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ABSTRACT 

To understand what is necessary for a bacterial cell to live, and to know what is necessary to build 

new bacterial cells, an understanding of the composition of the minimal working genome is crucial. 

A first step is the identification of the core genome of species that lend themselves as useful 

blueprints for a minimal synthetic bacterial cell. With this knowledge it is then possible to build a 

minimal genome. There are two paths leading towards this goal, a top-down reduction of existing 

genomes or a bottom-up construction using DNA synthesis and assembly of a synthetic genome. 

Unfortunately, despite decades of research the knowledge of what is required to build a minimal 

bacterium is still limited, even in case of the best studied model bacteria Escherichia coli and Bacillus 

subtilis. Transposon sequencing (Tn-seq) provides a powerful tool to pinpoint the importance of 

uncharacterized genes for bacterial growth, and is a promising technique to fill in the missing 

knowledge of uncharacterized genes that are necessary for bacterial life and for the building of a 

useful synthetic bacterial cell. 

 

Core and pangenome 

The advent of high-throughput DNA sequencing technologies has catalyzed a paradigm shift in 

bacterial research, offering unprecedented opportunities to explore genetic diversity and 

evolutionary dynamics within microbial species. For genome comparison, two concepts are 

distinguished, the core genome and the pangenome (Yuvaraj et al., 2017). The core genome relates 

to the set of genes shared by all individuals within a bacterial species, (Medini et al., 2005, Ciccarelli 

et al., 2006), and these genes are essential for the basic cellular functions and play a pivotal role in 

the fundamental traits and physiological characteristics of the species (Tettelin et al., 2008, 

Grazziotin et al., 2015). The addition of new genomes to the family does not change the size of the 

core genome. 

 In addition to the core genome, the rest of the genome encompasses genes that exhibit 

variability across different strains within the same species, reflecting their adaptation to diverse 

ecological niches and environmental challenges (Darmon & Leach, 2014). The pangenome 

encompasses both the core genome and the accessory genome, thus the complete gene repertoire 

within an entire bacterial species (Brynildsrud et al., 2016). Generally, with the addition of new 

genomes the pangenome increases in size (Ku et al., 2015). 

 The pangenome shows the genomic plasticity, and reflects the capacity of horizontal gene 

transfer, which facilitates the acquisition of new genetic material (Soucy et al., 2015). In 
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epidemiological investigations, core genomes serve as valuable tools for tracing the origin and 

transmission routes of bacterial infections, while pangenome analysis aids in identifying genes 

associated with virulence, antibiotic resistance, and other adaptive traits (Yang et al., 2023a). 

Moreover, the pangenome concept has played a pivotal role in advancing novel biotechnological 

applications, such as the identification of novel enzymes, potential targets for drug discovery and 

vaccine development (Ismail et al., 2022, Swetha et al., 2022, Zhu et al., 2020). 

 

Core genome sizes 

A key question in biology is what is necessary for life. Since bacteria comprise the simplest life forms 

this question can be condensed to what genes are necessary for a bacterial cell to live. The core 

genome can provide answers to this question. The genomes of the Gram-negative and -positive 

model bacteria E. coli and B. subtilis typically harbor around 4500 genes. However, their core 

genomes encompass approximately 990 and 810 genes, respectively (Lukjancenko et al., 2010, 

Alcaraz et al., 2010). If we focus at simple bacterial species with small genomes, such as the cell wall-

less Mycoplasma species, we find for e.g. Mycoplasma genitalium a core genome of about 150 genes, 

of which almost a third code for ribosomal proteins. There are bacterial species with even less genes, 

such as Buchnera species, which are endosymbiont of aphids, and contain genomes with fewer than 

200 genes (McCutcheon & Moran, 2011, Wernegreen, 2002, Shigenobu et al., 2000). However, these 

obligate endosymbionts cannot grow independently outside their hosts, and they are therefore less 

useful for defining the core set of genes necessary for a functional minimal bacterial cell. 

 

Essential genes 

The core genes are not necessarily the genes essential for growth. For example, a systematic gene 

inactivation study in E. coli revealed that only 248 genes are essential (Goodall et al., 2018), and a 

comparable study in B. subtilis identified 271 essential genes (Kobayashi et al., 2003). In later CRISPRi 

and gene deletion studies this number was reduced to 257 genes (Koo et al., 2017, Peters et al., 

2016a). Most of these genes are involved in critical cellular processes, including protein synthesis, 

metabolism, cell envelope and division, DNA replication and maintenance, and RNA synthesis. This 

set of 257 essential genes was based on growth at 37 °C in nutrient rich Lysogeny broth (LB) medium 

(Kobayashi et al., 2003, Koo et al., 2017), therefore many genes involved in amino acid synthesis and 

other important building blocks are missing in this list. Some of the essential genes are unique to B. 

subtilis, such as yqcF, which encodes an antitoxin protein found exclusively in Bacillaceae (Holberger 
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et al., 2012), or the PBSX prophage repressor xre (Koo et al., 2017). Importantly, the absence of a 

gene from this set of 257 essential genes does not necessarily imply that it is non-essential, since 

there are many redundant genes with overlapping functions. For example, there are two proteins 

that anchor the key cell division protein FtsZ to the cell membrane, FtsA and SepF, both of which are 

non-essential, whereas they cannot be simultaneously removed without compromising cell viability 

(Duman et al., 2013). 

Currently, there are approximately 1800 genes in the B. subtilis genome encoding proteins 

of unknown function, the so called y-genes. Among these, three genes have been designated as 

essential: ylaN, yneF, and yqeG (Pedreira et al., 2022b). The ylaN gene encodes a constitutively 

expressed cytosolic protein that has been shown to interact with Fur, an iron homeostasis regulator, 

suggesting its role as an antagonist of Fur (de Jong et al., 2021, Pi & Helmann, 2018, Steingard & 

Helmann, 2023). The YneF protein has been linked to sulfur metabolism and potential tRNA 

modification (Engelen et al., 2012), and its conserved diproline residue is predicted to be involved in 

acylating long-chain fatty acids relevant to membrane proteins (Danchin & Fang, 2016). The yqeG 

gene encodes a protein with suggestive similarities to NagD (16 %), belonging to the haloacid 

dehalogenase superfamily (Plumbridge, 1989). It has been demonstrated that the yqeG gene is 

necessary for normal growth on solid medium and can be induced by oxidative stress (Terakawa et 

al., 2016). 

 

Top-down genome reduction 

The easiest way to genome reduction is the top-down approach, whereby unnecessary genes are 

removed from a known genome. This approach has been undertaken with both E. coli and B. subtills. 

One of the first attempts reduced the genome of E. coli by 30 %. However, this strain, called Δ16, 

grows much slower than the wild type mother strain, resulting in an increase in doubling time from 

26 to 45 min (Hashimoto et al., 2005), despite the fact that no known important genes were removed. 

A later genome reduction attempt resulted in E. coli strain DGF-298 with a 35 % reduced genome. 

This strain showed no auxotrophy and demonstrated better growth fitness in both rich and minimal 

media compared to the wild type strain. (Hirokawa et al., 2013, Mizoguchi et al., 2007). 

Transcriptome analyses revealed the down-regulation of chaperone and protease-encoding genes, a 

phenotype that was linked to the enhanced fitness of this minimal E. coli.  

 One of the first top down approaches with B. subtilis was the removal of all prophages and 

a large polyketide synthesis gene cluster, resulting in strain Δ6 with a 8 % reduced genome (Westers 
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et al., 2003). Later this reduction was extended, resulting in the minimal genome strain MBG874 that 

lacks 20 % of the original genome. This strain exhibited significantly enhanced capabilities in the 

secretion of heterologous enzymes compared to the wild-type strain, including alkaline cellulase and 

proteases, demonstrating the potential industrial value of minimal strains (Morimoto et al., 2008, 

Manabe et al., 2011, Manabe et al., 2013). The Δ6 strain formed the basis for another genome 

reduction project, culminating in strain IIG-Bs20-4 with a 14 % reduced genome (Wenzel & 

Altenbuchner, 2015). This strain demonstrated nearly identical growth rates to the wild type B. 

subtilis 168 mother strain in both rich and minimal media. Further deletions were hampered by 

reduced natural genetic competence, which was used to genetically delete genes. The reason for this 

is the fact that activation of genetic competence is a carefully regulated processes that includes 

medium, growth phase and quorum sensing dependent control mechanisms, and the accumulation 

of genetic deletions can easily hamper the optimal regulation of genetic competence. To overcome 

this problem, expression of the competence transcription factor encoding gene comK was placed 

under control of a mannitol-inducible promoter (Rahmer et al., 2015b, Ara et al., 2007). Subsequent 

genome deletions using this artificial inducible genetic competence system lead to the minimal 

genome strains PG10 and PS38 that each lack 36 % of the genome (Aguilar Suarez et al., 2019, Reuss 

et al., 2017). Phenotypic analyses revealed that these strains had longer cell lengths, grew slower 

than the wild type strain, and were no longer able to grow on minimal medium. mRNA expression 

levels were reduced due to changes in the transcriptional network, and central metabolic pathways 

were also affected to varying degrees. Nevertheless, for PG10 it was shown that the production of 

certain heterologous proteins was significantly improved compare to the wild type mother strain 

(Aguilar Suarez et al., 2019). Interestingly, the function of approximately 22 % of genes of PG10 and 

PS38 are still unknown. 

 

Bottom-up construction of genomes 

In the first successful bottom-up genome construction approach, the 1.08 Mbp genome of 

Mycoplasma mycoides was synthesized and completely assembled in the yeast host Saccharomyces 

cerevisiae. Subsequently, this genome was transplanted to a Mycoplasma capricolum cell, resulting 

in the synthetic Mycoplasma mycoides strain JCVI-syn1.0 (Gibson et al., 2010). This remarkable feat 

showed that constructing and kickstarting artificial genomes is possible, and subsequent rounds of 

in silico reduction steps and genome synthesis and transplantation resulted in M. mycoides JCVI-

syn3.0 with only 473 genes, half the size of the original genome. Despite this significant reduction, 
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JCVI-syn3.0 boasts a respectable doubling time of 180 minutes, approximately three times longer 

than the wild-type Mycoplasma mycoides, but five times faster than the smallest naturally occurring 

mycoplasma, M. genitalium, which contains 525 genes (Hutchison et al., 2016, Jewett & Forster, 2010, 

Juhas et al., 2012). It appears that JCVI-syn3.0 is very close to achieving the goal of a minimal 

bacterial genome. However, the function of 149 of its genes is still unknown and homologous are 

only present in other Mycoplasma's, and therefore, we still lack a full understanding of what is 

required for bacterial growth. This is also illustrated by attempts to create a functional synthetic 

minimal E. coli genome, MGE-syn1.0, with 449 genes comprising essential and 267 important genes, 

(Zhou et al., 2016, Hutchison et al., 2016, Jewett & Forster, 2010, Juhas et al., 2012). Although this 

minimal genome was successfully assembled in S. cerevisiae, it has not been possible to replace the 

wild type E. coli genome by this synthetic construct, underlining the fact that crucial information 

about bacterial life is still lacking. 

 

Transposon insertion sequencing 

In the process of genome minimization, a common problem is the observation that genes which 

were deemed non-essential become important for optimal growth after a genome reduction step. 

As a result, further gene deletions generally result in a slowly but steadily reduction in the growth 

rate (Reuss et al., 2017, Zhou et al., 2016). Therefore, it is important to have a real-time 

understanding of the fitness of individual genes during the genome reduction process. Transposon 

insertion sequencing (Tn-seq) is a powerful molecular genetic technique that offers this option (van 

Opijnen et al., 2009). This method uses the random insertion of transposons in genes, followed by 

growth selection and genome-wide mapping of transposon insertion site by next generation 

sequencing, to determine the importance of genes under a particular growth and/or genetic 

condition (Poulsen et al., 2022, Matern et al., 2020, Klein et al., 2015). In this thesis, we used Tn-seq 

to identify novel essential genes in the genome reduced B. subtilis strain PG10.  

 

Outline of this thesis 

Chapter 1 provides a short general review of genome minimization attempts in bacteria. In Chapter 

2 the results of a Tn-seq experiments with the minimal B. subtilis strain PG10 is described. The Tn-

seq analysis yielded 133 new essential genes of which 67 of unknown function, including the 

conserved genes ytiB, ywnA and ywgA, which are further analyzed in subsequent chapters. Chapter 

3 describes the characterization of ytiB, and shows that the deletion of this gene activates the 
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mannitol promoter. In PG10, this results in the artificial and lethal induction of genetic competence. 

Chapter 4 investigates the function of ywnA. Amino acid sequence comparison revealed the 

presence of a helix-turn-helix motif found in the Rrf2 transcription regulator family. Transcriptome 

analysis showed that deletion of ywnA results in the overexpression of the downstream located gene 

ywnB, which turned out to be lethal in PG10. Chapter 5 describes the characterization of ywgA and 

its neighboring gene ywfO. We could show that YwgA is essential in PG10 because it controls the 

activity off YwfO, which we show is a deoxynucleotide triphosphate triphosphohydrolase. 

Interestingly, microscopic analyses revealed that YwfO exhibits characteristics of liquid-liquid phase 

separation. In the final experimental chapter, Chapter 6, we describe a finding that we encountered 

during the transcriptome studies of several deletion mutants, and that is the unexpected effect on 

transcription by the presence of the erythromycin resistance marker, which is commonly used in B. 

subtilis deletion and transcriptome studies (Pietiainen et al., 2009, Jain et al., 2019). 
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