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Abstract

The ferrimagnetic phase of the sawtooth chain with mixed ferromagnetic nearest-
neighbour interactions J and antiferromagnetic next-nearest-neighbour interactions J ′

(within the isotropic Heisenberg model) was previously characterized as a phase with
commensurate order. In this paper, we demonstrate that the system in fact exhibits an
incommensurate quantum spin spiral. Even though the ground state is translationally
invariant in terms of the local spin expectations 〈Si〉, the spiral can be detected via the
connected spin-spin correlations




Si · S j
�

− 〈Si〉 ·



S j
�

between the apical spins. It has a
long wavelength that grows with J ′ and that soon exceeds finite-system sizes typically
employed in numerical simulations. A faithful treatment thus requires the use of state-
of-the-art simulations for large, periodic systems. In this work, we are able to accurately
treat up to L = 400 sites (200 unit cells) with periodic boundary conditions using the
density-matrix renormaliztion group (DMRG). Exploiting the SU(2) symmetry allows us
to directly compute the lowest-energy state for a given total spin. Our results are corrob-
orated by variational uniform matrix product state (VUMPS) calculations, which work
directly in the thermodynamic limit at the cost of a lower accuracy.
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1 Introduction

1.1 Frustration and ferrimagnets

The Lieb-Mattis theorem [1, 2] states that for a bipartite Heisenberg system with antiferro-
magnetically coupled sublattices A and B, the ground state has the total spin

�

�Smax,A− Smax,B

�

�,
where Smax,A and Smax,B are the maximally possible spins of the respective sublattices. For the
common case that the sublattices are equivalent (i.e., consist of atoms with the same spin)
and are of equal size, this yields a singlet ground state. If they are inequivalent, one obtains
a ferrimagnet with a predictable ground-state spin and opposite orientations of the sublattice
polarizations.

The situation gets more complicated if frustration is allowed to enter into the picture and
the couplings become non-bipartite. In addition, mixed ferro- and antiferromagnetic couplings
can result in a ferrimagnet even for equivalent sublattices. This is the case we will consider in
this paper.

Interacting localized spins are commonly described by the Heisenberg model, which can
be generally written down as

H =
∑

i< j

Ji jSi · S j , (1)

where Si = (S x
i , S y

i , Sz
i ) is the spin operator at site i and Ji j are the coupling constants that

define the geometry. Since the Heisenberg Hamiltonian commutes with each component of
the vector of the total spin Stot =

∑

i Si as well as with its square,

[H,S2
tot] = 0 , (2)

there exists a simultaneous eigenbasis of H and S2
tot, and the ground state can in principle

take any value of Stot between 0 and LS, where L is the number of sites and where Stot is
determined from




S2
tot

�

= Stot (Stot + 1) . (3)
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Intuitively, it is clear that for the mixed-coupling case, where Ji j > 0 for some sites and Ji j < 0
for others, there should be a region where neither the singlet state Stot/L = 0, nor the ferromag-
net Stot/L = S minimizes the energy and the ground state will have some partial polarization
0< Stot/L < S. For later purposes, we also introduce the quantum number Mtot related to the
conservation of the z-component, i.e., a U(1) spin symmetry:




Sz
tot

�

=
∑

i




Sz
i

�

= Mtot . (4)

Since the Lieb-Mattis theorem does not hold anymore in the frustrated case, Stot must
be determined from a full many-body calculation. In addition, frustration may favour non-
collinear spin-spiral or canted states [3–5]. This should be understood in a quantum sense: A
finite polarization can be interpreted as a spontaneous breaking of the SU(2) symmetry down
to U(1), with the total spin pointing along the quantization axis. Hence, there is no classical
non-collinear order, where the angle of the classical vector 〈Si〉 = (




S x
i

�

,



S y
i

�

,



Sz
i

�

) would
vary as a function of the site index i [6]. However, the spin-spin correlations may peak at a
value of the wavevector not equal to 0 or π, which signals non-collinearity. An alternative
diagnostic is the susceptibility to small twists [3,7].

From an experimental perspective, there are several examples of systems with mixed ferro-
and antiferromagnetic interactions. Some one-dimensional cuprates can be described as ex-
tended S = 1/2 Heisenberg chains with nearest-neighbour exchange J < 0 and next-nearest-
neighbour exchange J ′ > 0 [8–11]. Another case are single-molecule magnets (SMM), a
subclass of which is based on Mn ions of various sizes and geometries [12]. The largest to
date are the {Mn70} and {Mn84} wheels [13,14] with S = 2 Mn(III) centres and a surprisingly
low total spin of Stot = 5− 8. These are finite, but still quite challenging systems, which have
received thorough theoretical attention only recently [15], pointing to a necessity of mixed
FM-AFM interactions to achieve such a low spin.

1.2 The sawtooth chain

In this work, we focus on another FM-AFM system, the “sawtooth” or “delta” (∆) chain [3,
5, 16–21], which consists out of vertex-sharing triangles and which is probably the simplest
1D geometry with geometrical frustration1 (see Fig. 1). It features a two-site unit cell with
alternating “apical” (A) and “basal” (B) spins. The corresponding Heisenberg Hamiltonian is
given by

H = J
∑

i

�

SA
i · S

B
i + SA

i · S
B
i+1

�

+ J ′
∑

i

SB
i · S

B
i+1 , (5)

where the sums run over the unit cells (L = 2Ncells). J and J ′ are the exchange coupling
constants, one of which sets the energy scale. The sawtooth chain comes essentially in two
variants: An AFM-AFM one with both J > 0 and J ′ > 0 [3,21–28]; and a mixed FM-AFM one
with J < 0 and J ′ > 0 [5,17–20].

Experimentally, the sawtooth geometry is found for atacamite (AFM-AFM, S = 1/2,
J ′/J ≈ 3.29) [29], for the ring molecule Fe10Gd10 [30] (FM-AFM, mixed S = 5/2 and
S = 7/2, J ′/
�

�J
�

� ≈ 0.65) and for a malonato-bridged Cu complex [17] (FM-AFM, S = 1/2,
J ′/
�

�J
�

�≈ 0.91).
In this paper, we investigate the homogeneous FM-AFM S = 1/2 case, relevant for the last

material. We note that J ′/
�

�J
�

� ≈ 0.91 [17] is within the interesting region J ′/
�

�J
�

� ∼ 1, where
the couplings are of equal strength. We will thus pay special attention to the point J ′/

�

�J
�

�= 1
in this work.

1While the kagome lattice is also composed out of vertex-sharing triangles, it is complicated by closed loops.
The sawtooth chain, on the other hand, is a special case of a delta tree without closed loops [16].
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If the coupling between the apical spins cannot be neglected, one needs to add the corre-
sponding term to the Hamiltonian:

Hγ = γJ ′
∑

i

SA
i · S

A
i+1 . (6)

For γ = 1, the Hamiltonian reduces to an extended Heisenberg chain [31, 32]. In this work,
we only deal with the sawtooth limit γ= 0.

<latexit sha1_base64="UVxdlpgsTPNaqrtpbxywvgTGcuo=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqIVF0EasIpoPSI6wt9kkS/b2jt05IRz5CTYWitj6i+z8N26SKzTxwcDjvRlm5gWxFAZd99vJrayurW/kNwtb2zu7e8X9g4aJEs14nUUy0q2AGi6F4nUUKHkr1pyGgeTNYHQz9ZtPXBsRqUccx9wP6UCJvmAUrfRwd+V2iyW37M5AlomXkRJkqHWLX51exJKQK2SSGtP23Bj9lGoUTPJJoZMYHlM2ogPetlTRkBs/nZ06ISdW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9Sz8VKk6QKzZf1E8kwYhM/yY9oTlDObaEMi3srYQNqaYMbToFG4K3+PIyaZyVvfNy5b5Sql5nceThCI7hFDy4gCrcQg3qwGAAz/AKb450Xpx352PemnOymUP4A+fzB5HIjVc=</latexit>

J < 0
<latexit sha1_base64="5W0zPSVSg2TkBGhSewxVNWlnkig=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mVop6k6EU8VbAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYTVZpF8tFMYuoLPJQsZASbTLo/vXb75YpbdWdAy8TLSQVyNPrlr94gIomg0hCOte56bmz8FCvDCKfTUi/RNMZkjIe0a6nEgmo/nd06RSdWGaAwUrakQTP190SKhdYTEdhOgc1IL3qZ+J/XTUx45adMxomhkswXhQlHJkLZ42jAFCWGTyzBRDF7KyIjrDAxNp6SDcFbfHmZtM6r3kW19lCr1G/yOIpwBMdwBh5cQh3uoAFNIDCCZ3iFN0c4L8678zFvLTj5zCH8gfP5A/VujYo=</latexit>

J 0 > 0

B

B-B: antiferromagnetic correlations

A-A: quantum spin spiral correlations

A

A: strongly polarized

B: weakly polarized

(a) (b)

Figure 1: Sketch of the FM-AFM sawtooth chain and the proposed magnetic order in
the ferrimagnetic phase. The apical and basal sites are labeled as “A” and “B”, respec-
tively. (a) Schematic visualization of the spin-spin correlations. (b) Visualization of
the spin polarization pattern. Both the quantum spin spiral (A-A) and the AFM order
(B-B) can only be detected via the connected spin-spin correlations and not via the
polarization.

1.3 Previous results

We briefly summarize the state of knowledge regarding the S = 1/2 AFM-AFM sawtooth chain.
It features three phases as a function of J ′/J , namely gapless antiferromagnetic, gapped dimer-
ized, and gapless non-collinear [3,21]. The non-collinear phase has not been much explored to
the best of our knowledge; most studies have focused on the dimerized phase, where a valence-
bond solid (VBS) ground state appears for J ′ = J , which has solitonic excitations [21–23]. Flat
magnon bands appear at the specific point J ′/J = 1/2 [28,33–35] and lead to an exceptionally
large jump from full saturation to half saturation due to localized magnons [24–27].

We will now recapitulate prior results for the mixed-coupling (FM-AFM) S = 1/2 sawtooth
chain, which is the subject of this paper. A first theoretical treatment used exact diagonaliza-
tion (ED) as well as density-matrix renormalization group (DMRG) calculations for odd chain
lengths L = 7,11, 15, . . . , 31, 47,67 [18]. For J ′ = 0 the system must clearly be ferromagnetic
(with Stot/L = 1/2), and it is found that ferromagnetism persists for small J ′/

�

�J
�

�. A transi-
tion to a ferrimagnetic phase is observed for J ′/

�

�J
�

� = 0.5. The total spin per site was found
to follow Stot/L = (L − 1)/ (4L) + 1/2L and thus approaches 1/4 for L → ∞. No further
statements on the nature of the ground state were given in this paper [18].

Later works mostly dealt with particular regimes and specific questions such as the
crossover between the Ising and Heisenberg limits [19], the comparison of magnetization
curves with the experiment [20], or the thermodynamics around the critical point [36], in
particular with an application to the ferromagnetic molecule Fe10Gd10 [37].

Recently, the system received renewed interest, and the properties of the ferrimagnetic
phase (including the finite-γ case) were investigated in great detail using the DMRG for finite
systems with open and periodic boundary conditions (exploiting the U(1) spin symmetry and

4
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using bond dimensions up to χ = 8000) [5]. For γ= 0, previous results [18] were confirmed,
whereby the total spin per site for even rings up to L ∼ 50 is of the form Stot/L = 1/4+ 1/L,
implying that Stot/L can be extrapolated in the thermodynamic limit. The phase was charac-
terized as a commensurate ferrimagnet that only becomes incommensurate for γ > 0.

In this paper, we revisit the sawtooth chain using DMRG with periodic boundary condi-
tions. We exploit the full SU(2) spin symmetry of the problem, access rings larger by about
a factor of 10 and come to a different conclusion about the nature of the ground state: We
find that the total spin takes irrational values 0.25 ≲ Stot/L ≲ 0.28 and probably reaches 1/4
only for J ′ → ∞. The ground state is characterized by an incommensurate quantum spin
spiral in the connected apex-apex correlations

¬

SA
i · S

A
j

¶

−



SA
i

�

·
¬

SA
j

¶

. The main reason for this
discrepancy is that the wavelength of the spiral is generally very large; it grows with J ′ and
soon exceeds finite-system sizes that were considered in prior works. Another confounding
factor are the very small energy gaps between the various spin sectors (in particular for large
values of J ′/
�

�J
�

�), which renders the exploitation of the SU(2) symmetry extremely beneficial
for this problem.

2 Technical details

2.1 Finite systems

For finite systems, we use the DMRG algorithm, which is a well-established approach to com-
pute ground state properties of 1D problems variationally in the space of matrix-product
states [38, 39]. Its effectiveness rests on the so-called “area law” for the entanglement en-
tropy [40], which guarantees a low entanglement for ground states of short-ranged Hamil-
tonians on 1D chains with open boundary conditions, which can be used to truncate the full
Hilbert space to a much smaller relevant space. The main control parameter of this truncation
is called the “bond dimension” χ. We use the one-site algorithm with a subspace expansion
method [41] to dynamically increase the bond dimension during the iterations and have se-
lectively checked that the two-site algorithm [39] yields the same results.

It was shown that for the sawtooth chain, the interpretation of results obtained for open
boundary conditions can be subtle and complicated [5], probably because the Friedel oscilla-
tions at the open ends interfere with the delicate spin order and the small energy gaps. Hence,
it is better to use periodic boundary conditions, but this generally diminishes the effectiveness
of the DMRG and one needs to employ extremely large bond dimensions. However, we can
counteract this by exploiting the SU(2) symmetry of the problem [42,43] and access very large
effective bond dimensions χeff, while numerically working with a much smaller and tractable
χSU(2)≪ χeff.

The exploitation of the SU(2) symmetry boils down to using the Wigner-Eckart theorem
which states that under SU(2) symmetry, matrix elements only depend on the spin projections
via Clebsch-Gordan coefficients that can be separated out. This means that the local blocks
within the DMRG ansatz state effectively correspond to 2Sblock+1 states for every intermediate
value of Sblock. The gain is diminished for high polarizations, as one is typically only interested
in the sector with the maximal spin projection Mtot = Stot, which can also be efficiently obtained
with a U(1) code. Nevertheless, SU(2) remains beneficial, as it exactly projects out unwanted
total-spin states with the same Mtot, allows us to compute the lowest energy in every sector of
the total spin E0 (Stot) and to distinguish between a low-spin and a high-spin solution. Table 1
shows the typical bond dimensions used in this work. Large values of Stot require a stable
computation of Wigner 3 j and 6 j symbols for large inputs, for which we use the WIGXJPF

5
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Table 1: Typical bond dimensions and system sizes used in this work in terms of
the system size L and the symmetries exploited in the algorithm. For finite systems,
we always use periodic boundary conditions. For L =∞ and the case of SU(2), we
can only access the sector Stot = 0. Note that for SU(2) and the Stot = 0 sector, the
effective bond dimension is χeff = g ·χSU(2) with a gain factor of g ∼ 5− 10.

L symmetry χ or χSU(2)

40 SU(2) 500
60 SU(2) 2000
100 SU(2) 2000
200 SU(2) 2000
252 SU(2) 3000
300 SU(2) 4000
400 SU(2) 6500
∞ no symm. 1000-1200
∞ U(1) 3000-4000
∞ SU(2) 3000

library [44].
For finite systems, we identify the absolute ground state from the minimum of E0 (Stot).

The error is assessed by computing the variance per site

Var (E)/L =
�


H2
�

− 〈H〉2
�

/L . (7)

As we show in App. A.1, this measure is proportional to the actual error in the ground-state
energy density, allowing us to put error bars on the computed energies. We choose the bond
dimension such that Var (E)/L ≤O

�

10−6
�

around the minimum of E0 (Stot).
In addition, we can assess the accuracy by comparing with results of Lanczos diagonaliza-

tion for smaller system sizes up to L = 36 (see App. A.1). In this case, we exploit the U(1)
symmetry and the conservation of the total momentum and extract the multiplets of the total
spin from the degeneracies in the spectrum.

Since the variance per site has the dimension of energy squared and its scale changes with
J and J ′, we ensure that the largest parameter in the Hamiltonian is of modulus 1: First, we
set J = −1 and increase J ′ up to J ′ = 1. Then, we keep J ′ = 1 and let J go to zero. Only the
ratio J ′/
�

�J
�

� matters for the phase diagram.
The main advantage of working with a finite system is the high accuracy of the DMRG

with the SU(2) symmetry. The main disadvantage are the finite-size effects which become
quite severe for the given problem, even for system sizes of O(102) sites, as will be shown
below.

2.2 Infinite systems

For infinite boundary conditions, we use the variational uniform matrix-product state (VUMPS)
formalism [45, 46], which is based on the time-dependent variational principle and offers
improved efficiency over the original infinite DMRG [38]. Our numerical unit cell encompasses
two physical unit cells (4 sites) in order to allow for AFM order. While finite-size effects are
eliminated, this approach comes at the disadvantage that the exploitation of symmetries is
limited: We can only use Stot = 0 in the case of SU(2) and only a rational Mtot within the unit

6
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cell in the case of U(1). Since the finite-system data indicates that the physical ground state is
generally not a spin singlet, we can thus not employ the highly efficient SU(2) numerics.

If U(1) symmetries are exploited in the infinite system, there is to the best of our knowledge
no practical way to compute the value of Stot/L in the Mtot = 0 sector. In order to access Stot/L,
we switch off the symmetry altogether [47]. Within the degenerate set of 2Stot + 1 states, the
DMRG tends to converge to the Mtot = Stot sector, whose entanglement is minimal. In this
case,



Sz,α
i

�

and



S x ,α
i

�

(α = A, B) take finite, translationally invariant values (



S y,α
i

�

vanishes
by time-reversal symmetry), and make up the dominant contribution to the total spin formula
in Eq. (3) [48]:

Sαtot/Ncells ≈
r




S x ,α
i

�2
+



Sz,α
i

�2
, Stot/L ≈
�

SA
tot/Ncells + SB

tot/Ncells

�

/2 . (8)

As an error estimate for infinite systems, we look at the convergence with respect to the bond
dimension χ (see App. A.3).

2.3 Expectation values, spin structure factor

A polarized ground state has a (2Stot + 1)-fold degeneracy, and one needs to specify w.r.t. to
which of these states expectation values are computed. Within the SU(2)-symmetric approach
for the finite system, we can directly access each member of the multiplet [42, 43]. In the
infinite system, one can straightforwardly only determine the state with Mtot = 0 using the
U(1)-symmetric algorithm; or the state with Mtot = Stot if no symmetries are exploited.

In order to demonstrate the existence of a quantum spin spiral, we want to compute the
static spin structure factor, i.e., the Fourier transform of the spin-spin correlations. For a local
operator Oαi , we define the connected correlation function as

¬

Oαj Oβl
¶

c
=
¬

Oαj Oβl
¶

−
¬

Oαj
¶¬

Oβl
¶

. (9)

For the specific case of a ring with an even, finite number of unit cells Ncells, the static spin
structure factor is obtained as follows:

Cαβ[O](k) =
1

Ncells

Ncells/2
∑

j,l=−Ncells/2+1

eik( j−l)
¬

Oαj Oβl
¶

c

=
Ncells/2
∑

l=−Ncells/2+1

eik( j0−l)
¬

Oαj0Oβl
¶

c

=
¬

Oαj0Oβj0

¶

c
+ eikNcells/2
¬

Oαj0Oβj0+Ncells/2

¶

c

+
Ncells/2−1
∑

d=1

�

eikd
¬

Oαj0Oβj0+d

¶

c
+ e−ikd
¬

Oαj0Oβj0−d

¶

c

�

.

(10)

We have assumed translational invariance, so that the result is independent of the site j0, and
have rewritten the summations in terms of the distance d. In the infinite system, one can
evaluate the same equation for Ncells→∞, which on a technical level is achieved by using the
MPS transfer matrix [46]. For α = β , real matrix elements, and neglecting the second term
that extends across the whole system, Eq. (10) reduces to a cosine transform:

Cαα[O](k)≈
¬

Oαj0Oαj0

¶

c
+ 2

Ncells/2−1
∑

d=1

cos (kd)
¬

Oαj0Oαj0+d

¶

c
. (11)
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In the finite case with SU(2) symmetry being exploited, we compute2

Cαβ[S] = Cαβ[S x] + Cαβ[S y] + Cαβ[Sz] , (12)

and k can only take discrete values k = 2πn/Ncells with n = 0,1, . . . Ncells − 1. Due to the
SU(2) symmetry of the problem, the first term in Eq. (9) is independent of Mtot for the vector-
vector correlations. In order to subtract the correct asymptotic value (and avoid a divergence
at k = 0), the second term is evaluated for Mtot = Stot. In the infinite case with U(1) symmetry
being exploited, we compute

lim
Ncells→∞

Cαβ[Sz] , (13)

where k can take continuous values. In this case, both terms in Eq. (9) depend on the choice of
Mtot, while we can only access the sector Mtot = 0. However, we observe that the first term in
Eq. (9) does not take a finite asymptotic value and that the second term vanishes (see Sec. A.4
and Fig. 16).

While the two correlation functions in Eqs. (12) and (13) do not coincide exactly, they can
both be used to demonstrate the existence of a spin spiral and to determine its wavevector
kpeak ̸= 0,π.

3 Exemplary case J = −1, J ′ = 1

Figure 2 shows the energy profile E0 (Stot) for finite systems (compared with the infinite one)
in the interesting case of J = −1, J ′ = 1. For finite systems, the total spin per site must
be rational, and we find the lowest-energy state (i.e., the true ground state) in the sector
Stot/L = 27/100 for L = 100,200 and in the sector Stot/L = 68/252 for L = 252. In all cases,
these are the closest possible rational values to 0.270, so that this result seems converged
w.r.t. the system size. The infinite-system result (without symmetries) appears to be irrational,
and to the leading digits we obtain Stot/L ≈ 0.270(2). Thus, our results are not in agreement
with Stot/L = 1/4 that was obtained before [5,18], motivating a deeper investigation.

The ground-state energies are in good agreement between the finite- and infinite-system
calculations (both for the case that no symmetry and that U(1) symmetry is exploited). In
the curve E0(Stot)/L, we observe a steep barrier towards high spins and a much shallower
barrier towards small spins, where the energy density E0/L varies only in the fifth digit after
the decimal point for the system sizes considered. Moreover, the energy gaps become smaller
with larger system sizes, indicating gapless excitations, but only with respect to a decrease of
the total spin.

It is notable that large, macroscopic changes in the total spin have very small gaps. Even
the sector Stot = 0 is very close in energy to the ground state, as was noticed before [5]; the
inset of Fig. 2 shows that the singlet energy approaches the ground-state energy for large bond
dimensions. This is, however, not an effect of frustration and is already observed for the FM
Heisenberg chain.3

2Note that within the SU(2)-symmetric approach, the question of accessing individual x , y, z-components of
either
¬

Sαj · S
β

l

¶

or
¬

Sαj
¶

becomes meaningless. Technical details can be found in Refs. [42,43].
3For the FM Heisenberg chain, the total spin needs no calculation, as one can analytically show that it is maxi-

mal [49].
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−0.27182

−0.27181

−0.27180

E
0
/L

L =∞: Stot/L = 0.270(2), E0 = −0.2718(5)

L =∞
no symm.

L =∞
U(1)

L=100
SU(2)

L=200
SU(2)

L=252
SU(2)

L=400
SU(2)

10−4 10−3

χ−1 or χ−1
eff

−0.2718

−0.2717

E/L, L =∞
no symm.

U(1), Mtot = 0

SU(2), singlet

Figure 2: Lowest energies of the sawtooth chain with J = −1, J ′ = 1 in various
sectors of the total spin Stot for finite systems, obtained using the SU(2)-symmetric
DMRG with periodic boundary conditions. The lowest energy among the sectors is
compared with the infinite-system (VUMPS) calculations, where one cannot target a
specific sector of Stot (horizontal lines). The vertical dotted line shows Stot/L com-
puted according to Eq. 8 for the infinite system without symmetries. The respective
bond dimensions can be found in Tab. 1, and the estimation of error bars is outlined
in App. A.1. The inset shows the energy of the infinite system as a function of the
inverse (effective) bond dimension χ−1

(eff) (solid lines are inter/extrapolations). The

two-site variance for the infinite system [45] is of the order of 10−5 (no symmetries),
10−4 [U(1)] and 10−3 ∼ 10−4 [SU(2)].

4 Total spin in the ferrimagnetic phase

We now study the behaviour when moving away from the point J = −1, J ′ = 1. Figure 3 shows
Stot/L as a function of J ′/

�

�J
�

� for different system sizes. The transition from the ferromagnet
Stot/L = 1/2 to the ferrimagnet at J ′/

�

�J
�

�= 0.5 is unambiguous.
At the quantum critical point J ′/

�

�J
�

�= 0.5, the DMRG finds that all values of the total spin
are degenerate within the numerical accuracy, whereas Lanczos (as well as full SU(2) diag-
onalization for smaller systems) indicates that only the values Stot = L/2, L/2− 1, . . . , L/4, 0
are degenerate.

In the ferrimagnetic phase, we observe the following features: (a) After crossing the quan-
tum critical point, Stot/L jumps discontinuously to a value slightly above (but different from)
0.25. (b) One can reach convergence for Stot/L w.r.t. the accessible system size up to J ′/

�

�J
�

�≲ 1.
(c) For J ′/
�

�J
�

� ≳ 1 it appears that we cannot access systems that are large enough to obtain
convergence, and Stot/L features plateaus at various values of the spin. In particular, Stot/L at
some point jumps to a low-spin state 0.005 ∼ 0.01 and eventually to zero. (d) The value of
J ′/
�

�J
�

� where this jump happens increases with the system size.
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∣∣J∣∣
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0.50

S
to

t/
L

FM FiM

L = 16

L = 24

L = 36

L = 60

L = 100

L = 200

Figure 3: Total ground-state spin per site Stot/L for various finite systems with pe-
riodic boundary conditions. For L ≤ 36, the results were obtained using exact di-
agonalization (Lanczos algorithm). For the other values, we used the DMRG with
SU(2) symmetries and identified the true ground state from the minimum of E0 (Stot)
similarly to Fig. 2. FM and FiM denote the ferromagnetic and ferrimagnetic phase,
respectively.

1/161/241/321/401/481/601/1001/200

L−1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
to

t/
L

0.25 + 1/L

J ′/
∣∣J∣∣ = 0.501

J ′/
∣∣J∣∣ = 0.8

J ′/
∣∣J∣∣ = 1.0

J ′/
∣∣J∣∣ = 1.3

J ′/
∣∣J∣∣ = 1.499

Figure 4: The same as Fig. 3 but plotted as a function of the inverse system size L−1

for various values of J ′/|J |. The curve f (L−1) = 0.25+ L−1 is shown for comparison.
For small J ′/
�

�J
�

�, the points collapse to f (L−1) for a certain range of L (green area),
but this is not the case for larger L or larger J ′/

�

�J
�

� (red area).

The chaotic behaviour with respect to the system size already points towards incommensu-
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0.00 0.05 0.10 0.15 0.20 0.25 0.30

Stot/L

−0.2540

−0.2538

−0.2536

−0.2534

−0.2532

E
0
/L

L = 36

L = 40

L = 44

L = 60

L = 100

L = 200

Figure 5: The same as in Fig. 2, but for J ′/ |J | ≈ 1.3 and different system sizes L. The
circle marks the absolute minimum. It is evident that small systems waver between
two minima before eventually settling in the high-spin minimum, cf. the orange line
in Fig. 4.

rate behaviour, while the observation (d) suggests that the low-spin state is a finite-size effect.
We investigate these questions in more detail below.

In order to shed light on the discrepancy between our data and prior results, we now plot
the same data as a function of 1/L in an attempt to perform an extrapolation w.r.t. the system
size (see Figs. 4 and 5), as was done in Refs. [5, 18]. One observes that for not too large
J ′/
�

�J
�

�, the points start collapsing on the curve Stot/L = 1/4+ 1/L, which makes it tempting
to extrapolate Stot/L = 1/4 in the thermodynamic limit. However, if we increase the system
size further instead of extrapolating, we find that the behaviour becomes chaotic somewhere
around L = 44. For J ′/

�

�J
�

� ≳ 1.5, the results in fact do not fall on Stot/L = 0.25+ 1/L at all.
In both cases, this indicates that an intrinsic length scale is surpassed, and this length scale
increases with J ′/

�

�J
�

�. It is thus essential to access systems larger than this length scale (green
area of Fig. 4). This is probably a reason for the discrepancy between our results and previous
works.

Next, we compare the behaviour of large, finite systems L = 100,200 with results obtained
directly in the thermodynamic limit via the VUMPS algorithm (see Fig. 6). One finds that the
infinite-system result for Stot/L is in good agreement with the one for L = 100 up to J ′/

�

�J
�

�≈ 1
and with the one for L = 200 up to J ′/

�

�J
�

� ≈ 1.5 (and still in moderate agreement up to
J ′/
�

�J
�

� ≈ 2.2). The crosses in the plot indicate energetically close sectors of the total spin for
the finite system, illustrating again that the energy minimum is extremely shallow. Finite-size
wavering within these minima is thus not surprising (cf. Fig. 5). One also notices that a second
shallow minimum (Stot/L ∼ 0.01) develops around J ′/

�

�J
�

�≳ 2 at very low spins and eventually
becomes the absolute one. This jump to low spins is not found in the infinite system. Thus,
we concur with Ref. [5] that this jump is most likely a finite-size effect.

One should note that for J ′/
�

�J
�

�=∞ (equivalent to J = 0, J ′ = 1), the apical spins become
free spins. Thus, the ground state is degenerate for all values of Stot/L = 0 . . . 1/4 [18]. This
raises the question what the effect of an infinitesimal J < 0 is. Our numerical methods are
ill-posed to answer this question because any gap will also be infinitesimal. Nevertheless,
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Figure 6: The same as Fig. 3, but including DMRG data obtained for the infinite
system (VUMPS) without exploiting symmetries. In addition, the crosses indicate
sectors of Stot in the finite system for which the energy density is within 10−3 of
the ground-state energy density, illustrating the extreme shallowness of the energy
minima (cf. Fig. 7). The inset shows the (translationally invariant) apical and basal

polarization
Ç




S x ,α
i

�2
+



Sz,α
i

�2
(α= A, B) for L =∞.

we note the following: The inset of Fig. 6 displays the polarization of the apical and basal
spins for the infinite system computed without symmetries, i.e., in the sector Mtot = Stot. The
polarization is translationally invariant, i.e.,




Sα,x
i

�

and



Sα,z
i

�

are independent of i within
numerical inaccuracies (in the sector Mtot = 0, one finds




Sz,A
i

�

≈



Sz,B
i

�

≈ 0), which we
can also confirm for finite systems. We see that the apical spins get more and more polarized
towards 1/2, while the basal spins approach 0. This suggests that in the limit J ′/

�

�J
�

�→∞, one
approaches Stot/L = 1/4 very slowly. However, since the infinite-system calculations become
progressively more difficult, we are only able to reliably treat J ′/

�

�J
�

� = 3 ∼ 4 and cannot
exclude the possibility that additional effects happen for larger values.

Figure 7 is a schematic summary of the findings discussed in this chapter.

5 Static spin structure factor

Next, we demonstrate the existence of a quantum spin spiral. We first note that such a spiral
cannot be detected from the polarization alone since the ground state is translationally invari-
ant (up to numerical errors). In the sector Mtot = Stot, the expectations




SA
i

�

and



SB
i

�

take
values which do not depend on the cell index i; for Mtot = 0, we have




SA
i

�

=



SB
i

�

= 0. Thus,
we compute the static spin structure factor, and we perform the calculation both in the finite
and infinite system.4 The results are shown in Figs. 8 and 9.

Figure 8 shows the apex-apex structure factor CAA[S] for various finite L and J = −1,
J ′ = 1. It features a peak at a small non-zero value of the momentum, and convergence

4We reiterate that the spin structure factor is defined differently in both cases and partially depends on the
choice of Mtot. Details can be found in Sec. 2.3.
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Figure 7: Schematic representation of the energy landscape E (Stot). The parameter
J ′/
�

�J
�

� is increasing from left to right. The yellow blob indicates the absolute energy
minimum. The curves are all exaggerated and the real minima are much more shal-
low (see Figs. 2 and 5).
For J ′/
�

�J
�

� < 0.5, the system is a ferromagnet with maximal spin. At the quantum
critical point J ′/

�

�J
�

� = 0.5, we find that E (Stot) is completely flat and that all Stot
values are degenerate for large L within the numerical accuracy (see Fig. 6). For
J ′/
�

�J
�

� > 0.5, we find a ferrimagnet with 0.25 ≲ Stot/L ≲ 0.28. For finite systems, a
low-spin minimum appears if J ′/

�

�J
�

� is increased further. Eventually this minimum
flattens out and the ground state becomes a singlet. Such a singlet ground state is not
found in the thermodynamic limit. Finally, for J ′/

�

�J
�

� =∞, the apical spins become
free spins and the ground state is degenerate for the values 0≤ Stot/L ≤ 1/4.
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Figure 8: Static apex-apex spin-structure factor as a function of the momentum k
for finite systems with periodic boundary conditions and J = −1, J ′ = 1 (Eqs. (11)
and (12) with α= β = A).
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w.r.t the system size can be reached. For the largest systems of L = 300, 400, we find
kpeak = 14/150π ≈ 0.093π and kpeak = 18/200π ≈ 0.090π. This corresponds to a wave-
length of λcells = 2π/kpeak ≈ 21.4∼ 22.2 unit cells or λ= 2λcells ≈ 42.9∼ 44.4 sites.

While the largest system sizes of L = 200, 300,400 all yield very similar results, there are
strong outliers in the smaller systems: For L = 60 (inset), we find kpeak = 4/30π ≈ 0.13π or
λ = 30 sites, so that slightly decreasing the wavelength to a value that is commensurate with
the system size seems to be energetically favourable. The peak becomes much sharper.
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Figure 9: Static apex-apex spin-structure factor for the infinite system with the U(1)
spin symmetry exploited (Eqs. (10) and (13) with α= β = A). The right inset shows
the position of the peak as a function of J ′/

�

�J
�

� with the same colours as the main
plot. The left inset shows the corresponding base-base structure factor (α= β = B).

Figure 9 shows CAA[Sz] in the infinite system with a continuous k and for different values
of J ′/
�

�J
�

�= 1. For J ′/
�

�J
�

�= 1, we find kpeak ≈ 0.097π in agreement with the finite-size calcula-
tion. The peak moves closer to zero as J ′/

�

�J
�

� is increased. At J ′/
�

�J
�

�= 3, we have kpeak ≈ 0.048
and thus roughly a doubled wavelength of about λ ≈ 82.8 sites as compared with J ′/

�

�J
�

� = 1.
We note that the correlations between the basal spins simply remain antiferromagnetic, with
a sharp kpeak = π (see the left inset of Fig. 9).

In summary, we conclude that the apex spins form a quantum spin spiral with a very long
wavelength that increases with J ′/

�

�J
�

�. Thus, finite-size rings only reflect the behaviour in the
thermodynamic limit as long as L accommodates at least several wavelengths. Quantitatively,
we find that at least L ≳ 2.5λ is necessary. This again illustrates that one needs to access large
systems and explains the discrepancy with prior results.

In Fig. 10, we study the structure factor for a fixed system size of L = 100 as J ′/
�

�J
�

� is
increased beyond J ′/

�

�J
�

� = 1. At J ′/
�

�J
�

� = 1.4, we see that a second peak develops at the
smallest possible non-zero k-value of 2π/50 = 0.04π (λ = 100) in addition to the main peak
at 6π/50 = 0.12π. For J ′/

�

�J
�

� = 1.5, the main peak shifts to 4π/50 = 0.08π (λ = L/2 = 50),
which coincides with the plateau above Stot/L ≳ 0.2 in Fig. 6. Finally, the spiral collapses
completely at J ′/

�

�J
�

�= 2 in favor of pure ferromagnetic alignment with kpeak = 0. This means
that as soon as the wavelength of the spiral becomes too large, finite-size spirals that form a
“standing wave” on the ring with λ = L or λ = L/2 start to compete. Eventually, collinear
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alignment becomes energetically favourable and the spiral breaks down. This coincides with
the jump to a low-spin state in Figs. 3 and 6, giving more evidence that the low-spin plateau is a
finite-size effect: The long-wavelength quantum spin spiral breaks down in a finite system that
is too small to host it. In other words, the value of the total spin is related to the wavevector
of the spiral; we observe that the long-wavelength spiral is only favorable in combination with
a large polarization of 0.25≲ Stot/L ≲ 0.28.
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Figure 10: The same as Fig. 8, but for a fixed system size of L = 100 and different
values of J ′/
�

�J
�

�. The inset shows the position of the main peak as a function of J ′/
�

�J
�

�.

6 Conclusion

We have demonstrated that the ground state of the FM-AFM sawtooth chain with J ′/
�

�J
�

�> 0.5
is a ferrimagnet that features an incommensurate quantum spin spiral for the apical spins as
well as ordinary antiferromagnetic correlations between the basal spins. The incommensurate
behaviour is seen in the spin-spin correlations, while the ground state itself is translationally
invariant.

The wavelength of the spiral is large and grows with J ′/
�

�J
�

�, quickly exceeding sizes
L = 20 − 60 that are used in typical finite-size calculations (with periodic boundary condi-
tions). By exploiting the SU(2) spin symmetry within our DMRG approach, we are able to
accurately treat systems of L = 200−400 sites with effective bond dimensions in the range of
105−106. Using the VUMPS formalism, we can tackle the infinite system without finite-size ef-
fects at the cost of a lower accuracy. The two methods complement each other and corroborate
the above conclusion.

Finally, we have argued that the low-spin plateau found for the FM-AFM sawtooth chain
is a finite-size effect related to the competition of the incommensurate infinite-system spiral
with finite-system spirals of wavelength λ = L, L/2. An intriguing question is whether the
same physics underlies the Mn wheels (as well as related magnetic molecules [12]), which are
finite systems of 70-84 magnetic centres [13–15] and which also exhibit a low-spin ground
state stemming from from mixed FM-AFM exchange couplings [15]. In particular, one may
wonder whether or not the low-spin state in these systems is also connected to quantum spin
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spirals with wavelengths spanning across the whole molecule.
Overall, the FM-AFM sawtooth chain presents an interesting example of the caveats that

come with an extrapolation in the system size. Of course, we cannot fully exclude the possibil-
ity that additional effects appear on even larger length scales beyond what has been considered
here.

An open question for future work is how our observations are affected by an additional
apex-apex coupling γ ̸= 0 (see Eq. (6)) or if the case of AFM-AFM couplings also features
similar incommensurate behaviour, in particular when polarized by magnetic fields [29].

Acknowledgements

C.K. acknowledges support by ‘Niedersächsisches Vorab’ through the ‘Quantum- and Nano-
Metrology (QUANOMET)’ initiative within the project P-1. M.P. is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - project ID 497779765. C.P. is
supported by the Deutsche Forschungsgemeinschaft (DFG) through the Cluster of Excellence
Advanced Imaging of Matter - EXC 2056 - project ID 390715994. J.S. is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - project ID 449703145 as well
as by the Leibniz Supercomputing Center in Garching - project ID pr62to.

A Error estimates

A.1 Energy
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Figure 11: Comparison of the energy density E0/L computed using DMRG with the
exact-diagonalization (ED) result obtained via spinpack [50] for L = 36, J ′/

�

�J
�

�= 0.9
(left) and J ′/
�

�J
�

� = 2 (right), for various values of the total spin Stot. The DMRG
results are computed for different bond dimensions χSU(2), which corresponds to
different energy variances per site (see Eq. (7)). The black line is a linear fit, see
Eq. (A.14). For J ′/

�

�J
�

�= 2 and Stot = 8, 9 we were only able to achieve an agreement
within ε∼ 10−10 − 10−9.
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In order to translate the energy variance per site (Eq. (7)) into an actual error bar for the
energy, we compute the ground state for different energy variances per site and compare with
the result of exact diagonalization for L = 36 (see Fig. 11).

The typical range of values for the variance that we can achieve for large systems is
Var (E)/L ∼ 10−8 − 10−5. We find that in this regime, the variance is linearly related to the
true error ε:

ε∼ 0.337 Var (E)/L . (A.14)

The prefactor may of course depend on both J ′/
�

�J
�

� and L, but Fig. 11 illustrates that it is
roughly the same for J ′/

�

�J
�

� = 0.9 and J ′/
�

�J
�

� = 2. By comparing with exact-diagonalization
results for L = 16 (not shown) we find that the relationship still holds.

Thus, we assume that Eq. (A.14) is generally valid, at least as an order-of-magnitude esti-
mate. This allows us to put error bars ±ε on the energy densities shown in Fig. 2.

A.2 Finite system: translation invariance

We can check to which extent the ground state of the finite system with periodic boundary
conditions is in fact translationally invariant. To this end, we compute




SA
i

�

and



SB
i

�

(for
Mtot = Stot) and quantify their spread using the standard deviation of the distribution for
all choices i = 1,2 . . . Ncells. We reiterate that within the SU(2)-symmetric approach, it be-
comes meaningless to ask for the individual component, one obtains




SA,B
i

�

as a scalar num-
ber. Figure 12 shows a histogram for L = 300, where the results are converged to three digits.
Note that we are hereby showing the worst case, and the distribution is even narrower for
L = 100, 200.
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Figure 12: Histogram of the spin polarization



SA
i

�

(apex) and



SB
i

�

(base) for
L = 300, Stot/L = 81/300 = 0.27, J = −1, J ′ = 1 for all values of i. The stan-
dard deviation of the distribution is taken as the error.

We can repeat the same procedure for a non-local quantity, namely the connected spin-spin
correlations of Eq. (9), which should depend only on the distance d =

�

�l − j
�

� and not on the
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choice of j. We average over all possible choices of j:

Cαβ[S](d) :=
¬

Sαj · S
β

j+d

¶

c
=

Ncells
∑

j=1

¬

Sαj · S
β

j+d

¶

c
, (A.15)

and take the standard deviation as a measure of error. Note that this quantity is independent
of Mtot due to the SU(2) symmetry. Since the calculation is more costly, we only apply it to
selected points. The result for L = 100, 200,300 is displayed in Fig. 13 for 11≤ d ≤ L/4 with
the corresponding error bars. We see again that the ground state is translationally invariant;
the error bars are imperceptible for L = 100,200.
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Figure 13: Connected spin-spin correlations (Eq. (A.15)) as a function of the distance
measured in unit cells, averaged over all possible initial sites for the apical-apical
(AA), basal-basal (BB) and apical-basal (AB) correlations. The standard deviation of
the resulting distribution is taken as the error.

A.3 Infinite systems: error analysis

For the infinite system, we check how the results of Fig. 9 depend on the bond dimension
χ. In the simulation, we let χ grow dynamically and compute the structure factor once the
variational error becomes sufficiently small (see Ref. [45] for details). The result for J = −1,
J ′ = 1 is displayed in Fig. 14. We see that there is no significant change around the main peak,
but there is some variation for very small k. We extrapolate the result in χ−1 at selected points
and find that no appreciable additional peak develops in this region.

A.4 Comparison between finite and infinite systems

Finally, we compare the full spin-spin correlations
¬

SA
j · S

A
j+d

¶

between finite and infinite sys-
tems (see Fig. 15). We reiterate that this quantity does not depend on the choice of Mtot. The
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bond dimensions χ with the U(1) spin symmetry exploited in the VUMPS algorithm.
The result is linearly extrapolated in χ−1 at the selected black points.
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Figure 15: Comparison of the full apex-apex spin correlations for J = −1, J ′ = 1
between finite rings of different sizes and the infinite system (with the U(1) symmetry
exploited) for various bond dimensions as a function of the distance d.

comparison between the curves with L = 100 and L = 400 indicates that finite-size effects are
still manifest for L = 100 and d ≥ 10.
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The infinite-system calculation can reproduce the correlations for small distances (d ≤ 10)
rather well even for small bond dimensions χ. In the long-range regime, however, any finite χ
always leads to an exponential decay and thus very large deviations from the L = 400 result
(which is converged w.r.t. the bond dimension).

Notably, however, the long wavelength of the oscillations is still reproduced. Figure 16
shows that this is almost entirely due to the z-component, so that the quantum spin spiral
manifests itself as a peak in the corresponding structure factor (see Sec. 5). This again illus-
trates that both Eq. (12) and Eq. (13) can be used to demonstrate the existence of the spiral.
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Figure 16: Individual components of the apex-apex spin correlations
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