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Abstract. Pool-based active learning (AL) is a promising technology
for increasing data-efficiency of machine learning models. However, sur-
veys show that performance of recent AL methods is very sensitive to
the choice of dataset and training setting, making them unsuitable for
general application. In order to tackle this problem, the field Learning
Active Learning (LAL) suggests to learn the active learning strategy
itself, allowing it to adapt to the given setting. In this work, we propose
a novel LAL method for classification that exploits symmetry and inde-
pendence properties of the active learning problem with an Attentive
Conditional Neural Process model. Our approach is based on learning
from a myopic oracle, which gives our model the ability to adapt to non-
standard objectives, such as those that do not equally weight the error on
all data points. We experimentally verify that our Neural Process model
outperforms a variety of baselines in these settings. Finally, our experi-
ments show that our model exhibits a tendency towards improved sta-
bility to changing datasets. However, performance is sensitive to choice
of classifier and more work is necessary to reduce the performance the
gap with the myopic oracle and to improve scalability. We present our
work as a proof-of-concept for LAL on nonstandard objectives and hope
our analysis and modelling considerations inspire future LAL work.

Keywords: Active Learning · Deep Learning · Neural Process

1 Introduction

Supervised machine learning models rely on large amounts of representative anno-
tated data and the cost of gathering sufficient data can quickly become prohibitive.
Active learning (AL) attempts to mitigate this problem through clever selection of
data points to be annotated, thereby reducing total data requirements. To achieve
this, AL exploits available information about the dataset and/or supervised task
model (e.g. an image classifier) to select data points whose labels are expected to
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lead to the greatest increase in task model performance. Most classical AL strate-
gies are hand-designed heuristics, based on researcher intuition or theoretical
arguments [49]. Recently, much work has been focused on scaling AL to deep learn-
ing (DL) settings, which are even more data-hungry [47]. Such works for instance
combine heuristics with representations learned by neural networks [8,9,20,51]),
focus specifically on batch acquisition [2,7,44,48,50], or adapt Bayesian Active
Learning by Disagreement (BALD) [17,26,28,32,33,40,52]. Despite these devel-
opments, it has been observed that modern AL strategies can vary wildly in perfor-
mance depending on data setting and that there is no single strategy that consis-
tently performs best [3,12,15,45,47,55]. This observation has spurred the devel-
opment of Learning Active Learning (LAL) methods, which attempt to directly
learn an active learning strategy on some data. The goal is to either learn a method
that is specifically adapted to the data setting at hand [23,27,34], or to learn a
strategy that performs well for various data settings [21,35,38,41]. Such methods
have the potential of adapting to additional properties of the task as well, such as
nonstandard objectives. A prominent real-life example of such objectives appears
in imbalanced data settings, where rare classes are typically more important than
their standard contribution to the loss or accuracy suggests. Current active learn-
ing surveys generally focus on balanced data settings; few large-scale empirical
studies exist for alternative objectives, such as imbalanced data and AL methods
designed to work with imbalanced data. In this paper, we propose a novel Learning
Active Learning (LAL) method for pool-based active learning. The model learns
from a myopic oracle, which gives it the ability to adapt to objectives besides stan-
dard classification accuracy. We validate our model in imbalanced data settings,
where we show that 1) existing AL methods underperform, and 2) the myopic ora-
cle provides a strong signal for learning. Our contributions are as follows:1

1. We show that a wide range of current pool-based AL methods do not outper-
form uniformly random acquisition on average across multiple deep learning
image classification benchmarks. The tested methods generally perform worse
on imbalanced data settings than on balanced data settings, suggesting that
current AL methods may be under-optimised for the former.

2. We present experiments with a myopic oracle that show large performance
gains over standard AL methods on simple benchmarks. We observe that these
gains are larger for imbalanced data settings, suggesting the oracle exploits
specific highly-informative samples during acquisition.

3. We propose a novel LAL method based on Attentive Conditional Neural
Processes that learn from the myopic oracle. The model naturally exploits
symmetries and independence properties of the active learning problem. In
contrast to many existing LAL methods, it is not restricted to heuristics and
requires no additional data and/or feature engineering.

1 Experiment code can be found at: https://github.com/Timsey/npal.

https://github.com/Timsey/npal
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2 Related Work

The field of active learning has a rich history going back decades, with the current
taxonomy of methods founded on the extensive survey by [49]. In this work, we
focus on pool-based active learning, where a ‘pool’ of unlabelled data points is
available, and the goal is to select one or more of these to label (i.e. ‘acquire’ the
label). Here we focus on some relevant works, and refer to the supplementary
material2, for additional discussion.

The aforementioned survey discusses a number of classical pool-based active
learning methods, the most notable among which is Uncertainty Sampling.
Here label acquisition is determined by the uncertainty of the classifier. How
this uncertainty is measured determines the flavour of Uncertainty Sampling:
Entropy selects the points that have maximum predictive entropy, Least Confi-
dent acquires the sample on which the task model is least confident in its predic-
tion, and Margin selects the data point with the smallest difference in predicted
probability for the first and second most likely class. CoreSet [48] instead take a
fully geometric approach to active learning by formulating it as a Core-Set selec-
tion problem. Acquisition proceeds through optimising annotated data coverage
in some representation space. The authors provide a greedy approximation to
their algorithm, called k-Center Greedy, which shows competitive performance
while being cheaper to compute. Learning Loss [54] adds a loss prediction module
to the base task model, motivated by the idea that difficult-to-classify samples
are promising acquisition candidates. This module has the goal of predicting the
task model’s loss on any given data point and is jointly trained with the task
model. Unlabelled samples with the highest predicted loss are then acquired
after training.

One potential goal in doing active learning is to select an annotated dataset
that represents the true data distribution as well as possible. Based on this idea,
Discriminative Active Learning (DAL) [20] learns a classifier (discriminator) to
distinguish labelled and unlabelled data based on a representation learned by
the task model. Acquisition proceeds by annotating the points that the classifier
predicts are most likely to be part of the current unlabelled data pool. Varia-
tional Adversarial Active Learning (VAAL) [51] builds on this idea by setting up
a two-play mini-max game where a Discriminator network classifies data points
as belonging to the labelled or unlabelled set, based on a representation learned
by a Variational AutoEncoder (VAE). The VAE is incentivised to fool the dis-
criminator, such that the resulting discriminator probabilities encode similarity
between any data point and the currently annotated set. Acquisition then occurs
by choosing the least similar points. [8] is a recent Convolutional Graph Neural
Network (GCN) method that represents data points as nodes in a graph instead.
It too is trained to distinguish labelled and unlabelled datapoints; after train-
ing the point with the highest uncertainty according to the GCN is selected for
labelling. By representing the full dataset as a graph, this method can encode

2 Supplementary material can be found at: https://github.com/Timsey/npal/blob/
main/full paper.pdf.

https://github.com/Timsey/npal/blob/main/full_paper.pdf
https://github.com/Timsey/npal/blob/main/full_paper.pdf
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relevant correlations between data points explicitly. [9] extend this method by
using Visual Transformers to learn the graph representation. Although research
into active learning methods continues, it has been widely observed that AL
strategies performance varies heavily depending on data setting and that there
is no single strategy that consistently performs best. Such studies typically focus
on balanced data settings [3,12,15,45,47,55].

Active Learning for Imbalanced Data: Compared to the wealth of research on
active learning, little work has been done on AL for imbalanced datasets specif-
ically. This further motivates imbalanced data settings as relevant nonstan-
dard objectives for active learning. Existing work in this area typically incor-
porates explicit class-balancing strategies or additional exploration towards dif-
ficult examples. Hybrid Active Learning (HAL) [30] is built on the idea that rare
samples may differentiate themselves in feature space. HAL trades off geometry-
based exploration (e.g. some average distance to the currently annotated data)
with informativeness-based exploitation (e.g. as in Uncertainty Sampling). Class-
Balanced Active Learning (CBAL) [5] combines entropy sampling with a regu-
lariser that assigns high values to rare points. This regulariser is the difference
between a desired class-histogram (i.e. fully balanced classes) and the sum of
softmax values of currently sampled points. This intuitively will have the effect
of selecting rare points more often. [10] derives an active learning strategy based
on selecting the example with the highest estimated probability of misclassifi-
cation through Bayes’ theorem and various approximate distributions learned
by VAE. [1] describe a two-step approach that uses the data’s class imbalance
profile to switch from classical AL to a class-balancing acquisition function that
favours pool points close (in embedding space) to the rarest class in the anno-
tated data. [4] suggests that doing active learning using the variation ratio of a
model ensemble may help counteract imbalance in the data.

Learning Active Learning: With the observation that existing AL methods do
not consistently perform well across data settings, interest in learning pool-based
active learning has risen. The seminal paper by [27] formulates Active Learn-
ing By Learning (ALBL) as a multi-armed bandit problem, where the arms are
different AL heuristics. The goal is to learn to select the best heuristic for each
acquisition round. [23] learns to fine-tune existing AL heuristics using a Bayesian
acquisition net trained with the REINFORCE algorithm. [38] instead learn to
imitate actions performed by an approximate oracle. Relatedly, [21] reduce the
imitation learning goal to a learning-to-rank problem. They meta-train on syn-
thetic data and show this generalises to other datasets. [34] formulates learn-
ing active learning as a regression problem. Similarly to our proposed method,
they train a model to predict the reduction in generalisation error expected
upon adding a label to the dataset. However, their method requires handcrafted
global features representing the classification state and annotated dataset as
input to their regressor. In contrast, our method implicitly learns the required
features from the raw data, allowing for more complex relationships and sim-
plifying engineering choices. Finally, both [41] and [35] perform meta-learning
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over various binary classification datasets. The former employs a meta-network
that encodes dataset and classifier states into parameters for a policy, which
is reinforcement learned by the REINFORCE algorithm. The latter employs
reinforcement learning with a Deep Q-Network and eschews the meta-network.
These methods are either still restricted to heuristics [23,27], or require gather-
ing additional representative or synthetic datasets for training [21,35,38,41,46],
as well as dataset-independent features.

3 A Study on Existing Active Learning Methods

In pool-based active learning, we are given a labeled (classification) dataset
Dannot = {(xi,yi)}M

i=0 of size M , where i indexes the data points, xi ∈ R
K are

feature vectors of size K, and yi ∈ {0, 1}C is a (one-hot) label on C total classes.
We are further given an unlabelled dataset Dpool = {xj}N

j=0 of size N and are
tasked with selecting candidates xj from Dpool to annotate: i.e. select the index
j, obtain the label yj , and subsequently add (xj ,yj) to Dannot. The goal of this
procedure is to iteratively improve a task model, e.g. a classifier, trained on the
annotated data Dannot. Improvement is typically measured by some performance
metric, e.g. the accuracy on some test dataset Dtest. Most existing AL methods
depend on combinations of heuristics and representation learning for selecting
the index j. The implicit expectation is that the selections such heuristics make
are also highly performant according to the chosen performance metric. Here we
explore whether this assumption holds in modern deep active learning.

Data: To explore the performance of existing heuristic-based AL strategies, we
perform active learning on four standard ten-class image classification bench-
mark datasets: MNIST [11], FashionMNIST [53], SVHN [39], and CIFAR-10 [37].
We use a standard ResNet18 convolutional neural network [24] as the base classi-
fier. We consider three objective settings for each benchmark: Balanced, Imbal-
anced, and Imbalanced weighted. In imbalanced settings, half the classes are
undersampled by a factor 10. Evaluation is performed with a balanced accuracy
metric, where instances from undersampled classes are upweighted such that all
classes have the same importance. Imbalance weighted additionally takes these
weights into account during training. This mimics objectives in typical imbal-
anced data applications, where rare class instances are often considered more
important than common ones [29]. Following [8], we initialise active learning
with an annotated dataset Dannot of 1000 data points that follow the specified
class ratios; the remaining point also follow these class ratios and are left as
the pool dataset Dpool. Every acquisition step we batch annotate 1000 points
using the specified AL strategy, for a total of ten steps. After each step, we
retrain the classifier from scratch. See the supplementary material for further
implementation details.

AL Strategies: First, we consider the three classical uncertainty sampling strate-
gies [49]: Entropy, Margin and LstConf (least-confident). Second, we include
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the purely geometric approach of [48]: KCGrdy (K-center greedy). Third, active
learning through Learning Loss Module: LLoss [54]. Fourth, Variational Adver-
sarial Active Learning VAAL [51]; a discriminator method based on VAE-
learned representations. Fifth, two variations on the same convolutional graph
neural network method – UncGCN and CoreGCN [8] – that employ a jointly
learned discriminator and graph embedding; unlike VAAL, this approach can
explicitly model inter-datapoint correlations. Sixth, we employ HAL [30] and
CBAL [5] as baselines specifically developed for active learning in imbalanced
data settings. HAL is further split into HALUni and HALGau, depending on
the exploration scheme (uniform or Gaussian). Finally, Random is the uniformly
random sampling baseline, corresponding to no active learning.

Fig. 1. Random vs. best and average of remaining AL strategies for CIFAR-10 dataset
and ResNet18 classifier, 1000 acquisitions per step, and 1000 initial labels. Shaded
region represents standard deviation over three seeds.

Results: In Fig. 1 we plot CIFAR-10 test accuracy as a function of acquisition
step for Random, the best performing AL method, and the average of all AL
methods (excluding Random). AUAC is the Area Under the Acquisition Curve,
which is computed as the area under the curves of Fig. 1. It measures performance
of the whole AL trajectory. We observe that the average active learning strategy
does not perform significantly better than Random in any setting. The best
performing AL strategy (by AUAC) does outperform Random. These results
suggest that AL can be useful, but only if an appropriate strategy is found for the
data at hand; a mismatched strategy can lead to performance worse than uni-
formly random labelling. Note that there is no consistent best performer among
the AL methods. This variation in (relative) performance across benchmarks has
been previously observed in the literature [3,12,15,45,47,55]. We refer to the
supplementary material for implementation details and additional results. We
further argue in the supplementary that the tested AL methods generally per-
form worse on the imbalanced objective settings than on the balanced settings,
suggesting that current AL methods may be under-optimised for the former.
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4 Myopic Oracle Active Learning

Given the results of the previous section, we may wonder if stronger AL strate-
gies can be found. In particular, it would be valuable to develop strategies that
perform well out of the box on many different settings. To this end, the field
of Learning Active Learning (LAL) has emerged. The motivating idea is that
information about the problem setting should be used for constructing the AL
strategy: LAL-methods attempt to do this through learning. What is learned can
vary from a choice between existing heuristics [27], to a fine-tuning of such heuris-
tics [23], to a labelling policy that tries to generalise over datasets [21,35,38,41],
to the direct improvement to the underlying classifier upon annotating a data
point in the given dataset [34]. Ideally, the learned AL strategy should not be
constrained to be close to human heuristics, as there is no guarantee that opti-
mal strategies can be represented as such. Additionally, we will only require the
availability of a single dataset to train an AL strategy, since finding additional
datasets representative of the problem setting at hand is often not feasible in
real-world applications. That leaves us with strategies similar to those in e.g.
[34], where the AL strategy tries to learn a function mapping the features of an
unlabelled datapoint to the expected improvement of the classifier after retrain-
ing with that datapoint labelled. Before attempting to train such a strategy, we
should quantify whether such a method – if properly learned – actually improves
much over existing methods. To this end, we introduce the myopic oracle strategy
– denoted Oracle in the below – which computes the actual classifier improve-
ment on the test data for an unlabelled datapoint xj in Dpool, by treating the
corresponding label yj as known and retraining the classifier with this addi-
tional label. This improvement is stored, the classifier is reset, and the process
is repeated for every datapoint in Dpool. Pseudocode for obtaining improvement
scores with the Oracle is presented in the supplementary. Oracle then selects
the datapoint (x∗,y∗) corresponding to the largest classifier improvement and
this point is added to the annotated dataset Dannot. This oracle uses information
that is typically unavailable during the AL process, namely the true labels yj

and the exact classifier improvements on the test set. The oracle is myopic, as it
greedily acquires the best datapoint every acquisition step, rather than planning
ahead: looking ahead t acquisition steps requires retraining the classifier

(|Dpool|
t

)

times, which is infeasible.

Classifiers: Even for t = 1, the myopic oracle strategy requires retraining the
underlying classifier |Dpool| times every acquisition step, which is computa-
tionally intractable for neural network classifiers. For this reason, our exper-
iments in this setting use simpler classification models. We run experiments
with logistic regression classifiers and provide additional experiments with sup-
port vector machine (SVM) classifiers in the supplementary material. These
are both quick-to-train models that have a long history of being used in AL
research [16,36,49,55], including within the subfield of LAL [27,34,35,46]. For
both classifiers, we employ the default scikit-learn implementations [43], with
class-weighting when specified.
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Table 1. AL strategy AUAC and final-step test accuracy on UCI waveform dataset
with logistic regression classifier, 1 acquisition per step, and 100 initial labels. Averages
and standard deviations are computed over nine seeds.

Strategy Balanced Imbalanced Imbalanced weighted

AUAC Test acc. AUAC Test acc. AUAC Test acc.

Oracle 9.14± 0.12 0.93± 0.01 8.84± 0.39 0.89± 0.04 9.22± 0.18 0.93± 0.02

UncSamp 8.67± 0.17 0.87± 0.01 8.40± 0.49 0.85± 0.04 8.55± 0.33 0.86± 0.02

KCGrdy 8.68± 0.28 0.87± 0.03 8.29± 0.49 0.84± 0.04 8.58± 0.37 0.86± 0.03

HALUni 8.66± 0.26 0.87± 0.03 8.11± 0.55 0.81± 0.06 8.45± 0.46 0.85± 0.05

HALGau 8.68± 0.23 0.87± 0.02 8.16± 0.54 0.82± 0.05 8.48± 0.45 0.85± 0.04

CBAL 8.67± 0.15 0.87± 0.02 8.30± 0.45 0.84± 0.04 8.65± 0.34 0.87± 0.03

Random 8.65± 0.23 0.87± 0.02 8.17± 0.54 0.82± 0.05 8.42± 0.48 0.85± 0.05

NP 8.69± 0.19 0.87± 0.02 8.25± 0.53 0.83± 0.05 8.61± 0.33 0.87± 0.03

Data: These simpler classifiers do not perform well on the image datasets of
Sect. 3. In order to properly study the effects acquisition has on model perfor-
mance, we instead use simpler datasets. A popular choice in the field of learning
active learning [35,38,46] are binary classification datasets from the UCI data
repository [13]. We use the ‘waveform’, ‘mushrooms’ and ‘adult’ datasets, since
these contain sufficient samples for our experiments post-imbalancing. Data is
imbalanced by a factor of ten, as in the previous experiments. In all experiments
we initialise the runs with 100 annotated examples and acquire one additional
label in each of ten acquisition steps. We set aside 200 datapoints as test data
Dtest for evaluating the classifiers; oracle scores are also computed on this test
data.

AL Strategies: We first compare Oracle with a logistic regression classifier
to the same set of AL strategies we compared to in Sect. 3. However, we skip
the comparisons to LLoss, VAAL, UncGCN, and CoreGCN, since these all
require neural network classifiers as their base. Additionally, the three uncer-
tainty sampling methods Entropy, Margin, and LstConf reduce to the same
algorithm for binary classification: we henceforth denote this method as Unc-
Samp. Our goal is to work towards a general-purpose AL method that can be
trained using only available data. Therefore, we do not include the discussed
LAL methods in our baselines, as these methods either adapt existing heuristics
or require heavy feature engineering and/or additional datasets to train.

Results: Table 1 compares the performance of the Oracle to pre-existing AL
methods on the waveform dataset for the logistic regression classifier. The NP
method will be introduced and discussed in the next section. It is clear that
Oracle dominates all other AL strategies in all settings. Note that AL is only
responsible for a small fraction of the total datapoints in the final step here
(10 of 110), whereas in the experiments of the previous section, it was respon-
sible for the majority of datapoints (10000 of 11000). As may be observed in
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the table, such a small number of points is enough to obtain meaningful differ-
ences in scores between AL strategies. This indicates that this benchmark con-
tains sufficient variability between strategies to observe meaningful differences in
AL quality, making it an appropriate environment for learning active learning.
These results suggest that the function represented by Oracle is a strong active
learner that adapts to the given objective. Moreover, we note that the perfor-
mance gap between Oracle and Random – and more generally between the
various AL strategies – is larger in the imbalanced settings, providing evidence
that acquisition choice is more important in these settings; something Oracle
can directly exploit. We refer to the supplementary material for implementation
details and additional results. In the next section, we turn our attention to an
attempt at learning an approximation to the Oracle using a Neural Process
model.

5 Learning Active Learning with a Neural Process

Our approach will be to learn an approximation to Oracle, by training a model
to predict classifier improvement values for every point in Dpool, given a context
of annotated datapoints and classifier state. However, we cannot train on the
true myopic oracle values, as this requires pool data labels and test data that
we do not have access to at training time. Instead, we opt to simulate active
learning scenarios by subsampling Dannot. For these simulated settings we can
compute the improvement values that provide the training signal. Our approach
will perform the following procedure at every step of the acquisition process:

1. Simulate many active learning scenarios by subsampling Dannot into Nsim

pairs of annotated and pool data
(
S(i)

annot, S(i)
pool

)
, with i ∈ [1, Nsim].

2. Use the myopic oracle to compute – for each point in all the S(i)
pool – the

classifier improvement observed after retraining with that point and its label
to the current dataset S(i)

annot.
3. Train a model to predict these improvements from the input

(
S(i)

annot, S(i)
pool

)
.

The challenge is now to design a model and training setup that can generalise
strategies learned in the simulated settings to the full test-time AL setting rep-
resented by Dannot and Dpool. Here we describe our considerations and resulting
approach to this challenge. First, the classifier improvements used for training
should not be computed using test data, as this data is not available during
training. Instead, we compute these scores on a held-out ‘reward’ dataset Dval.
In practice, this reward set was used instead of a validation set, so the usual
train-val-test split suffices for training our active learner. Second, our problem
setup contains permutation symmetries that can be exploited: the (simulated)
annotated dataset forms the context that informs the predictions (improvement
scores) of our model, but the order of these points does not matter for the predic-
tion: the context representation should be permutation invariant. Additionally, if
our model predicts scores for every (simulated) pool datapoint, then these scores
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should be permutation equivariant: exchanging the index of two pool points
should simply exchange the scores. Third, in the myopic setting, the score of
any pool point is independent of any other pool point, so all point points should
be treated individually (i.e., not exchange information). This imposes that the
model should be invariant to the number of points in Dpool. Note that the inde-
pendence condition is broken in the non-myopic setting, as combinations of pool
points can lead to stronger improvements than the individual myopic scores
would suggest. The combination of the second and third conditions/inductive
biases heavily restrict the choice of model. A natural choice is to use Neural
Process (NP) models [14,18,19,31] to learn the approximate Oracle.

Fig. 2. Computational graph for the Attentive Conditional Neural Process model. The
model takes sets of datapoints as input and predicts improvement values for the target
points. Context points correspond to annotated data and target points to pool data.
All MLPs are applied pointwise. The top two MLPs (in purple) share weights. (Color
figure online)

The Neural Process: The Neural Process comprises a class of models for meta-
learning context-conditional predictors and is a natural choice for our approxima-
tor. Given a context C and target input features fτ , the Neural Process outputs
a distribution p(sτ |fτ ; C) over target predictions sτ . To apply this model to our
problem, we identify the context C with the information stored in the annotated
data and the classifier state, the target input features fτ with the features of pool
datapoints, and the target predictions sτ with the predicted classifier improve-
ments associated to those pool points. We can then train the NP by performing
supervised learning – maximising the log likelihood of target improvements yτ –
on simulated AL scenarios. At test time we apply the trained model with the full
Dannot as context and Dpool as target input. In particular, we utilise an Attentive
Conditional NP (AttnCNP) [18,31], with cross-attention between the pool and
annotated points. The CNP factorises the predictive distribution conditioned on
the context set, as

p(sτ |fτ ; C) =
T∏

t=1

p(s(t)|f (t)
τ ; C), (1)
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where T is the number of target datapoints. This modelling choice satisfies the
independence of pool point predictions. The context C should be permutation
invariant and is typically encoded into a global representation R. The NP is
parameterised by a neural network with parameters {θ, φ} and each factor is
typically set to be a Gaussian density [14], as:

pθ,φ(sτ |fτ ; C) = pθ,φ(sτ |fτ ;R) =
T∏

t=1

pθ,φ(s(t)|f (t)
τ ;R) =

T∏

t=1

N (s(t);μ(t), σ2(t)),

(2)
where R = Encθ(C) encodes the context and (μ(t), σ2(t)) = Decφ(R,f

(t)
τ ) decodes

the context encoding and the target features into target predictive parameters.
The AttnCNP extends this model by replacing the global representation R with
a target-specific representation R(t) through the use of an attention mechanism.
In particular, we use the attention mechanism taken from the Image Transformer
[42] to perform cross-attention between context and target features, construct-
ing R(t). Here context features fC are treated as keys and target features fτ as
queries. Values are constructed from fC by applying a pointwise MLP with 2
hidden layers of size 32 and ReLU activations. Our implementation does not use
self-attention on the context or target features, as applying self-attention to the
target features violates the independence of the pool point scores. In prelimi-
nary experimentation, we found that omitting the attention mechanism – e.g.
R(t) = R – resulted in performance drops due to underfitting the target func-
tion, as has been observed in the Neural Process literature [31]. A computational
graph of our model is presented in Fig. 2. This model satisfies the required permu-
tation symmetries while allowing scores of pool points to be given by expressive
functions that depend on the context and pool point. In this proof-of-concept
study we do not explore the use of uncertainty information for acquisition, rather
opting to acquire the datapoint for which μ(t) – the predicted mean score – is
maximal, as j = arg maxt∈[1,T ] μ

(t). We then acquire the pool datapoint with
index j, completing a single step in the Active Learning process. The Neural
Process is then initialised from scratch, in preparation for the next acquisition
step.

Data: The experiments for our Neural Process model (NP) are performed on
the datasets described in the previous section. In order to train the NP model,
we simulate active learning scenarios by sampling from the existing annotated
dataset Dannot. We define a set of fractions Q and uniformly sample from these
a total of Nsim times, leading to a set of annotation fractions {qi}Nsim

i=1 . For each
value of i, we then assign the corresponding fraction qi of datapoints from Dannot

to a simulated annotated dataset S(i)
annot; the remaining points are assigned to

a simulated pool dataset S(i)
pool. This procedure results in a set of Nsim simu-

lated/sampled active learning problems of various sizes. We then compute ora-
cle scores of all pool points in each of the resulting AL problems (S(i)

annot,S(i)
pool).

Since we do not have access to test data at train time, the oracle scores are
instead computed on the held-out Dval. We present pseudocode in Algorithm 1.
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Algorithm 1: Training the NP model.
Data: Annotated dataset Dannot, Neural Process model NPθ, number of

simulations Nsim, set of fractions Q, oracle Oracle, base classifier
model C, scoring function score evaluated on Dval.

Result: Trained parameters θ∗ for NP.
for i = 1, 2, ..., Nsim do

qi ← sample(Q) ; /* Uniformly sample an ‘annotation fraction’ */

S
(i)
annot ← ∅ ; /* Initialise a simulated annotated set */

S
(i)
pool ← Dannot ; /* Initialise a simulated pool set */

while |S(i)
annot| < round(qi · |Dannot|) do

Sample index j of datapoints in Dannot uniformly without replacement ;

S
(i)
annot ← S

(i)
annot ∪ (xj ,yj) ;

S
(i)
pool ← S

(i)
pool \ (xj ,yj) ;

end

Vi ← Oracle
(
S

(i)
annot, S

(i)
pool, C, score

)
; /* Obtain improvement scores

with Oracle (pseudocode in supplementary) */

end

θ∗ ← NPθ.fit
(
{S

(i)
annot, S

(i)
pool, Vi}Nsim

i=1

)
; /* Train the NP on the simulated

AL settings */

return θ∗

Experimentally we find that simulating with a variety of fractions in Q improves
generalisation to the target problem over using a fixed single fraction. Our exper-
iments use Q = {0.1, 0.2, ..., 0.8, 0.9} and Nsim = 300. Preliminary experimen-
tation showed no performance increase for larger values of Nsim, while using
Nsim = 100 led to slight performance decreases. The held-out dataset Dval con-
sists of the same 100 datapoints for all i.

Results: Table 1 shows the performance of our method – NP – on the UCI
waveform dataset with logistic regression classifier. Ignoring Oracle, the Neu-
ral Process ranks best of all active learning methods in AUAC on the Balanced
setting, second on Imbalanced weighted, and fourth on Imbalanced. In Fig. 3
we show the performance difference between our method and a chosen baseline.
Here we choose the average of AL strategies – AL average – as the baseline,
where we exclude Oracle, Random, and NP from the average. This choice of
baseline allows us to clearly see whether any particular method is expected to
improve over a naive application of active learning. We also show the perfor-
mance of the best AL strategy – Best – again excluding Oracle, Random,
and NP from the selection. This represents the relative performance of choosing
the best AL strategy post-hoc. We observe that NP performs on par with Best
for Balanced and Imbalanced weighted, and performs similarly to AL average
for the Imbalanced setting. In all cases, the gap with Oracle remains large,
indicating potential room for improvement. Shaded regions correspond to twice
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Fig. 3. Relative performance of acquisition strategies for waveform dataset and logistic
regression classifier, 1 acquisition per step, and 100 initial labels. Accuracy differences of
Random, Oracle, NP and the best remaining AL strategy (Best) are computed w.r.t.
the average of remaining AL strategies (AL average). The shaded region represents
twice the standard error of the mean over nine seeds.

the standard error of the mean, i.e., 2 · σ√
n
, where σ is the standard deviation

and n the number of runs. Peformance tables and figures for the mushrooms and
adult dataset are provided in the supplementary material. NP at least slightly
outperforms AL average on Imbalanced and Imbalanced weighted for these
datasets and in half those cases achieves near-Best performance. However, NP
ranks near the bottom in the Balanced setting here. Interestingly, Random out-
performs almost all methods on Balanced, possibly indicating increased difficulty
in active learning, although Oracle does still demonstrate a large performance
gap.

Fig. 4. Relative AUAC rank of AL strategies averaged over the three UCI datasets for
logistic regression. The standard deviation of this rank is denoted by the error bars.

Our method is partially motivated by the need for AL algorithms that per-
form more stably across different data settings. To this end, Fig. 4 shows the
average AUAC ranking of every AL method across the three UCI datasets. We
observe that NP is the best performing AL method on average for the Imbal-
anced weighted setting and has more middling performance for the other two
settings, with Balanced being the worst for our model. Inspecting the ranking
standard deviation, we further see that our model achieves a relatively stable
ranking across the three datasets in the Imbalanced weighted setting. This sta-
bility again degrades for Imbalanced and even further for Balanced. However,
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note that low standard deviation is only desirable for models with low perfor-
mance rank, as it otherwise indicates a stable underperformance. These results
suggest that NP is better able to exploit information encoded by the Oracle
in imbalanced settings. We present results for the SVM classifier in the supple-
mentary. This setting seems more difficult for NP to learn, suggesting that the
choice of the underlying classifier is important.

6 Conclusion and Discussion

It has been observed in the literature that a wide range of current pool-based
active learning methods do not perform better than uniform acquisition on aver-
age across standard deep learning benchmarks. We have experimentally verified
these results and extended them to imbalanced data settings, which are rele-
vant alternative objectives for many real-world applications. We have explored
the validity of using a myopic oracle as a target function for learning active
learning (LAL) and have shown its dominating performance on simple active
learning tasks. Finally, we have identified symmetry and independence proper-
ties of such active learning problems and have modelled these using an Attentive
Conditional Neural Process. Unlike existing LAL methods, our model (NP) is
not based on existing heuristics, and requires no feature engineering and/or
additional datasets to train. Our model generally outperforms the average of
the competing AL methods in imbalanced data settings, and occasionally all of
them individually. However, future work is needed to evaluate performance on
additional datasets, reduce the performance gap with the myopic oracle, and
improve scalability. We present our work as a proof-of-concept for LAL on non-
standard objectives – with a focus on imbalanced data settings – and hope our
analysis and modelling considerations inspire future LAL work.

Limitations: The primary limitation of our Neural Process approach is scal-
ability. Supervised learning on the myopic oracle requires retraining the base
classifier a large number of times during NP training, which is infeasible for
large neural network models. Future work may explore to which degree func-
tions learned on simple classifiers can be transferred to more powerful models.
Next, the acquisition procedure may be improved through the use of uncer-
tainty information present in the NP. Finally, the NP input may be augmented
with additional features – e.g., predicted class probabilities of pool points – to
potentially improve learning. Preliminary experimentation showed little effect
on performance: we leave further exploring the use of extra features for future
work.

Ethical Considerations. In recent years, machine learning has had a large
impact on society by enabling the development of a variety of new, widely-
deployed technologies. Opinions on the value of such technologies vary, but it
is clear that they have had both positive and negative impacts. Our research
topic of active learning is a promising technology for increasing the efficiency of
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machine learning model training. Developments in active learning may reduce
barrier-to-entry for training and deploying high-performing predictive models,
which potentially has both positive and negative downstream consequences. On
the positive side, wider access to strong models may increase the adoption of
life-saving or simply quality-of-life-improving technologies. Additionally, it may
allow relatively less powerful interest groups to not fall behind larger or more
powerful institutions in capabilities, thus supporting democratisation of AI. On
the negative side, improved active learning has the potential to exacerbate the
negative effects of machine learning applications as well. Such exacerbation may
happen through widening the aforementioned capability gap between less and
more powerful institutions (e.g., by potentially easing model scaling), or through
reinforcing existing model biases during training. Additionally, training large-
scale models consumes a large amount of energy, potentially worsening the cur-
rent energy and climate crises. Finally, any machine learning capabilities research
potentially exacerbates the future risks of AI misalignment; risks that are wor-
rying to an increasing share of the research community [22,25].
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