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Real‑time estimation 
of the effective reproduction 
number of COVID‑19 
from behavioral data
Eszter Bokányi 1,7, Zsolt Vizi 2,7, Júlia Koltai 3,4, Gergely Röst 2 & Márton Karsai 5,6*

Monitoring the effective reproduction number R
t
 of a rapidly unfolding pandemic in real‑time is key to 

successful mitigation and prevention strategies. However, existing methods based on case numbers, 
hospital admissions or fatalities suffer from multiple measurement biases and temporal lags due to 
high test positivity rates or delays in symptom development or administrative reporting. Alternative 
methods such as web search and social media tracking are less directly indicating epidemic prevalence 
over time. We instead record age‑stratified anonymous contact matrices at a daily resolution using a 
longitudinal online‑offline survey in Hungary during the first two waves of the COVID‑19 pandemic. 
This approach is innovative, cheap, and provides information in near real‑time for estimating R

t
 at 

a daily resolution. Moreover, it allows to complement traditional surveillance systems by signaling 
periods when official monitoring infrastructures are unreliable due to observational biases.

Behavioral patterns strongly influence the outcome of an epidemic, yet observing how they change during an 
unfolding pandemic is among the largest  challenges1, 2. Alongside conventional survey methods, recent online 
and digital technologies provide new solutions to this problem. However, it is not evident how to translate 
large-scale observational data into actionable input for operational processes such as epidemic surveillance or 
modeling. Moreover, the dynamical estimation of social interaction patterns for large representative popula-
tions is problematic without entering privacy issues. We built an online/offline data collection infrastructure 
to continuously follow age-stratified contact matrices in a large population during the COVID-19  pandemic3. 
Integrating these self-reported contact numbers from voluntarily provided anonymous online questionnaires 
into disease transmission models, we demonstrate how to estimate the dynamics of the effective reproduction 
number from behavioral data. Alongside the conventional solutions based on medical statistics and population 
testing, our ecosystem provides a complementary surveillance system for disease monitoring.

Behavioural responses to pandemic emergencies. There are several reasons why people change the way they 
interact, travel, or protect themselves during a pandemic. Non-pharmaceutical interventions (NPIs)4 such as 
lockdowns, school closures, mask mandates, and other regulations are the most direct causes that might induce 
change in people’s behavior. However, fear of  contamination5, lack of trust in governmental  communication6, or 
belief in  misinformation7 can also cause a radical shift in one’s social and mobility patterns, sometimes even lead-
ing to counter-effective situations like mass protests against regulations in the middle of a  pandemic8. Therefore, 
it is challenging to dynamically observe the convoluted effects of all these behavioral forces, not to mention their 
explanation by disentangled causal reasons.

It is essential to understand how people alter their social  behavior3, 9, 10 and mobility  patterns11–13 during a 
 pandemic2, 3, 14–17. These changes directly influence the way people meet, mix and interact with others, which 
then determines the dynamics of the disease spreading. The follow-up of direct physical contacts or proximity 
interactions of people are crucial from an epidemiological point of view as they provide the underlying condi-
tions to transmit various types e.g. influenza-like  illnesss9, 18–20. Therefore, the social networks of people that 
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encode physical and proxy interactions might provide critical input to epidemic models at different levels of 
aggregation, like in forms of age-stratified contact  matrices9, 21–23. Even though the dynamical monitoring of such 
social networks is a prime goal during epidemic crises, conventional methods like phone recorded surveys and 
contact diaries may have limited capacities to capture relevant information in a reflexive way. This is especially 
the case in the beginning of a pandemic emergency when immediate data collection is crucial, while phone 
surveys could provide observations through expensive and highly coordinated efforts  only24–26. Nevertheless, 
one such achievement has been carried out during the CoMiX  study27 that aimed to recurrently collect age 
stratified contact patterns in several European countries during the COVID-19 pandemic. This panel survey 
study recorded data about the contact patterns of people influenced by local interventions during the pandemic 
by registering age contact matrices in different  contexts28. Such dataset fuelled studies like Munday et al.29, that 
aimed to develop predictive epidemic models incorporating the dynamically changing contact matrices in the 
UK, and established the observations that they improve the forecast of infections in the short and mid-term 
time-horizon during winter months, especially for children and older adults. However, beyond these conventional 
data gathering techniques, innovative solutions exploiting novel digital data collection methods can be designed 
to follow people’s social dynamics. Such methods may rely on online social platforms, contact tracing apps, or 
online  questionnaires23, 30, as it will be demonstrated in this paper.

Epidemic surveillance methods and their biases
One of the broadly adopted metrics to characterize the actual state of an epidemic is the basic reproduction 
number31 R0 . This measure determines the expected number of secondary infection cases induced by a single 
infected individual in a fully susceptible population. If this number R0 > 1 , the number of confirmed cases will 
rise, whereas if R0 < 1 , there will be no sizeable outbreak. Nevertheless, during an evolving real epidemic with a 
large fraction of infected people, the spreading dynamics is better estimated by the effective reproduction number 
Rt . This quantity takes the actual size of the remaining uninfected population into account and incorporates all 
other aspects that influence the course of the epidemic. It is affected by several factors, such as the transmission 
rate of the infection, the duration of infectiousness of infected individuals, or the contact frequency in the host 
 population32.

For a given population, Rt is usually calculated with statistical  tools33, 34 from epidemiological data like 
the number of fatalities or the detected number of infected cases. These numbers are collected via centralized 
national surveillance systems, which are expensive to maintain and may rely on data reporting practices that 
are not always transparent. Moreover, none of these observables provide a good solution to nowcast the actual 
Rt values. Fatalities are usually well documented, thus, their count could potentially provide a precise measure 
to estimate Rt . However, identified COVID-19 deceased are reported usually with delays after their initial infec-
tion, due to the different course of the illness for different individuals, and also due to reporting delays. Such 
delays fluctuate and can mount up to weeks, which makes fatality counts impossible to use for the real-time 
monitoring of the epidemic. The number of detected cases are usually reported more rapidly but they provide 
less precise observables. These counts easily fluctuate due to extreme events or other biases. One of their most 
significant observational bias is caused by limited testing capacities, inducing high positivity rates. Following 
the recommendation of the World Health Organization (WHO), the test positivity rate should not exceed 5%
35 for reliable observations. However, during the early phase of the pandemic, due to the shortage of tests and 
later upon the emergence of highly transmissible variants, this condition was difficult to maintain. This caused 
severe underestimation of Rt during major epidemic waves in many  countries36. Other biasing factors come from 
case importations and local epidemic clusters, testing campaigns, or the slow data retrieval due to delayed case 
reporting. All these shortcomings make these conventional observables difficult to use for the precise and real-
time inference of the actual Rt values during an emerging pandemic. This calls for novel methods to estimate Rt 
dynamically from alternative data sources in order to provide independent monitoring tools to follow the actual 
epidemic and to help operative decisions.

Behaviour dynamics for epidemic survelliance
To answer this challenge, we have built an infrastructure that can estimate the effective reproduction number 
Rt in real-time with remarkable precision using contact dynamics data collected online and via telephone sur-
veys. More precisely, we collected daily age-stratified contact matrices during the first and second waves of the 
COVID-19 pandemic in Hungary using an online questionnaire, which was answered 538, 684 times by 235, 072 
unique users since its launch. Meanwhile, we recorded the same questionnaire each month on a representative 
population of 1, 500 individuals via telephone surveys (for more details, see Methods). With the combination of 
the two datasets, we reconstructed a sequence of age contact matrices at a daily resolution, that we share through 
an open  repository37 along this paper. In turn we feed these matrices as an input to a deterministic epidemic com-
partment model, which this way not only considers the age-stratified contact patterns of the modeled population 
but incorporates the effects of contact behavioral changes in its dynamics. The numerical solution of this model 
served us with an inferred Rt function at a daily resolution, that closely approximated the Rt values computed 
from hospitalization rates for a reference period.

Despite all these advantages, the behavioral monitoring based Rt inference method appears with biases too, 
and may provide obscure data in certain cases. For example, if the number of recorded responses become very 
low during a period of data collection, or the respondent population will become non-representative for the 
country, the inferred contact numbers and the estimated Rt value will also become biased. We propose statistical 
methods to account for these imperfectnesses, yet they may not be able to account for all of them. Examples are 
social desirability and selection biases, which may be present during the data collection and we assume that they 
do not change over time. However, this might not be the case, especially over longer periods of recording. As 
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a consequence, instead of suggesting our system as a standalone methodology, the surveillance and behaviour 
based monitoring systems estimating the dynamics of the Rt reproductive numbers should be observed together 
as they are independent thus they could indicate observational biases either way if they deviate from each other.

Consequently, our solution provides a cheap supplementary monitoring system complementing observa-
tions made via conventional surveillance infrastructures relying on the public health system. It allows for cross-
validating and indicating weaknesses of official surveillance when the inference of Rt is biased. Moreover, our 
monitoring method can closely follow the effects of NPIs on contact numbers of individuals, thus allowing us to 
evaluate the impact of regulations in almost real-time. In the Results section, first, we briefly describe our data 
collection, integration, and modeling infrastructure. Subsequently, we present our findings on the observed 
contact dynamics in Hungary and the reconstructed Rt function that we compare to the official surveillance 
data. Finally, we discuss the potentials, limitations, and future directions of our results.

Results
Data collection and pre‑processing
Ten days after the first officially reported COVID-19 case in Hungary, an online data collection platform was 
initiated to track the social and individual behavioral changes of people during the unfolding  pandemic3. The 
so-called Hungarian Data Provider Questionnaire (“Magyar Adatszolgáltató Kérdöív” - MASZK)38 data collec-
tion started on March 23, 2020 and has been continued ever since. Over this period, the online questionnaire has 
been answered 538, 684 times by 235, 072 unique users, which is roughly 2.4% of the total population of Hungary.

Respondents were asked to estimate the number of people from eight different age groups ( 0− 4 , 5− 14 , 
15− 29 , 30− 44 , 45− 59 , 60− 69 , 70− 79 , and 80+ ) they got in contact with during the previous day without 
mask protection. Such proxy contacts were defined as having spent more than 15 minutes within 2 m distance 
with someone, while at least one of them being without a mask. Relevant to this study, people also provided 
several of their socio-demographic characteristics (e.g. their age, gender, education level, resident municipality, 
etc.). Although the data collection involved only adult participants (over the age of 18), parents were asked to give 
their estimations about the contact numbers of their underage family members. As reference period, responses 
were also recorded about respondents’ contact patterns from the period before the COVID-19 pandemic. In 
the actual study, we limit our observations to the first two epidemic waves in Hungary, falling between the 1st 
April and 31st December 2020, during which the same virus variant was dominantly spreading and vaccination 
was still not available.

Although a large number of people participated in the data collection, since the online questionnaire was fully 
voluntary and anonymous, it did not provide a representative sample of the whole population of the country. We 
addressed this problem by collecting the same questionnaire in parallel using a phone-assisted survey method on 
a monthly basis. The interviewed population of this survey was representative for the Hungarian population along 
several dimensions, namely age, gender, settlement type, and education level. We summarize this data collection 
pipeline in the Methods section in Fig. 3 with more details on data collection, filtering, and pre-processing23. As 
a result, using the daily questionnaires asking about the respondent’s contact patterns during the preceeding day, 
we could reconstruct daily contact matrices (using a statistical method explained in Methods) and follow the 
average number of contacts per person over the course of the pandemic, as demonstrated in Fig. 1 for the first 
two epidemic waves. Asking respondents to recall their contact numbers from the preceeding day minimised 
the recall bias of the estimates and provided us contact numbers with small memory errors. To mention as an 
interesting reference point, for the pre-pandemic period, we measured roughly 19.2 contacts per a person on 
an average day, that was estimated from answers recorded between 1 April 2020 and 1 June 2020, asking about 
contact numbers before 23 March 2020, averaged similarly as explained in Methods section explaining contact 
matrix reconstruction. This number drastically reduced by more than 80% in 2020 March, after which contact 
numbers conversely followed the actual number of infected cases in the country, as shown in Fig. 1. Note that 
while we share this pre-pandemic contact number as an interesting reference point, this number may suffer from 
stronger recall biases, thus it is never used in our analysis and modelling.

Estimation of the effective reproduction number
We used the obtained daily contact matrices as an input for modeling the transmission dynamics. We estimated 
the time-varying reproduction number during the course of the epidemic waves by employing a deterministic 
compartmental model. This model contains classes for latency, infectious and hospitalized period, and relaxes 
the condition for homogeneous mixing via tracking transmission routes between age groups in the population. 
For the visual representation of all transitions between the compartments, see SI Figure 2 and for the system 
of resulted equations, see SI equation (1). To incorporate age-stratified transmission patterns, we used the pre-
viously computed dynamical daily contact matrices. They represent the heterogeneity of the social contacts 
among individuals of different age groups, thus, they form the basis for the calculation of the associated effective 
reproduction number. Further, we considered seasonality effects deeming periodically lower transmission rates 
of the epidemic during the summer periods. The model includes an age-dependent parameter for susceptibility, 
which is smaller for young individuals implying less effective transmission. For details about the compartment 
structure, parametrization, and seasonality integration of the epidemic model, see Supplementary Information.

We iteratively solved the system defined by the model, starting from the state of the previous day and replac-
ing the contact matrix of the next day in the simulation. During the model solution, the time-dependent age 
vectors of susceptible individuals were used to calculate the effective reproduction number on a daily basis. 
Since the number of infections during the first wave in Hungary was very low, the significance of tracking the 
depletion of susceptibles in age groups appeared only in the second wave. Consequently, we started our mod-
eled epidemic from a fully susceptible population in April 2020 and simulated it for nine months, until January 
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2021, which corresponded roughly to the end of the second pandemic wave in Hungary. We chose a reference 
period, when the case number based Rt estimate is deemed accurate, and used this reference point to calibrate 
the relation between social contacts, fraction of susceptibles, and Rt value. The selected reference period was 
mid-September, since for this period we obtained the most reliable Rt estimate, which was confirmed by different 
types of epidemiological data, such as incidence data, hospitalizations and mortality trends  (see40). Having this 
reference point fixed, following our methodology, we could calculate the Rt rates for periods prior and posterior 
to the reference point. As a model output, we computed the Rt effective reproduction number using the so-called 
Next Generation Matrix (NGM)41, 42 method, which partitions the model structure to transition (focusing on 
the flow between the classes) and transmission (involving age-specific social patterns) parts. At a time point 
t, we compute a matrix whose dominant eigenvalue provides the value of Rt . For complete description of the 
methodology, see the Supplementary Information.

Note, that in a GitHub repository we share the epidemic simulation code incorporating the dynamical contact 
 matrices37.

Alternative reproduction number surveillance for Hungary
The estimated effective reproduction numbers are shown in Fig. 2 during the first two pandemics waves in 
Hungary. There, the dark blue curve corresponds to the Rt estimated from our model solutions, which relies on 
online data and it takes into account the dynamical change of contact patterns. On the other hand, during the 
same period, several other methods have been proposed and applied to track the effective reproduction number 
in real  time33, 34. These estimations commonly rely on the reported case numbers, which suffer from numerous 
biases, which could even change during the pandemic. We use one such estimate publicly available  at43 that we 
indicate by a light blue curve and the corresponding 95% credible interval in Fig. 2. This curve represents an 
estimation of Rt computed by the Cori  method33 using the official Hungarian case numbers. While recently other, 
more up-to-date  methods44–46 became availaible to estimate Rt from case numbers, we use the actual  curve43 as 
this was the only Rt estimation published in Hungary during the  pandemic42, and served as primary source for 
situation assessment.

By looking at Fig. 2, both the official and simulated Rt values were smaller than one in the spring of 2020, 
confirming that the first wave was successfully suppressed. It was hovering around one during the summer and 
started grow distinctly above one from September onward, signifying a large second wave. The Rt value dropped 
below one at the end of November, marking the peak of the second wave, and remained below one afterwards, 

Figure 1.  Average contact numbers calculated from the online survey (black line), parallel to the number of 
confirmed cases in the same period (red dashed line). The timeline of the most important NPI measures in 
Hungary is below the horizontal  axis39. Case numbers are smoothed by a 7-day sliding window, similarly to the 
calculated average contact numbers, that also aggregate online survey data into 7-day sliding windows. Four 
selected contact matrices for the 8 age groups are shown above the curves. The effects of lockdowns and school 
closures (or the lack of them) are evidently visible in the matrix elements.
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indicating the decay phase of the second wave. Generally, the effective reproduction numbers estimated from 
online data and model simulations were following surprisingly well the officially reported Rt numbers for the 
entire period. Moreover, given a past reference point, this method allows us to make Rt estimates not only retro-
spectively, but also in real time, presuming that social mixing data is collected continuously in real time as well.

At the same time, it is evident that the two estimated Rt curves deviate from each other during some periods. 
We indicate these periods with colored boxes, during which the official reproduction number was deemed less 
reliable and deviated from the modeled curves. Following a chronological order, the first wave in Hungary in the 
spring of 2020 was dominated by outbreaks in healthcare and social care institutions. Therefore, these outbreaks 
generated a sharp increase in reported cases, leading to some short living spuriously high Rt values in the case 
number based estimate. Yet, although these cases increased the number of confirmed cases, these high values 
did not represent the spread of the infection in the general population, as they correspond to well-contained 
local  outbreaks42. This was captured by the modeled Rt values, which remained under one during this period.

Subsequently, in mid summer 2020, reported values have been noisy due to low case numbers (<10, yellow 
period in Fig. 2). This explains the very low numbers of case based Rt numbers, as compared to the modeled 
values, which remained higher due to the relatively large number of social contacts during the summer. After lift-
ing the border closure measures, during the late summer, there was a period of time when the infection numbers 
were driven by case importations from abroad, inflating again the Rt estimate above the modeled values. From 
mid august 2020, the government carried out a large screening campaign in freshmen camps before the start 
of the higher education autumn semester. This has lead to an artificial peak in the infected case number based 
curve. Meanwhile, the convoluted effects of case importations, mass events like weddings and freshmen camps, 
the increased social contact numbers due to the beginning of the school year, and the seasonally augmented 
transmission rates led to the emergence of the second wave in Hungary. This was actually well reflected by the 
modeled curve using contact numbers that signaled increasing Rt numbers from 2020 September.

In the exponential phase of the second wave, Hungary quickly reached its limit in testing capacity, and the 
reported case numbers did not grow any further. This resulted in a misleadingly low Rt estimate in the case 
number based  curve40 in October 2020. This phenomenon is especially striking in the period when the test 
positivity rates, indicated by the colored stripe below the horizontal axis of Fig. 2, grew steadily from the begin-
ning of September until November (blue period on the main panel). Based on the estimation of Rt derived from 
case numbers, public health authorities did not assess the pandemic situation correctly in this period, which 
delayed the introduction of more serious NPI measures to control the fast spreading. Interestingly, from our 

Figure 2.  Effective reproduction numbers between 1st April 2020 and 31st December 2020 in Hungary 
estimated from the daily contact matrices of the online survey (dark blue), and from the case numbers using the 
Cori method (light blue)33 with statistical credible intervals shown as blue shaded area. Reference Rt estimated 
from the 3rd October 2020 using hospitalization numbers is shown by a red dashed line together with 95% 
credible intervals. The black dotted line indicates the Rt = 1 critical reproduction number. Colored stripe below 
the horizontal axis depicts the test positivity rate as a percentage of positive tests of all tests taken in the country 
on the given day. Annotated boxes show periods where methods based on case numbers either overestimate 
(red) or underestimate (blue) the reproduction number, and where the method exhibits uncertainty due to very 
low case numbers (yellow). The inset presents the comparison of the contact matrix based and case number 
based Rt estimations to the reference curves based on hospitalization numbers to estimate Rt . Differences 
between curves were measured by the Pearson correlation as a similarity, and Dynamic Time Warping and 
Euclidean distance as distance metrics with 95% confidence intervals shown.
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alternative surveillance, we observed more realistic Rt numbers that were significantly higher than one during 
this period. The case number based and online estimated Rt curves matched again once the test positivity rate 
reached a stationary value around the stagnation period of the second pandemic wave from November 2020. 
Consequently, if we compare our contact number based Rt estimations to the case number based approach, 
we can see that in the indicated periods that suffer from one of the aforementioned problems, we have a better 
estimate than the reference curve.

Validation of inferred reproduction numbers
Apart from the previously cited limitations, the case number based Rt estimations also suffer from the time lag 
that comes from the disease course (most cases turn positive once the patients have symptoms), and the delays 
in sample processing and test reporting procedures. The identification and correction of the biases in these case 
number based estimations require tremendous epidemiological work, high quality data on each individual case 
beyond raw case numbers, and an intimate knowledge of the country’s surveillance and reporting system. On 
the other hand, hospitalization numbers, Intensive Care Unit (ICU) admission rates, or the number of deaths 
have even larger time lags due to the temporal disease progression. Nevertheless, these numbers are more reliable 
and indicative of the spreading than the reported number of confirmed cases.

We use such an Rt curve, estimated from daily hospitalization counts, to validate whether the contact number 
based or the case number based Rt curves meet closer with the reference. The hospitalization number based Rt 
curve (red dashed line in Fig. 2) was collected only after 2020 October, as data from earlier periods are not avail-
able, but it has been argued to be insensitive to testing  biases40. We performed pairwise comparisons between 
the case number vs. hospital number based and the online contact numbers based vs hospital number based 
curves. To compare these temporal sequences we used multiple metrics: the Pearson Correlation as a similarity 
measure, and the Euclidean Distance and the Dynamical Time Warping as distance measures. Note that with 
these measures we were not aiming to infer any causal relationships between these signals, but only quantifying 
their similarities. Comparisons were made by using sliding time windows with different sizes, indicated as the 
x-axis scale in Fig. 2 inset. There we see that the contact number based Rt curve is significantly more similar for 
any window size to the hospitalization based reference curve as compared to the similarity of the case number 
based estimates.

Although we could demonstrate that the contact number based Rt estimates approximate the reference values 
better, our goal with these proposed methodology was not to replace official surveillance results using case num-
bers for their estimates. We rather aimed to propose alternative surveillance observations that complement the 
official monitoring tools. Remarkably, in the 2020 autumn period of growing test positivity rates, our estimation 
remains above one, indicating a fast growing epidemic. This highlights an important aspect of our methodology 
provided by monitoring social mixing dynamics, as it allows to overcome some of the biases in the case number 
based Rt estimations. Interestingly, we can provide an Rt value estimate, which during biased intervals give a 
better picture about the unfolding epidemics, this way complementing the traditional surveillance system.

Discussion
Beyond official surveillance relying on detected case numbers and medical statistics, alternative methods can 
monitor the unfolding of a  pandemic47, 48. Some methodologies rely on geo-localized web search and social media 
tracking to nowcast trends in epidemic-related  topics49, 50. Online voluntary data collections are frequently used 
as a complement to population based  surveillance51–53. Such data is used for the discovery of low detection rate by 
the surveillance  system54, proven to be useful in the up-to-date monitoring of virus-based  illness55, or combined 
with a realistic data-driven epidemiological model. These data can even be a base for providing good-quality 
forecasts of epidemic  intensities56. Despite the popularity of these methods, their vulnerabilities and limitations 
got evident over the  years57. In several other studies, the reproduction number of an epidemic is estimated from 
the mobility patterns of people. Human mobility followed by mobile phone activities, GPS devices, or check-in 
data could signal the traveling, commuting, and mixing patterns of people, which largely determine the spread 
of an epidemic in a larger population. However, despite the many promising  results58–60, the mobility activity of 
people, quantified by various  indices61–63, does not always follow the epidemic curve of the pandemic. People 
accept and follow some interventions better, while some others less. Whereas mask use became a worldwide 
accepted norm, mobility restrictions became less and less enforced and followed. Therefore, the trends of people’s 
mobility and the number of infections may  diverge64, 65. Also, statistics, such as the age-stratified mixing patterns 
or the fraction of recovered population, are hard to follow with mobility data, which prevents the precise estima-
tion of the effective reproduction number using this type of data sources. For all these reasons, although mobility 
monitoring plays an essential role in estimating mixing patterns, it may appear as a less correlated direct indicator 
of epidemic prevalence over time. Our modeling approach could provide a more reliable solution, as it integrates 
dynamical contact information into epidemic models in the form of time-varying age-stratified contact matrices. 
This way, it directly introduces the effects of interventions and behavioral changes through the recorded dynamics 
of social interactions, which leads to better approximations of possible transmission events of disease spreading.

Nevertheless, our proposed methodology has certain limitations. Most importantly, it heavily relies on the 
respondent population size and its representative composition (for the change of representativeness of our 
data see Supplementary Information). Although by using combined online/offline data collection methods, 
we accounted for the non-representativeness of the recorded data, this remains a challenge. We found the rep-
resentative weighting dimensions robust over the observation period, but they may change over time. Thus, 
repeated data collection campaigns via representative telephone surveys are necessary. At the same time, while 
we account for seasonality, other environmental factors (like humidity or pollution level) may influence the 
epidemic outcome. On the other hand, due to the continuous evolution of new genetic variants, although the 
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biological profile of the pathogen (e.g. its transmission rate or the length of the incubation period) may change, 
that can be considered in our model. We could also incorporate the dynamics of vaccination and waning immu-
nity into our modeling framework. Finally, voluntary responses may suffer from multiple biases, like recall bias, 
social desirability bias or selection bias. We aimed to decrease recall bias due to memory errors by asking the 
respondents about a timeframe close to the interview (the previous day). However, this bias is inevitably present, 
especially among those with high number of contacts who might be not aware the precise age category of all of 
their contacts. Additionally, social desirability and selection bias can potentially induce over-representative num-
bers of answers from overly alert people during some time of the pandemic. Such biases are difficult to capture 
with our demographic variables in the representativity correction process, but as it is described in the Methods 
section, as we can assume that these bias are consistently present over time during the observation period, we 
believe that they do not significantly affect the estimations. This assumption might not be precise for the case 
of social diserability bias as during periods of high infection rates people may report less number of contacts to 
comply with the official communication emphasising to reduce the number of social contacts. However, during 
periods, when the infection rate is lower, there might be less social pressure to limit, and thus, to report a lower 
number of contacts. While our data does not allow to follow the course of this kind of bias, other studies report 
weak variability of social diserability bias in similar survey studies recorded during the COVID-19  pandemic66,67, 
thus supporting our original assumption approximating this bias as time invariant. At the same time, we have 
no reason to believe that the degree of bias changed over time in regards to the other aforementioned biases.

The dynamically varying number of social contacts are one of the primary indicators of social mixing that 
can potentially estimate the transmission rate of an influenza-like illness. To demonstrate this approach, we 
described a data collection effort to record age-stratified contact matrices in Hungary at a daily resolution. We 
integrated them into a deterministic compartment model to estimate the temporal evolution of the reproduction 
number of the COVID-19 epidemic. This innovative solution provides a cheap and near real-time surveillance 
system independent of public health data. Instead of using contact tracing, frequent representative surveys, or 
medical statistics, it relies on the combination of alternative data sources collected online and offline with the 
involvement of thousands of individuals. It provides a powerful solution alongside conventional surveillance 
systems to cross-validate their results.

The overall goal of NPIs is to suppress the possible epidemic transmission by decreasing the number of con-
tacts of people through different ways of regulations. Our framework provides a way that can directly monitor the 
effectiveness of these restrictive measures. It allows to immediately evaluate their impact on larger populations 
compared to behavioral patterns before and after the regulated period. This method provides an inventive tool 
for disease monitoring with easy implementation in many countries. Beyond its scientific merit, it may provide 
effective monitoring of the consequences of national interventions, to follow the effects of population-level 
behavioral changes, and to inform intervention planning and policy design. Moreover, as we demonstrated in 
the case of Hungary, it allows to complement traditional surveillance systems in two ways: by signaling periods 
when official monitoring infrastructures are unreliable due to observational biases; and by providing more 
accurate signals of the epidemic dynamics during these periods. For all these reasons this methodology should 
be integrated into future public health surveillance systems for more precise epidemic monitoring.

Methods
Data collection and reconstruction pipeline
Online data collections
We collected data via an online  questionnaire68 that users could fill using web browsers or mobile phone apps. 
Our data collection was completely anonymous using local encrypted browser cookies to improve user experi-
ence, without requiring participants to share any personal identifier that could be used for their identification. The 
data collection was fully complying with the actual European and Hungarian privacy data regulations and was 
approved by the Hungarian National Authority for Data Protection and Freedom of  Information69, and also by the 
Health Science Council Scientific and Research Ethics Committee (resolution number IV/3073- 1 /2021/EKU). 
During our analysis all methods were performed in accordance with these relevant guidelines and regulations.

The responses contained information on the demographics and family structure of the anonymous users, their 
contact numbers from the previous day by the age of the contacted people in different situations (e.g. indoors, 
outdoors, at the workplace etc.), and other questions relevant to their behavior during the epidemic  (see23 for 
further description of the questionnaire). To define what counts as a contact, as explained in the questionnaire, 
we considered two people to be connected if they spent at least 15 minutes without mask protection at a distance 
less than 2 m (proxy contacts) from each other. Household members were automatically counted as contacts 
(family contacts) using the family members’ age to consider them in the age-contact matrix. Although data was 
not directly collected about children, adults (typically parents) could fill a special part of the questionnaire to 
give their estimations about the proxy contact numbers of their underage family members (typically children).

Our observations were focusing on the period from 26/03/2020 to 31/12/2020, during which we collected 
429, 267 responses from 230, 878 unique users. To avoid high noise rates, we aggregated daily online answers with 
a 7-day sliding window that we shifted by one day through the observation period. To make the answering more 
comfortable for the respondents (and thus, to increase the willingness for participation), we provided intervals for 
their estimated number of contacts, that we converted to their midpoints before calculations (category conver-
sions were 0 : 0, 1− 2 : 1, 3− 6 : 4, 7− 15 : 11, 16− 30 : 23, 31− 60 : 45, 60+ : 80 ). We used these numbers to 
estimate 8 × 8 age contact matrices from the online data on a daily basis. For a detailed schematic representation 
of the data collection pipeline see Fig. 3.

As we mentioned in the Discussion, it is likely that there are multiple types of biases present in the online 
data, such as recall bias, selection bias or social desirability bias. We do not expect that the weighting procedure 
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can handle these biases (we applied it to improve the representativity of the data). However, it is important to 
emphasize that the proposed method of Rt estimation works even if there are such biases present in the data, if 
biases are consistently present over time. As we scale with transmission rate and we focus on an epidemiologi-
cally homogeneous period, we can assume that these biases do not change over time, thus we believe that they 
do not significantly affect our estimation.

Representative data collection
As the participation in the online data collection was voluntary, respondents were not representative for the 
whole population of the country, moreover, their composition could change on a daily basis (see SI Figure 1). To 
account for these shortcomings and to record a representative sample, we started a smaller scale data collection 
campaign with different methodology but using the exact same questionnaire. This survey has been conducted 
with CATI (Computer Assisted Telephone Interview) survey technique by a public research company. The data 
collection started in April 2020 and has been repeated monthly. The respondents were selected by a multi-step 
stratified probability sampling technique from a database containing both mobile- and landline phone numbers. 
The sample is representative for the Hungarian adult (18 years old or older) population in terms of gender, age, 
education level and type of settlement; sampling errors were further corrected by post-stratification weights. 
Depending on the month, the numbers of recorded complete responses in each wave of the data collection were 
between 1, 000 and 1, 500, which fits the standard size of representative surveys in Hungary. The overall response 
rate was relatively high, ∼ 49% as compared to other similar size surveys. In comparison, according to the data 
collection company, the average response rate of similar data collection methodologies at a nationally representa-
tive survey is between 15 and 20 percent. The collection of one wave generally took one week, where two-third 
of the responses corresponded to weekdays, and one-third to weekend days. Although telephone survey data 
has been collected once per month only with smaller sample size as compared to the online survey, it provided 
us with generalizable information about the contact patterns of the Hungarian adult population.

Taking the collected raw data we built up a data-cleaning pipeline to prepare the data for further analysis. This 
pipeline has been applied on both online and representative data. First, to avoid skewed averages due to outliers, 
we filtered survey answers if they contained very high out-of-home total proxy contact numbers added up for all 
age group. In this case we chose to drop the top 0.5 percentile of total contact numbers corresponding to a cut 
at more than 90 proxy contacts. Moreover, in the online survey we also omitted the answers from the analysis 
if the contact numbers have been larger than the average plus two standard deviations within the respondents’ 
own age group within the given time window or in the representative survey. In the exceptional cases when the 
number of responses within a time window for one age group was insufficient to calculate the standard deviation, 
we took an age-independent upper threshold computed from the system average. The latter filtering process was 

Figure 3.  Schematic diagram of the data collection, data processing, and modeling pipelines. The representative 
phone survey is used for calculating the most important demographic dimensions that influence the average 
contact numbers of people, and for estimating mask use percentage in different age groups of children. Daily 
contact matrices are created using a 7-day sliding window from the online survey, adding user weights to correct 
for sample representativity using the relevant demographic dimensions and their population distribution from 
official census  statistics70, 71. Daily contact matrices are then used as input parameters to the compartmental 
model that uses also biological and medical parameters, as well as a seasonality correction function for the 
estimation of the daily effective reproduction number Rt.
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necessary for the online age-stratified matrices, since the Rt calculation that was based on the spectral radius 
of the Next Generation Matrix method was very sensitive to sparse elements, and global filtering was unable to 
capture age group dependent outliers.

Because online responses for children did not contain information on their mask use, we estimated their 
contact numbers by re-scaling their reported contact numbers using their mask use percentages based on age 
and contact numbers from the representative survey of October 2020. Contact number is an important factor 
in this variable, because children tended to use masks in higher percentages in more crowded settings such as 
classrooms. Table 1 shows the mask use correction factors from the representative survey applied to the online 
responses of children.

Contact matrix reconstruction
To account for the non-representative biases in the online data, we worked out a method to dynamically estimate 
weights for each online respondent to re-weight the online data to create a close-to-representative population. 
For the selection of the weighting dimensions our goal was to identify socio-demographic variables with available 
population-level distributions, which were also present in our online questionnaire. First, we tested which vari-
ables affect the proxy contact numbers of the respondents using the representative survey. As the proxy contact 
numbers of the respondents can only be non-negative integers, we used negative binomial regression models 
on the first two waves (conducted in April and May, 2020) of the representative data collection together. Based 
on this model (see results in SI Table 1), we identified age, highest education level, region, type of settlement, 
and the interaction of gender and work status as significantly affecting the number of proxy contacts. For the 
validation of the weighting dimensions see Supplementary Information.

Using these variables and the latest census  data70, 71, we calculated wx weights for every user x using the itera-
tive proportional fitting  method72 in each 7-day time window. This weighing methodology adjusts the cells of a 
contingency table created by the empirical distribution of the weighting dimensions in a way that their margin-
als fit to the expected distribution of the same dimensions. Empirical distributions were taken from the online 
survey, expected distributions were provided by the census data. One of the main advantages of this weighting 
methodology compared to standard cell weighting is to induce less likely extremely high or low weights - which 
could make the estimations  unstable73. Thus, the actual weighted user sample within a one-week daily sliding win-
dow had marginals fitted to official census marginal distributions along the selected variables. We summarize this 
data construction pipeline in Fig. 3, while for a detailed description of a similar regression choice we refer  to23.

Finally, to construct age-stratified contact matrices for each period, we categorized each respondent into eight 
age groups, namely 0− 4 , 5− 14 , 15− 29 , 30− 44 , 45− 59 , 60− 69 , 70− 79 , and 80+ . We constructed 8× 8 
matrices with column indices corresponding to the age group of the respondents and row indices correspond 
to the age group of their contacts. To formally define this matrix on the population level we follow the same 
procedure as described  in23: Let assign by X be the set of respondents (ego), and by Y the set of individuals who 
are contacts of some x ∈ X . For a specific x, let Nx ⊂ Y  be the set of individuals who are contacts of x. We assign 
by a(x) ∈ A = {1, . . . , 8} the age group of an individual x. We define the matrix Mx,y for each x ∈ X and y ∈ Nx 
as (Mx,y)i,j = 1 if a(x) = j and a(y) = i , and zero otherwise. For an ego x we can now compute its individual 
contact matrix as Mx =

∑

y∈Nx
Mx,y . Finally, we use an individual weight wx assigned to each ego, coming from 

the IPF weighting method described above. This weight effectively describes how much an ego and its contacts 
should be considered in order to receive a contact matrix for a closer-to-representative population. Finally, the 
population level contact matrix is computed by M =

∑

x∈X wxMx
/
∑

x∈X wx.

Ethical approval and consent to participate
We obtained fully informed consent from each participant before their enrolment in the study both in the case 
of online data collection and phone survey. In the online setting, anonymity of participants was ensured by using 
encrypted browser cookies to store hashed identifiers locally, while transferring only anonymous encrypted data 
to a central secure server. Encrypted browser cookies were used for the detection of returning respondents filling 
out the questionnaire on multiple days. The participants did not have to provide any information, which could 
be used for their re-identifcation. We did not involve participants under the age of 18 years in any of the data 
collections. Data collected about underaged groups were reported by their adult parents or legal guardians. The 
data collection was fully complying with the actual European and Hungarian privacy data regulations and was 
approved by the Hungarian National Authority for Data Protection and Freedom of Information, and also by the 
Health Science Council Scientific and Research Ethics Committee (resolution number IV/3073- 1 /2021/EKU). 
During our analysis all methods were performed in accordance with these relevant guidelines and regulations.

Table 1.  Mask use fractions of children based on age and contact number from representative survey.

Age 0–22 contacts 23+ contacts

3–6 0.1324 0.1509

7–10 0.2720 0.5635

11–14 0.3665 0.6979

15–17 0.3665 0.7100
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Data availability
In the repository https:// github. com/ zsvizi/ r- eff- social- conta ct- surve ys- covid- 19- hunga ry37, we share all code 
and data necessary for the reproduction of our results. The shared data incorporates the source code for epidemic 
simulations and the data recording the empirical dynamical contact matrices. Other datasets are openly available 
as referenced in the text.

Received: 27 January 2023; Accepted: 31 October 2023

References
 1. Van Bavel, J. J. et al. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 4(5), 460–71 

(2020).
 2. Betsch, C. How behavioural science data helps mitigate the COVID-19 crisis. Nat. Hum. Behav. 4(5), 438–8 (2020).
 3. Karsai, M., Koltai, J., Vásárhelyi, O., Röst, G. Hungary in Mask/MASZK in Hungary. Corvinus J. Sociol. Soc. Policy. 2 (2020).
 4. Perra, N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Physics Reports. (2021).
 5. Yıldırım, M., Geçer, E. & Akgül, Ö. The impacts of vulnerability, perceived risk, and fear on preventive behaviours against COVID-

19. Psychol. Health Med. 26(1), 35–43 (2021).
 6. Lim, V. W. et al. Government trust, perceptions of COVID-19 and behaviour change: Cohort surveys, Singapore. Bull. World 

Health Organ. 99(2), 92 (2021).
 7. Roozenbeek, J. et al. Susceptibility to misinformation about COVID-19 around the world. Royal Soc. Open Sci. 7(10), 201199 

(2020).
 8. Kowalewski, M. Street protests in times of COVID-19: Adjusting tactics and marching ‘as usual’. Social Movement Studies. 1-8 

(2020).
 9. Zhang, J. et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368(6498), 1481–6 

(2020).
 10. Elmer, T., Mepham, K. & Stadtfeld, C. Students under lockdown: Comparisons of students’ social networks and mental health 

before and during the COVID-19 crisis in Switzerland. PLoS One 15(7), e0236337 (2020).
 11. Warren, M.S., & Skillman, S.W. Mobility changes in response to COVID-19. arXiv preprint arXiv: 2003. 14228. (2020).
 12. Engle, S., Stromme, J., & Zhou, A. Staying at home: mobility effects of COVID-19. Available at SSRN 3565703. (2020).
 13. Leung, K., Wu, J. T. & Leung, G. M. Real-time tracking and prediction of COVID-19 infection using digital proxies of population 

mobility and mixing. Nat. Commun. 12(1), 1–8 (2021).
 14. Naughton, F. et al. Health behaviour change during the UK COVID-19 lockdown: Findings from the first wave of the C-19 health 

behaviour and well-being daily tracker study. Br. J. Health. Psychol. 26(2), 624–43 (2021).
 15. Betsch, C., Wieler, L., Bosnjak, M., Ramharter, M., Stollorz, V., & Omer, S. et al. Germany COVID-19 Snapshot MOnitoring 

(COSMO Germany): Monitoring knowledge, risk perceptions, preventive behaviours, and public trust in the current coronavirus 
outbreak in Germany. PsychArchives. (2020).

 16. Kittel, B. et al. The Austrian Corona Panel Project: monitoring individual and societal dynamics amidst the COVID-19 crisis. Eur. 
Politic. Sci. 20(2), 318–44 (2021).

 17. Manica, M. et al. Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy. 
Nat. Commun. 12(1), 1–9 (2021).

 18. Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), e74 (2008).
 19. Wallinga, J., Teunis, P. & Kretzschmar, M. Using data on social contacts to estimate age-specific transmission parameters for 

respiratory-spread infectious agents. Am. J. Epidemiol. 164(10), 936–44 (2006).
 20. Singh, R., & Adhikari, R. Age-structured impact of social distancing on the COVID-19 epidemic in India. arXiv preprint arXiv: 

2003. 12055. (2020).
 21. Prem, K., Cook, A. R. & Jit, M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. 

PLoS Comput. Biol. 13(9), e1005697 (2017).
 22. Mistry, D. et al. Inferring high-resolution human mixing patterns for disease modeling. Nat. Commun. 12(1), 1–12 (2021).
 23. Koltai, J., Vásárhelyi, O., Röst, G. & Karsai, M. Reconstructing social mixing patterns via weighted contact matrices from online 

and representative surveys. Sci. Rep. 12(1), 4690 (2021).
 24. Hoang, T. et al. A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiol-

ogy 30(5), 723 (2019).
 25. Yc, Fu. Contact diaries: Building archives of actual and comprehensive personal networks. Field Methods 19(2), 194–217 (2007).
 26. Munday, J. D. et al. Estimating the impact of reopening schools on the reproduction number of SARS-CoV-2 in England, using 

weekly contact survey data. BMC Med. 19(1), 233 (2021).
 27. Verelst, F. et al. SOCRATES-CoMix: A platform for timely and open-source contact mixing data during and in between COVID-19 

surges and interventions in over 20 European countries. BMC Med. 19(1), 1–7 (2021).
 28. CoMiX social contact data, http:// www. socia lcont actda ta. org/ data/ (date of access 2023.10.);.
 29. Munday, J. D., Abbott, S., Meakin, S. & Funk, S. Evaluating the use of social contact data to produce age-specific short-term forecasts 

of SARS-CoV-2 incidence in England. PLoS Comput. Biol. 19(9), e1011453 (2023).
 30. Keeling, M. J., Hollingsworth, T. D. & Read, J. M. Efficacy of contact tracing for the containment of the 2019 novel coronavirus 

(COVID-19). J. Epidemiol. Commun. Health 74(10), 861–6 (2020).
 31. Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T. & Jacobsen, K. H. Complexity of the basic reproduction number ( R0 ). Emerg. 

Infect. Dis. 25(1), 1 (2019).
 32. Dietz, K. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2(1), 23–41 (1993).
 33. Cori, A., Ferguson, N. M., Fraser, C. & Cauchemez, S. A New framework and software to estimate time-varying reproduction 

numbers during epidemics. Am. J. Epidemiol. 178(9), 1505–12 (2013).
 34. Wallinga, J. & Lipsitch, M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. 

Royal Soc. B: Biol. Sci. 274(1609), 599–604 (2007).
 35. Organization, W.H., et al. Public health criteria to adjust public health and social measures in the context of COVID-19: annex to 

considerations in adjusting public health and social measures in the context of COVID-19, 12 May 2020. World Health Organiza-
tion; (2020).

 36. Hasell, J. et al. A cross-country database of COVID-19 testing. Sci. Data 7(1), 1–7 (2020).
 37. Code and data repository for estimated daily age-contact matrices, https:// github. com/ zsvizi/ r- eff- social- conta ct- surve ys- covid- 

19- hunga ry;.
 38. MASZK - Hungarian Data Provider Questionnaire, https:// figsh are. com/ artic les/ online_ resou rce/ Hunga rian_ Data_ Provi der_ 

Quest ionna ire/ 13550 057;.

https://github.com/zsvizi/r-eff-social-contact-surveys-covid-19-hungary
http://arxiv.org/abs/2003.14228
http://arxiv.org/abs/2003.12055
http://arxiv.org/abs/2003.12055
http://www.socialcontactdata.org/data/
https://github.com/zsvizi/r-eff-social-contact-surveys-covid-19-hungary
https://github.com/zsvizi/r-eff-social-contact-surveys-covid-19-hungary
https://figshare.com/articles/online_resource/Hungarian_Data_Provider_Questionnaire/13550057
https://figshare.com/articles/online_resource/Hungarian_Data_Provider_Questionnaire/13550057


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21452  | https://doi.org/10.1038/s41598-023-46418-z

www.nature.com/scientificreports/

 39. Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 
5(4), 529–38 (2021).

 40. Oroszi, B., Horváth, J. K., Túri, G., Krisztalovics, K. & Röst, G. Az epidemiológiai surveillance és járványmatematikai előrejelzések 
szerepe a pandémiás hullámok megelőzésében, mérséklésében-hol tartunk most, és hová kellene eljutni. Scientia et Securitas. 2(1), 
38–53 (2021).

 41. Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. On the definition and the computation of the basic reproduction ratio R0 in 
models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–82 (1990).

 42. Röst, G. et al. Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios. Viruses 12(7), 708 (2020).
 43. Ferenci, T. The real-time epidemiology of the Hungarian coronavirus pandemic https:// resea rch. physc on. uni- obuda. hu/ COVID 

19Mag yarEpi/ (date of access 2022.07.07);.
 44. Sam, A., Joel, H., Katharine, S., Katelyn, G., Joe, H., Hamada, S. B., et al. EpiNow2: Estimate real-time case counts and time-varying 

epidemiological parameters, (2020).
 45. Parag, K. V. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. PLoS 

Comput. Biol. 17(9), e1009347 (2021).
 46. Gressani, O., Wallinga, J., Althaus, C. L., Hens, N. & Faes, C. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-

varying reproduction number. PLoS Comput. Biol. 18(10), e1010618 (2022).
 47. Kostkova, P. et al. Data and digital solutions to support surveillance strategies in the context of the COVID-19 pandemic. Front. 

Digital Health 3, 89 (2021).
 48. Jarvis, C. I. et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 

18(1), 124. https:// doi. org/ 10. 1186/ s12916- 020- 01597-8 (2020).
 49. Dugas, A. F. et al. Influenza forecasting with Google flu trends. PLoS One 8(2), e56176 (2013).
 50. Tang, L., Bie, B., Park, S. E. & Zhi, D. Social media and outbreaks of emerging infectious diseases: A systematic review of literature. 

Am. J. Infect. Control 46(9), 962–72 (2018).
 51. Perrotta, D., Tizzoni, M., & Paolotti, D. Using participatory Web-based surveillance data to improve seasonal influenza forecasting 

in Italy. In: Proceedings of the 26th International Conference on World Wide Web; (2017). p. 303-10.
 52. Perrotta, D., Bella, A., Rizzo, C. & Paolotti, D. Participatory online surveillance as a supplementary tool to sentinel doctors for 

influenza-like illness surveillance in Italy. PLoS One 12(1), e0169801 (2017).
 53. Koppeschaar, C. E. et al. Influenzanet: Citizens among 10 countries collaborating to monitor influenza in Europe. JMIR Public 

Health Surveill. 3(3), e7429 (2017).
 54. Pullano, G. et al. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature 590(7844), 134–9 (2021).
 55. Kjelsø, C., Galle, M., Bang, H., Ethelberg, S. & Krause, T. G. Influmeter-an online tool for self-reporting of influenza-like illness 

in Denmark. Infect. Dis. 48(4), 322–7 (2016).
 56. Brownstein, J. S. et al. Combining participatory influenza surveillance with modeling and forecasting: Three alternative approaches. 

JMIR Public Health Surveill. 3(4), e7344 (2017).
 57. Lazer, D., Kennedy, R., King, G. & Vespignani, A. The parable of Google Flu: Traps in big data analysis. Science 343(6176), 1203–5 

(2014).
 58. Vanni, F., Lambert, D., Palatella, L. & Grigolini, P. On the use of aggregated human mobility data to estimate the reproduction 

number. Sci. Rep. 11(1), 1–10 (2021).
 59. Jung, S. M., Endo, A., Akhmetzhanov, A. R. & Nishiura, H. Predicting the effective reproduction number of COVID-19: Inference 

using human mobility, temperature, and risk awareness. Int. J. Infectious Dis. 113, 47–54 (2021).
 60. Gozzi, N. et al. Anatomy of the first six months of COVID-19 Vaccination campaign in Italy. PLOS Comput. Biol. 18(5), e1010146 

(2022).
 61. Bao, R. & Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in Northern China. Sci. Total Environ. 731, 

139052 (2020).
 62. Szocska, M. et al. Countrywide population movement monitoring using mobile devices generated (big) data during the COVID-19 

crisis. Sci. Rep. 11(1), 1–9 (2021).
 63. Wang, S., Liu, Y. & Hu, T. Examining the change of human mobility adherent to social restriction policies and its effect on COVID-

19 cases in Australia. Int. J. Environ. Res. Public Health 17(21), 7930 (2020).
 64. Gottumukkala, R. et al. Exploring the relationship between mobility and COVID- 19 infection rates for the second peak in the 

United States using phase-wise association. BMC Public Health 21(1), 1–14 (2021).
 65. Bokányi, E., Pollner, P. & Joó, T. Kontaktkutatás, vezetői információs rendszer. Scientia et Securitas 2(1), 17–29 (2021).
 66. Larsen, M., Nyrup, J., & Petersen, M.B. et al. Do survey estimates of the public’s compliance with COVID-19 regulations suffer 

from social desirability bias? J. Behavioral Public Adm. 3(2) (2020).
 67. Jensen, U.T. et al. Is self-reported social distancing susceptible to social desirability bias? Using the crosswise model to elicit sensi-

tive behaviors. J. Behavioral Public Adm. 3(2) (2020).
 68. Hungarian Data Supply Questionnaire (MASZK) Team, https:// covid. sed. hu/ tabs/ staff, (date of access 2022.07.03);.
 69. Nemzeti Adatvédelmi és Információszabadság Hatóság, https:// www. naih. hu (date of access 2020.12.);.
 70. Office HCS. Hungarian Census 2011, http:// www. ksh. hu/ nepsz amlal as/ (date of access 2020.09.28);.
 71. Office HCS. Hungarian Microensus 2016, https:// www. ksh. hu/ mikro cenzu s2016/(date of access 2020.09.28);.
 72. Bishop, Y. M., Fienberg, S. E. & Holland, P. W. Discrete Multivariate Analysis: Theory and Practice (Springer, 2007).
 73. Lavrakas, P. J. Encyclopedia of Survey Research Methods (Sage Publications, 2008).

Acknowledgements
This work was completed in the National Laboratory for Health Security of Hungary. The authors are grateful for 
T. Ferenci to compute and share the reference data and for F. Bartha for his contributions in epidemic modelling. 
The authors are thankful to A. Vespignani for the insightful comments and to N. Samay for visualization advice.

Author contributions
J.K., M.K. and G.R. conceived the survey data collection, E.B., J.K. and M.K. analyzed the data, ZS.V. E.B. and 
G.R. carried out the model computations. All authors designed the research, wrote and reviewed the manuscript.

Funding
We acknowledge support from the framework of the Hungarian National Development, Research, and Innovation 
(NKFIH) Fund 2020-2.1.1-ED-2020-00003 and the National Laboratory for Health Security, RRF-2.3.1-21-2022-
00006. J.K. was supported by the Premium Postdoctoral Grant of the Hungarian Academy of Sciences. M.K. is 
thankful for the support from the DataRedux (ANR-19-CE46-0008) project funded by ANR, the SoBigData++ 
(H2020-871042) project and the EmoMap CIVICA project. G.R. was supported by NKFIH KKP 129877. ZS.V. 

https://research.physcon.uni-obuda.hu/COVID19MagyarEpi/
https://research.physcon.uni-obuda.hu/COVID19MagyarEpi/
https://doi.org/10.1186/s12916-020-01597-8
https://covid.sed.hu/tabs/staff
https://www.naih.hu
http://www.ksh.hu/nepszamlalas/
https://www.ksh.hu/mikrocenzus2016/


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21452  | https://doi.org/10.1038/s41598-023-46418-z

www.nature.com/scientificreports/

and G.R. were supported by the Ministry of Innovation and Technology of Hungary from the National Research, 
Development and Innovation Fund, project no. TKP2021-NVA-09.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 46418-z.

Correspondence and requests for materials should be addressed to M.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-46418-z
https://doi.org/10.1038/s41598-023-46418-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Real-time estimation of the effective reproduction number of COVID-19 from behavioral data
	Epidemic surveillance methods and their biases
	Behaviour dynamics for epidemic survelliance
	Results
	Data collection and pre-processing
	Estimation of the effective reproduction number
	Alternative reproduction number surveillance for Hungary
	Validation of inferred reproduction numbers

	Discussion
	Methods
	Data collection and reconstruction pipeline
	Online data collections
	Representative data collection
	Contact matrix reconstruction

	Ethical approval and consent to participate

	References
	Acknowledgements


