectomy CHC Plastic Mastectomy Dr. I MAS/PLAI

Cosmetic Surgery COS Plastic Mastectomy Dr. Z MAS/PLAZ

Ear-Nose-Throat ENT Plastic Surgery Dr. A PLAA

Ear-Nose-Throat Dr. H ENTH Plastic Surgery Dr. L PLAL

Ear-Nose-Throat Dr. K ENTK Plastic Surgery Dr. M PLAM

Ear-Nose-Throat Dr. R ENTR Plastic Surgery Dr. T PLAT

Gastroenterology GEN Plastic Surgery Dr. W PLAW

Gynecology GYN Plastic Surgery Dr. Z PLAZ

Inguinal Hernia IHE Proctoloy PRO
Mastectomy MAS Trauma TRA
Neurosurgery Dr. P NEUP Urology URO
Neurosurgery Dr. V NEUV Vascular Surgery VAS
Orthognathic Surgery ORG

Table 5.7: Glossary of cluster names and their abbreviations.





Chapter 6

Summary

The need for improving efficiency in healthcare is motivated largely by increas-
ing global costs of healthcare. One possibility for improvement is optimization
of the many schedules found within healthcare. This dissertation focuses on
just that for two scheduling problems found within healthcare: the appoint-
ment scheduling problem and the master surgery scheduling problem. The
basic appointment scheduling problem is a useful tool, but is limited in its
scope: it does not allow for multiple resources (such as equipment, operating
rooms, or doctors) or for patients with varying characteristics. The master
surgery scheduling problem is well studied in theory, but its application, and
thus reports on its application in literature, are lacking, especially outside of
academic hospitals.

This dissertation aims to contribute to the literature on efficiency in health-
care by exploring generalizations of the appointment scheduling problem and
applications of master surgery scheduling techniques in practice.

Methods and Results

In this dissertation we first consider an appointment schedule where the ran-
dom distributions of service times differ between patients. This opens up the
question of sequencing: the order in which patients of differing characteristics
should be scheduled. To this end we develop a heuristic and apply it to two
scheduling paradigms. This heuristic allows fast retrieval of solutions and mo-
tivates certain sequencing rules. The effectiveness of these sequencing rules is
established, affirming the conclusion that the sequence in which patients arrive
has at least as great an effect on the performance of a schedule as does the
determination of their arrival times.

We also relax the continuity of care assumption by allowing patients to be
seen by any one of multiple healthcare providers, termed pooling. This setting
renders the Lindley recursion moot, and so phase-type distributions are chosen
to model the system. These distributions suffer from a “curse of dimensional-
ity”, increasing rapidly in the number of phases required to describe the system,
and becoming cumbersome as the number of patients and healthcare providers
increases. Therefore, a simplifying technique is used that reduces the size of the
problem while retaining the information required for optimization. A setting
with multiple providers is difficult to analyze, and we can only conjecture that
a unique optimum exists when the probability distributions of patients’ service
times are unimodal (it is worth mentioning that a counter-example exists for
a bimodal distribution). Striking results are found both with regard to the
shapes of the optimal solutions, which deviate from the typical dome-shape,
and the impressive savings that can be had from pooling healthcare providers.
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The model is extended to a heavy-traffic setting, where patients arrive closely
together, providing analytical solutions that are simple to calculate and robust
against mis-specification of the service time distribution.

This concept of pooling is expanded upon by having patients arrive in
groups of two or more – so-called batch arrivals. This setting is intended to cover
for a shortcoming in the previous case with pooling, where patients arrive one-
by-one, for which individual physicians would have no personal appointment
book, hindering planning and control of their day. As a jumping-off point
we study this setting in its steady state, assuming exponentially distributed
service times. We are able to show that the objective function of this particular
formulation of a pooled system is convex, coming one step closer to answering
the question of convexity conjectured above. We compare the performance of
schedules with batch arrivals to that of schedules without, finding that expected
waiting and idle times worsen, but only by small amounts. We also demonstrate
how this problem can be studied in the transient setting, using a method that
can later be expanded to other phase-type distributions beyond the exponential
distribution.

Besides a theoretical contribution to appointment scheduling, we also look
at the optimization of master surgery schedules in practice. We report upon
the development and implementation of a master surgery schedule using linear
optimization. We focus in particular on the process of collecting and imple-
menting constraints, and managing stakeholder expectations. The schedule
was optimized over a series of design rounds, at each step incorporating feed-
back from the hospital. The project was a success: it reduced the number of
split blocks, cases where a surgical specialty operates for only half, and not a
full day, from 40 to 14 per 4-week cycle, and satisfied a host of constraints,
enabling an increase in production throughout the hospital. To aid in the im-
plementation of similar projects elsewhere, we offer lessons learned from this
project, including both factors that contributed to success and pitfalls that
were encountered.

Recommendations

This dissertation considers the scheduling of patients both at primary and
outpatient care – appointment scheduling – and of surgical specialties within
a hospital – master surgery scheduling. From these studies we can arrive at
some recommendations. Firstly, we suggest that when the data is available,
the sequence in which patients are helped should be optimized, even if only
heuristic methods are available. Secondly, we suggest that, whenever possible,
multiple resources be pooled and that phase-type distributions are an excellent
tool to be used in optimizing schedules in this case. Finally, we observe that
well-established methods, such as linear optimization, are underutilized within
healthcare and still have the potential to make a large difference. We strongly
encourage both healthcare institutions to consider optimization and operations
research practitioners to bring this possibility to their attention.
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Samenvatting

De wereldwijd stijgende kosten van de gezondheidszorg maken het noodzakelijk
om middelen zo efficiënt mogelijk in te zetten. Eén manier om dit te doen is
het optimaliseren van de vele roosters die binnen de gezondheidszorg gebruikt
worden. Dit proefschrift richt zich specifiek op twee roosteringsproblemen bin-
nen de gezondheidszorg: het appointment scheduling problem (afsprakenroos-
teringsprobleem) en het master surgery scheduling problem (chirugisch spe-
cialismenroosteringsprobleem). Het simpele appointment scheduling problem
is een nuttig hulpmiddel, maar het heeft een beperkte rijkweidte: het houdt
geen rekening met meerdere voorzieningen (zoals apparatuur, operatiekamers,
of artsen) of met patiënten met verschillende kenmerken. Het master surgery
scheduling problem is theoretisch goed bestudeerd, maar de toepassing ervan,
en daarmee ook de verslaglegging over de toepassing ervan in de literatuur, is
beperkt, zeker buiten de academische ziekenhuizen.

Dit proefschrift draagt bij aan de literatuur over efficiëntie in de gezond-
heidszorg door het analyseren van generalisaties van het appointment schedul-
ing problem en het verkennen van toepassingen van master surgery scheduling
technieken in de praktijk.

Methoden en resultaten

In dit proefschrift beschouwen we eerst een afsprakenrooster waarbij de
kansverdelingen van bedieningstijden verschillen tussen patiënten. Dit roept
de vraag op van sequencing : de volgorde waarin patiënten met verschillende
kenmerken geroosterd zouden moeten worden. We ontwikkelen hiervoor een
heuristiek en passen deze toe op twee roosteringsparadigma’s. Deze heuristiek
maakt het mogelijk om snel oplossingen te vinden en onderbouwt bepaalde
volgorderegels. De effectiviteit van deze volgorderegels wordt bepaald, waarbij
de conclusie wordt bevestigd dat de volgorde waarin patiënten aankomen min-
stens zoveel invloed heeft op de prestaties van een rooster als het bepalen van
hun aankomsttijden.

Vervolgens laten we de aanname van continüıteit van zorg los, door
toe te staan dat patiënten geholpen worden door verschillende zorgverlen-
ers, zogenaamde pooling. Dit maakt de Lindley-recursie irrelevant, en dus
wordt gekozen voor fase-typeverdelingen om het systeem te modelleren. Deze
verdelingen lijden echter aan een “vloek der dimensionaliteit”, waarbij het aan-
tal fasen dat nodig is om het systeem te beschrijven snel toeneemt en omslachtig
wordt naarmate het aantal patiënten en zorgverleners toeneemt. Om deze reden
wordt een vereenvoudigingstechniek toegepast die de omvang van het probleem
verkleint, terwijl de informatie die nodig is voor optimalisatie behouden blijft.
Een scenario met meerdere zorgverleners is moeilijk te analyseren, en we kunnen
slechts tot het vermoeden komen dat er een uniek optimum bestaat wanneer de
kansverdelingen van de bedieningstijden van patiënten unimodaal zijn. (Het is
de moeite waard om te vermelden dat er een tegenvoorbeeld bestaat voor een
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bimodale verdeling). Opvallende resultaten worden gevonden zowel met be-
trekking tot de vorm van de optimale oplossingen, die afwijken van de typische
koepelvorm, als de indrukwekkende besparingen die behaald kunnen worden
door het poolen van zorgverleners. Het model wordt uitgebreid naar een heavy
traffic setting, waarin patiënten dicht op elkaar arriveren. Dit levert analytische
oplossingen op die eenvoudig te berekenen zijn en tegelijkertijd robuust tegen
misspecificatie van de kansverdelingen van bedieningstijden. Het concept van
pooling wordt verder uitgebreid door patiënten te laten arriveren in groepen
van twee of meer - zogenaamde batch arrivals. Dit is bedoeld om tegemoet
te komen aan een nadeel van het vorige scenario, waarbij patiënten één voor
één aankomen en individuele artsen geen eigen afsprakenrooster hebben, het-
geen de planning van en controle over hun werkdag bemoeilijkt. Als startpunt
analyseren we dit scenario in de steady state, waarbij we uitgaan van expo-
nentieel verdeelde bedieningstijden. We laten zien dat de doelstellingsfunctie
van dit voorbeeld van een scenario met pooling convex is, hetgeen ons een stap
dichter bij een antwoord op de vraag van convexiteit brengt. We vergelijken
de prestaties van roosters mét batch arrivals met die van roosters zonder batch
arrivals en constateren dat de verwachte wacht- en idle-tijden verslechteren,
maar slechts in beperkte mate. Ook laten we zien hoe dit probleem bestudeerd
kan worden in een transient setting, waarbij we een methode gebruiken die
later uitgebreid kan worden naar fasetypeverdelingen buiten de exponentiële
verdeling.

Naast deze theoretische bijdrage aan de problematiek omtrent het roost-
eren van afspraken, kijken we ook naar de optimalisatie van master surgery
schedules in de praktijk. We doen verslag van de ontwikkeling en implemen-
tatie van eenmaster surgery schedule met behulp van lineaire optimalisatie. We
richten ons hierbij in het bijzonder op het proces van het verzamelen en imple-
menteren van beperkingen, en het managen van de verwachtingen van stake-
holders. Het rooster werd geoptimaliseerd gedurende meerdere ontwerprondes,
waarbij bij elke stap feedback vanuit het ziekenhuis werd meegenomen. Het
project was een succes: het aantal split blocks (halve blokken), dagen waarop
een chirurgisch specialisme slechts een halve in plaats van een hele dag kan op-
ereren, werd gereduceerd van 40 naar 14 per cyclus van vier weken, en er werd
voldaan aan een groot aantal beperkingen. Dit alles leidde tot een verhoging
van de productiviteit in het gehele ziekenhuis. Om de implementatie van soort-
gelijke projecten elders te vergemakkelijken, delen we de lessons learned van
dit project, waarbij we ingaan op zowel de succesfactoren als de valkuilen die
we zijn tegengekomen.

Aanbevelingen

In dit proefschrift wordt gekeken naar het roosteren van patiëntafspraken in
zowel de huisartsen- als de poliklinische zorg - appointment scheduling - en
naar het roosteren van chirurgische specialismen binnen een ziekenhuis - mas-
ter surgery scheduling. Op basis van dit onderzoek kunnen enkele aanbevelingen
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worden gedaan. In de eerste plaats stellen we voor om, wanneer de (relevante)
gegevens beschikbaar zijn, de volgorde waarin patiënten geholpen worden te
optimaliseren, zelfs als er alleen heuristische methoden beschikbaar zijn. In
de tweede plaats adviseren we om waar mogelijk voorzieningen te bundelen
(poolen); in dit geval zijn fase-typeverdelingen een uitstekend hulpmiddel om
roosters te optimaliseren. Tot slot merken we op dat gevestigde methoden,
zoals lineaire optimalisatie, nog onderbenut zijn in de gezondheidszorg, en dat
deze het potentieel hebben om een groot verschil te maken. We moedigen
zorginstellingen aan om na te denken over wat er in hun organisatie geopti-
maliseerd zou kunnen worden en operationele researchers om de mogelijkheden
voor optimalisatie onder de aandacht te brengen.
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