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ABSTRACT: We subject a series of five protein−ligand systems
which contain important SARS-CoV-2 targets, 3-chymotrypsin-like
protease (3CLPro), papain-like protease, and adenosine ribose
phosphatase, to long time scale and adaptive sampling molecular
dynamics simulations. By performing ensembles of ten or twelve
10 μs simulations for each system, we accurately and reproducibly
determine ligand binding sites, both crystallographically resolved
and otherwise, thereby discovering binding sites that can be
exploited for drug discovery. We also report robust, ensemble-
based observation of conformational changes that occur at the
main binding site of 3CLPro due to the presence of another ligand
at an allosteric binding site explaining the underlying cascade of
events responsible for its inhibitory effect. Using our simulations,
we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to
the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for
accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the
statistical distribution of protein−ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of
trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation
protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free
energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that,
although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable
free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain
statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these
systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based
applications and not confined to the free energy methods used in this study.

1. INTRODUCTION
There is an urgent need for drugs which target SARS-CoV-2, the
pathogen responsible for the current coronavirus pandemic. In
this regard, a concerted global effort has led to a rapid rise in the
number of SARS-CoV-2 protein structures available in the
Protein Data Bank (PDB), rendering the virus increasingly
susceptible to rational, structure-based drug discovery. The
typical timeline for the development of a single drug is 10−15
years, with an associated cost of $2 billion.1 In the face of the
global COVID-19 pandemic, it is clear that the average
development time scale of up to 15 years is wholly inadequate.
It is therefore of crucial humanitarian and societal importance to
develop new in silico workflows that accelerate the rate and
enhance the quality of lead drug molecule design. Workflows
which tie both artificial intelligence (AI) and molecular
dynamics (MD) based methods together are required as no
single methodology can achieve both the required accuracy and
speed.2 While AI based methods can rapidly sample significant
regions of chemical space in a short time frame, MD based

methods (which are significantly lower in throughput) are able
to predict ligand binding free energies to much higher accuracy.3

Furthermore, MD based methods have the potential to elucidate
ligand binding kinetics and processes. The information derived
from these simulations can be used to inform drug molecule
optimization for improved kinetic and thermodynamic binding
properties. In turn, MD based methods form a crucial part of
modern drug discovery workflows. In the present work, we
investigate the application of molecular dynamics (MD)
simulations to the robust and reproducible elucidation of ligand
binding mechanisms, sites, and interactions.
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Molecular dynamics methods which aim to simulate the
spontaneous process of protein−ligand binding have been in
development for the past decade.4−11 Over this period,
significant advancements have been made due to increased
access to high-performance computing resources (in particular
GPU accelerated hardware), improvements in computational
hardware,12,13 and developments in MD algorithms.14 Thus, far,
work in the field has predominantly focused on determining the
mechanism of ligand binding to crystallographically determined
sites.4,5,7−10 The idea behind these efforts is that by observing
the spontaneous process of binding to these sites, key metastable
states and associated protein ligand contacts can be identified. It
is hoped that these interactions can then be modulated to
optimize the kinetic and thermodynamic properties of drug
binding.4,5,7−10 Some of these studies have also led to the
elucidation of nonexperimentally determined sites, which may
act as allosteric sites5,6 for the modulation of protein activity.

A central problem that arises in these studies is that they
utilize protocols which do not systematically account for the
chaotic nature of molecular dynamics simulation.15 The extreme
sensitivity of such simulations to their initial conditions causes
the many one-off results reported to be inherently non-
reproducible.16,17 Addressing this issue forms the central focus
of this work. The question which we address is whether it is
possible to develop reliable methods that can accurately and
reproducibly identify the full range of binding sites and binding
modes that are accessible to a ligand. Such a method will permit
us to go beyond what is essentially anecdotal evidence, and to
report findings that are statistically reliable and of scientific
value. We would like to remind readers that it is common to
work with fixed epistemic parameters in molecular dynamics.
Although a full uncertainty quantification analysis would require
one to investigate their role in determining the uncertainties in
quantities of interest, we have previously shown that the
aleatoric uncertainty in MD simulations typically overwhelms
that from the epistemic sources and that the latter’s uncertainty
is damped in the output quantities of interest.18 Therefore, our
focus in this work is only on the aleatoric uncertainty.

In general, spontaneous ligand binding methods work by
initiating a molecular dynamics protein−ligand system from a
configuration where the ligand is placed at some distance from
the surface of the protein. During the simulation, the ligand
explores the surface of the protein and binds to potentially
druggable sites which may be orthosteric, allosteric, or even
cryptic in nature.6 By analyzing the trajectories using methods
such as Markov state model (MSM) analysis,19,20 thermody-
namic and kinetic observables which are of key importance to
the process of drug discovery can be extracted from the data.
These include binding free energies,21 dissociation constants
(Kd)21 and on and off rates of binding (Kon and Koff).22,23

When conducting these studies, the question arises as to
whether the trajectory has sufficiently sampled phase space such
that the probability distribution of the trajectory has converged
to the equilibrium probability distribution of the protein−ligand
system. Only this distribution would allow the true expectation
values of the observables to be obtained.15 To sample the phase
space, one of two distinct approaches is usually followed. In the
first, which we term the “long time scale” regime, authors report
several microsecond time scale simulations5−7,21,24 and, from
these, compute the observables of interest. These observables
include 3-dimensional ligand occupancy maps, ligand binding
free energies, along with ligand association mechanisms and
pathways. In the second regime, termed “adaptive sam-

pling”,9−11,23,25,26 many simulations of shorter time scale are
executed, and new simulations are adaptively initiated from
specific simulation snapshots in order to “more thoroughly”
explore regions of phase space that are of interest. Incidentally,
many studies from the second regime report aggregate
simulation times that fall in the microsecond time scale; this is
misleading as performing a single simulation of that duration is
not the same as we will discuss in detail in the current study. We
note that some studies also combine the two techniques, using
adaptive sampling to initiate new, “short” simulations from long
time scale simulations that are stuck within nonproductive
kinetic traps.22 Generally, this approach is taken in order to
converge transition probabilities between metastable states that
are identified during Markov state modeling.27,28

We would like to point out here that there are several
accelerated sampling protocols that involve performing
“ensembles” of simulations. These include methods that do
not employ any external force or heating and just enhance
sampling by performing multiple independent MD simulations
concurrently with different starting conditions. Examples
include ensemble dynamics,29−35 Markov state model
(MSM),19,20,27,28,33,35−38 weighted ensemble (WE),39−48 and
multilevel splitting (MS)49−53 methods. Although these
methods involve performing “replicas” and generating “ensem-
bles”, the fundamental question is whether we get the same
answer (within error bars) on repeating the entire protocol using
one of the above methods. Given that the dynamics is chaotic, it
is expected that this is not the case and ensembles must be used
as each execution of such a protocol would have a different initial
condition.15,18 One example is replica exchange methods54,55

that also involve performing multiple MD simulations in parallel
(so-called “replicas”). We have shown in previous work that on
repeating a replica exchange calculation multiple times, we
indeed observe variation in the outcome, and hence it is
necessary to perform ensembles of the entire protocol (which
itself contains “replicas”) to perform a systematic uncertainty
quantification (UQ).56 Similar studies are required for other
methods involving “ensembles” in order to properly assess UQ
in those cases.

The purpose of the present paper is to systematically assess
the distribution of properties obtained in long time scale
simulations. By performing ensembles of ten to twelve 10 μs
unbiased simulations, we are able to evaluate the utility of
running individual long time scale simulations, investigate their
reproducibility, and compare the results obtained from them to
an “adaptive sampling” scheme which consists of 9 μs of
aggregate simulation time. This is of interest as the wall time
required to execute the long time scale runs is significantly
longer than the wall time required for the entire adaptive
sampling protocol (differences are on the order of weeks).

In our study, we apply these statistically robust techniques to
three crucial SARS-CoV-2 drug targets: adenosine ribose
phosphatase (ADRP),57 papain-like protease (PLpro)58 and 3-
chymotrypsin-like protease (3CLpro).59 Each of these are
globular, nonstructural proteins encoded by SARS-CoV-2 which
play key roles in the lifecycle of the virus and serve as important
potential targets for SARS-CoV-2. Our findings here shed light
on potentially druggable sites on the surface of the proteins,
elucidate relative binding free energies between each of the sites,
and demonstrate binding mechanisms which may explicitly
inform future efforts in SARS-CoV-2 drug discovery. We also
compare different free energy protocols and discuss the
applicability of each in different scenarios. In addition to these
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methodological developments, we report new scientific findings
on the allosteric effects observed in 3CLPro. We discover
conformational changes occurring at the active site of 3CLPro
caused by the binding of a ligand at an experimentally known
allosteric binding site and establish its relation to the inhibitory
effect of that ligand. We demonstrate how these changes affect
the binding of ligands at the main (active) site by distorting the
binding pose. In addition, we also discovered a novel allosteric
mechanism of action for a ligand that is hitherto known to act
only by binding at the substrate binding site and blocking the
catalytic dyad.

2. THEORY
The present study approaches the subject of spontaneous
protein−ligand binding simulations from the perspective of
chaos theory and uncertainty quantification. In this section, we
describe how the chaotic nature of molecular dynamics
simulations causes individual simulations to be nonreprodu-
cible, no matter their length. We also describe how running
ensembles of simulations remedies this by allowing for
expectation values to be subjected to rigorous uncertainty
quantification and convergence analysis. By presenting this
theory, we make clear that running an ensemble of simulations
which sum to a certain time is not equivalent to simply running a
single simulation of the same aggregate time. The novel point
which we explicitly demonstrate is that, contrary to the current
consensus, the level of certainty of a simulation derived
expectation value does not increase with simulation time. This
necessitates the use of ensembles when reporting macroscopic
expectation values for all long time scale simulations. Not only is
such a prescription required by the tenets of statistical
mechanics, it is also essential in order to quantify the uncertainty
of the calculated properties.
2.1. MD Simulation and Equilibrium. In statistical

mechanics, the value of an observable (G) of a dynamical
system is derived by calculating the expectation value of the
observable ⟨G⟩t over the trajectory that the dynamical system
takes through phase space

=G G x x( ) ( ) dt t (1)

The ergodic theorem, often used to justify the accuracy of “long
time scale” molecular dynamics simulations, states that in the
long time limit, the time average of a dynamical observable will
approach its ensemble average. Namely,

= = =G G G x x G x xlim lim ( ) ( ) d ( ) ( ) d
t

t
t teq eq

(2)

where ρt and ρeq are respectively the (6N + 1)-dimensional time
dependent and 6N-dimensional equilibrium probability dis-
tributions of the dynamical system. This implies that ρt has
asymptotically approached ρeq (where the evolution of ρt is
determined by the Liouville equation15).

Problematically for those working in the field of MD
simulation, this assumption only holds true for time scales that
are on the order of a Poincare ́ recurrence time, which is longer
than the age of the universe.60 Therefore, because for any
realistically obtainable single trajectory of a dynamical system ρt
does not asymptotically approach ρeq, the value of a given
observable obtained from an individual molecular dynamics
trajectory cannot be equated to the true value of the observable
that would arise if phase space were ergodically sampled.

Furthermore, the equality also requires that the dynamical
system is mixing. In the ergodic hierarchy, mixing is a stronger
property than ergodicity and is dependent on the system being
chaotic.15

2.2. Uncertainty Quantification. Uncertainty quantifica-
tion (UQ) is a field of endeavor that aims to analyze the interplay
between simulation inputs and outputs for the purpose of
determining the uncertainty associated with obtained results.60

In the present study, we are particularly interested in quantifying
the aleatoric output uncertainty that is controlled by the initial
random velocity seed. A series of our studies have presented
robust evidence that simulation outcomes are strongly
controlled by the initial random seed, and that averaging over
a set of simulations all starting with different random seeds
consistently reduces the uncertainty of obtained results.61

Indeed, this aleatoric uncertainty completely dominates the
epistemic uncertainty arising from the way in which the model is
parametrized and set up.18 A crucial feature of performing
ensembles of simulations, which allows us to conduct
uncertainty quantification, is that the distribution of properties
of interest can be obtained. Here, we apply UQ to multiple
properties of spontaneous ligand−protein binding simulations,
namely, the protein−ligand residue contact frequency distribu-
tion and the computed binding free energy of the ligand with a
protein target.
2.3. SARS-CoV-2 Protein−Ligand Systems. Three

important SARS-CoV-2 targets form the focus of this work:
3CLpro, PLpro, and ADRP. 3-Chymotrypsin-like protease
(3CLpro, also known as the main protease or nonstructural
protein 5 (nsp5)), and papain-like-protease (PLpro, the
protease domain of nsp3) are both proteolytic enzymes of
SARS-CoV-2 which are responsible for cleaving the viral
polyprotein chain (encoded by SARS-CoV-2 RNA) into
nonstructural proteins that are required for the process of viral
replication.58,59 Adenosine ribose phosphatase (ADRP) is a
domain of nsp3 that is capable of interfering with the host
immune response by removing ADP-ribose from ADP-
ribosylated proteins and RNA.57 Thus, each of these protein
targets are of considerable interest for SARS-CoV-2 drug design.

In a recent study by our group,62 14 compounds of interest,
each of which bind to one of three sites (the substrate binding
site, allosteric site I, and allosteric site II) on the surface of
3CLpro, were identified from a previously conducted high-
throughput crystallographic screen of repurposed drug mole-
cules.63 Based on the results derived in that study, we selected 3
ligands of interest, MUT056399 (RQN), AT7519 (LZE), and
pelitinib (93J) for the current study covering all three binding
sites and a wide range of EC50 values (Table 1). Furthermore, by
building the system containing both RQN (which binds to the
substrate binding site)63 and LZE (which binds to allosteric site

Table 1. Protein Targets and Their Corresponding Ligands

target
name

compound
name PDBea

exp. binding
site PDB ID

EC50
(μM)

ADRP tofacitinib MI1 N/A 6W02b N/A
PLPro GRL-0617 TTT USP 7CJM 21.00
3CLPro MUT056399 RQN SB 7AP6 38.24

pelitinib 93J AS I 7AXM 1.25
AT7519 LZE AS II 7AGA 25.16

aPDBe ligand codes. b6W02 is the structure of ADRP bound to ADP
ribose, not to tofacitinib.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00020
J. Chem. Theory Comput. 2023, 19, 3359−3378

3361

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2),63 we aim to capture whether the binding of RQN is affected
by the binding of LZE, and if so then determine the allosteric
mechanism involved in the process. For the PLpro system, we
decided to focus on the ligand GRL0617 as it showed strong
antiviral activity using NMR data and a promising value of
EC50.58 Tofacitinib, which is a FDA approved pharmaceutical
that is used to treat rheumatoid arthritis and ulcerative
colitis,64,65 was chosen as the ligand for the ADRP system.

3. METHODS
We use ensembles of replica simulations (which here differ only
in their initial particle velocities, drawn randomly from a
Maxwell−Boltzmann distribution) in order to converge the
statistics of the observable of interest. While previous studies by
our group have investigated the necessity of ensembles for
accurate and precise ligand binding free energy calculations,14,66

here we aim to demonstrate that ensembles of MD simulations
are equally essential for the accurate determination of ligand
binding sites and ligand−protein interaction mechanisms. To do
this, we conduct a thorough comparative analysis of two
alternative ensemble protocols: the long time scale protocol and
the splitting protocol (an adaptive sampling method). These
protocols are applied with a key goal in mind: to elucidate novel
ligand binding sites and mechanisms for the three aforemen-
tioned proteins that are essential to the life cycle of SARS-CoV-
2: ADRP, 3CLPro, and PLPro. We also employ different free
energy protocols in order to determine the pros and cons of each
method and discuss their domains of applicability and
limitations.
3.1. Protein−Ligand Systems. All three protein systems

were selected due to their key-role in the life-cycle of the SARS-
CoV-2 virus (as discussed in section 2). The protein structures
were initially sourced from the PDB (see Table 1). All mutations
in the initial crystallographic structures were back-mutated using
the “Rotamers” tool in UCSF Chimera.67,68 Following this,
ligands and other unwanted molecules were removed from the
structures. The 3-dimensional conformers of the selected ligands

were sourced from PubChem (https://pubchem.ncbi.nlm.nih.
gov) and inserted into the system. Five protein−ligand systems
were built in total. All systems are detailed in Table 1, and each
of the proteins and ligands are shown visually in Figure 1. For
each of our protocols and systems, the ligand was initially placed
20 Å away from the surface of the protein. A distance of 20 Å was
chosen to minimize sampling bias that would arise from the
initial position of the ligand due to long-range protein−ligand
interactions. Thus, if the ligand was initially placed 3 Å from the
binding site, it would immediately form interactions with the
protein in that region and therefore most likely bind to that site.
By distancing the ligand, we ensure that it stochastically diffuses
around the protein before establishing its initial contact.
Furthermore, the choice of separating the ligand and the
protein by a distance of 20 Å is compatible with standard
practice in the field, which is to distance the ligand between 20
and 30 Å away from the surface of the protein.4,5,8,9 Following
this, each system was solvated using the TIP3P water model and
charge-neutralized by inserting sodium or chloride ions.69

3.2. Simulations. In this subsection, we describe the two
simulation approaches which we directly compare within this
study: long time scale and splitting protocols.
3.2.1. Long Time Scale Protocol. In the long time scale

protocol, we perform ten or twelve replica simulations of 10 μs
each. Each simulation is initiated from a common configuration
in which the ligand is placed 20 Å from the surface of the protein
with initial velocities drawn randomly from Maxwell−
Boltzmann distribution. A simulation length of 10 μs is chosen
on the basis that it is on the order of simulation times
(microseconds to tens of microseconds) that have been utilized
in multiple previous studies to derive information on the nature
of ligand−protein interactions6,7,21 This protocol allows us to
address two crucial aims within our study. First, we intend to
identify whether a single 10 μs run can reliably reproduce the full
range of binding sites and binding modes sampled by the
aggregate of the “splitting” protocol (which has a length of 9 μs).
And second, we aim to demonstrate the variability between the

Figure 1. Structures of protein targets and corresponding ligands. ADRP (PDB ID: 6W02) is shown in cyan, PLpro (PDB ID: 7CJM) in orange, and
3CLpro (PDB IDs: 7AP6, 7AXM, 7AGA) in purple.
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10 μs members of the ensemble in order to examine whether a
single “long time scale” (10 μs) trajectory is capable of
generating reproducible and therefore reliable results. Indeed,
as we show, each 10 μs run exhibits different statistics due to the
chaotic nature of MD trajectories. A few recent papers from the
D. E. Shaw group implicitly recognize such variability in MD
simulations at the microsecond time scale.70,71 However, this
has not been studied systematically hitherto, nor has the
importance of ensembles of simulations at long time scale been
discussed in the literature as we do in this study.
3.2.2. Splitting Protocol. During the splitting protocol, 20

replica trajectories of 200 ns each are initiated from a common
configuration in which the ligand is placed 20 Å from the surface
of the protein. The initial particle velocities of each ensemble
member are drawn randomly from a Maxwell−Boltzmann
distribution. Trajectories are analyzed using RMSD heat maps,
and the 5 replicas with the most kinetically stable poses in the
final frame are chosen as configurations from which to initiate
new sets of replicas, which we term “subreplicas”. We quantify
“kinetic stability” by computing the ligand RMSD relative to the
final frame of the simulation and select the five replicas which
have an RMSD of <5 Å for the longest duration of time relative
to the final frame. Each set of “subreplicas” contains 10
subreplicas of 100 ns each. The aggregate simulation time across
the length of this protocol is 9 μs. Within the protocol, 200 and
100 ns were chosen as the simulation times as these are
representative of the simulation time scale executed by those
who have utilized ensemble based adaptive sampling protocols.
Examples of this include the seminal study in the field by Buch et
al. where 495 trajectories of 100 ns each were executed,4 among
other papers which run on similar time scales.8,9 The purpose of
the splitting method is to explore and identify as many binding
sites as are feasible to which the ligand of interest may bind on
the protein, while reducing the amount of wall time required to
do so.
3.2.3. Simulation Details. NAMD 269,72 and OpenMM73

were used to run our simulations. All splitting protocol
simulations were executed on Scafell Pike (hartree.stfc.ac.uk)
whose compute nodes are comprised of Bullsequana X1000
(Intel Xeon processors and NVIDIA Tesla V100 accelerators).
Long time scale runs for ADRP were also executed on Scafell
Pike using OpenMM. All other long time scale simulations were
executed using OpenMM on Summit (https://www.olcf.ornl.
gov/summit) where compute nodes consist IBM Power9
processors and NVIDIA Tesla V100 accelerators. Force fields
and modifiable simulation parameters were kept constant across
MD engines and HPC platforms. All ligands (Table 1 and Figure
1) were parametrized in AmberTools using AM1-BCC charge
assignments. The Amber FF14SB force field was used to
parametrize the protein, and TIP3P water molecules were used
to solvate the system. During equilibration, we conducted 1000
steps of energy minimization and then, in the NVT ensemble,
applied harmonic constraints to protein and ligand atoms, while
heating the system from 60 K to 310 K (an increase of 1 K every
2 ps). We then ran in the NVT ensemble at 310 K for 300 ps with
no constraints. Following this, we performed equilibration in the
NPT ensemble, using a Monte Carlo barostat with a pressure of
1.01325 bar and frequency of 50 fs. We reduced the strength of
all harmonic constraints by half every 0.1 ps, 10 times.
Subsequently, constraints were set to 0. Finally, the system
was equilibrated without constraints at 310 K in the NPT
ensemble for 1 ns. For all production and equilibration
simulations, a Langevin thermostat was employed with a 2 fs

time step together with a friction coefficient of 1/ps to simulate
the dynamics of the system.
3.3. Ligand−Protein Contact Frequency Analysis.

Ligand−protein residue contact frequencies are computed
using a series of custom python scripts. The original scripts
were written for the “getcontacts” tool by Dror et al.74 A contact
between the ligand and the protein is defined as a van der Waals
interaction, where the distance (|AB|) between two non-
hydrogen atoms, A (belonging to the ligand) and B (belonging
to the protein), satisfies the equation: |AB| < RvdW(A) + RvdW(B)
+ 0.5 (Å), where RvdW is the van der Waals radius of the atom.

Upon computing the percentage of frames in which contacts
are formed between the ligand and each protein residue for all of
our trajectories, we obtain a two-dimensional matrix containing
m × n elements where m is the number of trajectories executed
and n is the number of residues in the protein. An element (m, n)
of the matrix therefore corresponds to the contact frequency of
the ligand with residue n in trajectory m. All ligand−residue
contact frequency distributions are computed from these
matrices using Python. These distributions provide meaningful
and easily interpretable low dimensional representations of
phase space sampling.
3.4. Binding Free Energy Calculations. To determine the

relative binding free energy of a specific ligand for each of its
identified binding sites, we use two protocols: ESMACS66 and
the so-called “direct” binding free energy calculation meth-
od.21,75 By running the direct protocol, we also derive insights
into the reproducibility of expectation values that are computed
from “converged” simulations that are multiple microseconds in
length.
3.4.1. Enhanced Sampling of Molecular Dynamics with

Approximation of Continuum Solvent (ESMACS). Enhanced
sampling of molecular dynamics with approximation of
continuum solvent (ESMACS) calculations are fundamentally
based on the Molecular Mechanics Poisson−Boltzmann/
Generalized Born Surface Area (MMPB/GBSA) binding free
energy calculation method.76 MMPB/GBSA calculations were
conducted using AmberTools 20.77 For all MMPB/GBSA
calculations, the 1-traj protocol was used, allowing the MMPB/
GBSA ligand binding free energy (ΔGMMPB/GBSA) to be
calculated from a single trajectory of the protein−ligand
complex. Within the 1-traj protocol, ΔGMMPB/GBSA is computed
using the equation

=G G G GMMPB/GBSA PL P L PL (3)

where GPL, GP, and GL correspond to the free energy
contributions of the complex, protein, and ligand, respectively.
Angular brackets denote that ΔGMMPB/GBSA is computed as the
average over all input snapshots, while the subscript “PL”
denotes that the snapshots are taken from a single simulation of
the protein−ligand complex. GPL, GP, and GL are calculated
using the following equation:

= + + + +G E E E G Gbnd ele vdW pol np (4)

where Ebnd, Eele, and EvdW are the bonded, electrostatic, and van
der Waals terms, respectively. Gpol is the polar solvation free
energy, and Gnp is the nonpolar solvation free energy.

For each binding site identified during our long time scale and
splitting protocols, we ran an ensemble of 25 4 ns trajectories.
Since the predominant ligand binding sites and poses were
identified as the final frames from which subreplicas were
initiated in the splitting protocol, we used these configurations as
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the starting structure for ESMACS calculations performed for
the ADRP system.

Our choice of running 25 simulations of 4 ns each is in
accordance with previous findings by our group showing that 25
replicas of 4 ns are sufficient to obtain converged values of
ΔGESMACS.66 These trajectories were postprocessed in
MMPBSA.py to produce 25 binding free energy estimates,
one for each replica within the ensemble. The reported
ΔGESMACS is the mean of the sampling distribution of means
for this sample of 25 free energy estimated obtained using
bootstrapping. The associated error bars are the corresponding
standard errors.
3.4.2. “Direct” Binding Free Energy Calculations. The

“direct” binding free energy calculation method was originally
developed by De Jong et al.75 and later applied to 10 μs
trajectories by Pan et al. in 2017.21 We would like to point out
that the method is justified on the basis that a sufficiently long
single trajectory can be averaged to produce a meaningful
macroscopic free energy. However, we will demonstrate that this
assumption is not valid, and hence free energies computed
through this method using a single trajectory are not reliable. To
calculate the binding free energy, we use the following equations
which were derived via statistical mechanics by De Jong et al.:75

= °

=
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P
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vc N

G k T Kln

A
b

u
Av

b B A (5)

Here, Pb and Pu are the fraction of simulation time in which the
ligand is bound and unbound to the binding site of interest,
respectively, v is the volume of the simulation box (L), c° is the
standard-state concentration (1 mol L−1), NAv is Avogadro’s
number, kB is Boltzmann’s constant, and T is the temperature
(K). We define the ligand to be in the bound state when the first
two closest distances between the heavy atoms of the ligand and
the side chain heavy atoms of the binding site residues are <5 Å.
All other frames are defined as unbound.
3.5. The Kolmogorov−Smirnov Test. To compare the

ligand−residue contact frequency distributions, we perform the
pairwise Kolmogorov−Smirnov (KS) test. The test compares
the underlying continuous distributions F(x) and G(x) of two
independent samples (in this case, two ligand−residue contact
frequency distributions, each derived from separate MD
trajectories and computed as described in section 3.3). Since
the test is nonparametric, it is particularly suited to the
comparison of ligand−residue contact frequency distributions
as they have multiple peaks and are not normally distributed. To
test the statistical certainty of two distributions being different
from one another, we use the two sided p-test. For this test, the
null hypothesis is that both of the distributions are sampled from
the same underlying distribution. All KS tests are computed
using the SciPy package in Python.78

4. RESULTS AND DISCUSSION
This section is divided into two subsections. In the first
subsection, we discuss aspects of our results that are important
from the point of view of developing new scientific methods that
yield statistically robust and reliable outcomes. We report our
findings on the effect of stochasticity in MD simulations at
“long” time scales. We show how this intrinsic characteristic of
MD can be used to our advantage in order to enhance the
sampling of phase space through introduction of biases. Further,
we determine binding affinities using two different methods and

compare them to discuss the advantages and disadvantages of
each method and highlight scenarios where a particular method
should be preferred. In the second subsection, we discuss the
important scientific findings of our study. We discuss the novel
allosteric mechanisms uncovered using our simulations that help
us understand the inhibitory effects of RQN and LZE. We would
also like to highlight here that, although the ADRP−tofacitinib
complex has not been reported experimentally, it has still been
included in this study as our main focus is on methodological
advances and our findings in this regard hold true irrespective.
4.1. Development of ScientificMethods. 4.1.1. Aleatoric

Uncertainty in “Long” MD Simulations. We have shown that
classical molecular dynamics simulations are extremely sensitive
to their initial conditions given their chaotic nature due to which
two independent MD trajectories diverge exponentially with
time.15 This has been exhibited in several published studies for
short simulations (up to a few nanoseconds) including ours.16,61

Unprecedentedly, in this study we provide evidence for such
divergence between independent simulations extending up to 10
μs. Our results conclusively show that MD trajectories lead to
very distinct regions of a given phase space even when they are
considered “long”. Thus, results based on one-off “long”
simulations are at least as unreliable as one-off “short”
simulations. Indeed, it is essential to perform ensembles in all
cases to quantify the uncertainty and ensure reproducibility of
results. This is due to the mixing nature of the dynamics which is
a necessary and sufficient condition to reach equilibrium.15,60

We would like to note here that the extent of uncertainty (and
hence the appropriate size of ensembles) depends on the free
energy landscape. For small and/or rigid systems, uncertainties
would be much smaller as compared to large and complex
protein−ligand systems.

Table 2 provides the number of binding sites sampled by the
entire ensemble of 10 or 12 replicas for each system (10 for

ADRP−tofacitinib complex and 12 for all other systems) in
column 2. In the third column, it also includes the number of
replicas that visit each binding site for each system. It is evident
that not all sites are sampled in all simulations. There is
substantial variation in the binding sites sampled both across
replicas for each system, as well as across all systems studied. For

Table 2. Sampling Frequency of the Different Binding Sites
Across All “Long” Independent Replicasa

system
no. of binding

sites no. of replicas visiting each site

ADRP−tofacitinib 4 3, 4, 9, 6
PLPro−GRL 15 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,

1, 1
3CLPro−93J 13 1, 8, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1
3CLPro−RQN 9 7, 2, 1, 10, 2, 1, 1, 1, 1
3CLPro−RQN (with

LZE)
12 6, 4, 2, 2, 3, 2, 4, 3, 1, 2, 1, 1

3CLPro−LZE (with
RQN)

8 6, 6, 5, 3, 4, 3, 4, 1

aThe middle column shows the number of different binding sites
sampled across all replicas for a given system. The last column shows
an ordered set of the number of replicas visiting a given binding site
for all sites in the middle column. The number in bold font
corresponds to the experimental binding site. Note that this only
captures whether a replica samples a given binding site at all. It does
not take into account the amount of time spent at a given binding site
by any replica. The total number of replicas is 10 for the ADRP
system and 12 for all others.
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instance, in the case of the ADRP−tofacitinib system, four
different binding sites are sampled by 3, 4, 9, and 6 replicas,
respectively. Comparing this behavior with that of the other four
systems studied (all relatively bigger in size), we can clearly see
that they differ in that the number of sites observed is much
higher with the number of replicas visiting each site being
smaller. Taking the example of the PLPro−GRL system, there
are 15 different binding sites observed with each only sampled
by a single replica for all but one site. Furthermore, 9 out of 12
replicas exclusively sample only a single binding site. This
behavior is in contradiction to what we see for the ADRP−
tofacitinib system exhibiting the extent of variation in sampling
that may be observed across different systems using an ensemble
of long independent simulations. The sampling behaviors of the
other three systems fall between the two extremes discussed
above. It should be noted here that, in the above analyses, a
replica is considered to have sampled a given binding site only if
its ligand fractional occupancy is ≥0.03 around that site. In other
words, a replica is assumed to have sampled only those binding
sites that appear in the volume occupancy maps (and have non-
negligible peaks in the corresponding contact frequency
distributions) displayed in Figures 2 and S1−S4. It is possible

that a replica has visited other binding sites too for a very short
period of time but such transient events are neglected in our
analyses as such a binding process cannot be considered stable.

There is also a non-negligible variation in sampling across
replicas for each system studied. Taking the ADRP−tofacitinib
system as an example, as already noted, four different binding
sites (denoted as A, B, C, and D) have been sampled collectively
by the ensemble of ten 10 μs long replicas. The crystallographic
site (C) is sampled by 9 out of 10 replicas whereas all other sites
are only located by a smaller number of replicas. There are two
replicas (IDs 8 and 10) that exclusively sample site C, whereas
two other replicas (IDs 2 and 5) sample all four sites. The
remaining six replicas sample different subsets of the four
binding sites in different combinations and proportions. It
should also be noted that the sampling of the ligand around site
C is quite different across each of the 9 replicas as quantified in
the following paragraphs. Similar behavior applies to all other
systems studied. One might be tempted to hypothesize that the
number of replicas visiting a given binding site is a function of
the binding free energy. However, based on our results, we can
safely reject this hypothesis. For instance, ADRP bindings sites
A, B, and D have very similar binding affinities, but the numbers

Figure 2. Tofacitinib (ligand)−ADRP (protein) residue contact frequency distribution plots for each “long” replica are shown adjacent to their
respective ligand occupancy maps. The ligand−residue contact frequencies correspond to the fraction of frames in which a hydrophobic contact is
formed between the ligand and a given protein residue. Occupancy maps of tofacitinib around the ADRP protein represent the isovalue surfaces
(wireframe representation) rendered at the fractional occupancy of 0.03 across all frames of the simulation trajectory. In other words, they represent
volumes of the simulation box where the ligand is likely to be found with 97% probability, that is in 97% of all trajectory frames.
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of replicas visiting them vary. This behavior is even more
pronounced for other systems studied (comparing Table 2 and
Figure S6).

In order to provide a visual representation of the sampling
variation discussed above, we have calculated the contact
frequency distributions for individual replicas (refer to section 3
for details). Figure 2 displays contact frequency distributions of
the ADRP−tofacitinib complex for each of the ten long (10 μs
duration) simulations along with corresponding volume
occupancy maps. It can be clearly seen that the signature
frequencies of site C are visible in the contact frequency plots of
all but one replica (only replica ID 9 does not sample the
crystallographic site). Replica IDs 8 and 10 exclusively sample
site C and hence display identical peak distributions, whereas
other replicas have different peak distributions due to over-
lapping frequencies from other binding site samples. Similarly,
replica ID 9 predominately samples site A, clearly showing the
corresponding signature frequencies. Another replica that has a
non-negligible peak at site A frequencies is replica ID 2 as is also
confirmed by the corresponding volume occupancy maps. It
should be noted that the magnitude (peak heights) of these
signature frequencies for different binding sites are different
across replicas. Similar figures with contact frequency
distributions of the other systems studied have been included
in the Supporting Information (Figures S1−S4) which all
convey the same message as above.
4.1.1.1. Quantification of Aleatoric Variability. In order to

derive robust insights, it is essential that we quantify the extent of
variability between the long replicas so as to determine their
reproducibility. To achieve this, we compute pairwise
Kolmogorov−Smirnov (KS) test statistics for each pair of the
long replicas. The pairwise KS statistic has a range of 0 to 1,
where 0 indicates that the two sample distributions being
compared are sampled from an identical underlying distribution,
and 1 indicates the converse case. We calculated pairwise KS
statistics for 45 possible pairs of replica trajectories for the
ADRP−tofacitinib complex. The resultant values fall between a
wide range of 0.11 to 0.54. However, 40 of them are ≥0.15 and
37 are ≥0.2. The mean value of the KS statistic for all 45 pairs is
0.26. We also obtained corresponding p-values from pairwise KS
statistics. A p-value of <0.05 signifies that the null hypothesis
(that the two underlying distributions are identical) can be
rejected with 95% confidence. This, in turn, means that there is a
95% chance that the two samples compared are drawn from
different underlying distributions. We obtain a p-value of ≥0.05
for only 3 out of the 45 pairs of replicas (∼6.67%). Thus, 42 pairs
(∼93.33%) indeed sample nonidentical regions of phase space.
Table 3 contains relevant statistics (as discussed above for the

ADRP system) for all systems which shows that the variability
across replicas is prominent in all systems studied without
exception at the microsecond time scale.

Figure 3 displays the cumulative density functions (CDFs) of
ligand−residue contacts for all ten replicas of the ADRP system.

Constructs known as p-boxes (regions between two extreme
CDFs) are often used to visualize how the distribution of
outcomes is controlled by aleatoric and epistemic uncertainty.79

It is clear from Figure 3 that the p-box generated by ten “long”
independent replicas has a wide range, another representation of
the extensive variation of sampling across replicas. Figures
displaying the CDFs of ligand−residue contacts and corre-
sponding p-boxes for all other systems have been included in the
Supporting Information (Figure S5) with identical observations.

The above findings establish beyond doubt the non-
reproducibility of long trajectories for moderately sized
protein−ligand systems at least for simulations of duration up
to 10 μs. They confirm that it is far-fetched to draw final
conclusions on the true nature of a system from an individual
MD simulation as two independent trajectories would sample
different regions of the phase space for reasonably long temporal
durations when starting from different initial conditions.15

Indeed, this is a direct reflection of the chaotic nature of
molecular dynamics simulation and, from a theoretical stand-
point, shows that individual 10 μs trajectories can never be used
to determine equilibrium behavior. In fact, equilibrium is
meaningful only for ensembles of trajectories which manifest the
required dynamical instability. While individual trajectories are
time reversible, the approach to equilibrium is a probabilistic
property of ensembles which requires the dynamics to be
chaotic.15

4.1.1.2. Variability in Free Energy Estimates. Free energy is a
thermodynamic observable of importance for protein−ligand
complexes in the drug discovery context. Therefore, we also look
at the extent of variation in free energy estimates obtained using
independent “long” replicas of MD simulations. We used
ΔGdirect as a measure of absolute binding free energy which was
originally developed by De Jong et al.75 and later applied to 10 μs
trajectories by Pan et al. in 201721 (details in section 3). In the
present work, we demonstrate that ΔGdirect varies substantially
between separate independent long time scale replicas, and
hence once again individual “long” simulations do not provide
reliable binding free energy estimates. The salient point here is
that, contrary to received wisdom in the literature on molecular
dynamics, averaging over an individual long time scale
simulation is not equivalent to averaging over an ensemble of

Table 3. Mean and Range of KS Statistics Values Across All
Replicas for All Systems Studieda

system mean range
KS ≥

0.2
p-value ≥

0.05

ADRP−tofacitinib 0.26 0.11−0.54 82.2 6.7
PLPro−GRL 0.32 0.13−0.59 95.4 0
3CLPro−93J 0.31 0.15−0.61 97.0 0
3CLPro−RQN 0.26 0.11−0.52 78.8 1.5
3CLPro−RQN (with LZE) 0.33 0.10−0.66 86.4 1.5
3CLPro−LZE (with RQN) 0.23 0.12−0.50 75.8 0

aThe number of KS values ≥ 0.2 (an arbitrary threshold) as well as
the number of p-values ≥ 0.05 (in percent terms).

Figure 3. Cumulative density functions (CDFs) of the contact
frequency distributions for all “long” replicas (dashed lines) as well as
concatenated splitting protocol trajectories (solid line) for ADRP−-
tofacitinib system. The width of the p-box so generated indicates the
extent of variability across “long” replicas compared against the splitting
protocol.
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simulations. Indeed, thermodynamic quantities arise from
ensemble averaging in statistical mechanics, and unless one
averages over a time scale on the order of a Poincare ́ recurrence,

a one-off MD trajectory will produce the wrong results.15

Compounding this, a one-off simulation does not provide the

Figure 4. Running averages of ΔGdirect for tofacitinib binding to ADRP at all of the identified ADRP binding sites (top two panels) and for the
experimental binding sites of 3CLPro systems (bottom two panels) for all ten or twelve 10 μs trajectories. The horizontal black dashed lines in the plots
of 3CLPro systems correspond to the respective experimental binding affinities.
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means to compute precise results or conduct meaningful
uncertainty quantification.

Figure 4 shows the running averages of ΔGdirect for all four
binding sites of the ADRP system (top two rows) as well as for
crystallographic sites of all 3CLPro systems (bottom two rows)
from all replicas that sample them. The inter-replica variation is
clearly visible from these plots for all systems. This variability
shows that results obtained from individual “long” trajectories
are not reproducible or precise. In fact, it is evident that the
ΔGdirect estimator does not even converge for some replicas,
even though it does for others. This itself is a source of
uncertainty and a strong motivation to perform ensemble
simulations. Nevertheless, even when all or most replicas do
converge, their predictions vary non-negligibly. Figures
displaying running averages of ΔGdirect for all binding sites of
all systems studied have been included in the Supporting
Information (Figure S6). All of them show behavior similar to
that discussed above in terms of ΔG variability. Table 4 includes

the mean ΔGdirect values along with error bars for the most
frequently visited binding site (which is not the experimental
binding site for PLPro−GRL and 3CLPro−RQN (with LZE))
across all replicas for each system. It also provides the spread
(that is, the difference between the two extreme values) for each
such binding site which is around 2−3 kcal/mol for most cases
but can be as high as 7 kcal/mol (for instance 3CLPro−93J).
Another point worth noting from Figures 4 and S6 is that the
first binding event occurs at varying time durations across
ensemble members as captured by the different onset simulation
times of the running average plots. This confirms that the
dynamical behavior has substantial variability at the micro-
second time scale for molecular dynamics, just as it does for
shorter time scales.

To obtain meaningful estimates of ΔGdirect, we must take into
account the results from all members of an ensemble. To do this,
we employ bootstrapping to obtain sampling distributions of the
mean for ΔGdirect by resampling 5000 times with replacement.
The original sample used for such analysis is the ensemble of
ΔGdirect values from all replicas that sample a given binding site.
The probability density functions of the original sample as well
as the sampling distributions of means so obtained are displayed
in Figure 5 for a selection of systems studied. As we have shown
in previous studies for relatively short duration MD trajectories,
it is possible that the underlying free energy distributions may be
non-Gaussian whereas the corresponding bootstrapped distri-
butions approach the Gaussian functional form with increasing
sample size as a consequence of the central limit theo-

rem.18,60,61,80,81 Figure 5 provides evidence of similar behavior
in case of “long” MD simulations as well, although given the
small sample sizes (as shown in the inset) not all bootstrapped
distributions are Gaussian either. To be sure, an ensemble of size
≤10 is far too small to draw definitive conclusions on the true
form of the underlying distribution. To ensure convergence of
ΔGdirect, it would be necessary to determine the change in the
bootstrapped value of ΔGdirect as a function of the number of
replicas. Upon convergence, the estimate for the binding free
energy could be classified as reliable and reproducible.

The crucial idea here is that to even begin to generate
reproducible estimates for ΔGdirect, running ensembles of
simulations, irrespective of their length, is an imperative.
Interestingly, the non-normal nature of free energy distributions
implies more frequent occurrence of outliers than would be
expected with normal distributions that necessitates relatively
more data in order to obtain reliable estimates. Since the
variability that exists across replicas within an ensemble of
simulations is caused by the intrinsically chaotic nature of MD
simulations, these principles will apply to the calculation of any
MD derived macroscopic expectation value.
4.1.2. Biased versus Unbiased Sampling. In the previous

section, we have described results from unbiased MD
simulations and shown that the sampling may vary substantially
on repeating a simulation. In this section, we include results from
the biased simulation protocol named the “splitting protocol”
which involves biasing the sampling of phase space toward sites
of interest (described in detail in section 3). It should be noted
that, in principle, such splitting steps can be continued further
until the desired level of sampling has been achieved (for
instance, if there is a substantial variation in the binding poses
across subreplicas that need to be explored further, and so on).

In the case of ADRP−tofacitinib, a highly multimodal
distribution is observed across the initial 20 200 ns replicas
with multiple binding sites explored. All four binding sites are
identified while each replica possesses a unique distribution of
tofacitanib−residue contact frequencies. For the ADRP system,
the subreplicas were initiated from the final frame of replicas 1, 9,
14, 15, and 20, where the ligand was positioned at binding sites
A, B, C, and D.

As noted earlier, site C is the crystallographically defined site
of ADP ribose and has the most negative binding affinity for
tofacitinib. This relatively high thermodynamic stability at site C
is also reflected in the occupancy maps and ligand−residue
contact frequency distribution plots of subreplicas initiated from
the end frame of replica 20 as shown in Figure 6. The ligand
possesses a well-defined pose across all replicas when initiated
from site C (subreplicas of replica 20). This is contrary to the
behavior seen when initiating subreplicas from the ligand
located in other binding sites where the ligand explores multiple
sites over each set of subreplicas as also evident from Figure 6.
Overall, this provides evidence that tofacitinib would act to
competitively inhibit the protein.

The important thing to note here is that the aleatoric nature of
MD has been utilized to our advantage to substantially
accelerate the exploration of phase space by introducing
appropriate bias to the sampling compared to a single simulation
of the duration given by the aggregate time of all runs under the
splitting protocol in a much shorter wall-clock time. In the
following paragraphs, we further substantiate this point by
comparing the results from biased and unbiased sampling.

First of all, we compare the contact frequency distribution of
the aggregated (biased) sampling using the splitting protocol (9

Table 4. Mean and Spread (That Is, Difference between
Extreme Values) of ΔGdirect Across All Replicas for the
Binding Site That Is Visited by the Most Number of Replicas
for Each System Studieda

system mean spread (no. of replicas)

ADRP−tofacitinib −4.03(0.20) 1.83(9)
PLPro−GRL −3.47(0.27) 0.77 (2)
3CLPro−93J −4.74(0.74) 7.26 (8)
3CLPro−RQN −3.32(0.23) 2.64 (10)
3CLPro−RQN (with LZE) −3.95(0.32) 2.16 (6)
3CLPro−LZE (with RQN) −3.63(0.55) 3.80 (6)

aNote that such a binding site is not always the experimentally
determined one. Error bars are the standard errors. All values are in
kcal/mol.
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μs) with those from all the individual unbiased sampling from
the 10 long simulations (10 μs each). Figure 7 (top) displays
such comparisons for ADRP−tofacitinib complex (refer to
Figure S7 in the Supporting Information for all other systems). It
is evident that each 10 μs replica samples a mere subset of
possible binding sites explored across the 9 μs of the splitting
protocol. The only exception to this general observation are the
contacts of the ligand with residues 140−160 that are exclusively
observed in long simulations. We will discuss this exception
below. The significant difference in sampling between the
splitting protocol and each individual long replica is quantified
with two-sample KS statistics. For ADRP system, KS statistics
varies between 0.25 and 0.36 with an average of 0.31, and the
average of all corresponding p-values is 1.37 × 10−5. Table 5
shows mean and range of KS statistics values for other systems.
They fall in a similar range going as high as 0.6 and as low as 0.13
in some cases.

Figure 3 displays a p-box for the contact frequency
distributions for the splitting protocol as well as all long replicas
separately for the ADRP system (and Figure S5 for other
systems). It clearly shows that the bounds on the cumulative
probability of the ligand contacting a given residue across the full
set of simulations furnish a clear visualization of the aleatoric
uncertainty that is associated with the ligand−residue contact
frequency across all simulations.

On carefully observing Figure 7 (top), it can be noted that
when considering all long trajectories in aggregate, we are able to
recover all ligand−protein interactions which are identified

across the splitting protocol. To see this more clearly, we plotted
the ligand−residue contact frequency distributions for aggre-
gated sampling time from both the splitting protocol (9 μs in
total) as well as unbiased sampling (100 μs in total) for the
ADRP system in Figure 7 (bottom). Here we see that the
concatenated trajectory reproduces all modalities which occur
across the splitting protocol, albeit with different statistical
weights. Incidentally, if our aim is to simply explore all possible
binding sites and dominant poses within those sites, the
unbiased long time scale protocol is far less efficient than the
splitting protocol which achieves this aim in an aggregate of 1
day and 7 h of wall clock time rather than 43 days 2 h of wall
clock time required with the former. However, care must be
taken when thermodynamic quantities need to be evaluated/
predicted using the splitting protocol as the biased sampling
leads to biased weights of the microstates sampled that may
affect the averages obtained.

Nevertheless, there are advantages to performing an ensemble
of long simulations rather than the splitting protocol. Namely,
there are key poses and contacts identified during the long time
scale protocol which are highly unlikely to be observed by the
shorter time scale splitting protocol. In Figure 7 (top), we see
three tofacitinib−ADRP contacts which were observed during
the long time scale protocol but not during the splitting
protocol. These contacts occur with residues Asn37, Leu53, and
Val36. Upon inspection, we find that all three residues are buried
deep within site C (the crystallographically determined binding
site). This indicates that a long duration of wall time is typically

Figure 5. Probability density functions of ΔGdirect values using 5 bins as well as sampling distributions of mean direct free energies (⟨ΔGdirect⟩) obtained
with bootstrapping (5000 resamples) for four of the systems studied at their respective crystallographic binding sites. Bar plots display density
histograms of the set of final ΔGdirect values from all replicas that sample the respective bindings sites, which constitutes the original sample used for
bootstrapping, whereas solid lines represent kernel density estimations of corresponding sampling distributions of mean obtained using bootstrapping.
Sizes of the original samples are shown in the text boxes within each plot. The data suggests that there may be non-Gaussian behavior in the underlying
distribution. The x-axis is expressed in kcal/mol.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00020
J. Chem. Theory Comput. 2023, 19, 3359−3378

3369

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00020/suppl_file/ct3c00020_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00020/suppl_file/ct3c00020_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00020?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00020?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00020?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00020?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


required in order to explore these “rare” poses as access is
required to more buried regions of the ADRP active site. It
should be noted that such contact frequency peaks correspond-
ing to conformations that are exclusively sampled in the “long”
trajectories are present much more prominently in case of all
other systems studied (see Figure S7).

Until now, we have discussed the variation across long time
scale MD trajectories and emphasized that ensemble simulations
are necessary for UQ irrespective of the duration of simulation.
However, as already discussed in section 1, several accelerated
sampling protocols (including the splitting protocol employed
in this study) that are based on performing “ensembles” are also
expected to exhibit similar variation and would require
performing ensembles for UQ. We have already shown this for
replica exchange methods in some of our previous works.17,56

Nevertheless, this aspect has not been addressed adequately in
the literature for other accelerated sampling protocols as the

reported errors for such methods are all derived from the data
generated from a single execution of the protocol, but never
from ensembles comprising multiple instances. One reason for
this shortcoming might be the computational cost associated
with all these methods. We hope to return with a subsequent
study where we will discuss this issue systematically.
4.1.3. Free Energy Methods: Direct versus ESMACS. In this

section, we have compared free energies obtained from different
free energy protocols. We have already seen ΔGdirect results for
the different systems in previous sections. Now, we directly
compare them to ΔGESMACS results obtained through the
ESMACS protocol for the ADRP−tofacitinib system. The
standard ESMACS protocol (denoted as “ESMACS-s” which
involves performing an ensemble typically of 25 MD simulations
of 4 ns duration starting from a chosen conformation) has been
extensively applied to a diverse range of protein−ligand systems
and shown to rank ligands with very high precision.66 In this

Figure 6. ADRP−tofacitinib complex with splitting protocol: (A) Distribution of ligand−residue contact frequencies for each set of subreplicas. (B)
Volume occupancy maps of the ligand around protein rendered at an isovalue of fractional occupancy 0.03. For each set of subreplicas, the wireframe
isosurface represents the area of the simulation box where the ligand is likely to be found with 97% probability.
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study, we chose the most stable binding pose (the one with the
least RMSD) from the different subreplicas of the splitting
protocol at each binding site as the starting structure for our
standard ESMACS calculations. Table S1 and Figure 8 show a
comparison of ΔGdirect and ΔGESMACS‑s. We find that both
methods achieve strongly correlated results with a correlation
coefficient of 0.87.

The direct method involves a much larger amount of sampling
as compared to ESMACS-s which involves performing short
MD simulations of only a few nanoseconds duration. It is,
however, notable that ESMACS-s is still able to obtain almost
identical ranking of ligand−protein complexes with such little
sampling, making it a much more efficient method when
accuracy is not necessary. Nevertheless, it is well-known that
ESMACS-s results depend heavily on the initial binding pose/
structure of the ligand−protein complex being studied due to
the short duration of simulations; this can be a drawback in some
cases where the initial structure is not known correctly. In such

cases, ESMACS-s is not so useful as resultant ΔG values may
vary substantially (see specific details in the Supporting
Information). On the other hand, due to substantially more
sampling, the direct free energy method is expected to overcome
this drawback. In this study, we have performed ESMACS
calculations using all “bound” conformations (as defined so
during ΔGdirect calculation) extracted from all “long” trajectories

Figure 7.Contact frequency distributions of all “long” (10 μs) replicas individually (dashed lines in the top panel) as well as concatenated (solid orange
line in the bottom panel) compared to that of the splitting protocol (9 μs) (solid blue line) for ADRP−tofacitinib complex.

Table 5. Mean and Range of KS statistics Values Comparing
Splitting Protocol with Each Long Replica for All Systems
Studieda

system mean range KS ≥ 0.2

ADRP−tofacitinib 0.31 0.25−0.36 100
PLPro−GRL 0.30 0.21−0.47 100
3CLPro−93J 0.32 0.21−0.48 100
3CLPro−RQN 0.21 0.14−0.39 58.3
3CLPro−RQN (with LZE) 0.42 0.13−0.6 83.3
3CLPro−LZE (with RQN) 0.26 0.18−0.44 83.3

aThe number of KS values ≥ 0.2 (an arbitrary threshold) is given in
percent terms.

Figure 8. ΔG values obtained from different free energy protocols:
ΔGdirect compared against ΔGESMACS using both the standard ESMACS
protocol as well as that using bound conformations extracted from
“long” trajectories. “corr” denotes the Pearson’s correlation coefficient.
Dashed lines denote the best fit lines for each plot. All values are in kcal/
mol.
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such that the ensemble averaging is performed across all replicas
that sample a given binding site (denoted as “ESMACS-l”). Free
energies so obtained are expected to be free from the
dependence on starting structures and better correlated with
ΔGdirect. This is evident in Figure 8 where ΔGESMACS‑l are
consistently more negative than ΔGESMACS‑s and have a higher
correlation coefficient of 0.95. This is because all the different
binding poses sampled during the long duration of simulations
have been taken into account with appropriate weights. The key
conclusion is that it is sufficient to apply ESMACS-s for ranking
ligands based on their binding affinities when the starting
structure is confidently known; otherwise extensive sampling
becomes necessary.
4.2. Allosteric Modulations in Main Protease. In this

section, we present important allosteric mechanisms in the main
protease of SARS-CoV-2. Using our ensemble-based methods,
we were able to reliably recognize allosteric modulations
hitherto unknown. We elucidate binding cooperativity between
RQN and LZE ligands such that the presence of LZE affects the
binding interactions of RQN at its active site and vice versa. Such
modulations also provide an explanation for the inhibitory effect
of LZE. Thanks to our ensemble approach, we are able to
confidently state that such effects do not affect RQN’s binding
affinity. In addition, we also discovered an unknown mechanism
of action of RQN ligand which has been shown to act by binding
at the substrate binding site. We show that RQN binds at a
binding site away from the substrate binding site triggering the
rotation of domain III of the main protease. We also show that
this rotation is prevented by the binding of LZE. Below we
discuss all the above novel discoveries in detail.
4.2.1. Cooperative Binding of RQN and LZE. Ligand RQN

binds to the active binding site of the 3CLPro target protein
whereas LZE binds to the allosteric binding site II.63 In this
study, we have performed simulations that contain both RQN
and LZE ligands binding to the 3CLPro target at the same time.
Therefore, we discuss the observed effect of the presence of LZE
on the binding of RQN ligand by comparing the results from this
system with those from the system containing only RQN. First
of all, the presence of LZE does not affect the value of ΔGdirect for
RQN binding with 3CLPro. The respective values in the
presence and absence of LZE are −3.04 ± 0.39 kcal/mol and
−3.32 ± 0.23 which are statistically the same. However, the
important thing to note here is that the respective spreads
(difference between extremes) in ΔG values for these systems
are 1.54 kcal/mol (ranging from −3.97 to −2.43 kcal/mol) and
2.64 kcal/mol (ranging from −4.56 to −1.92 kcal/mol) which
are both much larger than the difference between their mean ΔG
values. This indicates the importance of performing ensembles
in order to obtain statistically robust and reliable conclusions.
For instance, taking the opposite extremes of ΔGdirect values for
both systems, we could have obtained differences of either −2.05
or 2.13 kcal/mol in the presence and absence of LZE,
respectively, leading to diametrically opposite conclusions on
its effect on the binding of RQN. But on performing ensemble
simulations we are able to state with confidence that no
statistically significant effect has been observed.

Another important effect that has been observed is the
emergence of a new binding site for RQN (denoted as C2), very
close to the experimentally observed binding site (denoted as
C), when binding to 3CLPro active site in the presence of LZE.
Experimentally, it has been shown that the binding of LZE at
allosteric site II displaces the loop 153−155 such that the Cα
atom of Tyr154 moves 2.8 Å, accompanied by a conformational

change of Asp153.63 This loop is connected to loop 167−172
through a β-sheet strand 156−166 which is expected to cause a
shift in the former as well. We have quantified this effect using
our simulations. Five replicas, wherein LZE binds to site B1,
were processed to extract only the frames in which LZE is indeed
bound to the said binding site and RMSDs calculated for loops
153−155 and 167−172 at each frame. Figure S8 displays the
time series of both these RMSD values for all replicas. It can be
clearly seen that the RMSDs of both loops are correlated with
both increasing/decreasing at the same time. This provides
evidence for the displacement of loop 167−172 through LZE
binding. Figure 9 displays binding sites C (red) and C2 (blue)

for RQN in the form of observed volume occupancy maps.
Binding sites C and C2 have loops 167−172 and 186−191 in
common (shown in green). Therefore, the binding of LZE at
allosteric site II brings about conformational changes to the
active site and creates enough space to let RQN bind at a slightly
different location, very close to the original site. It appears that
such a change does not have any substantial impact on the
binding interactions of RQN with the residues of site C, thereby
not affecting its binding affinity. However, its sampling
frequency is certainly affected such that, in the absence of
LZE, it is sampled by 10 out of 12 “long” replicas, whereas in its
presence, it is sampled only by 3 out of 12 “long” replicas. On the
other hand, site C2 is sampled in 2 out of 12 “long” replicas
(exclusively in the presence of LZE). A similar effect has been
observed in the case of LZE with RQN present such that a new
close-by binding site (denoted as B2) is sampled along with the
crystallographically determined binding site (denoted as B1).
Table 2 and Figure 4 include both such binding sites (for both
RQN and LZE in the presence of each other) as experimental
binding sites and display results accordingly.

Figure 9. Effect of the presence of LZE on the binding of RQN. The
experimental binding site (red) as well as the alternate binding site
observed (blue) are shown in terms of volume occupancy maps using
wireframe isosurfaces at isovalue 0.3. The crystallographically
determined binding pose has also been shown in the “bonds”
representation. Loops 167−172 and 186−191 (shown in green) are
common to both binding sites. Loops 40−43 and 141−145 (shown in
orange) are exclusive to the experimental binding site, whereas loop
182−185 and residues 134−135 are exclusive to the alternative site
observed.
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4.2.1.1. LZE Inhibition Mechanism. It is noteworthy that the
displacement of loop 167−172 induced by LZE binding also
provides a possible mechanism of its inhibitory effect. It is
known that 3CLPro is only active as a dimer.82,83 After its
dimerization and activation, the N finger of each monomer
interacts with Glu166 of the other to perform the catalytic
activity. Similarly, His172 is involved in forming a salt-bridge
with the other monomer essential for dimerization.82 Thus, the
displacement of loop 167−172 negatively affects the dimeriza-
tion of 3CLPro which explains the inhibitory effect of LZE
binding.
4.2.2. Alternative Mechanism of Action of RQN Inhibition.

It is known that RQN (also known as MUT056399) binds at the

substrate binding site of 3CL protease (also known as main
protease) and inhibits viral replication by blocking access to the
catalytic site consisting of Cys145 and His41.63 In this study, we
have uncovered another mechanism of action of RQN when
binding to 3CL protease through which it is able to inhibit the
catalytic activity of the main protease. This involves binding to a
different binding pocket (denoted as A1). Figures S9−S11
display RMSD time series of Arg298 for all 12 “long” replicas for
all three 3CLPro complexes studied (binding to 93J, RQN, and
RQN + LZE). There are sections of trajectories in several
replicas where the RMSD value shoots up to values as high as 12
Å or more. Interestingly, this behavior is only observed when
RQN is present in the system (that is, we do not see such high

Figure 10. (left) Comparison of the first (purple) and the last (orange) frame of replica 9 of the 3CLPro−RQN−LZE system (see figure S9) with their
domains I and II (residues 1 to 197; the bottom half) aligned. Protein is displayed as ribbons whereas residues Met6 and Arg298 of each frame (also
colored accordingly) are shown as sticks. The hydrogen bond between Arg298 and Met6 in the first frame (purple) is shown as a dashed black line.
Ligand RQN (bound only in the last frame) is displayed as lines (bonds) and balls (atoms). It is clear that domain III (residues 198 to 303) of the
protein rotates leading to a substantial conformational change. (right) Interaction profile of ligand RQN with different protein residues around it (a
magnified version of the binding site from the left panel) with key protein residues displayed additionally as sticks and various interactions as dashed
black lines.

Figure 11. (left) Comparison of the last frame of replica 7 (cyan) and the last frame of replica 9 (orange) of the 3CLPro−RQN−LZE system (see
Figure S9) with their domains I and II (residues 1 to 197; the bottom half) aligned. Protein is displayed as ribbons. Residues Met6 and Arg298 are
shown as sticks whereas ligand LZE is displayed as balls (atoms) and lines (bonds) for replica 7. It is clear that the rotation of domain III (residues 198
to 303) observed in replica 9 does not take place in replica 7 with LZE binding at site B1. (right) Interaction profile of ligand LZE with protein (a
magnified version of the binding site from the left panel) with key protein residues displayed additionally as sticks and various interactions represented
as dashed black lines.
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RMSD values in any replica of the 3CLPro−93J complex).
Moreover, in the case of the 3CLPro−RQN−LZE system, this
behavior is found exclusively in replicas where LZE does not
bind at the binding site B1 (see Figure S9 for details). In other
words, LZE binding at site B1 prevents such a large increase in
Arg298 RMSD. Below we explain both such behaviors in detail.

In order to understand the large RMSD values for Arg298, we
compare the first and the last MD snapshot of replica 9 of the
3CLPro−RQN−LZE system (see Figure S9) which have very
different RMSDs. Figure 10 (left panel) compares the protein
conformations in both of these snapshots. It appears that
domains I and II (residues 1 to 197) are still well-aligned in both
conformations, although domain III has rotated (still keeping its
intradomain conformation intact). This rotation leads to a
substantial change in protein conformation and a corresponding
large increase in Arg298 RMSD. This rotation is similar to the
one experimentally reported to be triggered by R298A
mutation.84 The Arg298 residue is known to play a key role in
stabilizing the relative position of N finger and domain III that is
necessary for the dimerization of the main protease. The
formation of a hydrogen bond between the NH2 of Arg298 and
the backbone oxygen of Met6 has such a stabilizing effect (as
shown by purple residues in Figure 10). Incidentally, RQN
binding to site A1 (as shown in the left as well as right panel of
Figure 10) requires the ligand to move between the N finger and
domain III that creates a gap between Arg298 and Met6 (as
shown by yellow residues in Figure 10). This leads to breaking of
the hydrogen bond between these residues leaving domain III
free to move causing the rotation as observed on mutating Arg to
Ala experimentally. Such a rotation destabilizes the interdomain
structure of the main protease rendering it incapable of
dimerizing. It is well-known that dimerization is important for
the catalytic activity of 3CL protease.84 Thus, we have
discovered a novel mechanism of inhibition by RQN/
MUT056399 without its binding to the substrate binding site.

Another interesting observation from our simulations is that
LZE binding at site B1 prevents this rotation of domain III. In
order to understand this behavior, we compared the last frame of
replica 9 (with domain III rotated) with the last frame of replica
7 (no rotation). Figure 11 (left panel) displays the comparison
of these two conformations (replica 9 in orange and replica 7 in
cyan). Arg298 and Met6 are also shown for replica 7, and it is
clear that they are too far apart to form a hydrogen bond.
Nevertheless, domain III does not rotate at all in replica 7 unlike
replica 9. The proposed explanation here is that the binding of
LZE at site B1 (shown as a surface in Figure 11 (left panel))
provides interdomain stability in lieu of the Arg298−Met6
interaction. As shown the right panel of Figure 11, LZE interacts
strongly with several residues from both domain I/II (107−110)
and III (202, 203, 249, 292, 294), thus holding them together
and preventing the rotation of domain III even in the absence of
the Arg298−Met6 hydrogen bond.

5. CONCLUSIONS
The current consensus in the field of molecular dynamics
simulation is that increasing the length of a single simulation
leads to improvement in the accuracy and precision of calculated
expectation values.85−87 On the basis of chaos theory and the
fact that the ergodic theorem cannot hold for molecular
dynamics simulations on accessible time scales, we probed this
assumption and provided direct evidence that individual
trajectories do not suffice for deriving precise, reproducible,
and accurate results for protein−ligand systems. We showed on

the contrary that ensembles are essential for the calculation of
statistically robust results, regardless of the length of simulation
for this class of systems. On comparing the protein−ligand
contact frequency distributions from ten or twelve independent
10 μs trajectories, 90% or more pairs of trajectories had
significantly different distributions of ligand−protein residue
interactions. The principles and findings of this study are not just
confined to ligand−protein systems and free energy calculations
but, being based on the chaotic nature of any dynamical system
which displays an equilibrium state, are more widely applicable
to molecular dynamics in general and hence should be
accounted for in all MD based applications regardless of the
particular domain of interest.60

To investigate the effect of this uncertainty on the value of a
one-dimensional macroscopic observable, we analyzed the same
set of trajectories in order to determine ligand binding free
energies and their associated statistical distributions. The
specific method which we used for ligand binding free energy
calculations was taken from Pan et al.21 In their paper, the
authors reported strong correlation to FEP calculations but poor
correlation to experiment, stating this poor correlation may be
attributable to force field inaccuracies. In the present study, we
demonstrated that separate trajectories lead to the computation
of completely different results, differing by up to 7.26 kcal/mol.
Our study conclusively demonstrates that binding free energies
from individual simulations are inherently nonprecise and
nonreproducible and do not yield chemical accuracy (±1 kcal/
mol). Clearly, long time scale trajectories probe an insufficient
number of microstates to effectively sample the phase space. In
turn, the lack of agreement with experiment should not
necessarily be attributed to force-field inaccuracies. This is a
paramount example of the importance of taking aleatoric
uncertainty fully into account.

In addition, by executing both the long time scale and splitting
protocols, we have provided insight into the utility of adaptive
sampling protocols. With respect to the length of simulations, it
is clear that the merit of running a long simulation changes as a
function of the time scale of events of interest. In the case of the
systems studied here, no long time scale events (e.g., large-scale
domain rearrangements) need to occur for ligand binding to be
possible. As a result, a simple adaptive sampling protocol was
able to successfully identify all of the sites identified by the long
time scale protocol albeit with significantly less wall time
required (1 day 7 h for adaptive sampling as compared to 43 days
2 h for 10 μs of simulation for the ADRP system).

Beyond these implications, the findings in this work also show
how ensemble based computational protocols can be used to
inform the process of drug discovery. For instance, with respect
to ADRP, 4 binding sites that tofacitinib can bind to were
identified within both the long time scale and splitting protocols.
From our binding free energy analysis, we identified that
tofacitinib binds to the crystallographically determined binding
site with the greatest affinity out of each of ADRP the binding
sites. This indicates that, in practice, tofacitinib would act as a
competitive inhibitor of ADRP. Similarly, various binding sites
of interest were identified for other ligand−protein complexes
studied with similar conclusions made. In addition, the discovery
of noncrystallographically resolved binding sites is of great
interest for a future study which would aim to elucidate whether
any of these binding sites can propagate allosteric effects to the
substrate binding site. This would provide a novel mechanism by
which to target the protein and induce antiviral effects. Finally,
we compared the “direct” free energy method with ESMACS
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and discussed various scenarios where each method has an
advantage or limitation. ESMACS is very efficient in ranking
ligands based on their binding interactions with much less
computational cost as compared to the direct binding affinity
method. However, it is subject to the availability of a stable
binding pose as the starting structure, in the absence of which
long simulations do a better job. We hope that this will help
others working in this domain to choose an appropriate free
energy method for their purposes.

Finally, the use of ensemble methods enabled us to discover
the allosteric mechanism through which the binding of a ligand
at the substrate binding site of 3CLPro is affected by binding of
another ligand at an experimentally known allosteric binding
site. We showed that the two binding sites are connected via a β-
sheet strand that causes distortion to the cavity of the substrate
binding site relative to its conformation in the absence of such an
allosteric effect. Such a distortion of the main binding site has a
negative impact on the process of dimerization of the main
protease which is essential for its activity. This explains the
inhibitory effect of ligand binding at the allosteric binding site.
We also discovered a novel mechanism of inhibition for a ligand
hitherto only known to bind at the substrate binding site. We
found that this ligand binds to an alternative binding site,
blocking a key interdomain hydrogen bond leading to the
rotation of domain III of the main protease and thereby
preventing its dimerization and hence catalytic activity.
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