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In textbooks, we often come across studies where a perfect data set is 
analyzed with a statistical test that tells us everything we want to 
know. However, a typical day in the life of a scientist could not be 
any more different. The data are messy, the research questions are 
not easily translated into statistical tests and there is no single best 

statistical test. In practice, the next best thing is to break the statistical 
analysis up into multiple steps. By conducting multiple statistical 

tests, each informed by and building on the previous one, we hope to 
meaningfully answer a complex and otherwise unanswerable research 

question. This multi-step procedure, however, has a fatal flaw. 
The result of any statistical test is subject to some uncertainty. 

Subsequent analyses should account for this uncertainty, 
otherwise the results are prone to overconfidence.

This dissertation focuses on the uncertainty that arises when 
conducting multi-step inference and consists of three parts. 

The first part discusses uncertainty within statistical models 
and shows that decisions that precede an analysis may already 

conceal uncertainty. The second part discusses uncertainty between 
statistical models and how this can be handled through Bayesian 

model averaging. The final part focuses on making the methodology 
in the previous parts easily and freely accessible by implementing it 

in the free open-source statistical software program JASP.
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Absolute certainty is a privilege of uneducated minds and fanatics.
It is, for scientific folk, an unattainable ideal.

Cassius J. Keyser



x



11
Embracing Uncertainty

A characteristic feature of empirical science is dealing with uncertainty.
Uncertainty usually stems from many sources and finds its way into
empirical research in both expected and unexpected ways. For exam-

ple, suppose a researcher intends to measure a participant’s mental well-being
with a questionnaire. They ask the participant a series of questions and the
participant responds honestly. In this situation, the participant’s responses,
that is, the data, are noisy measurements of what the researcher is inter-
ested in, that is, the participant’s well-being. To account for this uncertainty,
researchers typically ask multiple questions and assume that the noise in an-
swers to individual questions averages out. This is a well-known source of
uncertainty called measurement error. A lesser-known source of uncertainty
originates from statistical models and the decisions made in the interim when
conducting statistical analyses. For example, statistical models, and the cor-
responding analyses, often make assumptions. These assumptions, however,
may be violated and therefore the conclusions of those analyses hinge on the
(un)certainty with which their assumptions are met. In empirical practice, we
often see that this results in a two-step procedure. First, a test is conducted
to examine whether the assumptions made by a subsequent test are violated.
If these assumptions are not violated, then the test of interest is executed.
However, this two-step procedure has a subtle flaw. The uncertainty reported
by the second test does not account for the (un)certainty with which the first
test determined if the assumptions were violated. In fact, the uncertainty
associated with the first test is completely ignored, causing the second test
to produce overconfident results. More generally, the data analysis in empiri-
cal studies often consists of multiple intermediate steps and interim decisions.
Each of these steps typically involves uncertainty and virtually no intermedi-
ate decision is made with absolute certainty. In many studies, however, the
uncertainty of the various intermediate steps is ignored, creating a false level
of confidence that can affect the conclusions. The central theme of this disser-
tation is the uncertainty that arises when conducting multi-step inference and
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how to incorporate all uncertainty into the final results.

1.1 Uncertainty Within a Single Model

The first part of this dissertation concerns itself with uncertainty within a sta-
tistical model. This part illustrates that decisions that precede the application
of a statistical model or analysis may conceal uncertainty. Suppose a group of
patients with a mental disorder is scored by five psychiatrists on a variety of
items, such as psychotic behavior, impulsive behavior, and problem insight. A
common first step in analyzing such data is to take the sample mean of all the
five psychiatrists to obtain one score for each patient on each item. In a second
step, these averages are admitted to some statistical test. This two-step pro-
cedure ignores an important source of uncertainty, namely that the different
psychiatrists did not all give the same score. More specifically, naively averag-
ing makes an implicit assumption that the five psychiatrists are exchangeable
and that their individual differences are irrelevant. Typically, this assumption
is unwarranted because different psychiatrists have different backgrounds and
may have meaningful individual differences that result in heterogeneous scor-
ing behavior. Nevertheless, by sweeping this source of uncertainty under the
rug, the variability in the responses is neglected. This leads to overconfidence
in what is now the “observed” data (i.e., the average scores) that are fed into
subsequent analyses. To see why this leads to overconfidence, note that, at
a minimum, this procedure ignores the standard errors associated with the
sample means. Therefore, the observations used by subsequent analyses are
in fact more variable than the analyses are aware of. However, because all
subsequent analyses are blind to this variability, the uncertainty intervals are
narrower than they should be, leading to overconfident conclusions.

The aim of the first part of this dissertation was to develop models that
explicitly account for the fact that different individuals gave the scores and to
properly quantify the uncertainty. While the data analyzed in this part focuses
on patients in forensic psychiatric hospitals and is therefore quite specialized,
the structure of the data analyzed is rather common in empirical science. For
example, data obtained through questionnaires that are repeatedly filled out
by participants or data in educational psychology where essays or other prod-
ucts are scored by multiple raters tend to have a similar structure. As such,
the methods developed in this part can be generalized to other applications
outside of a forensic setting.

1.2 Uncertainty Between Multiple Models

The second part of this dissertation concerns itself with uncertainty when
multiple models are in play. Suppose we want to predict the risk of a violent
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outburst in the cohort of our mentally ill patients. Using all available data,
we want to construct a model that accurately predicts the risk of a violent
outburst in the future. However, if we naively include all items scored by psy-
chiatrists and other background variables, we run the risk of overfitting and
our model may poorly predict future violent outbursts. A common approach
to combat overfitting is to use a two-step procedure where in the first step
a single model is selected and in the second step that model is interpreted
and used for predictions. However, this two-step procedure again systemati-
cally ignores uncertainty uncertainty and can lead to overconfident conclusions.
There is considerable uncertainty about which model is the “best” model that
should be used in the second step. Sometimes, there is no single best model
superior to all other candidate models. Instead, there often are a plethora
of models that make adequate predictions and offer reasonable explanations
for the data. Nevertheless, by selecting a single model, we ignore this model
uncertainty and proceed as if we have discovered the one true model to base
our inferences on. As a result, we become overconfident and overestimate the
size of the established effects (e.g., Hoeting et al., 1999; Porwal and Raftery,
2022, Chapter 5).

The aim of the second part of this dissertation was to develop new statistical
methods to quantify uncertainty across different models. The key approach
that is central to this part is model averaging. Rather than selecting a single
model for prediction, we make predictions using all models considered and
weigh the predictions of each model by its relative plausibility in light of the
data.

1.3 Embracing Uncertainty for Everyone

The third part of this dissertation is about making model averaging acces-
sible to practitioners without a mathematical background and programming
knowledge. A large part of the statistical literature is concerned with the
development of novel and important methods. However, the road for those
who want to put these methods into practice is usually full of obstacles, if
a clear path can be seen at all. For example, practitioners may lack the
mathematical background to understand the derivations or the programming
expertise to implement a new technique. These barriers make it difficult to
put new developments into practice. The third part reflects on the litera-
ture on Bayesian model averaging and focused on adapting, fine-tuning, and
developing model averaging techniques to statistical paradigms relevant for
psychological practice. This was done by implementing the techniques in the
free and open-source statistical software program JASP (JASP Team, 2022).
As a result practitioners can bring the ideas and techniques developed in the
first two parts of the dissertation into practice without the need for an in-depth

3
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mathematical background or advanced programming knowledge.

1.4 Chapter outline

1.4.1 Cultural Consensus Theory

The first part of this dissertation concerns itself with uncertainty within a
model. Specifically, it provides an alternative to the common practice of
averaging the sample scores of different raters into a single value by using
approaches based on cultural consensus theory and signal detection theory.

In Chapter 2, we discuss a parsimonious approach to estimating latent
thresholds and apply this to a signal detection theory model. This chapter
exemplifies a trade-off in uncertainty in signal detection theory models for or-
dinal data. The usual approach requires large amounts of data to estimate the
threshold parameters and may result in overly complex models. In contrast,
our proposed approach makes stronger assumptions but as a consequence the
model parameters are more readily estimable. In Chapter 3, we develop a
model based on cultural consensus theory to analyze data from patients in
forensic psychiatric hospitals. We reuse the parsimonious approach for esti-
mating thresholds from chapter one. Chapter 4 applies the model developed
in Chapter 2 to data from patients in the Dutch maximum-security Forensic
Psychiatric Center Dr. S. van Mesdag. We use the cultural consensus theory
model developed in Chapter 3 to augment a logistic regression model with the
aim of predicting violent outbursts in patients.

1.4.2 Bayesian Model Averaging

The second part of this dissertation discusses uncertainty when multiple mod-
els are considered. It is very common for researchers to first use some proce-
dure to decide on a single model, and then in a second step draw conclusions
conditional on the selected model. However, when drawing conclusions, all
uncertainty about the models is ignored (Hinne et al., 2020). This results in
overconfident conclusions.

Chapter 5 illustrates this overconfidence in the simple case of estimating
an effect size for a t-test. We illustrate that the common practice of first
conducting a significance test to reject the null hypothesis and afterward us-
ing the alternative hypothesis as the ground truth yields overestimated effect
sizes. In Chapter 6, we develop a confirmatory default Bayesian hypothesis
test for comparing the variances of multiple variables with mixed equality and
inequality constraints. The proposed approach is confirmatory in the sense
that the models to be compared must be selected beforehand. As such our
method may lead scientists to neglect model uncertainty, if they use our con-
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firmatory test while they in reality are unsure about which models to compare
at all. To address this shortcoming, Chapter 7 extends Chapter 6 and intro-
duces an exploratory method that considers all possible equality constraints
among the variances of multiple variables. Furthermore, Chapter 7 explores
two families of prior distributions that can be used to penalize models with
different equality constraints in different ways. In addition, we introduce a
general method that goes beyond comparing variances and that can be used
when testing for equality constraints among any parameter vector. For ex-
ample, we provide data examples where we test equality constraints among
means and proportions.

1.4.3 JASP

The third part of this dissertation is of a more pragmatic nature and strives
to improve the accessibility of advanced statistical methods. Even if advanced
techniques are developed to embrace uncertainty and avoid overconfidence,
they are of little use if they are not easily accessible for practitioners. There-
fore, the chapters in this part provide tutorials on Bayesian model averaging
and implementations thereof in the free open-source statistical software pro-
gram JASP.

Chapter 8 provides a tutorial on Bayesian multi-model linear regression. We
explain the theory behind linear regression, Bayesian inference, and Bayesian
multi-model inference. Afterward we illustrate Bayesian multi-model linear
regression on a data example about happiness scores of different countries. In
a similar fashion, Chapter 9 demonstrates how to conduct a Bayesian Analysis
of Variance (ANOVA) while accounting for model uncertainty. We use two
data examples; one to show how to interpret the general results, and another
to demonstrate how to conduct post-hoc tests. Chapter 10 builds on Chapter 9
and provides a more thorough foundation for the choice of model space, that
is, the space of all candidate models under consideration. We argue that the
most commonly used model space approach up to this point is suboptimal
for repeated-measures ANOVA because it implies that there are no individual
differences in the effects. Instead, we propose an alternative model space that
always models individual differences and motivate the decision to make this
the default model space in JASP.

5



1

1. EMBRACING UNCERTAINTY

6



1

Part I

Cultural Consensus Theory
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22
Parsimonious Estimation of Signal

Detection Models from Confidence Ratings

Signal Detection Theory (SDT) is used to quantify people’s ability and bias
in discriminating stimuli. The ability to detect a stimulus is often measured
through confidence ratings. In SDT models, the use of confidence ratings
necessitates the estimation of confidence category thresholds, a requirement
that can easily result in models that are overly complex. As a parsimonious
alternative, we propose a threshold SDT model that estimates these category
thresholds using only two parameters. We fit the model to data from Pratte
et al. (2010) and illustrate its benefits over previous threshold SDT models.

This chapter is published as: Selker, R., van den Bergh, D., Criss, A. H.,
& Wagenmakers, E.-J. (2019). Parsimonious estimation of signal detection
models from confidence ratings. Behavior Research Methods, 51, 1953–1967.
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2. PARSIMONIOUS ESTIMATION OF SIGNAL DETECTION MODELS
FROM CONFIDENCE RATINGS

O ur ability to recognize stimuli allows us to interact smoothly with the
world. We know that if we want to drink water it is a good idea to
poor it into a cup instead of onto a piece of paper. We also know that

if we want to write something down it is a good idea to use a pen instead of a
yoga mat. Although recognizing stimuli is sometimes straightforward, often it
is not. Most of the times, our ability to recognize a stimulus is accompanied
by a certain amount of noise. When picking mushrooms it can be hard to
distinguish between the mushrooms you can use to top your beautiful saffron
risotto, and the mushrooms that will turn your dinner party into the next
Jonestown. Not only do eatable and poisonous mushrooms differ in perceptual
similarity—it is easy to classify a mushroom with a red cap and white spots as
poisonous, but difficult to do so for a poisonous mushroom that looks similar to
a common white button mushroom—but the amount of risk involved in making
the wrong decision can also differ between situations: when you are starving
you might decide to eat a suspicious looking mushroom sooner than when you
just had a full course meal. Signal Detection Theory (SDT; Green & Swets,
1966; Tanner Jr. & Swets, 1954) disentangles these aspects of recognition by
providing different parameters: (1) the amount of information that is available
in the stimulus, and (2) the threshold you set for making one or the other
decision.

In order to separately estimate these two aspects of recognition, an SDT
model needs two pieces of information: (1) the proportion of correctly identi-
fied signal stimuli (hit rate, HR; the proportion of poisonous mushrooms that
were correctly identified as poisonous), and (2) the proportion of incorrectly
identified noise stimuli (false alarm rate, FAR; the proportion of non-poisonous
mushrooms that were incorrectly identified as poisonous). Table 2.1 depicts
the four possible outcomes when discriminating two types of stimuli; Equation
2.1 and 2.2 show how these outcomes can be converted to hit rate and false
alarm rate:

Table 2.1: Possible outcomes when trying to discriminate signal from noise
stimuli. The rows represent the estimates and the columns represent the truth.

Truth
Signal Noise

Signal Hit False Alarm
Response

Noise Miss Correct Rejection

10
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Hit Rate = Hits
Hits+Misses , (2.1)

False Alarm Rate = False Alarms
False Alarms+ Correct Rejections . (2.2)

SDT is a popular model for the analysis of experiments in recognition mem-
ory. The most common experiment in this field first requires that participants
study a list of words (i.e., the study list). Following a retention interval, par-
ticipants are presented with another (i.e., the test list, containing words from
the study list and new words). For each word on the test list, participants are
asked to decide whether the word was from the study list (i.e., ‘old’), or not
(i.e., ‘new’). Figure 2.1 illustrates how the SDT model uses hit and false alarm
rates to identify the strength of the signal, d′, in this task and the threshold,
λ, that is set to make one or the other decision. To estimate these two pa-
rameters, the model assumes that both the signal (i.e., ‘old’ words) and the
noise (i.e., ‘new’ words) stimuli can be placed on a latent continuous scale of
familiarity. The latent scores are drawn from a signal normal distribution or
a noise normal distribution and d′ represents the difference in means of these
distributions. To translate the latent familiarity scores into the dichotomous
decision, the model assumes there is a threshold, λ, and if the familiarity is
lower than that threshold people classify the stimulus as noise while if the
familiarity is higher than the threshold people will classify the stimulus as
signal.

When estimating only these two parameters, the SDT model has been quite
popular (a google scholar search for papers published in the last ten years with
key words ‘signal detection theory‘ and ‘psychology‘ yielded more than 20,000
results). However, this SDT model assumes that the two distributions have
equal variances. Analyses of empirical data in the field of recognition mem-
ory, however, often show that the variance of the signal distribution is larger
than the variance of the noise distribution (e.g., DeCarlo, 2010; Macmillan
& Creelman, 2005; Mickes et al., 2007; Starns & Ratcliff, 2014; Swets, 1986).
Unfortunately, adding a third parameter σ (for the ratio of the variance of
the signal to noise distribution) to the SDT model creates an identifiability
problem; three parameters (i.e., d′, λ, and σ) are estimated using only two
data points (i.e., hit rate and false alarm rate). To estimate the extra pa-
rameter the model needs more informative data. One way of obtaining more
informative data is by having participants rate the familiarity of each item
on a confidence rating scale (e.g., “how confident are you that the word pre-
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d’

noise
distribution

signal
distribution

λ

HR

FAR

Familiarity

respond ‘new’ respond ‘old’

Figure 2.1: The interaction between the two parameters d′ and λ lead to a
certain Hit Rate (HR) and False Alarm Rate (FAR). Increasing the decision
criterion leads to a lower FAR but also a lower HR, while d′ stays the same.

sented was on the study list?”, indicated on a Likert scale from 1–7) instead
of asking for dichotomous answers (“was the word on the study list or not?”).
However, with confidence rating data the number of thresholds that need to
be estimated increases with the number of categories. For instance, if the SDT
model is fit to data from a four-point Likert scale, this requires estimation of
five parameters—d′, σ, and three thresholds—but if the model were fit to data
from a ten-point Likert scale, this requires estimation of eleven parameters—
d′, σ, and nine thresholds. The estimation of additional thresholds requires
larger data sets; to estimate thresholds reliably it is important that there are
a certain number of observations for each category. This in turn means that
models with more categories (and therefore more thresholds that need to be
estimated) require a larger number of total observations. In recognition mem-
ory, accuracy decreases with successive test trials (Criss et al., 2011), limiting
the number of observations any individual participant can contribute. This
problem is compounded in a typical study where multiple conditions, each
requiring many observations, are under investigation simultaneously. Here we
introduce a parsimonious method of estimating the thresholds by restricting
the way the thresholds can be placed. This parsimony is obtained by modeling
thresholds as a linear transformation of ”unbiased” thresholds, which only re-
quires two parameters for any number of thresholds. We estimate parameters
in a Bayesian way, and introduce a hierarchical extension to our model that
allows the estimation of group-level parameters.

The outline of this paper is as follows. First, we will briefly elaborate
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on Bayesian methods of parameter estimation. Next, we will introduce our
model and the associated Receiver Operating Characteristics (ROC) curves.
We will also show how our model leads to Bayesian estimates of detection
measures while taking into account the uncertainty of the estimate. Lastly,
we will introduce the hierarchical extension and apply the model to memory
recognition data from Pratte et al. (2010).

2.1 Modeling the Thresholds

The key concepts in our SDT threshold model are summarized in Figure 2.2.
This figure represents an example where an individual observer rated how
familiar six items—three signal items and three noise items—are on a Likert
scale from one to six. The model describes the process with which these data
are generated. The model assumes that the observer makes internal appraisals
of the familiarity of the noise items f (n) and the signal items f (s), both of which
are latent and continuous. These appraisals come from the noise distribution
for noise items—a normal distribution with mean µ(n) and standard deviation
σ(n)—or from the signal distribution for signal items—a normal distribution
with mean µ(s) and standard deviation σ(s). For reasons of identifiability
we assume that the noise distribution is a standard normal distribution; i.e.,
µ(n) = 0 and σ(n) = 1. Equation 2.3 describes the formal process of this step
in the model.

f ∼

{
N (0, 1)

N (µ(s), σ(s))
if noise (f (n)),

signal (f (s)).
(2.3)

Once observers have made an internal appraisal of the familiarity of an item,
they have to translate this appraisal to the ordinal Likert scale, in this case a
scale from one to six. An observer is assumed to accomplish this mapping by
placing thresholds λc (the c represents the order of the threshold) on the latent
continuous scale and comparing the internal appraisal with the thresholds
resulting in the ratings x(n) for the noise items and x(s) for the signal items.
As shown in Figure 2.2 the internal appraisal of the familiarity of the noise
items—f

(n)
1 , f

(n)
2 , and f

(n)
3 —leads to observed ratings x(n) = (1, 2, 5), and

the internal appraisal of the familiarity of the signal items—f
(s)
1 , f (s)

2 , and
f
(s)
3 —leads to observed ratings x(s) = (3, 5, 6).
An important property of the ordinal scale is that the differences between

consecutive numbers cannot be assumed equal; on a Likert scale the distance
between ‘completely agree’ and ‘agree’ can be larger than the difference be-
tween ’agree’ and ’neither agree nor disagree’. Therefore, the translation be-
tween the latent continuous appraisal to the ordinal score is relatively lax,
and observers are free to use the ordinal scale in different ways. For instance,
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µ(n)

µ(s)

1 2 3 4 5 6

λ1 λ2 λ3 λ4 λ5

σ(n)

σ (s)

f1
(n) f2

(n) f3
(n)f1

(s) f2
(s) f3

(s)

Observed ratings:
x(n) =   (1, 2, 5)
x(s) =   (3, 5, 6)

Thresholds

Familiarity

Figure 2.2: A graphical representation of the SDT threshold model for confi-
dence ratings. Familiarity ratings are drawn from both the noise f (n) and the
signal f (s) distribution. The associated confidence ratings x(n) and x(s) are
generated through the thresholds λc.

some observers prefer to use the outer values of the scale while others prefer
to use the inner values. To adjust for these individual differences, a proper
model needs to be able to estimate the thresholds that are set by an observer
to choose a certain answer. In previous SDT models, the number of parame-
ters that needed to be estimated was directly related to the coarseness of the
confidence scale that was used (e.g., Morey et al., 2008). Consequently, these
models are not parsimonious and increase in complexity as the Likert scale
becomes less coarse. In addition, the previous approaches are not easily ad-
justed to incorporate effect of other functional parameters (e.g., a covariate).
To arrive at a more efficient way of estimating the thresholds, our model is
based on a method introduced by Anders and Batchelder (2015) that uses the
Linear in Log Odds function. The Linear in Log Odds function requires only
two parameters to estimate a potentially large number of thresholds instead
of needing a parameter per threshold (Fox & Tversky, 1995; Gonzalez & Wu,
1999). To estimate C thresholds we first assume a best-guess placement of
the thresholds. First we do so on for the interval [0, 1] because it is straight-
forward to place thresholds in an uninformative way (e.g., the intervals are of
equal length). However, since the uncertainty in the SDT threshold model is
expressed on the interval [−∞,∞] we next translate the threshold placement
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from the [0, 1] interval to the [−∞,∞] interval.1 Equation 2.4 shows how this
translation is achieved if we were to assume that µs = 1 and σs = 1. Equation
2.5 shows how these ‘unbiased’ thresholds are subsequently translated into the
individual ‘biased’ thresholds using a linear transformation.

γc = log

(
c/C

1− c/C

)
. (2.4)

λc = aγc + b. (2.5)

1 2 3 4 5 6
A. Unbiased

1 2 3 4 5 6
B. Shifted

1 2 3 4 5 6
C. Scaled

1 2 3 4 5 6
D. Shifted + Scaled

Figure 2.3: Panel A shows the position of the thresholds when an observer
is ‘unbiased’, panel B shows the position of the thresholds when an observer
prefers the lower part of the scale, panel C shows the position of the thresholds
when an observer is ‘unbiased’ but distinguishes more between values around
the center of the scale, and panel D shows the position of the thresholds when
an observer prefers the lower part and distinguishes more between values where
the signal distribution is high and noise distributions is low.

Here, γc is the unbiased threshold for each position c (e.g., γ1 represents
the first unbiased threshold). Scale parameter a allows the thresholds to be

1For the translation we used a logistic quantile function. Other choices, such as a Gaussian
quantile function, are also possible.
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distributed more closely to the center of the scale or further away from the
center of the scale. Shift parameter b allows the thresholds to focus more
on the left or right side of the scale and could, for example, model response
bias. Figure 2.3 illustrates how these two parameters can result in different
threshold placements. Compared to the unbiased thresholds in panel A, panel
B shows that the thresholds have shifted to the right, and compared to the
thresholds in panel B, panel C shows that the thresholds are placed closer to
each other. Compared to panel C, the thresholds in panel D have shifted more
to the right. This shows that two parameters can account for many different
ways of threshold placement and can be extended to any number of thresholds
without requiring additional parameters.

Note that the outer thresholds are always farther away from their neighbor-
ing thresholds than the inner thresholds. At first sight this may look like a
major assumption of the model, but it is not. The probability of observing a
certain rating is not related to the distance between thresholds, but rather to
the area under the curve (i.e., the integral from one threshold to the next over
either the noise or the signal distribution).

2.2 Bayesian Parameter Estimation

SDT models have been applied using both classical (Macmillan & Creelman,
2005) and Bayesian frameworks (Rouder & Lu, 2005). In this paper we adopt
the Bayesian framework (Etz et al., 2016; Lee & Wagenmakers, 2013). An
important goal of Bayesian statistics is to determine the posterior distribution
of the parameters. This distribution expresses the uncertainty of the parameter
estimates after observing the data; the more peaked this distribution the more
certain the estimate. To obtain the posterior distribution of a parameter (e.g.,
d′ or λ), the likelihood is multiplied with the prior distribution, see Equation
2.6.

p(θ | data,M)︸ ︷︷ ︸
posterior

distribution

proportional to︷︸︸︷
∝ p(θ | M)︸ ︷︷ ︸

prior
distribution

× p(data | θ,M)︸ ︷︷ ︸
likelihood

. (2.6)

In our case it is not possible to derive the posterior distribution analytically
and hence we used MCMC sampling techniques (i.e. implemented in JAGS
Plummer, 2003) to draw samples from the posterior distribution; with enough
samples the approximation to the posterior distribution becomes arbitrarily
close. As priors we used normal distributions for all unbounded parameters
(mean and shift). For bounded parameters (variances and scale) we used either
a gamma prior or a normal distribution truncated from 0 to∞. Formal model
definitions and prior distributions can be found in the Appendix.
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To confirm the performance of the model we conducted a parameter recov-
ery study. First, we randomly generated 100 values for µ(s), σ(s), a, and b2.
Each combination of parameters was used to generate ordinal 6-point Likert
scale data (240 noise and 240 signal items), after which the SDT threshold
model was fit to the data. Subsequently, we compared the parameter values
used to generate the data with the means of the posterior distributions of the
parameter estimates. The correlations between the data generating param-
eter values and the recovered parameter estimates were high (rµ(s) = 0.96,
rσ(s) = 0.89, ra = 0.99, rb = 0.98) showing that the SDT threshold model has
good parameter recovery. More details on this parameter recovery study can
be found in the supplemental materials at https://osf.io/v3b76/.

2.3 ROC Curve

A widely used metric to interpret parameter values of the SDT model is the
Receiver Operating Characteristic (ROC) curve (Hanley &McNeil, 1982). The
ROC curve displays how the hit rate and false alarm rate are affected by
changes in thresholds. The translation from the SDT model parameters to
the ROC curve is visualized in Figure 2.4. Each threshold in the SDT model
is associated with a specific hit rate and false alarm rate. For λ3 the hit rate is
the part of the signal distribution shaded light gray, and the false alarm rate is
the part of the noise distribution shaded dark gray. This associated mapping
can be established for each threshold, resulting in a number of coordinates for
the ROC curve. Subsequently, drawing a line through the points leads to the
ROC curve.

Figure 2.5 shows three example ROC curves. In these graphs, the x-axis
represents the false alarm rate and the y-axis represents the hit rate. Setting
the threshold to its lowest possible value will always result in a hit or a false
alarm and setting the threshold to its highest possible value will never result
in a hit or a false-alarm. Therefore, the ROC curve will always go through
[0, 0] and [1, 1]. The dashed diagonal represents the hypothetical ROC curve
if the signal distribution equals the noise distribution, that is, the participant
is performing at chance. If the ROC curve is above the dashed diagonal
this means that the participant is performing above chance, and the average
strength of the signal exceeds zero.

Panel A in Figure 2.5 shows the ROC curve with near perfect detection:
the hit rate reaches 1 for low values of the false alarm rate. Panel B shows a
typical ROC curve when the signal and noise distribution have equal variances:

2The individual values for the parameters were drawn from: µsi, normal distribution with
mean 1 and standard deviation 0.5 truncated at [0, 3], σsi, normal distribution with mean 1
and standard deviation 0.5 truncated at [1, 3], a, gamma distribution with shape parameter
2 and rate parameter 2, and b, normal distribution with mean 0 and standard deviation 0.5.
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λ1 λ2 λ3 λ4 λ5
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λ2

λ1

Familiarity

1 2 3 4 5 6

Hit Rate

False Alarm Rate

SDT Model ROC Curve

Figure 2.4: The thresholds parameters, λc, from the SDT model can be
transformed to coordinates of the ROC curve. The hit rate and false alarm
rate corresponding to each threshold can be used as coordinates for the ROC
curve.

the curve is symmetrical around the minor diagonal. Panel C shows an ROC
curve when the distributions do not have equal variances: the curve is not
symmetrical around the minor diagonal.
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1

0 1False Alarm Rate

H
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A. Near perfect detection B. Equal variances C. Unequal variances

Figure 2.5: Example ROC curves. The solid line represents a theoretical
ROC curve. The dashed line represents chance performance.

The mathematical relation between the SDT and ROC parameters is shown
in Equation 2.7 (Marden, 1996).

ZHR =
ZFAR
σ(s)

+
µ(s)

σ(s)
. (2.7)

Using this equation, the z-transformed hit rate can be calculated using
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the z-transformed false alarm rate, and the mean and variance of the signal
distribution.3

2.4 Detection Measures

As we saw in the previous section, the ROC curve is able to accommodate
inequality of variances. The ROC curve can easily be converted to a detection
measure by calculating the Area Under the Curve (AUC Wickens, 2001); the
larger the AUC, the higher the ability to detect the signal. It is clear that the
AUC takes into account the inequality of variances. Also, the AUC will always
be between 0.5—if detection is based purely on chance—and 1—if detection
is perfect. This makes it straightforward to compare two measurements of the
AUC.

AUC = 0.76

0

1

0 1False Alarm Rate

H
it 

Ra
te

AUC = 0.70

0

1

0 1False Alarm Rate

H
it 

Ra
te

I. II.

Figure 2.6: Visualization of Area Under the Curve (AUC) of an ROC curve
for the two hypothetical observers. The difference in the variance of the signal
distribution is expressed in the difference in the AUC.

The AUC of the ROC has the attractive property of taking into account
differences in variance of the signal distribution between observers, and hence
we focus on this measure. The AUC is calculated using Equation 2.8 (p. 68
Wickens, 2001), where the noise distribution is assumed to be a standard
normal and Φ is the cumulative normal distribution:

AUC = Φ

(
µ(s)√

1 + σ(s)2

)
. (2.8)

3Note that z-transformed ROC functions are linear. In addition, when the equal variance
assumption is met, the slope is one. When the variance of the signal distribution is larger
than that of the noise distribution - as is generally found to be the case in recognition memory
- the slope is less than one.
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2.5 Thresholds

The most important way in which our threshold model improves upon exist-
ing confidence ratings SDT models is by estimating the thresholds in a more
parsimonious way. Instead of estimating the thresholds individually, which
requires one parameter per threshold, the thresholds are modeled using a lin-
ear equation. This allows for better estimates of the thresholds in the face of
limited data. A consequence of this method is that the threshold placement in
our model is restricted to a be linear instead of freely estimated. However, the
thresholds can still be placed in a wide variety of ways. Because the threshold
model takes into account that observers can set their thresholds in different
ways, similar abilities in signal detection can lead to different data, underscor-
ing the difficulties of drawing conclusions directly from the data. To illustrate
this point we performed a simulation study.

To obtain plausible values for the simulation study, we first fitted the thresh-
old SDT model to data from Pratte and Rouder (2011), who gathered confi-
dence ratings on a memory recognition task for 97 participants (this data set
is described in more detail below). Based on the estimated parameter values
we chose three values of the scale parameters based on the 1st, 50th, and 99th

percentiles of the estimated values (i.e., a1 = 0.12, a50 = 0.84, a99 = 1.74),
and three values of the shift parameters based on the 1st, 50th, and 99th per-
centiles of the estimated values (i.e., b1 = −0.98, b50 = 0.14, b99 = 1.10). We
used fixed values of µ(s) = 1 and σ(s) = 1 and all possible combinations of the
scale and shift parameters to simulate data from the threshold SDT model,
resulting in nine different data sets. Figure 2.7 shows histograms of the simu-
lated data. It is clear the model can describe various datasets by varying the
threshold placement, even when the underlying familiarity distributions are
identical.

Figure 2.7 illustrates that as the scale parameter increases (i.e., moving
along the columns from left to right), more answers on the inside of the scale
are given and as the shift parameter increases (i.e., moving along the rows from
top to bottom), the left side of the scale is used more often. This coverage of
possible outcomes makes the model nearly as flexible as having an independent
parameter for each threshold while minimizing the number of parameters to
estimate.

2.6 Hierarchical Extension

The threshold SDT model can be used to fit data from a single observer.
However, often there is interest in the detection ability of a group of observers,
which requires some sort of aggregation or pooling. One way of pooling is
by aggregating the data and then fitting the model on the aggregated data.
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Familiarity

Scale Parameter a
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Small

Medium
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Figure 2.7: Effect of threshold parameters on familiarity judgments. Nine
large datasets (N = 10,000) were simulated to visualize the range of model-
implied probability distributions over familiarity judgments. The datasets
were simulated with the same µ(s) and σ(s), but with either a small, medium,
or large scale parameter a and either a small, medium, or large shift parameter
b.

Another way of pooling is by estimating the parameters for each observer
individually and then take the mean or median from these parameter values.
Although these methods are computationally simple, they lack a formal model
that describes how the group level distribution relates to individual parameter
values.

In contrast, in the Bayesian hierarchical approach, individual subject pa-
rameters are drawn from a group distribution (Gelman & Hill, 2006). Because
the subjects are modeled as part of a group, the individual parameters shrink
towards the group mean (Efron & Morris, 1977). The benefit of shrinkage is
that the model is much more resistant to overfitting, as the group-level infor-
mation makes the individual estimates less susceptible to noise fluctuations
(Shiffrin et al., 2008). In the hierarchical threshold model, we introduce group
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distributions for the mean and variance of the signal distribution, and for the
scale and shift parameters of the thresholds. The priors for unbounded param-
eters (mean and shift) are normal distributions whereas the priors for bounded
parameters (variance and scale) are either gamma distributions or truncated
normal distributions. Exact model specifications and priors are shown in the
Appendix4.

To confirm the performance of the model we conducted a parameter recovery
study. The formal model definitions including prior distributions can be found
in the Appendix. First, we fitted the hierarchical SDT threshold model to the
data of Pratte et al. (2010) (see next section for a more elaborate explanation).
We used the means of the posterior distributions for the individual level pa-
rameters µ(s), σ(s), a, and b to generate plausible data. Next, we fit the model
to the synthetic data and drew posterior samples from the hierarchical SDT
threshold model. Subsequently, we compared the data-generating parameter
values to the means of the posterior distributions for the parameter estimates.
The correlation between the data-generating parameter values and the recov-
ered parameter estimates was high (rµ(s) = 0.96, rσ(s) = 0.90, ra = 0.99,
rb = 0.99, see Figure A.6) showing that the hierarchical SDT threshold model
has good parameter recovery. More details on this parameter recovery study
can be found in the supplemental materials at https://osf.io/v3b76/. The
next section applies the model to experimental data.

2.7 Application to Experimental Data

We fitted the hierarchical SDT threshold model to data from Pratte et al.
(2010) who had gathered confidence ratings on a memory recognition task
from 97 participants. Each participant studied 240 words— each word for
1,850 ms with 250 ms blank periods between two words—randomly selected
from a set of 480 words. After the study phase, participants had to indicate
how confident they were that a word was part of the study list on a 6-point
Likert scale (using the ratings “sure new”, “believe new”, “guess new”, “guess
studied”, “believe studied”, and “sure studied”) for the whole batch of 480
words. In this experiment, the words in the study list represent the signal
items, while the words that were not in the study list represent the noise
items.

Figure 2.8 shows the estimated median and 95% credible intervals for each
parameter in the model. The dashed vertical line represents the median of the

4We opted not to use highly uninformative priors as the resulting prior ROC curves
are implausible. See Figures A.4 and A.5 for the prior and posterior ROC curves under
slightly informed and highly uninformative priors. Different priors had negligible effect on
the posterior distribution, see the supplementary Figures on https://osf.io/v3b76/ for a
comparison.
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Figure 2.8: Parameter estimates for all 97 participants from Pratte et al.
(2010); the dot represents the median and the line represents the 95% central
credible interval. The dashed line represents the median of the group distri-
bution and the accompanying 95% credible interval is indicated in grey.

group level estimation with the 95% credible interval shaded gray. The pa-
rameters are estimated with a good precision; in general, the credible intervals
are narrow.

The model parameters can also be used to produce an ROC curve. Figure
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2.9 shows the ROC curve for the group level, where the shaded area represents
the uncertainty in the estimate, and the density plot shows the posterior dis-
tribution for the AUC. Note that the uncertainty in the ROC and the AUC is
induced by the uncertainty in the model parameters.
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AUC

Figure 2.9: Group level ROC curve with the 95% credible interval in grey
and the Area Under the Curve (AUC) with the uncertainty in the estimate
expressed through the posterior distribution.

2.8 Discussion

The threshold SDT model describes how people estimate the familiarity of
signal and noise items. The main contribution of the model is that it provides
a parsimonious way of estimating the thresholds instead of sacrificing one pa-
rameter per threshold. We also showed how this model can be applied to
experimental data. This paper presents a first effort in parsimonious thresh-
old estimation that should be applicable to many SDT applications. It can
also be used as a starting point for more complicated applications of SDT
models. A straightforward empirical test of the threshold SDT model is to ex-
amine how experimental manipulations map onto the model parameters. For
example, one may conduct a test of specific influence and examine the extent
to which effects of changes in base-rate are absorbed by the threshold a and b
parameters.

Because the threshold SDT model features only four parameters, it is rela-
tively straightforward to add other effects, e.g. the item effects mentioned in
the discussion of Pratte and Rouder (2011). For example, a researcher could
hypothesize that there is a difference in response bias between two conditions,
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and that this difference maps onto the shift parameter. To incorporate this
into the model, Equation 2.5 could be modified to include a covariate on the
shift of the thresholds. Such a modification is identical to adding a predictor
to a regression model. This allows for relatively easy group comparisons; in
contrast, such comparisons are difficult for models that require one parameter
per threshold, as multiple estimates need to be considered simultaneously.

Expanding the transformation of the thresholds into a linear model intro-
duces the need for model comparison. To assess the relevance of a predictor
one compares a model without the predictor to a model with the predictor.
Within the Bayesian framework, comparing models is often done by means of
Bayes factors (Jeffreys, 1961; Mulder, 2016). Although no analytical formulas
exist for calculating Bayes factor for SDT models, an approximation can be
obtained using numerical techniques on the obtained MCMC samples, e.g. via
bridge sampling. (Gronau, Sarafoglou, et al., 2017; Meng & Wong, 1996).

In sum, the threshold SDT model provides a parsimonious and straightfor-
ward account of confidence rating data, allowing researchers to quantify not
only discriminability but also confidence category thresholds. The uncertainty
in the model’s parameter estimates can be used to induce uncertainty in crucial
SDT measures such as the area under the ROC curve.
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2. PARSIMONIOUS ESTIMATION OF SIGNAL DETECTION MODELS
FROM CONFIDENCE RATINGS
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Cultural Consensus Theory for the

Evaluation of Patients’ Mental Health
Scores in Forensic Psychiatric Hospitals

In many forensic psychiatric hospitals, patients’ mental health is monitored
at regular intervals. Typically, clinicians score patients using a Likert scale
on multiple criteria including hostility. Having an overview of patients’ scores
benefits staff members in at least three ways. First, the scores may help adjust
treatment to the individual patient; second, the change in scores over time al-
lows an assessment of treatment effectiveness; third, the scores may warn staff
that particular patients are at high risk of turning violent, either before or
after release. Practical importance notwithstanding, current practices for the
analysis of mental health scores are suboptimal: evaluations from different
clinicians are averaged (as if the Likert scale were linear and the clinicians
identical), and patients are analyzed in isolation (as if they were independent).
Uncertainty estimates of the resulting score are often ignored. Here we outline
a quantitative program for the analysis of mental health scores using cultural
consensus theory (CCT Anders & Batchelder, 2015). CCT models take into
account the ordinal nature of the Likert scale, the individual s among clini-
cians, and the possible commonalities between patients. In a simulation, we
compare the predictive performance of the CCT model to the current practice
of aggregating raw observations and, as an alternative, against often-used ma-
chine learning toolboxes. In addition, we outline the substantive conclusions
afforded by the application of the CCT model. We end with recommendations
for clinical practitioners who wish to apply CCT in their own work.

This chapter is published as: van den Bergh, D., Bogaerts, S., Spreen, M.,
Flohr, R., Vandekerckhove, J., Batchelder, W. H., & Wagenmakers, E.-J.
(2020). Cultural consensus theory for the evaluation of patients’ mental health
scores in forensic psychiatric hospitals. Journal of Mathematical Psychology,
98, 102383.
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F orensic psychiatric hospitals monitor the mental health and foren-
sic risk factors of their patients at regular intervals, typically using a
method such as Routine Outcome Monitoring (de Beurs et al., 2011).

A clinician, psychiatrist, or another staff member, henceforth a rater, scores
a patient on historical, clinical, and prospective criteria. For example, a rater
evaluates a patient’s risk factors and behavior on a variety of criteria that re-
late to aggressiveness and the risk of recidivism. Such evaluations are stored so
they may be used to inform future decisions. The decisions informed by these
ratings can vary widely. For instance, the scores may help adjust treatment
to individual patients, the change in scores over time allows for an assessment
of treatment effectiveness, and the scores may warn staff that particular pa-
tients are at high risk of turning violent. Moreover, these ratings are key for
a quantitative approach to monitoring and forecasting patients’ behavior.

Current practices for aggregating the scores are suboptimal. Evaluations
from different raters are often averaged as if they are exchangeable. For exam-
ple, personal communication with the staff of a forensic psychiatric hospital
suggested that clinicians are more lenient in their ratings than psychiatrists,
but this information is not used to weigh their ratings. Furthermore, patients
are analyzed in isolation, as if they are independent of one another. For ex-
ample, consider a random sample consisting of patients with a schizophrenic
disorder and patients with an addictive disorder. The patients are clearly not
independent of each other; patients with the same disorder will most certainly
resemble each other more. Any background information about patients, such
as a patient’s criminal record, is not accounted for and is only seen as static
baseline information. In addition, uncertainty estimates of the resulting score
are usually ignored.

Here we address these issues using Cultural Consensus Theory (CCT; Batchelder
& Anders, 2012; Batchelder & Romney, 1988; Romney et al., 1986). The defin-
ing characteristic of CCT is that it aims to estimate the consensus knowledge
shared by raters. Hence, CCT is a promising framework for analyzing data
of forensic psychiatric hospitals, where the true state of a patient is unknown
and needs to be estimated from the scores given by the raters. CCT models
capture individual differences between raters and items, and pool information
while accounting for these differences. However, currently available CCT mod-
els can only be applied to the data of a single patient; a limitation addressed
in this paper.1

The focus of this paper is to outline a quantitative program for the analysis
of mental health scores using CCT. First, a CCT model for ordinal data is
introduced (Anders & Batchelder, 2015). Next, this model is expanded step

1To be precise, currently available CCT models can only describe two hierarchical struc-
tures, i.e., for data of patients and raters, patients and items, or items and raters. However,
existing CCT models treat the third hierarchical structure as non-hierarchical.
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by step, to allow a more sophisticated account of the data, for instance by de-
scribing multiple patients. We showcase the model in three simulation studies.
First, we illustrate the benefits of this approach by analyzing two fictitious
patients. Second, we show that model parameters are retrieved accurately.
Third, we compare the predictive performance of the CCT model to the cur-
rent practice of aggregating raw observations and against often-used machine
learning toolboxes such as Random Forest (Breiman, 2001) and Boosted Re-
gression Trees (Friedman, 2002). We highlight the substantive conclusions
obtained from applying the CCT model and conclude the paper with recom-
mendations for clinical practitioners who wish to apply CCT in their own
work.

3.1 Cultural Consensus Theory and Three Extensions

The next sections introduce Cultural Consensus Theory (CCT). First, a brief
introduction to CCT is given. Next, the CCT model developed in Anders and
Batchelder (2015, henceforth AB) is introduced, which serves as the simplest
model for a single patient. Subsequently, we generalize the model in three
ways. First, the model is expanded to describe multiple patients simultane-
ously. Next, latent constructs are added to the model. Finally, the model is
adapted to include background information on patients and raters.

3.1.1 Cultural Consensus Theory

Cultural Consensus Theory, also known as “test theory without an answer
key” Batchelder and Romney, 1988, is a statistical tool that can be used to
retrieve the unknown “truth” for an item by examining the consensus among
the responses. For example, given a political questionnaire, there are no objec-
tively correct answers. Instead, one could administer the questionnaire to left-
oriented respondents and use CCT to find out what the consensus is among
left-oriented respondents. CCT models can capture that some responders
have a higher competency and will strictly answer according to the cultural
consensus. Likewise, items can differ in their difficulty, i.e., the competence
required to answer according to the consensus. For a political questionnaire,
this implies that only extremely left-oriented respondents agree with the most
left-oriented political statements. Note that competence and difficulty param-
eters are relative to the consensus and do not refer to absolute competence
or difficulty. Instead competence captures the extent to which a rater evalu-
ates according to the group consensus; likewise, difficulty captures how high
a rater’s competence must be to be expected to answer an item according
to the group consensus. In addition, CCT models can be expanded to allow
for multiple consensus truths, that is, there can be multiple unknown truths
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that vary across subgroups of respondents (Anders & Batchelder, 2012). For a
political questionnaire, the different consensuses (e.g., left, right, center, etc.)
and respondents membership to these groups would be estimated from the
data. The property of CCT models to estimate the consensus truth from the
data is ideal for psychiatric data, where a patient’s true state is unknown
and a consensus from the raters is desired. CCT models can be applied to
continuous data (e.g., the LTM Batchelder & Anders, 2012), categorical data
(e.g., the General Condorcet model Batchelder & Romney, 1986), and ordinal
data (AB). Since ratings are usually given on a Likert scale, we focus on a
CCT model for ordinal data.

3.1.2 The Latent Truth Rater Model

As a starting point, consider the Latent Truth Rater Model (LTRM), a cul-
tural consensus model for ordinal data introduced by AB. Figure 3.1 shows
a graphical model of the LTRM and Table 3.1 provides an overview of the
parameters. The LTRM captures differences among raters and items and may
be viewed as the simplest model for a single patient.

The rating of rater r on item i is denoted xri and takes on discrete values
from 1 through C. AB formalize the core ideas of the LTRM with 6 axioms,
which are briefly repeated here. There is an unknown latent shared cultural
truth among the raters, which is captured by the item location parameters
θi (AB’s axiom 1). Since raters are not perfect measurement instruments,
they infer a noisy version of the cultural truth for each item, called a latent
appraisal and defined as yi = θi + ϵri, where ϵri ∼ Logistic (0, ζr/κi) (AB’s
axiom 2). The logistic density with location l and scale s is defined as

Logistic (x; l, s) =
exp

(
−x−l

s

)
s
(
1 + exp

(
−x−l

s

))2 where s > 0.

The scale of the logistic distribution for the latent appraisals consists of two
components. Differences in item difficulty are captured by κi and differences
in rater competence are captured by ζr (AB’s axiom 3). The ratio of item
difficulty over rater competence is the variance of the latent appraisal. For
example, if an item is difficult then the variance of the latent appraisals is
high, which leads to a spread-out probability distribution over observed rat-
ings. Likewise, if the rater competence is high, then the variance of the latent
appraisals is low and the probability distribution over observed ratings is con-
centrated. Latent appraisals yri are assumed to be conditionally independent
given the latent truth θi, the item difficulty κi, and the rater competence ζr
(i.e., their joint distribution can be factored into a product of univariate distri-
butions that only depend on the three aforementioned parameters; AB’s axiom
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δrc αr
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yriθi ζr

κi

R raters

I items

C categories

xri =


1 if yri ≤ δr1

c if δr,c−1 < yri ≤ δrc

C if yri > δr,C−1

yri = θi + ϵri

γc = logit (c/C)
δrc = αrγc + βr

ϵri ∼ Logistic (0, κi/ζr)

θi ∼ Normal
(
µθ, σ

2
θ

)
κi ∼ Gamma (µ2

κ/σ2
κ, µκ/σ2

κ)

αr ∼ Gamma (µ2
αr/σ2

αr
, µαr/σ2

αr
)

βr ∼ Normal
(
µβr , σ

2
βr

)
ζr ∼ Gamma

(
µ2
ζr/σ2

ζr
, µζr/σ2

ζr

)
Figure 3.1: Graphical model corresponding to the LTRM; a CCT model
for a single patient. xri is an observed response, yri is the underlying con-
tinuous latent appraisal, θi is the underlying latent appraisal, and ϵri is the
appraisal error. Furthermore, κi and ζr capture the item difficulty and rater
competence respectively. The unbiased thresholds are denoted γc, the scale
and shift parameters are αr and βr respectively. The transformed thresholds
are denoted δrc. The group-level means and standard deviations are denoted
µ and σ respectively. The priors on the group-level parameters are omit-
ted. Gamma distributions are parametrized with shape and scale so that the
group-level parameters correspond to the mean and standard deviation of the
distribution.

4). So far, the axioms describe a continuous latent process that underlies each
observation. To translate these continuous latent appraisals to categorical re-
sponses, it is assumed that there exist C − 1 ordered thresholds δrc, such that
each xri is generated deterministically in the following way (AB’s axiom 5):

xri =


1 if yri ≤ δr1

c if δr,c−1 < yri ≤ δrc

C if yri > δr,C−1

where c = 1, . . . , C. The appraisal yri is latent and thus we consider the prob-
ability that an appraisal falls between two thresholds to obtain the probability
of an observed score. This makes the generating process of xri probabilistic
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and described by an ordered logistic distribution2, which gives:

P (xri | yri, δr) =


1− F (yri − δr1) if xri = 1,

F (yri − δr,c−1)− F (yri − δrc) if 1 < xri < C,

F (yri − δr,C−1) if xri = C.

where F (x) = (1 + e−x)
−1, the cumulative distribution function of the stan-

dard logistic distribution. The thresholds δrc accommodate the response biases
of the raters. AB do so by estimating C− 1 ordered thresholds γ and defining
δrc = αrγc + βr (AB’s axiom 6). This translation of thresholds is called the
Linear in Log Odds function and is a useful tool for capturing bias in proba-
bility estimation (Anders & Batchelder, 2015; Fox & Tversky, 1995; Gonzalez
& Wu, 1999). Specifically, the scale parameter concentrates the thresholds
closer together or farther apart, and thus can yield a flat or peaked probabil-
ity distribution, respectively. The shift parameter β moves all thresholds up
and down relative to the item location and thus captures the fact that some
raters give higher overall ratings than others.

Figure 3.2 provides an intuition for how the ordered logistic distribution can
model different outcomes by varying only the rater parameters. The latent
appraisal y is fixed to 0, the thresholds γ are equal to logit (c/C) such that
P (xri | y = 0, γ, αr = 1, βr = 0) is uniform, and the scale αr and shift βr vary.
In the left panel, there is no response bias, αr = 1 and βr = 0, which yields
a uniform distribution over the predicted Likert scores. In the right panel,
an increase in response scale and shift, βr = .5 and αr = 2, concentrates the
predicted Likert scores around 2 and 3.

The LTRM is a complex model and unfortunately suffers from identifica-
tion issues, as AB already pointed out. For example, multiplying the rater
competences ζ and the item difficulties κ by a constant c yields an identical
variance for the appraisal distribution since cζ/cκ = ζ/κ. Such identification
problems are avoided by restricting the mean of the respective parameters to
1 (as suggested in Appendix C in AB). Another identification problem origi-
nates from estimating the thresholds individually. The number of thresholds,
C − 1, increases with the number of response options. This introduces a large
number of parameters that can be difficult to estimate, in particular when
some response options are not observed (i.e., when there are ceiling or floor
effects). In addition, the model is only identified if the sum of thresholds is
zero (

∑C
c=1 γc = 0; otherwise adding a constant to θi and δc yields an identical

likelihood). Rather than modeling each threshold individually, we describe
the thresholds using only two parameters per rater. Specifically, we model

2The choice for an ordered logistic distribution is arbitrary and an ordered probit distri-
bution could also be used, as was done by AB. We use a logistic distribution rather than a
normal distribution because its cumulative distribution function has an analytic expression.
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Figure 3.2: The ordered logistic distribution relates latent appraisals yri
to response categories γ = 1, . . . , 5 via category thresholds δ1, . . . , δ4. The
implied probability distribution over response categories is shown inside each
panel. In the left panel, there is no response bias, αr = 1, βr = 0. As
a consequence, the distribution over the predicted Likert scores is uniform.
In the right panel, the thresholds are shifted right, βr = 0.5, and the scale
increased slightly, αr = 2, such that the distribution over predicted Likert
scores is peaked on outcomes 2 and 3. In both panels, the item location
parameter θi is 0.

the thresholds as deviances from an initial guess, γc = logit (c/C). This yields
a set of thresholds such that if the latent appraisal is 0 then P (xri) is uniform.
Response biases are incorporated in the same manner: δrc = αrlogit (c/C)+βr.
This simplification can still capture a wide variety of data sets (Selker et al.,
2019).

3.1.3 Three Extensions

The LTRM as described above has many desirable properties; for instance, it
captures individual differences among both raters and items. However, many
properties of psychiatric data are not captured by the model. Three extensions
generalize the LTRM to improve its capacity to describe the data at hand.

Extension I: Multiple Patients

The first extension allows the model to describe multiple patients instead of a
single patient. Since even patients with the same disorder can have different
ratings for the same item, the latent truth for an item varies across patients to
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Table 3.1: Overview of the parameters in the LTRM. The first column indi-
cates the parameter, the second the parameter bounds, and the third provides
the definition or prior distribution of that parameter. The last column pro-
vides a brief description of the parameter.

Parameter Domain Definition/ prior Meaning

yri R θi + ϵri
Appraisal of rater r
on item i.

γc [0, 1] logit (c/C) Unbiased thresholds for
outcome c.

δrc R αrγc + βr
Transformed thresholds
for rater r on outcome c.

ϵri R Logistic (0, κi/ζr) Residual of appraisal.
θi R Normal

(
µθ, σ

2
θ

)
Location of item i.

κi R+ Gamma (µ2
κ/σ2

κ, µκ/σ2
κ) Difficulty of item i.

αr R+ Gamma (µ2
αr/σ2

αr
, µαr/σ2

αr
) Scale-bias of rater r.

βr R Normal
(
µβr , σ

2
βr

)
Shift-bias of rater r.

ζr R+ Gamma
(
µ2
ζr/σ2

ζr
, µζr/σ2

ζr

)
Competence of rater r.

reflect this. Likewise, it can be more difficult for raters to answer specific items
according to the consensus, but only for some patients. To describe parameters
that vary across patients we introduce the subscript p for patient. Both these
changes can be achieved by allowing the item truth θip and item difficulty κip
to vary across patients, so that the latent appraisal yrip varies across patients.
Note that item difficulty is no longer specific to items, but also captures the
interaction between patients and items. Modeling this interaction is useful
when, for example, a patient barely cooperates with a question about his or
her feelings; as a result, it is hard to score this item according to the consen-
sus, but only for this patient. As in Figure 3.1, we assume that the patient
parameters are drawn from a group-level distribution with unknown mean and
variance, for instance, the item difficulty could follow a gamma distribution
with unknown mean and variance (i.e., κip ∼ Gamma (µ2

κ/σ2
κ, µκ/σ2

κ)).

Extension II: Latent Constructs

Often, we are not just interested in the latent truth of a single item, but
also in a construct that is measured by multiple items. For instance, the
latent construct aggressiveness could be measured with multiple items. To
allow the model to measure constructs, we introduce a latent variable ηpl that
represents the score of patient p on latent variable l. Items can load on different
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latent variables, which introduces a factor model over the items. The relation
between the latent construct l and the item consensus i is given by the factor
loading λil, such that θip ∼ Normal

(
λilηpl, σ

2
ηp

)
. The measurement model,

i.e., which items load on what latent construct, is assumed to be known.
As prior distribution on the latent constructs ηpl we used a normal distri-

bution with mean 0 and variance 1, which reflects that the mean and variance
of a latent variable are typically unidentified. In addition, simulations showed
that the estimated regressions weights and the estimated patients’ scores on
the latent constructs exhibited label switching. For example, multiplying both
the latent constructs η and the factor loadings λ by −1 yields the same distri-
bution over the item truths. To avoid label switching, we restricted the factor
loadings to be positive. Since we assume the factor structure to be approxi-
mately known, items that will have a negative loading on the latent construct
can be reverse-scored. Here, approximately implies that if an item loads on
a scale, we know whether it correlates positively or negatively with the scale
although the magnitude is unknown.

Extension III: Patient and Rater Information

The third extension adds background information about raters and patients to
the LTRM. This helps the model to capture that, for instance, patients with
a pedophilic disorder are typically less aggressive than murderers. Discrete
patient characteristics, such as criminal record, and rater characteristics are
captured by introducing separate parameters of the group-level distributions
for each level of the discrete characteristic. For example, the mean of the
group-level distribution of the aggressiveness scale is estimated separately for
murderers and patients with a pedophilic disorder. More formally, background
information is represented by a categorical indicator wp that takes on values
1 through D for each patient p. The group-level distribution for factor scores
then becomes ηpl ∼ Normal

(
µwpl, σwpl

)
.

Rater characteristics are denoted zr and are incorporated in similar manner.
Rater characteristics influence the group-level distributions of rater-specific
parameters, which yields βr ∼ Normal (µzr , σzr). For instance, this could
capture that clinicians give more lenient ratings than psychiatrists. Similarly,
the group-level distribution of αr could also be modeled as a function of rater
characteristics. However, we did not include this in the model as there was no
empirical observation that implies the scale parameters differ across groups of
raters.

In the simulation studies, we restrict the analysis to discrete background
information. However, continuous background information could also be used.
Consider for instance the time a patient is committed to a psychiatric hospital,
Timep. This information can be added as a regression on the mean of the
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group-level distribution. Thus, ηpl ∼ Normal
(
µwpl + ν Timep, σwpl

)
, where ν

is the regression coefficient from the time a patient is committed Timep on the
mean of the group-level distribution.

It is important to consider that the influence of background variables can
differ across latent constructs. For instance, the effect of a patient’s crime
varies across latent constructs, allowing the model to capture that patients
with a pedophilic disorder and murderers differ in aggression, but not on de-
pression. This is accomplished by estimating the effect of a patient’s crime
separately for each latent construct.

xrip

δrc αr

βr

γc

yripθip ζr

κipηpl zr

wp

µβ

µη

R raters

I items

C categories

P patients

L constructs

λil ∼ Normal+ (0, 10)

θip ∼ Normal (λilηpl, 1)

ηpl ∼ Normal
(
µwpl, σ

2
p

)
βr ∼ Normal

(
µzrβ, σ

2
βr

)
µβ ∼ Normal (0, 10)
µη ∼ Normal (0, 10)

Figure 3.3: Graphical model corresponding to the CCT model for multi-
ple patients. The data xrip, latent appraisals yri, latent truths θip, and item
difficulty κip now vary across patients, as indicated by the subscript p. Fur-
thermore, for raters, competence, scale and shift are captured by ζr, αr, and
βr respectively. The unbiased and biased thresholds are denoted γc and δrc.
Rater and patient covariates are represented by zr and wpl, whereas their
effects are captured by the vectors µβ and µη respectively. The prior distribu-
tions are shown on the right for modified parameters. Priors not shown can
be found in Figure 3.1. The prior distributions for the extended LTRM were
chosen to be weakly informative.

Figure 3.3 graphically summarizes the extended LTRM and Table 3.2 pro-
vides an overview of the parameters. The extended LTRM first separates
the rater-specific influences from the data xrip, hereby accounting for differ-
ent groups of raters. This results in a latent consensus for each item and
patient θip. This consensus is subsequently used as an indicator for a latent
construct for all patients and constructs ηpl. The relation between the la-
tent construct and the items is given by the factor loadings λil, such that
θip ∼ Normal (λilηpl, 1). The factor scores also incorporate patient-specific
background information, such as the crime a patient committed.
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Table 3.2: Overview of the parameters in the extended LTRM. The first
column indicates the parameter, the second the parameter bounds, and the
third provides the definition or prior distribution of that parameter. The last
column provides a brief description of the parameter.

Parameter Domain Definition/ prior Meaning

yrip R θip + ϵri
Appraisal of rater r
on item i and patient p.

γc [0, 1] logit (c/C) Unbiased thresholds for
outcome c.

δrc R αrγc + βr
Transformed thresholds
for rater r on outcome c.

ϵrip R Logistic (0, κip/ζr) Residual of appraisal.

θip R Normal (λilηpl, 1)
Location of item i
for patient p.

κip R+ Gamma (µ2
κ/σ2

κ, µκ/σ2
κ)

Difficulty of item i
for patient p.

αr R+ Gamma (µ2
αr/σ2

αr , µαr/σ2
αr) Scale-bias of rater r.

βr R Normal
(
µzrβ , σ

2
βr

)
Shift-bias of rater r.

ζr R+ Gamma
(
µ2
ζr/σ2

ζr
, µζr/σ2

ζr

)
Competence of rater r.

λil R+ Normal+ (0, 10) loading of θip
on factor ηpl.

ηpl R Normal
(
µwpl, σ

2
p

) latent construct
underlying θip.

µβ R Normal (0, 10) Rater group effects.

µη R Normal (0, 10) Latent construct group
effects.

wp {0, 1, . . . } Data Indicator variable that
groups patients.

zr {0, 1, . . . } Data Indicator variable that
groups raters.

3.2 Implementation

The next sections illustrate the LTRM in a variety of scenarios. First, we
demonstrate the benefit of the LTRM over the raw means in an example
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analysis of two fictitious patients. Second, we demonstrate that the parameters
of the LTRM can be accurately recovered. Last, we compare the predictive
performance of the LTRM to the unweighted mean of the observations and
two machine learning toolboxes.

We estimate the parameters of the LTRM and the extended LTRM using a
Bayesian approach. Therefore, we are interested in the posterior distributions
of the model parameters. All models were written in Stan and approximated
the posterior distributions with variational inference (Carpenter et al., 2017).
We opted to use variational inference over traditional Markov chain Monte
Carlo because it was computationally fast while providing similar results in
terms of parameter retrieval and model predictions. All data were simulated
using R R Core Team, 2022 and Stan models were run using the R package
RStan (Stan Development Team, 2019). R files and Stan models are available
in the online appendix at https://osf.io/jkv38/.

3.3 Example Analysis

Here we showcase the benefits of a CCT analysis by examining results for
two patients that are part of a sample of 50 fictitious patients. This example
demonstrates how misleading the sample mean can be. We simulated a data
set of 50 patients, 10 raters, 20 items, and 5 answer categories. The items
loaded on 3 latent constructs, further referred to as aggressiveness, anxiety, and
depression. A patient-specific covariate consisting of 5 categories was added
to mimic the effect of a patient’s criminal offense. Similarly, two categories
were of raters (e.g., clinicians and psychiatrists) were simulated. Next, we
selected two patients whose differences in observed means were small relative
to their differences in posterior means on the latent constructs. The means
for items of each construct are shown in Table 3.3. The aggregates of the

Table 3.3: Raw means of the observed ratings for the two patients with
similar mean responses. The standard errors of the means are shown in paren-
theses. The means and standard errors are computed for each scale.

Construct

Aggressiveness Anxiety Depression

Patient 1 3.86 (0.14) 3.04 (0.19) 3.65 (0.18)
Patient 2 3.29 (0.17) 3.00 (0.18) 2.93 (0.21)

raw scores suggests that these two patients might differ in aggressiveness and
depression but not in anxiety. However, after fitting the extended LTRM to
the data it becomes apparent that there is more to the data than what is
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Example Analysis

shown by these averages. Using the extended LTRM, we can visualize the
posterior distributions of the latent constructs for both patients, shown in
Figure 3.4. The posterior distributions tell a different story than Table 3.3.

Aggressiveness Anxiety Depression

−1 0 1 −2 −1 0 1 −1 0 1 2

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

Value of Latent Construct

P
os

te
rio

r 
D

en
si

ty

Patient
1
2

Figure 3.4: Approximate posterior densities for the ηpl of two patients with
similar response patterns. The panels show different latent constructs. The
posterior distributions suggest these patients differ on all three latent con-
structs, unlike what the raw means in Table 3.3 would suggest. This demon-
strates that more information can be obtained from the ratings than what may
be obvious from the raw scores. The squares underneath the density indicate
the true values used to simulate the data.

Remarkably, for Anxiety where the raw means are approximately equal, the
posterior distributions differ. This difference can be quantified by computing
the posterior probability that patient 1 has a larger value on a latent trait
than patient 2. This probability is approximated by counting how often the
posterior samples of a latent construct are larger for patient 1 than for patient
2. For all three constructs, the probability that patient 1 has a higher score is
larger than 0.99 (Figure B.1 visualizes these probabilities).

Altogether, this example shows that there is more information in the data
than what the averages convey. Examining the parameters of the data gener-
ating model more closely reveals two reasons for this discrepancy. The first
reason is that the item difficulty parameter κ differed among the patients for
the anxiety items (the average item difficulty for anxiety was 1.42 for patient
1 and 0.88 for patient 2). The second reason is that the fictitious patients
differed in background information, that is, they committed different crimes.
This means that the population level distributions for the latent constructs
differ for these patients.

In this example, all raters rated both patients. In practice, the ratings of
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3. CULTURAL CONSENSUS THEORY FOR THE EVALUATION OF
PATIENTS’ MENTAL HEALTH SCORES IN FORENSIC PSYCHIATRIC
HOSPITALS

different patients are likely given by different raters, which introduces a third
source of bias. The discrepancy between the sample mean and posterior mean
is shown for all patients in Figure B.2, which further emphasizes that the
sample mean is an inadequate description of the patients’ scores.

Naturally, the sample mean need not always perform this poorly. The more
the data from different raters, items, and patients are exchangeable, the closer
the predictions of the LTRM will be to that of the sample mean.

3.3.1 Parameter Retrieval

A key step in developing a model is to assess if the model parameters can be
retrieved accurately. For this purpose, we simulated data as in the previous
example; the simulated data set consisted of 50 patients, 10 raters, 20 items,
and 5 answer categories. The items loaded on 3 different latent constructs.
A patient-specific covariate, consisting of 5 categories was added to mimic
the effect of a patient’s criminal offense. Similarly, two different categories
of raters were assumed. These simulation settings resemble data sets often
obtained in clinical practice (e.g., Kamphuis et al., 2014). Figure 3.5 displays
the true values against the posterior means for each parameter. Details and
code to replicate the simulation can be found at https://osf.io/jkv38/.
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Figure 3.5: True value used for data simulation (x-axis) and posterior mean
of that parameter (y-axis), for all parameters of the LTRM. Above each panel
is indicated which parameter is shown.

All parameters are retrieved adequately. An exception is the item difficulty
κ whose estimates appear more variable as the true item difficulty increases.
The spread in posterior means of the item difficulty is similar to that in Figure 6
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Example Analysis

in AB. The item truths θ seem underestimated as their absolute magnitude
increases. The hierarchical structure of the extended LTRM likely shrinks the
item truths towards the mean. Typically, there is more shrinkage if the values
of the parameter are larger, as is the case here. The bias in the item truths
does not appear to influence the retrieval of any other parameters, for example,
the latent construct scores η are retrieved accurately.

Although it is good to know when the parameters of the extended LTRM can
be recovered, it may be more useful to know when the data are not sufficiently
informative to apply the extended LTRM. This is likely the case when there
are few items and raters. Exact numbers, however, may vary depending on the
specific situation at hand. For most purposes, it is straightforward to adjust
the number of raters, items, and patients, and then repeat the simulation. As
an exercise, we also recovered the parameters for AB’s LTRM. Code for the
simulation is available in the online appendix and parameter recovery is shown
in Figure B.3.

3.3.2 Predictive Performance

Here, we compare the predictive performance of the LTRM to that of the
sample mode, the sample median, the sample mean rounded towards the near-
est integer, and, as a more informative comparison, to Random Forest and
Boosted Regression Trees (Boosting). The sample mode is the most often
observed outcome (since the data are discrete). Random Forest and Boosting
analyses were done using the R packages ranger and gbm respectively (Green-
well et al., 2019; Wright & Ziegler, 2017). We used the default settings for the
hyperparameters in both R packages. Each method made predictions on the
level of the raw data, that is, the observed ratings. Performance is assessed
by quantifying the distance between the predicted ratings and the simulated
true ratings.

Here we briefly introduce Random Forest (Breiman, 2001) and gradient
boosted regression trees (Friedman, 2001). Random Forest and Boosting are
tree-based machine learning methods that learn from a training data set in
order to predict out-of-sample observations. Both methods can be used across
a wide range of applications. The methods make no parametric assumptions
and their predictions tend to generalize extremely well to new observations.3
However, both Random Forest and Boosting also have downsides. Both models
are so-called black boxes, that is, their parameters are statistically unidentified
and do not have a meaningful interpretation. So although their predictions
are often on point, they cannot answer the how or the why of the phenomena

3On kaggle, an online platform for machine learning competitions, Random Forest and
Boosting are among the most successful machine learning techniques, see https://www.
kaggle.com/bigfatdata/what-algorithms-are-most-successful-on-kaggle.
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they predict. Furthermore, these models cannot be simulated from and they
do not provide uncertainty estimates.

We simulated two data sets each consisting of 20 raters, 30 items, 50 patients,
and thus in total 30,000 observations. Patients were scored on a 5-point Likert
scale. The first data set represented a dense design, where all raters scored all
patients. The second data set represented a sparse design, where each rater
scored 10 patients, which mimics the practically plausible situation where
ratings of different patients are given by different raters. Raters were pseudo-
randomly assigned to patients so that the number of obtained scores was
about equal for all patients. To simulate a sparse data set, we first simulated
a dense data set and subsequently removed a score if the rater did not rate
a patient. This remaining sparse data set consisted of 6,000 observations.
Next, both data sets were split into a training set (80%) and a test set (20%).
The performance of the six methods was evaluated by training the models
on the training set and using the trained model to predict the outcomes for
a test set. For the LTRM and the extended LTRM, we used the mode of
the posterior predictive distribution as a point-prediction.4 Predictions for
Random Forest and Boosting were obtained by taking the majority vote of
the trained classification trees.5 For the observed sample mean, median, and
mode we used all observations for the same rater, item, or patient.6

We quantified predictive performance by computing the confusion matrix
between observations in the test set and predicted values; a contingency table
with correct predictions on the diagonal. Prediction accuracy is defined as the
proportion of correct predictions.

Given that the data were generated by the Extended LTRM, it comes as no
surprise that it predicts more accurately than the other methods. However,
even though data generated from the Extended LTRM is likely a gross simpli-
fication of reality, the results show that black-box machine learning methods
perform somewhat adequately. This is somewhat surprising because the data
at hand are ill-suited for black-box machine learning methods, as these have

4In this particular example, model predictions could also be interpreted as imputing
missing values. If these are regarded as missing observations rather than predictions, they
should be modeled as unknown discrete parameters of the model (Ch. 8; Gelman et al., 2014).
That way, uncertainty about these missing observations is propagated into the parameters.
Although we did not sample the missing observations from the joint posterior distribution,
the code in the online appendix does show how to do this.

5In random Forest and Boosting, a large number of classification trees are fit to (subsets)
of the data. To make a prediction, each tree makes a prediction and the most frequently
predicted outcome is the final prediction.

6Predictions for the mode, median, and mean are obtained in the following manner. Let
a negative subscript refer to all observations except that particular one, e.g., x−r,ip refers
to x1,ip, x2,ip, . . . , xr−1,ip, xr+1,ip, . . . , xR,ip; all observations for item i and patient p but not
observation rip. Then predictions for the mode, median, or mean are obtained by taking
respectively the mode, median, or mean of x−r,ip, xr,−i,p, and xri,−p.

42



3

Discussion

Table 3.4: Prediction accuracy for the Extended LTRM, the LTRM, Ran-
dom Forest, Boosting, the sample mean, the sample median, and the sample
mode. The LTRM outperforms all other methods, but Random Forest and
Boosting perform worse than the sample mode. Since the data are simulated
the choices for the simulation settings are somewhat arbitrary, and different
settings could yield a very accurate or very inaccurate predictive performance
(e.g., by adjusting item difficulty and rater competence). Therefore, the ab-
solute prediction error cannot be interpreted and only a relative comparison
should be made. Since there were 5 possible outcomes, an accuracy of 0.2
corresponds to chance performance.

Method Dense Sparse

Extended-LTRM 0.52 0.41
LTRM 0.46 0.34
Sample Mode 0.43 0.33
Random Forest 0.42 0.36
Boosting 0.41 0.35
Sample Median 0.33 0.32
Sample Mean 0.23 0.27

difficulty capturing the hierarchical structure of the data which contains most
of the information (but see Hajjem et al., 2014). Instead, if a lot of background
information about patients and raters is available, this could likely improve
their performance. However, machine learning methods do not provide inter-
pretable models, which may be undesirable in practice because it makes it
difficult to substantiate decisions.

3.4 Discussion

In this paper, we extended the Cultural Consensus model developed by An-
ders and Batchelder (2015) to apply to mental health scores of patients in
forensic psychiatric hospitals. The original model was suited for data from
a single patient and we extended this to multiple patients, latent constructs,
and patient-and rater-specific covariates. The benefit of this approach is that
we can obtain estimates for, for example, a patient’s aggressiveness while ac-
counting for rater bias, item-specific measurement error, and the nature of a
patient’s previous criminal offense. We have shown in a simulation that the
parameters of the extended LTRM can be retrieved accurately.

Although the LTRM provided better predictions than black-box machine
learning approaches, this is likely because the data were simulated from the
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LTRM. In practice, it might be advantageous to combine the results from the
LTRM with a machine learning method, as this may improve prediction accu-
racy. For example, augmenting a Random Forest model with features based on
psychological theories resulted in a model with better predictions of human
decisions than naive machine learning models and models based on psycho-
logical theories alone (Plonsky et al., 2017, 2019).However, machine learning
approaches, despite their predictive power, may result in uninterpretable mod-
els which may be undesirable in psychiatric practice where decisions need to be
motivated and possibly defended (e.g., when determining whether a treatment
is effective or when deciding if a patient should be released). In addition, the
LTRM provides richer information. For example, clinicians or psychiatrists
may want to know if they rate very leniently or not. On the other hand, man-
agement might be interested in what covariates determine, for instance, the
aggressiveness of patients.

Ideally, patients are monitored over some time and data from multiple
measurement occasions is obtained and analyzed using the extended LTRM.
Rather than applying the LTRM repeatedly to data from individual measure-
ment occasions, all observations should be analyzed simultaneously. That way,
a patient’s progress may be monitored over time and predictions for the future
time points could be obtained along with uncertainty estimates. To extend
the LTRM to incorporate time-varying components is conceptually straightfor-
ward, but the exact properties of the time-varying components should depend
on the data at hand. For example, one can imagine that the factor scores
of a patient vary over time as described by a dynamic factor model (Forni
et al., 2000; Molenaar, 1985). However, when patients are rated only rarely
– say every six months – then the application of a sophisticated time series
model is not feasible. Instead, simply estimating the difference between con-
secutive time points with an intercept may suffice. For these reasons, we did
not explore a time series extension of the LTRM.

3.4.1 Limitations

In the LTRM, we assumed that the factor structure is known. In practice,
however, this need not be the case. Estimating the factor structure from the
data is possible, although such an endeavor shifts the focus of the LTRM to
model selection rather than assessing the progress of patients. Furthermore,
we ensured that the factor structure is identified by fixing all loadings to be
positive. Strictly speaking, this restriction is stronger than needed to ensure
that the model is identified. An alternative way is to fit the model without
constraints and afterward relabel such that a factor solution that corresponds
to one posterior mode is obtained (e.g., Erosheva & Curtis, 2017). Another
more flexible approach is to view the latent true scores of the items as a
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network rather than a latent variable model and estimate the relations among
the items (but see Epskamp et al., 2017, for possible drawbacks).

Since the posterior distributions were approximated with variational infer-
ence, the obtained posterior distributions may be biased. In general, these
biases rarely affect the estimated posterior means, but the posterior variance
can be underestimated (Blei et al., 2017). As a consequence, uncertainty in-
tervals may be too narrow. To alleviate this problem, it is relatively straight-
forward to modify the Stan code in the appendix to use MCMC instead of
variational inference (e.g., in the code in the appendix change vb(model) to
sampling(model) to use MCMC). However, note that MCMC algorithms for
the models discussed run for hours to obtain a reasonable number of posterior
samples, whereas variational inference finishes after several minutes.

In the extended LTRM, extreme location parameters θip are underestimated
(e.g., see Figure 3.5). From a Bayesian perspective, there is little to worry
about. Given the priors and the data, the posterior follows automatically.
From a frequentist perspective, this bias may be worrying. This bias can be
mitigated in several ways. However, we want to stress that addressing bias
should be considered in light of the decisions made based on the estimates.
Furthermore, bias should not be considered in isolation of the bias-variance
tradeoff, that is, reducing the bias may increase the variance of an estimator,
which harms generalization. For example, one straightforward approach to re-
duce bias is to tune the prior to minimize shrinkage. On the other hand, there
are many success stories of shrinkage, Stein’s paradox being a well-known ex-
ample (Efron & Morris, 1977). Rather than interpreting point estimates one
could instead consider the uncertainty intervals, assuming these have frequen-
tist coverage (e.g., given enough data points or by using a procedure similar
to C. Yu and Hoff (2018) or Hoff and Yu (2019)).

3.4.2 Recommendations for clinical practice

To successfully apply the extended LTRM in practice, the data should meet
several minimum requirements. For instance, it should be recorded which
rater gave what rating, and patient and rater covariates should contain as few
missing observations as possible. Furthermore, although the model accounts
for differences between raters, it is best to minimize these differences, for
instance through clear scoring instructions. Minimizing differences between
raters ensures that rater bias is minimal and helps to ensure validity. In
addition, there should be overlap among (groups of) raters and the patients
they score. That is, patients should be scored by multiple raters in such a
way that there are no isolated groups of raters and patients, where one group
of raters only rates one group of patients and another group of raters rates a
different group of patients. A lack of overlap between two groups complicates
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a comparison between raters and patients between them. A lack of overlap
can be avoided by having rater 1 score patients 1 through 5, having rater 2
score patients 3 through 7, etc. Additional information about patients should
be added to the model, such as the reason for incarceration. That should help
the extended LTRM to distinguish between groups of patients that differ on
these covariates. This also holds for the raters; if certain background variables
are suspected of causing rater bias then these should be included in the model.

An important step in applying any model is assessing its fit to the data.
There are at least two options for doing so with the extended LTRM. First, a
traditional approach is to take the residuals of the extended LTRM and exam-
ine these for any leftover structure. As in linear models, there should be no
structure in the residuals if the model accurately describes the data. Second,
one could compare the predictive performance of the LTRM to that of a ma-
chine learning toolbox (e.g., Random Forest or Boosting). The data set is split
into a training set and a validation set. Subsequently, the models are fitted to
the training set and are evaluated on the validation set. This provides an idea
of how much fit is lost by using a parametric model (the extended LTRM) as
opposed to a nonparametric alternative (a machine learning toolbox).

3.4.3 Conclusion

We extended the Latent Truth Rater model (LTRM) introduced by Anders and
Batchelder (2015) to a model that can be applied to patients’ mental health
scores in forensic psychiatric hospitals. The model accounts for individual
differences between raters, items, and patients. We demonstrated that the
extended LTRM can provide more information about the data at hand than
the raw means for two fictitious patients. In addition, we have shown that the
parameters of the extended LTRM can be adequately retrieved and that the
LTRM outperforms the observed mode and several machine learning toolboxes
in terms of predictive power. Finally, we have provided recommendations for
clinical practitioners who wish to apply the LTRM in practice. Altogether, we
believe the extended LTRM constitutes a promising approach for the analysis
of mental health scores in forensic psychiatric hospitals.
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Augmenting Predictive Models in Forensic

Psychiatry with Cultural Consensus Theory

Forensic psychiatric hospitals regularly monitor the mental health and forensic
risk factors of their patients. As part of this monitoring, staff score patients
on various items. Common practice is to aggregate these scores across staff
members. However, this is suboptimal because it assumes that assessors are
interchangeable and that patients are independent. An improvement over av-
eraging scores is the use of Cultural Consensus Theory (CCT), which imposes
a hierarchical model across patients, staff members, and items. While ac-
counting for differences between patients and staff members, CCT estimates
a “true” score for each patient on each item based on the consensus among
staff members. Here we apply a CCT model to data from a Dutch maximum
security forensic psychiatric center and use the inferences to predict violent
behavior in patients. The CCT model outpredicts several alternatives, such
as random forest and boosted regression trees, albeit by a small margin. We
discuss practical limitations and directions for how future monitoring of pa-
tients could be adapted to maximize the added value of a CCT-based approach.

This chapter is submitted as: van den Bergh, D., Schuringa, E., & Wagen-
makers, E.-J. (2023). Augmenting predictive models in forensic psychiatry
with cultural consensus theory. Manuscript submitted for publication. 10 .
31234/osf.io/9kp3y

47

10.31234/osf.io/9kp3y
10.31234/osf.io/9kp3y


4

4. AUGMENTING PREDICTIVE MODELS IN FORENSIC PSYCHIATRY
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The mental health and forensic risk factors of patients in forensic psychiatric
hospitals is regularly monitored with methods such as Routine Outcome Moni-
toring (de Beurs et al., 2011). A staff member (e.g., a clinician or psychiatrist),
henceforth a rater, scores a patient on variety of criteria, such as problematic
behavior (e.g., hostility) or protective behavior (e.g., coping skills). These
scores are used to track the mental state of patients over time, to measure
the effectiveness of treatment, and as a risk indicator for violent outbursts by
patients.

Typically, multiple raters score each patient on different items. Standard
practice is to average the scores across raters and use the averages to inform
decisions. However, this is suboptimal for multiple reasons. For example,
taking the average implies that raters are interchangeable and patients are
independent – the raters’ bias or patients’ offense is not taken into account.

An improvement over averaging the scores is to use Cultural Consensus
Theory (CCT; Batchelder & Anders, 2012; Batchelder & Romney, 1988; Erd-
felder et al., 2020; Romney et al., 1986) to construct an appropriate model for
the scores that accounts for the hierarchical structure among patients, raters,
and items. In previous work, we developed such a model based on the Latent
Truth Rater model (LTM; Anders & Batchelder, 2015), and demonstrated
that, in theory, this model predicted better than the average and several ma-
chine learning alternatives. However, due to the lack of an empirical dataset,
we could not demonstrate whether the theoretical claims hold up in practice.

Here, we apply the CCT-based model to data from a Dutch maximum-
security forensic psychiatric center and use its inferences to predict whether
or not a patient becomes violent. First, we briefly introduce the LTM model
used and discuss two changes made compared to van den Bergh, Bogaerts, et
al. (2020). Afterward, we use the LTM to augment a logistic regression. We
use the augmented model to predict violent outbursts in patients and compare
the predictive performance to that of frequently used machine learning models.
We find that our LTM approach outperforms all other methods, albeit by a
small margin. Next, we interpret the fitted model, which shows that the
prior history of violence is most predictive. Finally, we discuss some practical
limitations of the data set at hand and how future monitoring of patients could
be adjusted to maximize the added benefit of our CCT-based approach.

4.1 Mesdag Data

The data were collected in the Dutch maximum-security Forensic Psychiatric
Center Dr. S. van Mesdag between October 2016 and February 2019. The
individual records were retrospectively merged into a single data set. In total,
the data set contains information about 104 patients given by 188 raters on 23
items from 2 measurement occasions (18,354 observations in total). In addi-
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tion to the scores on the IFTE items, the data set contains several background
variables about the patients. These are age (21-30, 31-40, 41-50, or 55+ years
old)1, treatment duration (0-2 years, 2-4 years, 4-6 years, or 6+ years), diag-
nosis (schizophrenia and other psychotic disorders, autism spectrum disorder,
Axis 12, personality disorder B, other personality disorders), offense (murder,
arson, manslaughter, sex offense, aggravated assault, violent property crime,
and moderately violent crime or a property crime), and history of violence
(violent behavior 6 months before measurement 1, violent behavior 6 months
before measurement 2, and violent behavior 6 months after measurement 2).
When patients have multiple convictions, ‘offense’ indicates the most serious
conviction. A distinction between personality disorder B (composed of bor-
derline, antisocial, and narcissistic personality disorder) and other personality
disorders is made because patients with personality disorder B exhibited more
violent behavior.

4.1.1 IFTE

The data were collected using a Routine Outcome Monitoring instrument
called the Instrument for Forensic Treatment Evaluation (IFTE; Schuringa et
al., 2014, 2021). The IFTE consists of 22 items, of which 14 items are crimino-
genic need indicators of the Dutch risk assessment instrument HKT-R (Spreen
et al., 2014), five items were designed in consultation with psychologists and
psychiatrists, and three items are based on the Atascadero Skills Profile (Vess,
2001). The 22 items can be grouped into three factors: Protective behaviors,
Problematic behaviors, and Resocialization Skills. The individual items are
shown in Table C.1. All items are scored on a 17-point scale. Before the IFTE
is scored, the rater provides their clinical judgment to answer the question:
“Has the patient changed in this last period?” on a 13-point scale. This last
item is treated as the 23rd item of the IFTE here. Each patient was scored
with the IFTE on two separate occasions. The 17-point scale contained 5 an-
chor points at 1, 5, 9, 13, and 17. For example, for the item “Does the patient
show problem insight?” these anchors would be ‘None’, ‘Rarely’, ‘Sometimes’,
‘Often’, and ‘Always’.

1Ideally age is treated as a continuous variable. However, for privacy reasons, the data
were anonymized, for example by categorizing age.

2Axis 1 is a combination of multiple disorders, such as substance-related disorders (addic-
tion, dependence, abuse), developmental disorders (ADHD, ADD), mood disorders (depres-
sion, bipolar mood disorder), cognitive disorders (delirium, dementia, amnesia), and sexual
disorders (paraphilia, pedophilia) (Segal, 2010). Note that DSM 4 categories are used as at
the time of measurement, not all DSM 4 diagnoses had been converted to DSM 5 diagnoses.
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4.1.2 Descriptives

Before introducing the models used and analyzing the data, we give a descrip-
tive summary of the data. Table 4.1 shows the background characteristics of
non-violent and violent patients. The raw percentages suggest that patients

Table 4.1: Characteristics of the non-violent and violent patients.

Non-violent
after T2

Violent
after T2

Age
21-30 5 (6%) 5 (21%)
31-40 40 (50%) 14 (58%)
41-50 25 (31%) 2 (8%)
51+ 10 (12%) 3 (12%)

Treatment duration
0-2 years 32 (40%) 13 (54%)
2-4 years 19 (24%) 4 (17%)
4-6 years 14 (18%) 0 (0%)
6+ years 15 (19%) 7 (29%)

Diagnosis
Schizophrenia and other psychotic disorders 31 (39%) 9 (38%)
Autism spectrum disorder 14 (18%) 2 (8%)
Axis 1 12 (15%) 1 (4%)
Personality disorder cluster B 14 (18%) 9 (38%)
Other personality disorders 9 (11%) 3 (12%)

Offense
Murder 10 (12%) 1 (4%)
Arson 9 (11%) 2 (8%)
Manslaughter 16 (20%) 2 (8%)
Sex offense 17 (21%) 1 (4%)
Aggravated assault 14 (18%) 10 (42%)
Violent property crime 6 (8%) 5 (21%)
Moderate violence / property crime 8 (10%) 3 (12%)

History of violence before T1
Non-violent 67 (84%) 6 (25%)
Violent 13 (16%) 18 (75%)

History of violence before T2
Non-violent 68 (85%) 5 (21%)
Violent 12 (15%) 19 (79%)

with violent behavior after the second IFTE measurement were also more often
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violent before the first measurement and in between the two measurements.
For the other variables, an intuitive assessment suggests that patients with
an offense of either aggravated assault, violent property crime, or moderate
violence/property crime are more violent after T2 (75%) than patients with a
different offense (25%).

Next, we examine the IFTE scores. Figure 4.1 shows a histogram of the
raw scores across all IFTE items, raters, and patients. It is clear that the
anchor points are given more often than the other scores (≈ 54% of all scores
are anchors points). Furthermore, it appears that points in the middle of two
anchor points are given more often than points adjacent of an anchor point
(i.e., a 3 is scored more often over 2 or 4, a 7 is scored more often than 6 or
8, etc.). Given the number of patients and raters, it is evident that not all
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Figure 4.1: Histogram of observed scores across all patients, items, raters,
and time points. The first x-axis value, NA, represents missing observations.

raters can have scored all patients. Figure 4.2 confirms this and shows that
the rater-by-patient matrix is quite sparse.

4.2 Cultural Consensus Theory

Cultural Consensus Theory, sometimes called “test theory without an answer
key” (Batchelder & Romney, 1988), is a method to discover the “true answer”
for items from the consensus among the responses. For example, suppose a
patient is scored by multiple raters on hostile behavior. Multiple scores are
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Figure 4.2: Heatmap of observed scores of rater (x-axis) against patients
(y-axis).

obtained that need to be aggregated to arrive at a single score for this patient.
The naive solution is to average these scores. However, as shown in Figure 4.3
averaging may lead to estimates that are severely biased.
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Figure 4.3: True item scores (x-axis) versus the sample mean across raters
(y-axis) for three fictitious patients. The left panel shows a scenario where
the raters are heterogeneous and consequently the performance of the sample
mean is poor. In the right panel, the raters are homogeneous and the sample
mean performs much better.

The average score disregards all additional information that is available. It
ignores the individual differences between raters, for example, this assumes
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that all psychiatrists score hostility in the same way, and it ignores group
differences among raters; for example, there is no difference in scores by psy-
chiatrists as opposed to clinicians, or other staff members. In addition, the
average ignores any additional information about the patient at hand, such as
the nature of the offense and the diagnosis.

Cultural consensus theory provides a model-based framework for pooling
information from multiple raters to form a consensus (Anders et al., 2014).
There exist a variety of CCT models, each applicable to different types of
data. For example, the General Condorcet model (Batchelder & Romney,
1986) applies to dichotomous data, the Continuous Response model (Anders
et al., 2014) is suited for continuous data, and the Latent Truth Rater model
(Anders & Batchelder, 2015) is suited for ordinal data. As the IFTE scores
are ordinal, we use the Latent Truth Rater model to analyze the Mesdag data.

4.2.1 The Latent Truth Rater Model

The Latent Truth Rater Model (LTM) is a CCT model for ordinal data (An-
ders & Batchelder, 2015). Previously, we extended the LTM to handle data
from multiple patients (van den Bergh, Bogaerts, et al., 2020) and Figure 4.4
shows the LTM for multiple patients.

xpirτrc

ypir θpiζr

κi

zr

P patients

I items

R raters

C categories

xpir =


1 if ypir ≤ δr1

c if δr,c−1 < ypir ≤ δrc

C if ypir > δr,C−1

ypir ∼ Logistic (θpi, κi/ζr)

δrc ∼ Normal (0, 1)
θpi ∼ Normal

(
µθ, σ

2
θ

)
κi ∼ Gamma (µ2

κ/σ2
κ, µκ/σ2

κ)

ζr ∼ Gamma
(
µ2
ζr/σ2

ζr
, µζr/σ2

ζr

)

Figure 4.4: Graphical model of the Latent Truth Rater Model for multiple
patients. Note that the thresholds δr are constrained to be ordered, that is,
for all raters we have δr1 ≤ · · · ≤ δrc ≤ · · · ≤ δr,C−1.

Here, xpir is the observed score given to patient p on item i by rater r. This
score is assumed to be deterministically generated from a continuous latent
appraisal ypir that is discretized to an ordinal scale by the thresholds δrc. In
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particular, we have that

xpir =


1 if ypir ≤ δr1

c if δr,c−1 < ypir ≤ δrc

C if ypir > δr,C−1

Since the appraisal score is latent, the deterministic function above implies
the following probabilistic model over the observed scores:

P (xpir | ypir, δr) =


1− F (ypir − δr1) if xpir = 1,

F (ypir − δr,c−1)− F (ypir − δrc) if 1 < xpir < C,

F (ypir − δr,C−1) if xpir = C.

where F () is the logistic cumulative distribution function.3
Next, we explain how the latent appraisals and thresholds come about. The

appraisals are drawn from a logistic distribution with location θpi, the true
score for patient p on item i. The scale of the logistic distribution is the ratio
of the item difficulty κi to the rater competence ζr. A higher item difficulty
means that the appraisals are more noisy, which leads to a more dispersed
probability distribution over possible scores. Conversely, a higher rater com-
petence means that the appraisals are less noisy, which leads to a more con-
centrated distribution over the outcomes. There are C − 1 ordered thresholds
for each rater, which are assigned a standard normal prior for identification
purposes.

There are two differences in the model specification above compared to our
previous work (van den Bergh, Bogaerts, et al., 2020). First, we previously
modeled the thresholds using two rater-specific parameters. However, in simu-
lations, we noticed that these two parameters provide too little flexibility when
the ordinal scale consists of 17 categories and has a multimodal distribution
(see Figure 4.1), as in the Mesdag data. Therefore we decided to model the
thresholds individually. This modeling choice complicates the interpretation
of the differences between the thresholds across raters; however, that is also
not the goal of this paper. Second, we previously allowed the item difficulty
parameter to vary across patients, which allows for the possibility that some
items may be more difficult or easy to assess for particular patients (e.g., some
patients may cooperate more than others). To estimate this patient-item in-
teraction there must be a sufficient number of raters who score each patient.
However, when simulating data with a rater-to-patient ratio similar to that
in the data at hand, we noticed that there are simply too few observations to

3The choice of the distribution function is arbitrary, in principle it is possible to use any
continuous cumulative distribution function.
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reliably estimate the deviations in item difficulty across patients. Therefore,
we only vary item difficulty across items and not across patients.

Altogether, the LTM extracts a true score (θpi) for each patient on every
item while accounting for the hierarchical structure among patients, raters,
and items. The posterior distributions for the true scores are the basis for all
subsequent analyses.

4.2.2 Augmenting Logistic Regression with the LTM

In the next step, we use logistic regression to predict violent behavior, where
we use the estimated true scores (θpi) from the LTM as additional predictors.
We do so in a fully Bayesian approach, that is, we constructed a joint model
for the violent behavior and the patient ratings.4 Figure 4.5 shows a graphical
model of the logistic regression combined with the LTM. The latent truth for
each patient on each item is seen as a covariate in the logistic regression model.
Here, vp denotes the violent behavior of patient p. The regression coefficients

xpirtτrc

ypirt θpitζr

κi

vp

zpd

zr

ηi

ηd

P patients

I items

R raters

d Covariates
C categories

T Timepoints

Figure 4.5: Graphical model of Logistic Regression Augmented with the
Latent Truth Rater Model. The true scores

of the true scores are denoted ηi. In addition to the true scores, we regress the
background variables zpd with associates coefficients ηd onto violent behavior.

4An alternative is a two-step approach where in the first step the LTM is fit to the patient
ratings. In the second step, the estimates of the LTM (e.g., the posterior means) are used as
predictors in a logistic regression model. While this is computationally faster, it also ignores
the uncertainty in the analysis of the patient ratings.
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The index t indicates the measurement occasion (1 or 2). Rather than
fitting the LTM completely anew for each time point, we assume that all rater
parameters (κr and δr) and item parameters (κi) constant but allowed the
patient parameters to differ.

4.2.3 Implementation

We estimated the parameters of the LTM and the combined LTM-Logistic
regression model using a Bayesian approach. To explore the posterior distri-
butions of the model parameters we used Stan (Carpenter et al., 2017). Rather
than Markov chain Monte Carlo (MCMC) we used variational inference, which
was computationally faster while providing similar results in terms of parame-
ter retrieval and model predictions (Kucukelbir et al., 2017). All analyses were
done using R (R Core Team, 2022) and Stan models were run using the R pack-
age cmdstanr (Gabry & Češnovar, 2022). The code for the analyses is avail-
able in the online appendix at https://github.com/vandenman/CCT-Logistic.
Although the data cannot be shared due to privacy concerns, the repository
contains simulated data that can be used to run the code.

The machine learning methods and the logistic regression models that will
be introduced in the next section cannot handle missing values in the pre-
dictors. Therefore, we imputed the missing values using the R package mice
(van Buuren & Groothuis-Oudshoorn, 2011). In the Bayesian analyses, we
marginalized out the missing values.

4.3 Predictive Performance

Here we compare the predictive performance of the logistic regression model
that is augmented with the LTM (LR-LTM) to several reasonable alternatives
and three baseline models. The first baseline model is an intercept-only logistic
regression (LR-Intercept). Comparing the predictive performance of a model
with the LR-Intercept constitutes a sanity check that a model outperforms
the baseline prevalence of violence. The second baseline model we use is a
logistic regression model with all covariates but not the IFTE items (LR-No
IFTE). As a third baseline model, we use a logistic regression model with
only prior violence as predictors (LR-Violence). As more plausible competing
models, we consider logistic regression (LR-All), random forest, and boosted
regression trees (GBM) which are trained with history of violence, patient
covariates, and IFTE scores. These three competing models have in common
that they are designed for purely rectangular data. That is, each row of the
data set contains one outcome (violent or nonviolent behavior) and a number of
predictors. However, the raw data of the IFTE contains repeated observations,
since patients were rated multiple times by different raters. To accommodate
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this we (naively) average across different raters to obtain a single score for
each item and time point.

Altogether, by comparing these seven models we aim to answer the following
three questions: (1) Can predictive models outperform the base prevalence of
violent behavior? (2) Do models with the IFTE scores perform better than
the baseline models without the IFTE scores? (3) Does the LR-LTM perform
better than the models that naively average across raters?

To examine predictive performance we used 10-fold stratified cross-validation.
Each fold consisted of 8 nonviolent observations and 2 or 3 violent observa-
tions. We quantified model performance with prediction accuracy and the
Brier score (Brier et al., 1950). Prediction accuracy is defined as the frac-
tion of correct predictions. We converted model probabilities for violent or
non-violent behavior into binary predictions by comparing them with 0.5. In
other words, if a model prediction for observation i, ŷi ∈ [0, 1], is larger than
0.5 then the predicted label is violent, otherwise, it is non-violent. The Brier
score is defined as N−1

∑N
i=1 (ŷi − yi)

2, i.e., the mean squared error between
the observed labels, y ∈ {0, 1} and the model predictions.

Table 4.2 shows the prediction accuracy and the Brier score averaged over
the 10-folds. The LR-LTM has the best classification of violence and the low-
est Brier score, and the LR-Violence performs second best. The difference in
classification performance is 0.884− 0.866 = 0.018, which for a data set of 104
patients implies that the LR-LTM makes more accurate predictions than the
LR-Violence for about 2 patients. Possibly striking is the poor performance
of the LR-All. The standard logistic regression model clearly suffers from
overfitting, as indicated by the high training performance but poor test per-
formance. This result makes sense as the standard logistic regression model
does not do anything special to combat overfitting, unlike the machine learning
alternatives or Bayesian logistic regression used by the LR-LTM.

Figure 4.6 show the Receiver Operating Characteristic (ROC) curve and
area under the curve (AUC) averaged across cross-validation runs for all meth-
ods except the LR-Intercept.5 For each cross-validation run, we computed the
true positive rate and false-positive rate with the same set of thresholds run
and afterward we averaged these. The AUC was obtained by averaging the
AUCs of each individual cross-validation, rather than computing the AUC
for the averaged ROC curve. In line with the previous results, the LR-LTM
performs best and the LR-Violence method performs second best.

To summarize, it is evident that all models, except for logistic regression,
outperform the intercept-only baseline model. Furthermore, the results show
that the LTM augmented logistic regression model performs best, albeit by a

5The ROC for the intercept-only model is by definition the identity function with an area
under the curve of 0.5.
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Table 4.2: Predictive performance of violent behavior. The values are the
average of 10 cross-validations; the standard deviation is shown in parentheses.

Classification Brier score

Method Train Test Train Test

LR-LTM 0.980 (0.008) 0.884 (0.078) 0.047 (0.006) 0.095 (0.028)
LR-Violence 0.865 (0.007) 0.866 (0.063) 0.100 (0.003) 0.107 (0.030)
LR-No IFTE 0.948 (0.034) 0.837 (0.105) 0.032 (0.020) 0.142 (0.109)
Random forest 0.996 (0.006) 0.835 (0.081) 0.033 (0.002) 0.114 (0.040)
GBM 0.880 (0.011) 0.836 (0.066) 0.093 (0.003) 0.125 (0.023)
LR-All 1.000 (0.000) 0.727 (0.182) 0.000 (0.000) 0.258 (0.173)
LR-Intercept 0.769 (0.004) 0.771 (0.038) 0.177 (0.002) 0.177 (0.020)
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Figure 4.6: ROC curves for the considered methods. The legend shows the
area under the curve in parentheses.

small margin. The logistic regression model with only violence (LR-Violence)
outperformed the two machine learning alternatives that naively averaged the
scores from the IFTE (GBM and Random forest). This indicates that the
IFTE has added value for prediction, but only if it is analyzed properly.
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4.4 Interpretation of the LTM

Now that we have shown that the LTM had adequate predictive performance,
we interpret the model parameters. Figure 4.7 shows the posterior means and
95% credible intervals for the LTM fitted to the complete data. Prior history
of violence has the largest coefficients, whereas the other coefficients all appear
close to zero. As Table 4.1 already indicated, the history of violence has a large
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Figure 4.7: Posterior means and 95% credible intervals for the coefficients of
the logistic regression model (ηd and ηi in Figure 4.5). The reference categories
are treatment duration 0-2 years, diagnosis Axis 1, and offense arson. The ab-
breviations VPC, MPC, and AA stand for violent property crime, moderately
violent property crime, and aggravated assault.
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effect. In contrast, the influence of the IFTE items is less clear as all coefficients
appear to be close to zero. However, while the other coefficients shown relate
the probability of violent behavior to observed data (i.e., a fixed value), the
coefficients for the IFTE relate the probability of violent behavior to the latent
truth θpi (i.e., a probability distribution). Therefore it is difficult to interpret
the contribution of the IFTE without also considering the latent truth of the
patients. Figure 4.8 visualizes the impact of the IFTE as a whole by visualizing
the posterior mean of the logit of the probability of violent behavior summed
over all IFTE items for each patient. For a particular patient p this logit is
obtained by computing

∑2
t=1

∑23
i=1 θpitηit averaged across all posterior samples.

For most patients that showed violent behavior after T2, the posterior mean
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Figure 4.8: Posterior mean of the effect of the total impact of the IFTE
items for each patient

(∑2
t=1

∑23
i=1 θpitηit

)
. Shape and color indicate whether

patients showed violent behavior after T2 (white squares) or not (gray circles).

of the impact of the aggregated IFTE is larger than 1, which is about the
posterior mean for the effect of prior violence. However, the uncertainty of
these estimates is large, and the average 95% credible interval ranges from -8
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to 8.6 Nevertheless, Figure 4.8 shows that the IFTE matters for prediction,
but also that its added value differs across patients.

With the model comparisons in the previous section and parameter esti-
mates in the previous paragraph we have shown that IFTE scores analyzed
with the LTM provide added value to predict aggressive behavior. In contrast,
the sample means of the IFTE items did not seem to improve predictions of
violent behavior. This indicates that for this data set the sample mean is not
a good approximation to the latent truth as estimated by the LTM. As shown
with simulated data in Figure 4.3, the relationship between the latent truths
and item sample means depends strongly on the heterogeneity of the raters.
Figure 4.9 visualizes the posterior mean of the latent truth θpi against the
standardized sample means for each patient and item. The latent truths and
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Figure 4.9: Posterior mean of the true item scores (x-axis) versus the sample
mean across raters (y-axis). Colors indicate the item factors as listed in Ta-
ble C.1. The correlation is around 0.5 which suggests that there is substantial
variability among raters that is ignored by the sample mean.

6The large uncertainty here is inevitable, as the variance of a sum of random variables is
often close to the sum of the variances of the individual parameters.
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the sample means are somewhat correlated, but it is clear that the sample
means are not a good approximation to the latent truths which suggests that
there is substantial variability among raters that is accounted for by the LTM
but ignored by the sample mean.

4.5 Discussion

Here we applied a Cultural Consensus Theory model to scores of patients
in a Forensic Psychiatric Center. We used this CCT model to augment the
predictive performance of a logistic regression model and showed that our
CCT-infused logistic regression model outpredicted all other candidate models.
Interpreting the influence of individual items of the IFTE is not straightfor-
ward. However, the aggregated effect of the IFTE appeared substantial but
also varied across patients. Nevertheless, the uncertainty in the parameter
estimates is too large to warrant strong conclusions and interpretations, other
than the unsurprising result that prior history of violent behavior is a strong
predictor of future violence.

Here we devised a joint model for the IFTE scores and prediction of violent
behavior. An alternative approach is to first fit a CCT model to the IFTE
scores and then in a second step use its estimates for prediction. A disadvan-
tage of this is that it ignores the uncertainty in the CCT estimates. On the
other hand, a pragmatic advantage is that it decreases the running time of
the models. Furthermore, a two-step approach also opens up the possibility
to use machine learning methods for prediction. While such an approach has
shown merit before (see e.g., Plonsky et al., 2017), it is probable that using
a machine learning model would further complicate the interpretation of the
model parameters and predictions which may have the unintended effect that
in practice the recommendations are not adopted because the model cannot
be fully understood.

4.5.1 Suggestions for Future Data Collection

The interpretation of the parameters of the LTM in this application is hindered
by the use of unconstrained thresholds. However, this modeling decision was
mandated by the structure of the data, which, due to the large number of
response categories, showed patterns that could not be described by a simpler
function for the thresholds (e.g., a preference for anchor points). These re-
sponse patterns were somewhat unexpected, as earlier studies did not observe
such patterns (e.g., see Figure 2 of Schuringa et al., 2014). For future data col-
lection, it would be worthwhile to explore options to make the distribution of
response scores unimodal. This could be done through more clear instructions
for the raters, or by collapsing infrequently used response categories. Such
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measures would facilitate the modeling of the data and simultaneously reduce
the likelihood of spurious patterns in the data.

The frequency of measurements is key to the usefulness of the IFTE scores.
Schuringa et al. (2019) previously found that the most recent measurement
is most predictive, which indicates that the scores’ predictive value likely de-
creases over time. Rather than scoring patients every 6 months, as in the data
at hand, it would make more sense to rate them every few weeks. Although
it may be practically difficult to score patients regularly, there are opportuni-
ties to use self-reports for this purpose (Bousardt et al., 2016; Tuente et al.,
2021). A downside of self-reports is that they may introduce additional vari-
ance due to the lack of standardized scoring, or meaningless responses in case
of non-cooperation.

4.5.2 Limitations

A limitation of our approach is that patients’ violent behavior was collapsed
into three discrete time points and consequently also modeled as such. In
reality, however, not all patients show violent behavior at the same time, but
rather there is variability in when the violent behavior occurs. To properly
describe this a continuous time series approach would be required, for exam-
ple, by adding autoregressive components. One benefit of doing so is that it
becomes possible to predict the risk of violent behavior at different points in
the future. For example, a continuous time series approach could predict the
risk of violent behavior occurring next week, as opposed to a time-independent
prediction that our current model makes. Another benefit is that it becomes
possible to use time-varying covariates. For example, patients may show less
or more violent behavior during holidays or on their birthdays.

Furthermore, we did not account for the structure of the IFTE items. Each
item of the IFTE is designed to load on a particular factor, see Table C.1.
This structure could be added to the model introduced here as a confirmatory
factor model. This would imply that the true scores θpi load on their common
factors, and that the factor scores are used to predict violent behavior. If the
factor model fits well then it could facilitate the model interpretation, as this
can then be done on the level of the factor rather than the items. However,
it is unlikely that this would improve predictive performance. On the other
hand, if the factor model does not fit well then predictive performance would
suffer.

4.5.3 Conclusion

We applied the LTM introduced by Anders and Batchelder (2015) and adapted
previously in van den Bergh, Bogaerts, et al. (2020) to data of patients in a
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Forensic Psychiatric Center. We showed that including the IFTE items slightly
improves predictive performance, but only if the scores from different raters
are analyzed properly and not when the scores of different raters are averaged.
We discussed different approaches to extend the models and to make the data
more informative.
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5
A Cautionary Note on Estimating Effect

Size

An increasingly popular approach to statistical inference is to focus on the
estimation of effect size. Yet, this approach is implicitly based on the assump-
tion that there is an effect while ignoring the null hypothesis that the effect
is absent. We demonstrate how this common “null hypothesis neglect” may
result in effect size estimates that are overly optimistic. As an alternative
to the current approach, a “spike-and-slab” model explicitly incorporates the
plausibility of the null hypothesis into the estimation process. We illustrate
the implications of this approach and provide an empirical example.

This chapter is published as: van den Bergh, D., Haaf, J. M., Ly, A., Rouder,
J. N., & Wagenmakers, E.-J. (2021b). A cautionary note on estimating ef-
fect size. Advances in Methods and Practices in Psychological Science, 4(1),
2515245921992035.
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C onsider the following hypothetical scenario: a colleague from the bi-
ology department has just conducted an experiment and approaches
you for statistical advice. The analysis yields p < 0.05 and your col-

league believes that this is grounds to reject the null hypothesis. In line with
recommendations both old (e.g., Grant, 1962; Loftus, 1996) and new (e.g.,
Cumming, 2014; Harrington et al., 2019) you convince your colleague that
it is better to replace the p-value with a point estimate of effect size and a
95% confidence interval (but see Morey, Hoekstra, et al., 2016). You also
manage to convince your colleague to plot the data (see Figure 5.1). Mind-
ful of the reporting guidelines of the Psychonomic Society1 and Psychological
Science2, your colleague reports the result as follows: “Cohen’s d = 0.30, CI
= [0.02, 0.58]”.
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Figure 5.1: Standard estimation results for the fictitious plant growth exam-
ple. Left panel: a descriptives plot with the mean and 95% confidence interval
of plant growth in the two conditions. Right panel: point estimate and 95%
confidence interval for Cohen’s d.

Based on these results, what would be a reasonable point estimate of effect
size? A straightforward and intuitive answer is “0.30”. However, your colleague
now informs you of the hypothesis that the experiment was designed to assess:
“plants grow faster when you talk to them”.3 Suddenly, a population effect
size of “0” appears eminently plausible. Any observed difference may merely
be due to the inevitable sampling variability.

The example above is rhetorical but serves to underscore the potential con-
flict between standard reporting guidelines and common sense. The example
raises the question: When are effect sizes overestimated? Standard point esti-

1https://www.springer.com/psychology?SGWID=0-10126-6-1390050-0
2https://www.psychologicalscience.org/publications/psychological_science/ps-

submissions#STAT
3This example is inspired by Berger and Delampady (1987).
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mates and confidence intervals ignore the possibility that the effect is spurious
(i.e., the null hypothesis H0). This is not problematic when H0 is deeply im-
plausible, either because H0 was highly unlikely a priori or because the data
decisively undercut H0. But when the data fail to undercut H0, or when H0 is
highly likely a priori (i.e., “plants do not grow faster when you talk to them”),
then H0 is not ruled out as a plausible account of the data. Effect size es-
timates that ignore a plausible H0 are generally overly optimistic and overly
confident: the fact that H0 provides an acceptable account of the data should
shrink effect size estimates towards zero. The statistical benefits of shrinkage
are described in Efron and Morris (1977; see also Davis-Stober et al., 2018;
Rouder and Lu, 2005; Shiffrin et al., 2008); the benefits of shrinking estimates
towards zero are discussed for instance in George and McCulloch (1993) and
Iverson et al. (2010), and van Erp et al. (2019).

The above point estimate, “0.30”, may seem purely data-driven, but it is
based on a model that assumes an effect size different from zero. In this
paper we propose an alternative model to estimate effect size: the so-called
“spike-and-slab” model. First, we formally introduce the spike-and-slab model.
Second, we apply the spike-and-slab model to the example in the introduction
and illustrate how it tempers the estimated effect size. Third, we visualize
how the spike-and-slab model may shrink the estimated effect size toward
zero in general. Fourth, we demonstrate the spike-and-slab model by reana-
lyzing the data of Heycke et al. (2018). Finally, we conclude with practical
recommendations and a discussion on when to use the spike-and-slab model.

5.1 A Spike-and-Slab Perspective

The spike-and-slab approach has been widely discussed in the statistical lit-
erature (e.g., Clyde et al., 1996; Geweke, 1996; Ishwaran, Rao, et al., 2005;
Mitchell & Beauchamp, 1988; O’Hara, Sillanpää, et al., 2009) and in the psy-
chological literature (e.g., Bainter et al., 2020; Iverson et al., 2010; Rouder
et al., 2018; C.-H. Yu et al., 2018). Conceptually, the approach is relatively
straightforward.

As usual, the statistical goal is to infer the population effect size from a
set of sample observations. Let δ denote the population effect size, let δ̂
denote a point estimate, and let δ̂ | H1 denote a point estimate assuming the
alternative hypothesis, H1. Assuming the null hypothesis H0 leads to δ̂ | H0,
which usually equals 0. Key is that both estimates, δ̂ | H1 and δ̂ | H0, are
conditional on the hypotheses. For example, δ̂ | H1 should be read as “the
estimated effect size under the alternative hypothesis that the effect exists”.
To the best of our knowledge, all existing guidelines for reporting effect size
estimates recommend that researchers provide δ̂ | H1; implicitly, the guidelines
suggest to ignore H0, resulting in the notion that the population effect size is
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nonzero. In contrast, in the spike-and-slab model, the estimate of effect size
is determined by both H1 and H0.

As the name suggests, the spike-and-slab model consists of two components.
The first component, the spike, corresponds to the position that talking to
plants does not affect their growth (i.e., δ = 0), whereas the second component,
the slab, corresponds to the position that speaking to plants does affect their
growth (i.e., δ 6= 0). The spike and slab are analogous to H0 and H1 discussed
above. Both components are commonly deemed a priori equally likely, such
that the prior probability for each component is 1/2.

One can assign prior probabilities other than 1/2, if this is motivated by prior
research, prior data, or existing theories (e.g., B. M. Wilson & Wixted, 2018).
After observing the data, the prior probabilities of both components, Pr (spike)
and Pr (slab), are updated to posterior probabilities, Pr (spike | data) and
Pr (slab | data).

By applying the spike-and-slab model we learn about the relative plausibil-
ity of the two components; in addition, the spike-and-slab model produces a
marginal estimate of effect size – a weighted combination of effect sizes from
the spike and from the slab (for mathematical detail see the online Appendix).
In other words, the spike-and-slab model yields an overall effect size aver-
aged across the spike and the slab, with averaging weights determined by the
respective posterior probabilities:

δ̂ =
(
δ̂ | spike

)
Pr (spike | data) +

(
δ̂ | slab

)
Pr (slab | data) . (5.1)

Marginalizing across model components according to their posterior plausi-
bility is a uniquely Bayesian operation, and this is the statistical framework
we adopt in this paper (for an accessible introduction to Bayesian inference see
Vandekerckhove et al., 2018). Researchers who prefer a frequentist approach
can accomplish shrinkage by using penalized maximum likelihood methods
such as LASSO and ridge regression (Tibshirani et al., 2005). Another option
open to frequentists is to marginalize across the spike and the slab for instance
by using the Akaike Information Criterion (AIC; Akaike, 1973) and defining
the averaging weights as follows. Let ∆AIC = (AIC | spike) − (AIC | slab),
the difference in AIC between the spike and the slab. Next we use the
“Akaike weight” wspike as a substitute for the posterior probability of the spike:
wspike = exp (−1/2∆AIC) /(1+exp (−1/2∆AIC)) (Burnham & Anderson, 2002;
Wagenmakers & Farrell, 2004). The substitute for the posterior probability of
the slab is simply: wslab = 1− wspike.

Note that when the spike is located at δ = 0, as is usually the case, then(
δ̂ | spike

)
Pr (spike | data) = 0, and consequently Equation 5.1 simplifies to

δ̂ =
(
δ̂ | slab

)
Pr (slab | data) . (5.2)
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This equation shows that the spike-and-slab estimate δ̂ equals the estimate
that is generally recommended in reporting guidelines,

(
δ̂ | slab

)
, but reduced

by the posterior probability for H1. This shrinkage towards zero becomes
negligible when the posterior probability for H1 approaches 1.

To illustrate both the overestimation and the spike-and-slab model we rean-
alyze the fictitious data from Figure 5.1. R code for the analysis is available
at https://osf.io/uq8st/. Remember that the frequentist point estimate for
the effect size conditional on H1, or the slab, was δ̂ = 0.30, with a confidence
interval of 95% CI: [0.02, 0.58]. The Bayesian equivalent is δ̂ = 0.29, with a
credible interval of 95% CRI: [0.02, 0.57]. Figure 5.2 contrasts this Bayesian
slab-only estimate against the spike-and-slab estimate.

Spike and Slab

Slab Only
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p(spike | data) = 0.52

Figure 5.2: The spike-and-slab model. The black line represents the posterior
distribution of effect size given the slab (i.e., the effect is non-zero). The
posterior is scaled so that its mode (δ̂ = 0.29) equals the posterior probability
of the alternative model (i.e., p(slab | data) = 0.48). The grey line represents
the posterior probability of the spike (i.e., δ̂ = 0: the effect is absent). The
error bars and dots above the density show 95% credible intervals and the
posterior mean for the slab-only model and for the spike-and-slab model.

Compared to the traditional results based only on the slab, the poste-
rior mean and central 95% credible interval of the spike-and-slab model are
shrunken towards 0 (i.e., 0.14, 95% CRI: [0.00, 0.48] vs. 0.29, 95% CRI: [0.02,
0.57]). This shrinkage is due to the non-negligible probability that the effect
is absent. Here, the posterior probability of the spike after seeing the data,
0.52, is almost identical to its prior probability. In the figure, the plausibility
that the effect is absent is represented by the height of the spike, and the un-
certainty about the effect’s magnitude, given that it is present, by the width
of the slab. Note that if the posterior probability of the spike was reduced,
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the spike-and-slab results would approach those of the slab-only model.

5.2 The Influence of the Spike

In the fictitious example, the spike-and-slab model reduces the estimated ef-
fect size by shrinking estimates of effect size towards zero. The result may
not be surprising, as the effect was small. However, it makes one wonder to
what extent the spike-and-slab model helps with estimation. What are the
differences between a slab-only model and the spike-and-slab? In this section,
we illustrate how the estimated effect size shrinks towards zero under various
circumstances. We visualize the shrinkage as a function of the observed effect
size, the prior on the standard deviation of effect size under the slab, the sam-
ple size, and the prior probability of the spike. We chose these parameters
because the posterior distribution is fully determined by these quantities (see
the online Appendix).

Figure 5.3 shows the relation between the observed effect size and the esti-
mated effect size for the slab and for the spike-and-slab for 40 observations and
100 observations. All plots show that a smaller prior standard deviation of the
slab induces some shrinkage towards zero. This effect is most obvious in the
top left panel, and it makes sense, as a small prior standard deviation implies
there is more prior mass near the mean of the prior, which is zero. This influ-
ence of the prior standard deviation is typically referred to as prior shrinkage,
and it intrinsic to a Bayesian approach, but not to the spike-and-slab model.
Comparing the plots between the two columns illustrates the influence of the
spike; whenever the observed effect size is near zero, the estimate is shrunken
towards zero in the right column but not in the left column. However, when
the observed effect size is far from zero, there is little additional shrinkage to
the prior shrinkage.

The shrinkage in the spike-and-slab model can be explained in the following
way. Whenever the observed effect size is small, the data are well described
by an effect size of zero and thus the posterior probability of the spike is
substantial. As a result the marginal estimate is shrunken towards the spike’s
estimate, 0. In contrast, when the observed effect size is large the data are
poorly described by an effect size of zero and the posterior probability of
the spike is negligible. As a consequence, the estimate of the spike-and-slab is
practically equivalent to the estimate of the slab. The plots in the right column
of Figure 5.3 show the effect of sample size on the shrinkage. For the bottom
right plot, N = 100, if the observed effect size is small then the estimate is
still shrunken towards 0, but as the observed effect size grows the shrinkage
decreases much more quickly than in the top right plot where N = 40. This
makes sense from a signal-detection perspective. If the observed effect size is,
for example, 0.3 after 40 observations, the posterior probability of the spike
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Figure 5.3: Observed effect size versus posterior mean for different model
components and prior standard deviations. The left column shows inference
based on the slab-only model while the right column shows inference based
on the spike-and-slab model. In the top row, the sample size was 40 while
in the bottom row the sample size was 100. Different lines represent different
standard deviations for the prior distribution on δ. The prior probability of
the spike was 1/2. Inspired by Figure 5 of Rouder et al. (2018).

is substantial. However, after collecting 60 additional observations while the
observed effect size remains 0.3, the posterior probability of the spike decreases
as it becomes increasingly less probable that the data generating model had
an effect size of zero.

Next, we explore the relationship between shrinkage and the prior proba-
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bility of the spike. Figure 5.4 shows the shrinkage for various prior probabil-
ities. The smaller the prior probability of the spike, the less the effect size
is shrunken towards 0. If the prior probability is small then the spike was a
priori implausible and less evidence is needed to make its influence negligible.
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Figure 5.4: Observed effect (x-axis) versus the posterior mean of the spike-
and-slab model (y-axis). The different lines represent different prior probabil-
ities of the spike. The figure is based on 40 observations with a prior standard
deviation of 1.

5.3 Empirical Example: Reanalysis of Two Minds

We now highlight how the spike-and-slab approach can be used in psychological
practice by reanalyzing the results of Heycke et al. (2018), who conducted two
registered replications of Rydell et al. (2006). We first briefly explain the
design of the study before reanalyzing the Explicit Evaluation and Implicit
Evaluation analyses with a spike-and-slab model. For a detailed description
see the “Procedure” section in Heycke et al. (2018). Finally, we provide a
robustness analysis.

The goal of Heycke et al. (2018) was to replicate key evidence for implicit
attitude formation. In the original study, Rydell et al. (2006) reported that
attitudes induced by subliminal primes manifest when they are assessed by an
implicit attitude measure, and attitudes induced by supraliminal cues manifest
when they are assessed by an explicit attitude measure. This finding corre-
sponds to a perhaps surprising dissociation of implicit and explicit attitude
measures. In the Heycke et al. (2018) experiments participants were briefly
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flashed a positive or negative prime followed by an image of a person. Next,
several behavioral descriptions that were either negative or positive appeared
with the image of the person (e.g., “Bob cheated during a poker game”). After-
wards, participants explicitly evaluated the target person, and performed an
implicit association task (IAT). In total, data of 51 participants were analyzed.
Heycke et al. (2018) could not find the dissociation between explicit and im-
plicit attitude measures. They found that while positive descriptions resulted
in a more favorable explicit evaluation than negative descriptions, positive
subliminal primes did not result in more favorable IAT scores than negative
subliminal primes. In contrast, both explicit and implicit attitude measures
were in line with the explicit descriptions they learned during the experiment.

Explicit Evaluation In the analysis of the explicit evaluations, Heycke
et al. (p. 10; 2018) conducted a paired t-test and concluded that the rating
of the target character is more positive if positive information is shown before
negative information: t(27) = 11.52, p < .001; BF10 = 1.37 × 109, d = 2.09,
95% HDI [1.41, 2.79].4 The magnitude of the effect is large and thus a spike-
and-slab reanalysis yields practically the same results: δ̂ = 2.10, 95% CRI:
[1.74, 2.47].5

Implicit Evaluation In the analysis of the IAT, Heycke et al. (p. 10; 2018)
conducted a paired t-test and concluded that when negative primes were pre-
sented before positive primes there was some indication that the IAT rating
became more negative: t(27) = −2.54, p = .017, BF10 = 2.92, d = −0.44,
95% HDI [−0.83,−0.06]. Here, the magnitude of the effect is smaller and
as a consequence the results from the spike-and-slab reanalysis are more con-
servative: δ̂ = −0.35, 95% CRI: [−0.75, 0.00]. The estimate of effect size is
shrunken towards 0 because the spike provides a reasonable account of the
data, Pr (spike | data) = 0.25.

Robustness analysis In the reanalyses above the prior probability of the
spike was set to 0.5. One might wonder how robust or how volatile the re-
sults are to changes in the prior probability of the spike. Figure 5.5 visualizes
the influence of the prior on the spike. In the left panel that shows the ex-
plicit evaluation data, the different estimates for different prior probabilities
are practically identical. For this analysis, the data dominate the prior. In

4These are the statistics reported by Heycke et al. (2018). BF stands for Bayes factor,
see also the online Appendix. HDI is short for highest density interval, a type of credible
interval.

5The difference between the point estimate and the credible intervals is possibly caused
by the difference in prior distributions for effect size. Heycke et al. (2018) use a Cauchy prior
whereas we use a normal prior.
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Figure 5.5: Robustness analysis that shows the prior probability of the
spike (x-axis) versus spike-and-slab estimates (y-axis) for the explicit evalu-
ation (left panel) and the implicit evaluation (right panel). Solid points show
the point estimate of the spike-and-slab and the gray area represents the ac-
companying 95% credible interval. The green horizontal dashed line shows
the estimate of the slab.

contrast, in the right panel that shows the implicit evaluation data, the prior
probability of the spike has a large impact on the results. Here, the data are
less informative and the prior has more influence. The adaptive shrinkage is
a key feature of the spike-and-slab, that is, the amount of shrinkage depends
on the posterior plausibility of the spike. Note that in the right panel the
95% credible interval becomes asymmetric as the prior and therefore also the
posterior probability of the spike increases. It may appear that the credible
interval is bounded by zero, however, this is a property of this particular data
set. Had the observations been closer to zero then the credible interval would
have also contained negative values (e.g., the posterior mass in Figure 5.2 is
not zero for negative values of effect size).

5.4 Discussion

Standard estimates of effect size ignore the null hypothesis and are therefore
overconfident, that is, farther away from zero than they should be. The spike-
and-slab model tempers the enthusiasm that the standard estimates instill
by explicitly considering the possibility that an effect is absent (Robinson,
2019; Rouder et al., 2018). The core idea dates back to Jeffreys (1939; see
also Jeffreys, p. 365, 1961; Ly and Wagenmakers, 2022); nonetheless, it has
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been largely ignored in empirical practice, in statistical education, and in
journal guidelines. We believe the spike-and-slab model is a useful statistical
tool to make the interpretation of effect size estimates more robust. The
spike-and-slab model optimally shrinks effect sizes with ambiguous statistical
support towards zero. This data-driven statistical skepticism is appropriate
regardless of whether or not researchers follow good research practices, for
example, preregistering study design and analysis.

What if All Null Hypotheses Are False?

The spike-and-slab approach clashes with the popular estimation mindset,
where it is argued that statistical significance should be abandoned in favor
of estimation (Cumming, 2014; Cumming & Calin-Jageman, 2016; McShane
et al., 2019; Valentine et al., 2015). One argument to forgo hypothesis testing
is that all null hypotheses are false (Cohen, 1990; Meehl, 1978) and therefore
there is no need to consider a component that states that an effect is exactly
zero. The statistical counterargument is that, even if point null hypotheses
are false, they are still mathematically convenient approximations to more
complex hypotheses that allow mass on an interval close to zero (i.e., perin-
ull hypotheses; Berger & Delampady, 1987; George & McCulloch, 1993; Ly
& Wagenmakers, 2022). Thus, from a pragmatic perspective it is irrelevant
whether or not null hypotheses are exactly true: in the spike-and-slab model,
a narrow interval around zero will shrink estimates towards zero almost as
much as the point null spike component will.

When Can the Spike be Ignored?

There are two scenarios in which the presence of the spike can safely be ig-
nored. First, the spike may be deeply implausible. This happens most often in
problems of pure estimation, such as when determining the relative popularity
of two politicians or the proportion of Japanese cars on the streets of New
York. In such cases, no value or interval needs to be singled out for special
attention. Second, the data, or even data from prior studies, may provide
overwhelming evidence that an effect is present, as in the reanalysis of the Ex-
plicit Evaluation data. When this happens, the results from a spike-and-slab
model become virtually identical to those of a slab-only model: the inclusion
of the spike offers no benefit but neither does it come with a statistical cost.

Conclusion

Standard methods for estimating effect size produce results that are overly
optimistic. This tendency toward high estimates can be corrected by apply-
ing the spike-and-slab model that explicitly takes into account the possibility
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that the effect is absent. The spike-and-slab approach is not meant as a tool
to downplay other researchers’ findings that one disagrees with. Instead, it
provides a more robust estimate of the size of an effect of high-quality studies
whenever null and alternative hypothesis are plausible. We believe that the
approach allows researchers a more nuanced interpretation of their own results
taking into account the plausibility that there is no effect.
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6
Default Bayes Factors for Testing the

(In)equality of Several Population Variances

Testing the (in)equality of variances is an important problem in many sta-
tistical applications. We develop default Bayes factor tests to assess the
(in)equality of two or more population variances, as well as a test for whether
the population variances equal a specific value. The resulting test can be
used to check assumptions for commonly used procedures such as the t-test
or ANOVA, or test substantive hypotheses concerning variances directly. We
show that our Bayes factor fulfills a number of desiderata. Researchers may
have directed hypotheses such as σ2

1 > σ2
2, hey may want to extend H0 to have

a null-region, or wish to combine hypotheses about equality with hypotheses
about inequality, for example σ2

1 = σ2
2 > (σ2

3, σ
2
4). We extend our Bayes factor

test to allow for these deviations from our proposed default and illustrate it
on a number of practical examples. Our procedure is implemented in the R
package bfvartest.

This chapter is published as: Dablander∗, F., van den Bergh∗, D., Wagen-
makers, E.-J., & Ly, A. (in press). Default Bayes factors for testing the
(in)equality of several population variances. Bayesian Analysis.

∗These authors share first authorship.

79



6

6. DEFAULT BAYES FACTORS FOR TESTING THE (IN)EQUALITY
OF SEVERAL POPULATION VARIANCES

T esting the (in)equality of variances is important in many sciences and
applied contexts. In engineering, for example, researchers may want to
assess whether a new, cheaper measurement instrument achieves the

same precision as the gold standard (Sholts et al., 2011). In genetics and
medicine, scientists are not only interested in studying the genetic effect on
the mean of a quantitative trait, but also on its variance (Paré et al., 2010). In
economics and archeology, ideas such as that increased economic production
should reduce variability in products directly lead to statistical hypotheses on
variances (Kvamme et al., 1996). In a court of law, one may be interested
in reducing unwanted variability in civil damage awards and may want to
compare how different interventions reduce this variability (Saks et al., 1997).
In psychology, educational researchers may be interested in studying how the
variance in pupil’s mathematical ability changes across school grades (Aunola
et al., 2004).

While there exist several classical p-value tests for assessing the (in)equality
of population variances (e.g., Brown & Forsythe, 1974; Gastwirth et al., 2009;
Levene, 1961), testing such hypotheses has received little attention from a
Bayesian perspective. Such a perspective, however, would offer practitioners
the possibility (a) to quantify evidence in favor of the null hypothesis (e.g.,
Morey, Romeijn, & Rouder, 2016), (b) allow one to incorporate prior knowl-
edge (e.g., O’Hagan et al., 2006), (c) to use sequential sampling designs which
in many cases is more cost-effective (e.g., than a fixed-N design, see Stefan
et al., 2019), and (d) to translate substantive predictions more easily into
statistical hypotheses by specifying equality and inequality constraints (e.g.,
Böing-Messing & Mulder, 2018; Hoijtink et al., 2008).

In light of these benefits and recent recommendations to go beyond p-value
testing (Wasserstein & Lazar, 2016), we develop default Bayes factor tests
(e.g., Consonni et al., 2018; Jeffreys, 1939; Ly et al., 2016a; Ly et al., 2016b)
for the (in)equality of several population variances. Our work is inspired by
Jeffreys (1939, pp. 222-224), who developed a test for the “agreement of two
standard errors”. Equipped with our procedure, researchers are able to state
graded evidence both for the case of testing assumptions of other tests (e.g.,
the equality of variances assumption in the Student’s t-test), as well as testing
order-constrained hypotheses on variances directly.

This paper is structured as follows. In Section 6.1, we introduce the prob-
lem setup and propose the default Bayes factor. In Section 6.2, we elaborate
on the desiderata that the proposed Bayes factor adheres to. In Section 6.3,
we discuss the special case with K = 2 groups, including directed and interval
Bayes factors, compare our method to a fractional Bayes factor procedure pro-
posed by Böing-Messing and Mulder (2018), and discuss testing all possible
(in)equalities at once. We illustrate our default Bayes factor test and devia-
tions from it on a number of practical examples in Section 6.4. We conclude
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in Section 6.5. All derivations and proofs can be found in the appendix.

6.1 Default Bayes Factor for K Groups

6.1.1 Notation and Problem Setup

The problem of testing the (in)equality of variances can be equivalently ex-
pressed in terms of variances σ2

j or precisions τj = σ−2
j . For the data we

assume that Yji
iid∼ N (µj , τ

−1
j ), where i ∈ [nj ] and j ∈ [K] with the rectangu-

lar brackets embracing an integer denoting the set of positive integers up to
and including that integer, e.g., [K] := {1, 2, . . . ,K − 1,K} ⊂ N.

As the K groups are assumed to be independent of each other, the data
y[K] can be sufficiently summarized by the sample means ȳ = (ȳ1, . . . , ȳK),
where ȳj = 1

nj

∑nj

i=1 yji and the (unbiased) sample variances s2 = (s21, . . . , s
2
K),

where s2j = 1
νj

∑n
i=1(yji− ȳj)2 and where νj = nj−1 is the degree of freedom of

group j. As a convention, we denote K-dimensional vectors in bold, whereas
an arrow is used to denote a K − 1 dimensional vector, e.g., s2 = (s⃗2, s2K).
A subscript + is used to denote summation over the vector’s elements, e.g.,
τ+ =

∑K
j=1 τj , whereas ϑ⃗+ =

∑K−1
j=1 ϑj , since ϑ⃗ ∈ RK−1.

The null hypothesis H0 states that all precisions are the same, while the
alternative hypothesis H1 includes at least one inequality. Formally, we com-
pare

H0 : τj = τk for all j, k ∈ [K], (6.1.1)
H1 : τj 6= τk for some j 6= k ∈ [K], (6.1.2)

regardless of the nuisance parameters µ = (µ1, µ2, . . . , µK) ∈ RK . The null hy-
pothesis restricts the K precisions to a single but unknown precision, whereas
the alternative allows all precisions to vary freely. Including the means, the
null model has K + 1 free parameters, whereas the alternative model has 2K
free parameters.

We rephrase the model comparison by generalizing the reparametrization
proposed by Jeffreys (1939, pp. 222-224); see also Appendix E.1. More specif-
ically, in the alternative model we reparametrize the K precisions τ in terms
of an average precision τ̄ = 1

K τ+ and K−1 proportions ϑ⃗ with ϑj =
τj
τ+

. Note
that this reparametrization is invertible as it should be. In this parametriza-
tion the hypotheses translate into

H0 : ϑj =
1
K for all j ∈ [K − 1], (6.1.3)

H1 : ϑj 6= 1
K for some j ∈ [K − 1], (6.1.4)
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regardless of the values of the nuisance parameter µ ∈ RK and the average
precision τ̄ > 0, which are common to both models.

From a Bayesian perspective, we assess the relative merits of H0 and H1 by
virtue of how well they predict the data, that is, by their respective marginal
likelihoods. The ratio of marginal likelihoods is known as the Bayes factor
(Kass & Raftery, 1995), and its specification requires assigning priors to both
the free parameters of the null and the alternative model. For the models being
compared this implies one prior on the 2K free parameters of the alternative
model, and another prior on the K + 1 free parameters of the null model. To
simplify matters, we mimic the nesting of the null model into the alternative
model and choose π1(µ, τ̄ , ϑ⃗) = π0(µ, τ̄ )π1(ϑ⃗). The Bayes factor we propose is
constructed from a right Haar prior π0(µ, τ̄ ) ∝ τ̄−1 on the common parameters
and from a (proper) Dirichlet prior π1(ϑ⃗) on the test-relevant parameters ϑ⃗
with hyperparameters u, where uj > 0 for all j ∈ [K].

In the remainder of this section we show that this choice of priors results
in a Bayes factor that is analytic. In Section 6.2 we show that the proposed
Bayes factor fulfills certain Bayesian model comparison desiderata.

6.1.2 The Proposed Bayes Factor

The choice for π0(µ, τ̄ ) ∝ τ̄−1 is based on the observation that the hypothe-
ses to be tested are invariant under (1) scalar multiplications of all the data
points, and (2) location shifts of the data points of each sample/group. The
nesting π1(µ, τ̄ , ϑ⃗) = π0(µ, τ̄ )π1(ϑ⃗) makes the use of the improper priors
π0(µ, τ̄ ) ∝ τ̄−1 permissible as a limit of proper priors with normalization
constants cancelling due to their appearances in both the numerator and de-
nominator of the Bayes factor (see also Hendriksen et al., 2021; Ly et al.,
2016b; Robert, 2016). The derivations in Appendix E.2 show that with
π0(µ, τ̄ ) ∝ τ̄−1 on the nuisance parameters, the Bayes factor simplifies to

BF10(y
[K]) =

∫
Θ

( ∫
R>0

∫
RK

f(y[K] |µ, τ̄ , ϑ⃗)π0(µ, τ̄ )dµdτ̄

)
π1(ϑ⃗)dϑ⃗∫

R>0

∫
RK

f(y[K] |µ, τ̄ , ϑ⃗ = 1
K )π0(µ, τ̄ )dµdτ̄

(6.1.5)

=

∫
Θ
h(s2 | ϑ⃗)π1(ϑ⃗)dϑ⃗, (6.1.6)
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where R>0 denotes the positive reals, Θ := {θ⃗ ∈ RK−1 | θ⃗+ < 1} ⊂ RK−1
>0 , and

where we refer to h(s2 | ϑ⃗) as the reduced likelihood, which is given by

h(s2 | ϑ⃗) :=
(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)ν+

2
[K−1∏

j=1

ϑ
νj
2
j

]
(1− ϑ⃗+)

νK
2

(
1−

K−1∑
j=1

[1− νjs
2
j

νKs2K
]ϑj

)−ν+

2
,

(6.1.7)

where ν+ =
∑K

j=1 νj , and ϑ⃗+ :=
∑K−1

j=1 ϑj . Note that, for any proper prior
π1(ϑ⃗), the nesting and the choice π0(µ, τ̄ ) ∝ τ̄−1 leads to a measurement
invariant Bayes factor, as desired. This is because h(s2 | ϑ⃗) and therefore
BF10(y

[K]) = BF10(s
2) only depend on the data via the ratios of sums of

squares νjs
2
j

νKs2K
, and because each s2k is invariant under location shifts within

sample/group k.
The Dirichlet prior π1(ϑ⃗) on the test-relevant parameters is inspired by the

form of h(s2 | ϑ⃗) and makes the proposed Bayes factor analytic. By definition
of the integral form of the type D Lauricella function, the proposed Bayes
factor is

BF10(s
2) =

B(ν2 + u)

B(u)

(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)ν+

2
FD

(
ν+

2 ; ν⃗
2 + u⃗ ; ν+

2 + u+ ; 1⃗−
−→
νs2

νKs2K

)
,

(6.1.8)

where B(u) = Γ(u1)···Γ(uK)
Γ(u+) is the multivariate beta function, 1⃗ = (1, . . . , 1) ∈

RK−1,
−→
νs2 = (ν1s

2
1, . . . , νK−1s

2
K−1) is the K − 1 vector of sums of squares,

and where FD is a type D Lauricella function which has the integral repre-
sentation FD(a ; b⃗ ; d ; x⃗) =

Γ(d)
Γ(a)Γ(d−a)

∫ 1
0 ta−1(1 − t)d−a−1(1 − x1t)

−b1 · · · (1 −
xK−1t)

−bK−1dt whenever d > a, which holds trivially since u > 0 always.
Observe that, with Eq. (6.1.8) at hand, we also have an analytic marginal
posterior for ϑ⃗, namely,

π1(ϑ⃗ | y[K]) =

[∏K−1
j=1 ϑ

νj
2
j

]
(1− ϑ⃗+)

νK
2

(
1−

∑K−1
j=1 [1− νjs

2
j

νKs2K
]ϑj

)−ν+

2

B(ν2 + u)FD

(
ν+

2 ; ν⃗
2 + u⃗ ; ν+

2 + u+ ; 1⃗−
−→
νs2

νKs2K

) .

(6.1.9)

The proposed Bayes factor can be computed from the sample variances and
sample sizes directly. This makes it possible to re-evaluate the published liter-
ature without the need to have access to the raw data, as shown in Section 6.4.
In the next section, we show that the proposed Bayes factor fulfills a number
of desiderata.
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6.2 Properties of the Proposed Bayes Factor

An important result of this paper is that our proposed Bayes factor fulfills
a number of desiderata (Bayarri et al., 2012; Consonni et al., 2018; Jeffreys,
1939; Ly et al., 2016a; Ly et al., 2016b). More specifically, we show that the
proposed Bayes factor has the finite-sample properties of being (i) labelling
invariant, (ii) (exactly) predictively matched, and (iii) information consistent.
It also has the asymptotic properties of being (iv) model selection consistent
and (v) limit and across-sample consistent. Information consistency requires
uj ≤ 1/2 for j ∈ [K] while labelling invariance requires ui = uj for all i, j ∈ [K],
suggesting the default choice of uj = 1/2 for all j ∈ [K].2

6.2.1 Labelling Invariance

A Bayes factor is labelling invariant if it is independent of the arbitrary choice
of which group is labelled K.

Theorem 6.2.1 (Labelling invariance). The proposed Bayes factor with ui =
uj for all i, j ∈ [K] is labelling invariant. �

Proof. See Appendix E.3.1.

6.2.2 Predictive Matching

A Bayes factor is (exactly) predictively matched if it equals 1 for all data sets
of insufficient size, that is, BF10(y

[K]) = 1 for all y[K] with n = (n1, . . . , nK)
smaller than the minimal sample sizes (Bayarri et al., 2012). The insufficient
sizes are: (a) n1 = . . . = nK = 1 as then νjs

2
j = 0 for all j ∈ [K] regardless

of the observations, and (b) nk = 2 for some k ∈ [K] and nj = 1 for all
j ∈ [K] \ {k}, in which case there is no other sample variance to compare s2k
to.

Theorem 6.2.2 (Predictive matching). A Bayes factor constructed from the
pair of priors π1(µ, τ̄ , ϑ⃗) = π0(µ, τ̄ )π1(ϑ⃗) and π0(µ, τ̄ ) ∝ τ̄−1 with π1(ϑ⃗)
proper is predictively matched. This holds for our proposed Bayes factor. �

Proof. See Appendix E.3.2.

6.2.3 Information Consistency

Information consistency implies that for all data sets of sufficient size, that
is, fixed n = (n1, . . . , nK) with at least two indexes j 6= k ∈ [K] such that

2Values 0 < u < 1/2 would also fulfill all desiderata, but would put even more mass on
large differences between the variances; we therefore use u = 1/2 as our default choice.
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nj , nk ≥ 2, the Bayes factor in favor of the alternative over the null should
tend to infinity whenever it becomes abundantly clear that the null cannot
hold true. This occurs in the limit s2j/s

2
K → 0, that is, when the observed

variance s2K is of a much higher order than another sample variance s2j .

Theorem 6.2.3 (Information consistency). The proposed Bayes factor is in-
formation consistent if uj ≤ 1/2 for j ∈ [K]. �

Proof. See Appendix E.3.3.

6.2.4 Model Selection Consistency

A Bayes factor is model selection consistent if it selects the correct model as
n→∞, that is, if

BF10(Y
[K],n)

P→ 0 if P ∈M0, and BF01(Y
[K],n)

P→ 0 if P ∈M1, (6.2.1)

where P refers to the data generating distribution, and where Xn
P→ X denotes

convergence in probability, that is, limn→∞ P(|Xn −X| > ϵ) = 0 for all ϵ > 0.
To state the theorem and to allow the K sample sizes go to infinity inde-

pendently of each other, we let nK := n and nj := cjn for cj > 0, j ∈ [K],
thus, cK = 1 by definition. To also allow the (data-governing) variances to
differ arbitrarily as well, we let γj be the relative size of the variance σ2

j with
respect to σ2

K , that is, σ2
j := γjσ

2
K where γj > 0 for j ∈ [K], thus, γK = 1 by

definition. Note that the null hypothesis is equivalent to γ = 1 ∈ RK , whereas
under the alternative there exists at least one j ∈ [K] such that γj 6= 1.

Theorem 6.2.4 (Model selection consistency). The proposed Bayes factor is
model selection consistent. Furthermore, let Yji

iid∼ N (µj , σ
2
j ) where σ2

j = γjσ
2
K

for i ∈ [nj ], nj = cjn, and nK = n for j ∈ [K], then as all the sample sizes
tend to infinity, the Bayes factor behaves as

BF10(s
2, n) = C0(K, c,u |γ)n

1−K
2
( ⟨c,γ⟩

c+

)c+
2 n
(K−1∏

j=1

γ
−
cj
2 n

j

)
exp(V (n)),

(6.2.2)

where 〈c,γ〉 :=
∑K

j=1 cjγj, V (n) = OP (n
−1/2) under the null and V (n) =

OP (n
1/2) under the alternative, and where

C0(K, c,u |γ) =
(4π)

K−1
2 c

1
2
+

(∏K−1
j=1 γ

−uj

j

)
B(u)

(∏K−1
j=1 c

1
2
j

)
(c+ −

∑K−1
j=1

cjγj−1
γj

)u+

. (6.2.3)
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This means that under the alternative, H1 : γj 6= 1 for some j ∈ [K − 1], we
have that

log(BF10(s
2, n)) = log

(
C0(K, c,u |γ)

)
+ 1−K

2 log(n)

+
(
c+ log

( ⟨c,γ⟩
c+

)
−

K−1∑
j=1

cj log(γj)
)n
2
+OP (n

1/2). (6.2.4)

Under the null, H0 : γ⃗ = 1⃗, this simplifies drastically, and the logarithm of the
Bayes factor then behaves as

log(BF10(s
2, n)) = 1−K

2

(
log(n)− log(4π)

)
+ 1

2

(
log(c+)−

K−1∑
j=1

log(cj)
)

− u+ log(K)− logB(u) +OP (n
−1/2). (6.2.5)

Hence, BF10(s
2, n) converges relatively slowly to zero under the null compared

to the exponential decay of BF01(s
2, n) under the alternative. �

Proof. See Appendix E.3.4.

Illustrating the Rate of Convergence

We illustrate the rate of convergence of our default Bayes factor by visualizing
Equations (6.2.4) and (6.2.5) as a function of K ∈ [2, 12] and γ1 ∈ [2, . . . , 11]
with γ2 = . . . = γK = 1 and σ2

K = 1. Equation (6.2.4) shows that under the
alternative the asymptotic behavior of log(BF10) is mostly linear in n. The
left panel in Figure 6.1 shows the slope of this linear increase — termed the
log Bayes factor growth — as a function of K and γ1. We arrive at this slope
by computing Equation (6.2.4) for a large number of n and regressing the
result on n. When H1 is true, the rate of convergence of the Bayes factor is
exponential, and so the log Bayes factor grows linearly. We visualize the slope
of how the log Bayes factor grows across the number of groups, with larger
values indicating more rapid exponential growth. We find that, as the number
of groups increases, the log Bayes factor grows more quickly. This increase is
also dependent on γ1; for larger values, the Bayes factor grows more quickly
with increasing number of groups.

The right panel in Figure 6.1 illustrates log(BF01) as a function of the sam-
ple size per group for different number of groups K under the null hypothesis,
using Equation (6.2.5). In contrast to the scenario when H1 is true, the rate
of convergence when H0 is true is no longer exponential (see also Bahadur &
Bickel, 2009; Jeffreys, 1961; Johnson & Rossell, 2010).
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Figure 6.1: Left: Shows the rate of the linear growth of the log Bayes factor
underH1 for increasing γ1 and number of groups. Right: Shows how log(BF01)
grows as a function of n when H0 is true for different number of groups K.
All Bayes factors were computed with the default value u = 1/2.

6.2.5 Limit and Across-Sample Consistency

A Bayes factor is limit consistent if it remains bounded as long as not all nj →
∞ for j ∈ [K] (Ly, 2018, Ch. 6). A Bayes factor is across-sample consistent if
the limit of the K-sample Bayes factor as a function of the fixed observations
of the groups i ∈ [K−1] results in aK−1 sample Bayes factor (Peña, 2018, Ch.
4). Note that we can consider without loss of generality the situation where
the first K − 1 samples are fixed as nK → ∞ because of labelling invariance.
For the following, we assume that S2

K is a √nK-consistent estimator for the
data-governing variance σ2

0 of the Kth group, which by Chebyshev’s inequality
is certainly the case when YKi ∼ N (µK , σ2

0).
We call the K-sample Bayes factor BF[K]

10 (s⃗2, S2
K) across-sample consistent

if, as nK →∞, it converges in probability under σ−2
0 to a K − 1 Bayes factor

BF[K−1]

10 ;σ2
0
(y[K−1]), comparing the hypotheses

H[K−1]

0 ;σ2
0

: τj = σ−2
0 for all j ∈ [K − 1] (6.2.6)

H[K−1]

1 ;σ2
0

: τj 6= σ−2
0 for some j ∈ [K − 1]. (6.2.7)

Here the null hypothesis states that the K − 1 precisions are all equal to the
known constant σ−2

0 , whereas the alternative states that at least one precision
is unequal to σ−2

0 .
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The theorem below implies that the proposed Bayes factor converges in
probability to a lower dimensional Bayes factor BF[K−1]

10 ;σ2
0
(s⃗2) that is based on

uniform priors on the nuisance parameters µ⃗ ∈ RK−1, and an inverse Dirichlet
distribution on the precisions τ⃗ = (τ1, . . . , τK−1) ∈ RK−1 scaled by 1/σ−2

0 ,
that is,

πσ2
0
(τ⃗ |M[K−1]

1 ) =
(σ2

0)
K−1

∏K−1
j=1 (σ2

0τj)
uj−1

B(u⃗, w)(1 + σ2
0 τ⃗+)

u⃗++w
, (6.2.8)

where we wrote w = uK so the statement only involves vectors of length K−1.
The integral representation of the multivariable generalisation of Tricomi’s
confluent hypergeometric function of the second kind U , see for instance (Ng
et al., 2011; Phillips, 1988), shows that the resulting K−1 sample Bayes factor
is given by

BF[K−1]

10 ;σ2
0
(s⃗2) =

∫ (∏K−1
j=1 τ

νj
2

j

)
exp(−1

2

∑K−1
j=1 νjs

2
jτj)πσ2

0
(τ⃗ |M[K−1]

1 )dτ⃗

(σ2
0)

− ν⃗+
2 exp(− (

−→
νs2)+
2σ2

0
)

,

=

(∏K−1
j=1 Γ(

νj
2 + uj)

)
U
(
ν⃗
2 + u⃗ ; ν⃗+

2 − uK + 1 ;
−→
νs2

2σ2
0

)
B(u⃗, w) exp(− (

−→
νs2)+
2σ2

0
)

, (6.2.9)

where
−→
νs2 = (ν1s

2
1, . . . , νK−1s

2
K−1) denotes the vector of sums of squares,

(
−→
νs2)+ =

∑K−1
j=1 νjs

2
j , and ν⃗+ :=

∑K−1
j=1 νj , as before.

Theorem 6.2.5 (Limit and Across-Sample
√
nK-consistency). If S2

K is an
√
nK-consistent estimator for σ2

0, then the Bayes factor BF[K]
10 (s⃗2, S2

K) is a
√
nK-consistent estimator of the K−1-sample Bayes factor BF[K−1]

10 ;σ2
0
(s⃗2) given

in Eq. (6.2.9). Furthermore, if YKi ∼ N (µK , σ2
0), then

√
nK(S2

K − σ2
0) is

asymptotically normal, and consequently so is the K-sample Bayes factor,
that is,

√
nK

(
BF[K]

10 (s⃗2, S2
K)− BF[K−1]

10 ;σ2
0
(s⃗2)

)
d→ N

(
0, 2σ4

0T̆
2
1

)
(6.2.10)

where T̆1 is given by Eq. (E.3.55) in the appendix. �
Proof. See Appendix E.3.5.

6.3 Special Cases, Deviations from the Default, and Multiple
Comparisons

The comparison of K = 2 groups occurs frequently in practice and we discuss
the Bayes factor for this special case in the following section. We also consider
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three modifications of the default choice in order to incorporate a subject
assessment of the test-relevant parameter, and to accommodate directed tests
and interval Bayes factors. Lastly, we also consider the problem of testing all
possible (in)equalities, that is, the multiple comparison problem.

6.3.1 The Bayes Factor for K = 2 Groups

For the K = 2 group case, the null model of equal precisions has three parame-
ters (µ1, µ2, τ̄) whereas the alternative has four (µ1, µ2, τ̄ , ϑ). The comparison
of interest is then between H0 : ϑ = 1

2 and H1 : ϑ 6= 1
2 . In this case, the

proposed Bayes factor simplifies to

BF10(s
2) =

B(ν12 +u1,
ν2
2 +u2)

B(u1,u2)

(
1 +

ν1s21
ν2s22

)ν1+ν2
2

× 2F 1

(
ν1+ν2

2 , ν1+2u1
2 ; ν1+ν2+2(u1+u2)

2 ;
ν2s22−ν1s21

ν2s22

)
,

(6.3.1)

where 2F 1 refers to the Gaussian or ordinary hypergeometric function, which
has the integral representation 2F 1(a, b ; c ; z) =

Γ(c)
Γ(b)Γ(c−b)

∫ 1
0 tb−1(1−t)c−b−1(1−

tz)−adt, with Re(c) > Re(b) > 0 (Abramowitz & Stegun, 1972, eq. 15.3.1).
Observe that across-sample consistency implies that for Y2i

iid∼ N (µ2, σ
2
0) and

n2 → ∞, the two-sample Bayes factor is a
√
n2-consistent estimator of the

one-sample Bayes factor

BF[1]

10 ;σ2
0
(s21) =

Γ(ν12 + u1)U
(
ν1
2 + u1 ;

ν1
2 − u2 + 1 ;

ν1s21
2σ2

0

)
B(u1, u2) exp(−

ν1s21
2σ2

0
)

. (6.3.2)

This Bayes factor compares the alternative hypothesis H[1]

1 ;σ2
0
: τ1 6= σ−2

0 to

the null hypothesis H[1])

0 ;σ2
0
: τ1 = σ−2

0 with σ2
0 known. Here U(a ; b ; z) =

1
Γ(a)

∫∞
0 e−ztta−1(1 + t)b−a−1dt is the (one-dimensional) Tricomi’s confluent

hypergeometric function of the second kind (Abramowitz & Stegun, 1972, Eq.
13.2.5).

6.3.2 Prior elicitation for K = 2 groups

For prior elicitation, it is arguably more intuitive to express the prior on
the test-relevant parameter in terms of the ratio of the standard deviations,
ϕ = σ2

σ1
=
√

ϑ
1−ϑ , thus,

∫ 1
0 dϑ =

∫∞
0 2ϕ(1+ϕ2)−2dϕ. The prior ϑ ∼ Beta(u1, u2)

underlying Eq. (6.3.1) induces a generalized beta prime distribution on ϕ with
density

π(ϕ ; u1, u2) =
2ϕ2u1−1(1 + ϕ2)−(u1+u2)

B(u1, u2)
. (6.3.3)
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Figure 6.2: Prior on ϑ (left) and induced prior on ϕ (right) for u := u1 =
u2 ∈ {4.50, 2.00, 0.50}; see Section 6.3.2 for the rationale behind these values.

Figure 6.2 visualizes the prior assigned to ϑ and ϕ for various values of u :=
u1 = u2. A statistician may now elicit a researcher’s prior beliefs in terms
of (a ratio of) standard deviations conditional on the alternative holding true.
For example, if the researcher believes that the probability of one standard
deviation being twice as large or twice as small as the other does not exceed
95%, then she should choose u = 4.50. Note that the resulting Bayes factor is
not information consistent anymore. It is also interesting to note that on this
scale ϕ the mth raw moment is given by Γ(

m
2 +u1)Γ(u2−m

2 )

Γ(u1)Γ(u2)
. Hence, it has no

finite mean whenever u2 ≤ 1/2. A change of variables shows that the posterior
distribution in terms of ϕ is given by:

π(ϕ |y(2)) =
2ϕν1+2u1−1(1 + ϕ2)−(u1+u2)(1 +

ν1s21
ν2s22

ϕ2)−
ν1+ν2

2

B(ν12 + u1,
ν2
2 + u2) 2F 1

(
ν1+ν2

2 , ν12 + u1 ;
ν1+ν2

2 + u1 + u2 ; 1−
ν1s21
ν2s22

) .
(6.3.4)

6.3.3 Interval Bayes Factors

Researchers may wish to extend the sharp null hypothesis ϑ = 1/2 to include
a null-region around the point null value. If the null-region overlaps with
the prior under the alternative, this leads to an (inconsistent) peri-null Bayes
factor (e.g., Ly & Wagenmakers, 2022; Morey & Rouder, 2011). If the null-
region does not overlap with the prior under the alternative, that is, if we
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compare the hypotheses:

H0 : ϕ ∈ [a, b] (6.3.5)
H1 : ϕ 6∈ [a, b], (6.3.6)

then this yields a non-overlapping interval-null Bayes factor (e.g., Berger &
Delampady, 1987; Rousseau, 2007). The null-region is usually informed by the
problem at hand, as we will see later on an example. For a potential default
approach to specify the non-overlapping interval bounds, see Appendix E.2.3.

6.3.4 Directed Bayes Factors

Researchers sometimes desire to quantify evidence in favor of hypotheses such
as H− : σ2

1 > σ2
2, or H+ : σ2

1 < σ2
2. More generally, let Hr denote such

an order-constrained or directed hypothesis. Since σ2
1 = (2ϑτ̄ )−1 and σ2

2 =
(2(1−ϑ)τ̄ )−1, we have that σ2

1 > σ2
2 implies ϑ < 1/2. We therefore restrict the

beta prior on ϑ accordingly in the calculation of the the marginal likelihood
for Hr (see also Ly et al., 2016a), which can then be used to calculate directed
Bayes factors.

In the more general K > 2 group case, we can similarly specify equality or
inequality constraints by encoding them in the prior distribution on ϑ⃗. An
example of such a constrained hypotheses is given by:

Hr : ϑ1 = ϑ2 > (ϑ3, ϑ4, ϑ5 = ϑ6) > ϑ7 ,

which incorporates two equality constraints (ϑ1 = ϑ2 and ϑ5 = ϑ6), several or-
der constraints (e.g., ϑ1 > ϑ3, ϑ1 > ϑ4, ϑ3 > ϑ7, ϑ4 > ϑ7), and no constraints
between the ϑ3, ϑ4, ϑ5 = ϑ6 (and therefore also the standard deviations and
variances). Note that while this hypothesis is formulated in terms of the param-
eter ϑ, it has immediate implications for the precisions and thus for the stan-
dard deviations and variances. We could also directly formulate the hypotheses
on the variances or standard deviations, for example, with (σ1 = σ2) > σ3 im-
plying that (ϑ1 = ϑ2) < ϑ3. This flexibility allows researchers to translate
substantive predictions directly into statistical hypotheses.

We compute Bayes factors including mixed hypotheses such asHr as follows.
First, we introduce a new auxiliary hypothesis Ha which does not include
order-constraints. In our example, this yields:

Ha : ϑ1 = ϑ2, ϑ3, ϑ4, ϑ5 = ϑ6, ϑ7 .

We estimate the (auxiliary) Bayes factor BFra by dividing the proportion of
samples ϑ that respect the order-constraints in Hr in the posterior by the
proportion of samples that respect it in the prior (Klugkist et al., 2005). Sep-
arately, we then estimate the Bayes factor in favor of Ha over H1 (or H0)
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using bridge sampling (Gronau, Sarafoglou, et al., 2017; Meng & Wong, 1996).
Combining these two Bayes factors yields the desired Bayes factor in favor of
Hr over H1 (or H0), that is, BFr1 = BFra × BFa1. The R package bfvartest,
which is available from https://github.com/fdabl/bfvartest, implements this
and all other procedures described above; see Appendix E.4 for how to use the
package.

6.3.5 Comparison to a Fractional Bayes Factor

One alternative to choosing the prior based on desiderata, as done in this
paper, is to use the data to inform the prior. O’Hagan (1995) proposed the
fractional Bayes factor, which uses a fraction b = m0/n of the entire likelihood
to construct a prior, where m0 is the size of the minimal training sample and
n is the sample size. Böing-Messing and Mulder (2018) developed a fractional
Bayes factor for testing the (in)equality of several population variances. Here,
we compare our proposed default Bayes factor to their fractional Bayes factor.

Since the likelihood is the same, the key difference between the two Bayes
factors is in their respective prior specification. As we are concerned with
hypotheses that can feature both inequality and equality constrains, we need
to introduce additional notation. Let Hr denote a hypothesis with qEr equality
and qIr inequality constraints on K population variances, such that there are
Jr = K − qEr unique variances σ⃗2

r = (σ2
1, . . . , σ

2
Jr
). Further, let Kj be the

number of populations sharing the unique variance σ2
j , and njk be the sample

size of the kth population sharing the unique variance σ2
j . Böing-Messing and

Mulder (2018) use population-specific fractions given by bjk = 2/njk
, where

m0 = 2 is the minimal training sample size for the automatic prior to be proper;
it is in this sense that their Bayes factor relies on minimal prior information.
They calculate the marginal likelihood for hypothesis Hr as:

p(y[K] | Hr) =

∫
Ωt

∫
RK f(y[K];µ, σ⃗r

2)π(µ, σ⃗r
2)dµdσ⃗r

2∫
Ωa

t

∫
RK f(y[K];µ, σ⃗r

2)bπ(µ, σ⃗r
2)dµdσ⃗r

2 , (6.3.7)

where b is the vector of population-specific fractions, π(µ, σ⃗2
r ) ∝

∏Jr
i=1 σ

−2
i

is the Jeffreys prior, Ωt specifies the region of integration depending on the
inequality constraints in Ht, and Ωa

t is the adjusted integration region given
by:

Ωa
t =

{
σ⃗r

2 : RI [a1σ
2
1 . . . aJrσ

2
Jr ] > 0⃗

}
, (6.3.8)

where RI encodes the inequality constraints among the Jr unique variances,
and where aj = Kj/2

∑Kj
k=1

(
1−

s2jk
njk

)
. Böing-Messing and Mulder (2018) show

that this setup leads to the following expression for the marginal likelihood of
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Hr:

p(y[K] | Hr) =

∫
Ωr

∏Jr
j=1 IG

(
σ2
j ;
∑Kj

k=1 njk
−Kj

2 ,

∑Kj
k=1(njk

−1)s2jk
2

)
dσ2

j

∫
Ωr

∏Jr
j=1 IG

 Kj∑Kj
k=1

(
2− 1

njk

)
s2jk

σ2
j ;

Kj

2 ,
Kj

2

 dσ2
j

π
−

∑Jr
j=1

∑Kj
k=1

(njk
−2)

2

 Jr∏
j=1

Kj∏
k=1

(njk

2

) 1
2

 Jr∏
j=1

Γ

(∑Kj
k=1 njk

−Kj

2

)(∑Kj

k=1

(
2− 1

njk

)
s2jk

)Kj
2

Γ
(
Kj

2

)(∑Kj

k=1(njk − 1)s2jk

)∑Kj
k=1

njk
−Kj

2

,

(6.3.9)

where IG(x;α, β) is the density of the inverse Gamma distribution, and the
ratio of the two integrals gives the probability that the constraints hold in the
posterior divided by the probability that they hold in the prior. This ratio
equals 1 when testing hypotheses without order-constraints, i.e., Ωα

t = Ωt.
From Equation (6.3.9) it follows that the prior distribution assigned to σ2

j

under hypothesis Hr is given by:

σ2
j ∼ IG

Kj

2
,

∑Kj

k=1

(
2− 1

njk

)
s2jk

2

 ,

where njk and s2jk are the sample size and the sum of squares of the kth group
sharing population variance σ2

j . Note that, in contrast to our proposed default
prior, the prior for the fractional Bayes factor proposed by Böing-Messing and
Mulder (2018) depends on the data. Similarly, our prior specification results
in a joint distribution on σ2 that cannot be factorized, that is, it results
in a dependent prior, where the dependency is created through the weights
ϑ⃗. The prior specification by Böing-Messing and Mulder (2018) induces a
Dirichlet prior on ϑ⃗ with u = Kj/2 and a non-standard prior on τ̄ (it follows
a Gamma distribution if and only if all sample sizes and sum of squares are
equal). Figure 6.3 shows our default Bayes factor and the fractional Bayes
factor for K = 2, sample sizes n := n1 = n2 ∈ [5, . . . , 200], and different values
of ϕ = {1, 1.2, 1.3, 1.4, 1.5}. While our proposed default Bayes factor and the
fractional Bayes factor differ, they show very similar results for u = 1/2.

There an interesting discrepancy between the two Bayes factors when testing
directed hypotheses. In case there is overwhelming evidence for the hypothesis
thatHr : σ

2
1 > . . . > σ2

K , the Bayes factor in favor of it overH1 : σ
2
1 6= . . . 6= σ2

K

reaches the bound K!. However, in case there are the same J equalities in both
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Figure 6.3: Comparison of the Bayes factor proposed by Böing-Messing
and Mulder (2018) and our Bayes factor for K = 2 groups as a func-
tion of n := n1 = n2, prior specification u := u1 = u2, and effect size
ϕ = {1, 1.1, 1.2, 1.3, 1.4, 1.5}.

hypotheses, the fractional Bayes factor does not reach the bound of (K − J)!,
while our proposed default Bayes factor does. This is because Böing-Messing
and Mulder (2018) set bjk = 2/njk

for all groups. While this is desirable in
the sense that one thus uses the same ‘minimal’ amount of information under
each hypothesis, this results in a different shape parameter of the inverse
gamma prior distribution, and the bound is therefore not reached, which can
be considered a shortcoming of the fractional Bayes factor.

6.3.6 Multiple Comparisons

So far, we have focused on comparing the null hypothesis H0 in which all vari-
ances are equal against the alternative hypothesis H1 in which all variances
were free to vary or against mixed hypotheses Hr which allow for inequalities,
equalities, and order-constraints. However, researchers are sometimes also
interested in assessing all possible (in)equalities. Statistically, all possible con-
figurations of equality and inequality constraints can be uniquely represented
as partitions of the groups, where any number of groups are equal if they are
in the same partition. Given K groups, the number of partitions of size j is
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given by the Stirling numbers of the second kind, denoted
{
K
j

}
. The total

number of partitions is given by the Kth-Bell number, which is defined as a
sum over the Stirling numbers:

BK =

K∑
j=0

{
K

j

}
. (6.3.10)

The Bell numbers grow quickly, with K = 10 already yielding 115, 975 models.
This results in a multiple comparison problem, which in a Bayesian framework
can be addressed by suitable adjusting the prior model odds (e.g., Jeffreys,
1961; Westfall et al., 1997). Inspired by the work on variable selection in
regression (Scott & Berger, 2006, 2010), van den Bergh and Dablander (2022)
recently proposed a beta-binomial prior for this problem, comparing it to a
Dirichlet process prior proposed by Gopalan and Berry (1998) as well as to
other methods to multiple comparison that do not require specifying a prior
over all models (de Jong, 2019; Jeffreys, 1961; Westfall et al., 1997). For a
small number of groups, one can directly calculate the marginal likelihood of
each model and use the posterior model probabilities for inference:

p(Hj | y[K]) =
p(y[K] | Hj)π(Hj)∑BK
i=0 p(y

[K] | Hi)π(Hi)
=

BFj0π(Hj)∑BK
i=0 BFi0π(Hi)

, (6.3.11)

where BK is the Kth Bell number and the prior models probabilities π(Hj) are
suitable adjusted, as detailed in van den Bergh and Dablander (2022). Table
6.1 shows the results of an analysis detailed in Section 6.4.6 for a K = 4 group
case under different model priors. For details, we refer the interested reader
to van den Bergh and Dablander (2022), who also develop a stochastic search
method to deal with larger K.

6.4 Practical Examples

In the following sections we apply our proposed Bayes factor test on a number
of examples.

6.4.1 Sex Differences in Personality

There is a rich history of research and theory about differences in variability
between men and women, going back at least to Charles Darwin (Darwin,
1871). Borkenau et al. (2013) studied whether men and women differ in the
variability of personality traits. Here, we focus on peer-rated conscientiousness
in Estonian women and men (s2f = 15.6, s2m = 19.9, nf = 969, nm = 716).
The left panel in Figure 6.4 visualizes the raw data, and the middle panel
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Beta-binomial Prior Dirichlet Process Prior

Hypothesis α = 1, β = 1 α = 1, β = 4 α = 1 α = 1.817

{Flemish, German, Estonian, Czech} 0.250 (0.446) 0.571 (0.739) 0.250 (0.368) 0.116 (0.192)
{Flemish}, {German, Czech}, {Estonian} 0.042 (0.029) 0.019 (0.007) 0.042 (0.016) 0.064 (0.034)
{Flemish, Estonian}, {German}, {Czech} 0.042 (0.005) 0.019 (0.001) 0.042 (0.003) 0.064 (0.006)
{Flemish, Czech}, {German}, {Estonian} 0.042 (0.000) 0.019 (0.000) 0.042 (0.000) 0.064 (0.000)
{Flemish}, {German, Estonian}, {Czech} 0.042 (0.083) 0.019 (0.018) 0.042 (0.053) 0.064 (0.118)
{Flemish, German}, {Estonian}, {Czech} 0.042 (0.015) 0.019 (0.004) 0.042 (0.009) 0.064 (0.023)
{Flemish}, {German}, {Estonian, Czech} 0.042 (0.018) 0.019 (0.004) 0.042 (0.015) 0.064 (0.029)
{Flemish, Estonian}, {German, Czech} 0.036 (0.030) 0.041 (0.017) 0.042 (0.014) 0.035 (0.019)
{Flemish, German}, {Estonian, Czech} 0.036 (0.060) 0.041 (0.038) 0.042 (0.056) 0.035 (0.049)
{Flemish, Czech}, {German, Estonian} 0.036 (0.004) 0.041 (0.002) 0.042 (0.003) 0.035 (0.004)
{Flemish, Estonian, Czech}, {German} 0.036 (0.005) 0.041 (0.004) 0.083 (0.009) 0.070 (0.007)
{Flemish, German, Estonian}, {Czech} 0.036 (0.061) 0.041 (0.041) 0.083 (0.105) 0.070 (0.111)
{Flemish, German, Czech}, {Estonian} 0.036 (0.003) 0.041 (0.002) 0.083 (0.005) 0.070 (0.005)
{Flemish}, {German, Estonian, Czech} 0.036 (0.211) 0.041 (0.120) 0.083 (0.339) 0.070 (0.390)

{Flemish}, {German}, {Estonian}, {Czech} 0.250 (0.029) 0.029 (0.001) 0.042 (0.003) 0.116 (0.012)

Table 6.1: Prior (and posterior) probabilites of the different hypotheses under
different model priors illustrated on the example discussed in Section 6.4.6.
Groups with the same population variance are put into the same set, e.g.
σ1 = σ2 6= σ3 = σ4 corresponds to {{σ1, σ2}, {σ3, σ4}}.
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Figure 6.4: Left: Peer-rated conscientiousness of Estonian men and women.
Middle: Prior and posterior of ϕ (with u = 1/2). Right: Bayes factor sensitivity
analysis for u ∈ [1/2, 100].

shows the prior (using u = 1/2) and the posterior distribution for the effect
size ϕ. The default Bayes factor yields BF10 = 12.98 in favor of a difference in
variance, and the right panel shows a sensitivity analysis to the specification
of u in the default Bayes factor (note that the x-axis scale is 1/u); as expected,
a smaller value of u corresponds to a wider prior of ϕ under H1 and decreases
the predictive performance of H1 compared to H0. Nevertheless, across the
range of u visualized in Figure 6.4, there is strong evidence that Estonian
men show larger variability in conscientiousness than Estonian women. For
comparison, a frequentist analysis using Bartlett’s test (Bartlett, 1937) yields
χ2(1) = 12.54, p = 0.0004. The Vovk-Sellke bound 1/(−e · p log(p)) (Sellke
et al., 2001; Vovk, 1993) gives the maximum possible odds in favor of H1 over
H0 based on the p-value, and yields 118.11.

6.4.2 Testing Against a Single Value

Polychlorinated biphenyls (PCB), which are used in the manufacture of large
electrical transformers and capacitors, are hazardous contaminants when re-
leased into the environment. Suppose that the Environmental Protection
Agency is testing a new device for measuring PCB concentration (in parts
per million) in fish, requiring that the instrument yields a variance of less
than 0.10 (a standard deviation σ0 ≤ 0.32), thus ϕ > 1. This suggests the use
of a directed Bayes factor. Seven PCB readings on the same sample of fish
are subsequently performed, yielding a sample standard deviation of s = 0.22
and a sample effect size of ϕ̂ = σ0

s = 1.42 (see Mendenhall & Sincich, 2016, p.
420). We compare the following hypotheses

H0 : ϕ = 1

H+ : ϕ > 1,

97



6

6. DEFAULT BAYES FACTORS FOR TESTING THE (IN)EQUALITY
OF SEVERAL POPULATION VARIANCES

which yields BF+0 = 0.51 for the default value u = 1/2, a value slightly higher
than for an undirected test, BF10 = 0.41. To illustrate prior elicitation, as-
sume that the makers of the new device are highly confident, assigning 50%
probability to the outcome that the new device reduces the required standard
deviation at least by half. Defining ϕ = σ0

σdevice
, this formally translates into

π(ϕ ∈ [2,∞]) = 1/2, which is fulfilled by a (truncated) prior with u = 2.16.
Using this prior specification results in BF+0 = 0.83.

6.4.3 Comparing Measurement Precision

In paleoanthropology, researchers study the anatomical development of mod-
ern humans. An important problem in this area is to adequately reconstruct
excavated skulls. Sholts et al. (2011) compared the precision of coordinate
measurements of different landmark types on human crania using a 3D laser
scanner and a 3D digitizer. They reconstructed five excavated skulls and found
— for landmarks of Type III, that is, the smooth part of the forehead above
and between the eyebrows — an average (across skulls) standard deviation of
0.98 for the Digitizer (n1 = 990) and an average standard deviation of 0.89
for the Laser (n2 = 990). We define ϕ =

σDigitizer
σLaser

and observe that the sample
effect size is 1.10. We demonstrate two tests. First, we test whether the Laser
has a lower standard deviation than the Digitizer, writing:

H0 : ϕ = 1

H+ : ϕ > 1 .

The default Bayes factor in favor of H1 is BF+0 = 4.93 — about double the
undirected Bayes factor BF+0 = 2.47 — indicating moderate evidence for the
hypothesis that a 3D Laser is a more precise tool for measuring Type III
landmarks on the excavated human scull compared to a 3D Digitizer. Second,
in this specific scenario, a researcher might treat the Digitizer as being equally
as precise as the Laser when its standard deviation differs by a maximum
of 10%. She might then choose to compare the following non-overlapping
hypotheses:

H′
0 : ϕ ∈ [0.90, 1.10]

H′
+ : ϕ > 1.10 .

The Bayes factor with u = 1/2 in favor of H′
0 is BF′

0+ = 7.03, indicating
moderate support for the hypothesis that the Laser and the Digitizer have
about equal performance. In general, we recommend researchers use the de-
fault Bayes factor unless substantive prior knowledge or particular circum-
stances justify a different test. For comparison, Bartlett’s test for H0 yields
χ2(1) = 9.16, p = 0.0025, with a Vovk-Sellke bound of 24.76.
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6.4.4 The “Standardization” Hypothesis in Archeology

Economic growth encourages increased specialization in the production of
goods, which leads to the “standardization” hypothesis: increased production
of an item would lead to it becoming more uniform. Kvamme et al. (1996)
sought to test this hypothesis by studying chupa-pots, a type of earthenware
produced by three different Philippine communities: the Dangtalan, where
ceramics are primarily made for household use; the Dalupa, where ceramics
are traded in a non-market based barter economy; and the Paradijon, which
houses full-time pottery specialists that sell their ceramics to shopkeepers for
sale to the general public. Thus, there is an increased specialization across
these three communities. Kvamme et al. (1996) use circumference, height,
and aperture as measures for the chupa-pots; here, we focus on the latter two.
The authors test whether the standard deviations across these three groups
are different, comparing:

H0 : σ1 = σ2 = σ3

H1 : σ1 6= σ2 6= σ3 ,

where σ1, σ2, and σ3 correspond to the standard deviations of chupa-pots
in the Dangtalan, Dalupa, and Paradijon communities, respectively. Since
our Bayes factor test only requires summary statistics, we can test these hy-
potheses using the data from Table 4 in Kvamme et al. (1996). The authors
observed n = 55 pots from the Dangtalan community with a standard devi-
ation in aperture of 12.74; n = 171 pots from the Dalupa community with a
standard deviation of 8.13; and n = 117 pots from the Paradijon community
with a standard deviation of 5.83. Using our default prior choice of u = 1/2,
we find overwhelming evidence for a difference in the standard deviations of
the aperture measurements, log(BF10) = 20. Note that we can formulate a
stronger statistical hypothesis based on the substantive “standardization” hy-
pothesis, namely that the standard deviations in aperture increase from the
Paradijon to the Dangtalan community, Hr : σ1 > σ2 > σ3. This yields even
stronger evidence, log(BFr0) = 21.80, such that the Bayes factor in favor of
Hr compared to H1 is very close to its theoretical maximum, BFr1 = 5.98 ≈ 3!.
If we were to use height instead of aperture measurements of the pots, which
yield standard deviations of 9.60, 7.23, and 7.81, respectively, the evidence
in favor of H1 and Hr compared to H0 would be much weaker, BF10 = 2.27
and BFr0 = 2.87, respectively. For comparison, Bartlett’s test for H0 yields
χ2(1) = 49.94, p < 0.00001 with a (log) Vovk-Sellke bound of 20.75 for the
aperture measurements and χ2(1) = 7.18, p = 0.0277 with a Vovk-Sellke
bound of 3.71 for the height measurements.

99



6

6. DEFAULT BAYES FACTORS FOR TESTING THE (IN)EQUALITY
OF SEVERAL POPULATION VARIANCES

−30

−20

−10

0

10

20

3 4 5 6 7 8
Grade

R
at

in
g

MathGarden Rating across School Grades

8−versus−7

7−versus−6

6−versus−5

5−versus−4

4−versus−3

1.0 1.2 1.4 1.6 1.8
δ

C
la

ss
 C

om
pa

ris
on

Posterior of  δ  for Pairwise Comparisons

Figure 6.5: Left: Shows MathGarden rating scores across school grades.
Right: Shows posterior of ϕ for pairwise consecutive class comparisons. Vir-
tually all probability mass is assigned to ϕ > 1, implying that, indeed, the
variance increases with every school grades.

6.4.5 Increased Variability in Mathematical Ability

Aunola et al. (2004) find that the variance in mathematical ability increases
across school grades. Using large-scale data from Math Garden, an online
learning platform in the Netherlands (Brinkhuis et al., 2018), we assess the
evidence for this hypothesis using our Bayes factor test. Math Garden assigns
each pupil a rating, similar to an ELO score used in chess, and which increases
if the pupil solves problems correctly. We have data from n = 41, 801 different
pupils across school grades 3 – 8, which is visualized in the left panel of Figure
6.5. From grade 3 upwards, the standard deviations of the Math Garden
ratings are 3.08, 3.69, 4.62, 4.97, 5.39, and 5.99, for respective sample sizes of
6, 410, 9, 395, 9, 160, 7, 549, 6, 007, and 3, 280. Following Aunola et al. (2004),
we wish to compare the following three hypotheses:

H0 : σi = σj ∀(i, j)
H1 : σi 6= σj ∀(i, j)
Hr : σi > σj ∀(i > j) .

Using the default choice u = 1/2, we find overwhelming support in favor of a
difference in the standard deviations, log(BF10) = 1660.53. As is suggested
by the raw data visualized in the left panel of Figure 6.5, we also find over-
whelming support for an increase in variability with increased school grade,
log(BFr0) = 1667.11. The order-constrained hypothesis again strongly out-
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performs the unrestricted hypothesis, yielding evidence close to its theoretical
maximum, BFr1 = 719.69 ≈ 6!. The right panel in Figure 6.5 shows the
posterior distribution of ϕ for pairwise comparisons across school grades. For
comparison, Bartlett’s test for H0 yields χ2(1) = 3366.70, p < 0.00001 with a
(log) Vovk-Sellke bound of 1664.07.

6.4.6 Country Differences in Conscientiousness

As our last example, we illustrate how researchers could use our default Bayes
factor combined with the work by van den Bergh and Dablander (2022) to test
all possible (in)equalities between variances. We utilize the data set by Borke-
nau et al. (2013) again, but now test whether the Czech (s2C = 20, n = 714),
Estonian (s2E = 17.7, n = 1685), German (s2G = 17.3, n = 303), and Flemish
(s2F = 14.2, n = 291) population differ in their variances of peer-rated consci-
entiousness. The posterior probability for each hypothesis under a different
prior model specification can be found in Table 6.1. We find that the null
hypothesis of no differences generally yields the highest posterior probability,
followed by the hypothesis which states that the Flemish population variance
differs from the rest. The left panels in Figure 6.6 show the posterior distribu-
tions for each variance under the full model (top) and when model-averaging
across all models (bottom) using the beta-binomial(α = 1, β = 4), which is
recommended by van den Bergh and Dablander (2022). We see that there
is pronounced shrinkage towards the average variance, which is an indication
that the model in which all variances are equal is strongly supported (see also
Table 6.1). The right panel shows the probability that any two populations
show the same variance in their peer-rated conscientiousness. We find that the
German and Estonian population are most likely and the Flemish and Czech
population least likely to have the same variance. This is also reflected in the
unconstrained variance estimates shown in the left panel. For comparison, a
Bartlett’s test for H0 yields χ2(1) = 11.51, p = 0.0093 with a Vovk-Sellke
bound of 8.48.

6.5 Conclusion

In this paper, we proposed a default Bayes factor test for assessing the (in)equality
of several population variances and showed that it fulfills a number of desider-
ata for Bayesian model comparison (e.g., Bayarri et al., 2012; Consonni et al.,
2018; Jeffreys, 1939; Ly et al., 2016a; Ly, 2018; Peña, 2018). In addition, we
extended the Bayes factor test to cover the K−1-sample case, non-overlapping
interval nulls, and mixed restrictions for the K > 2 case. The proposed proce-
dure allows researchers to inform their statistical tests with prior knowledge.
It also generalizes Jeffreys’s test for the agreement of two standard errors
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Figure 6.6: Left: Posterior means of the full model where all variances are
assumed to be different (top) and posterior means when averaging across all
models using a beta-binomial(α = 1, β = 4) prior (bottom). Right: Posterior
probabilities for pairwise equality across all populations.

(Jeffreys, 1939, pp. 222-224); see Appendix E.1. We have also illustrated
how our method — combined with specifying suitable model priors — can be
used to test all possible (in)equalities between variances while adjusting for
multiplicity (van den Bergh & Dablander, 2022)

A limitation of the proposed methodology is that it assumes that the data
follow a Gaussian distribution, which might not always be adequate in practi-
cal applications. A potential extension would be to use a t-distributions with
a small number of degrees of freedom ν ≥ 3, so as to better accommodate out-
liers, and then test whether the scales of these t-distributions differ. Another
future avenue is to allow for data from the same unit, that is, allow for corre-
lated observations or dependent groups. For the present, we believe that our
work provides an elegant Bayesian complement to popular classical tests for
assessing the (in)equality of several independent population variances, ready
for routine applications.
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7
Flexible Bayesian Multiple Comparison

Adjustment Using Dirichlet Process and
Beta-Binomial Model Priors

Researchers frequently wish to assess the equality or inequality of groups, but
this comes with the challenge of adequately adjusting for multiple comparisons.
Statistically, all possible configurations of equality and inequality constraints
can be uniquely represented as partitions of the groups, where any number of
groups are equal if they are in the same partition. In a Bayesian framework,
one can adjust for multiple comparisons by constructing a suitable prior dis-
tribution over all possible partitions. Inspired by work on variable selection
in regression, we propose a class of flexible beta-binomial priors for Bayesian
multiple comparison adjustment. We compare this prior setup to the Dirichlet
process prior suggested by Gopalan and Berry (1998) and multiple comparison
adjustment methods that do not specify a prior over partitions directly. Our
approach to multiple comparison adjustment not only allows researchers to
assess all pairwise (in)equalities, but in fact all possible (in)equalities among
all groups. As a consequence, the space of possible partitions grows quickly
— for ten groups, there are already 115,975 possible partitions — and we set
up a stochastic search algorithm to efficiently explore the space. Our method
is implemented in the Julia package EqualitySampler, and we illustrate it on
examples related to the comparison of means, variances, and proportions.

This chapter is submitted as: van den Bergh∗, D., & Dablander∗, F. (2022).
Flexible Bayesian multiple comparison adjustment using Dirichlet process andbeta-
binomial model priors. Manuscript submitted for publication. https://arxiv.
org/abs/2208.07086.

∗These authors share first authorship.
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Assessing the equality or inequality of groups is a key problem in science and
applied settings. If a confirmatory hypothesis is lacking, a standard approach
is to first test whether all groups are equal and, if they are not, engage in multi-
ple post-hoc comparisons. A large swathe of multiple comparisons techniques
to guard against inflated false-positive errors exist in classical statistics, dating
back to the work of John Tukey and others (e.g., Benjamini & Braun, 2002;
Rao, 2009). From a Bayesian perspective, the problem of multiple compar-
isons can be addressed by changing the model prior (e.g., Berry & Hochberg,
1999; de Jong, 2019; Jeffreys, 1961; Westfall et al., 1997), an approach that
has found prominent application in variable selection for regression (e.g., Scott
& Berger, 2006, 2010). Here, we focus on a Bayesian multiplicity adjustment
for testing the (in)equality between groups. Statistically, all possible configu-
rations of equality and inequality constraints can be uniquely represented as
partitions of the groups, where two groups are equal if they are in the same
partition. In a Bayesian framework, one can adjust for multiple comparisons
by constructing a suitable prior distribution over all possible partitions. This
allows the researcher to explore the set of all possible equality and inequality
relations among the groups while penalizing for multiple comparisons.

The first to propose a prior over all partitions to adjust for multiple hy-
potheses testing were, to our knowledge, Gopalan and Berry (1998), who
suggested the Dirichlet process prior. Here, we propose a class of flexible
beta-binomial priors for Bayesian multiple comparison adjustment, inspired
by work on variable selection in regression (Scott & Berger, 2006, 2010) and
explore its properties vis-à-vis previous work on multiple comparisons. More
specifically, the current paper is structured as follows. In Section 7.1, we
set up the problem and describe the Pólya urn scheme from which a number
of priors can be derived. We characterize three such priors — the Dirichlet
process, the beta-binomial, and the uniform prior — and outline our method-
ology in Section 7.2. In Section 7.3 we contrast the three priors, illustrate our
method on a simulated example, and present a simulation study assessing the
multiplicity adjustment of each prior. We also assess the method proposed
by Westfall et al. (1997) and an uncorrected testing procedure based only
on pairwise Bayes factors. As the space of possible partitions grows quickly
— for ten groups, there are already 115,975 possible partitions — we set up
a stochastic search algorithm to efficiently explore the space. Our method
is implemented in Julia and available in the EqualitySampler package from
https://github.com/vandenman/EqualitySampler. In Section 7.4, we apply
our method to examples related to the comparison of proportions and vari-
ances. We conclude in Section 7.5.
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7.1 Preliminary Remarks

In this section, we set up the hypothesis testing problem, discuss the relation
between partitions and models, and describe Pólya’s urn scheme that will unify
the presentation of the priors in the following section.

7.1.1 Problem Setup

Our goal is to adjust for multiple comparisons in a flexible manner. Multiple
comparisons are not a problem if we wish to compare only two hypotheses,
denoted as H0 and H1. The Bayes factor quantifies how strongly we should
update our prior beliefs about H0 relative toH1 after observing the data (Kass
& Raftery, 1995; Ly et al., 2016a). Let group j consist of nj observations y⃗j =
{yj1, . . . , yjnj} for j ∈ {1, . . . ,K} and i ∈ {1, . . . , nj}, and let y⃗ = {y⃗1, . . . , y⃗K}.
The Bayes factor is given by:

p(H0 | y⃗)
p(H1 | y⃗)︸ ︷︷ ︸

Posterior odds

=
p(y⃗ | H0)

p(y⃗ | H1)︸ ︷︷ ︸
Bayes factor

× p(H0)

p(H1)︸ ︷︷ ︸
Prior odds

, (7.1.1)

which does not depend on the number of hypotheses a researcher wishes to
test.

A principled way to account for multiplicity is by adjusting the prior prob-
ability of the hypotheses (e.g., Jeffreys, 1961; Westfall et al., 1997). Sup-
pose a researcher is interested in comparing K groups, parameterized by
θ⃗ = (θ1, . . . , θK). She is not only interested in whether all parameters are
equal (H0) or whether they are unequal (H1), but also which pairs of parame-
ters are equal or not. In the language of classical statistics, she is interested in
post-hoc comparisons. We focus on a Bayesian solution to this problem in the
current paper. More specifically, going beyond classical testing, we consider
the problem of assessing all possible equalities and inequalities between the
groups. In general terms, the inference problem is:

ρ ∼ πρ(.)

θ⃗ | ρ ∼ π
θ⃗
(.)

f(y⃗; θ⃗, ρ) =
K∏
j=1

g(y⃗j ; θj , ϕ) ,

where ρ is a partition, ϕ is a nuisance parameter (in case it exists), and f and
g are the likelihood functions. Using the posterior distribution of θ⃗, we have
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that:

p(H0 | y⃗) = p(θ1 = θ2 = . . . = θK | y⃗)
p(H1 | y⃗) = p(θ1 6= θ2 6= . . . 6= θK | y⃗) .

There are many more possible hypotheses, however, depending on the combi-
nation of equalities and inequalities. We can represent those as partitions, as
we detail in the next section.

7.1.2 Partitions

The space of possible equality constraints for some parameter vector θ⃗ =
(θ1, . . . , θK) of size K is equivalent to the partitions of that vector. For ex-
ample, for K = 3 the model that states θ1 = θ2 6= θ3 is equivalent to the
partition {{θ1, θ2}, {θ3}}. The space of possible models for K = 5 is shown
in Figure 7.1. The correspondence between (in)equality constraints and par-
titions is useful as partitions have been studied extensively in combinatorics.
Given K parameters, the number of partitions of size j is given by the Stirling
numbers of the second kind, denoted

{
K
j

}
. The total number of partitions

is given by the Kth-Bell number, which is defined as a sum over the Stirling
numbers:

BK =

K∑
j=0

{
K

j

}
. (7.1.2)

The Bell numbers grow very quickly, with the number of partitions for a vector
θ⃗ of size 10 being B10 = 115, 975.

The Stirling numbers and Bell numbers can be generalized to the r-Stirling
(Broder, 1984) and r-Bell numbers (Mezo, 2011), respectively. These general-
izations help to construct conditional distributions, as we will see later. The
r-Stirling numbers

{
K
j

}
r
give the number of partitions of size j given K + r

groups such that the first r parameters are all in distinct subsets. The r-Bell
numbers give the total number of partitions given K parameters where the
first r parameters are in distinct subsets. Specifically, we have:{

K

j

}
r

=
K∑
i=0

(
K

i

){
i

j

}
rK−i (7.1.3)

BK, r =

K∑
i=0

{
K + r

i+ r

}
r

. (7.1.4)

Note that
{
K
j

}
1
=
{
K
j

}
and that BK, 0 = BK . Both the r-Stirling and r-Bell

numbers are defined through recurrence relations, although explicit expres-
sions exist which are easier to compute for large values; see Broder (1984) and
Mezo (2011) for details.
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Figure 7.1: All 52 possible models given K = 5, represented as partitions.
Circles represent individual parameters and shaded regions indicate which
parameters are equal.

7.1.3 Urn Schemes

We can represent the different partitions using an urn with K different balls
labeled 1 through K. For each parameter θj , a ball bj is drawn from the urn
with bj ∈ {1, . . . ,K}. If two drawn balls are equal, bi = bj , then the two
parameters are assigned to the same subset of the partition, that is, the two
parameters θi and θj are equal if bi = bj . Note that different draws from an
urn can represent the same partition. For example, the draws (1, 1, 2) and
(3, 3, 1) both represent the partition {{θ1, θ2}, {θ3}}. The prior distributions
introduced in the next sections assign probabilities to the unique partitions.
Note that the prior probability of a particular draw can be obtained by dividing
the probability of the corresponding partition by the total number of draws
that correspond to that partition. The total number of draws that represent
the same partition is given by d!

(
K
d

)
where d is the number of non-empty

subsets of a particular draw.
Although the urn consists of K different balls, the event of interest is

whether the next ball drawn equals one of the balls already drawn — in other
words, whether an equality or inequality is introduced. This event reduces
the urn to a Pólya urn. All prior distributions discussed below are related
to the Pólya urn. Specifically, the joint prior distribution on (θ1, . . . , θK) is
characterized by a (generalized) Pólya urn such that:

θK | θ1, . . . , θK−1 ∼

{
ζj with probability Pπ

θ⋆j with probability 1− Pπ ,
(7.1.5)

where ζj denotes a new value for θK (with θ1 = ζ1) and θ⋆j denotes a value
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equal to any previously observed value. We characterize the priors we discuss
in the next section in terms of (7.1.5), which is known as a prediction rule
(e.g., Ishwaran & James, 2001); in terms of the induced prior over partitions;
and in terms of their penalty for multiplicity.

7.2 Methodology

Let θ⃗⋆ = (θ⋆1, . . . , θ
⋆
r) denote the vector of unique population parameters out

of θ⃗ = (θ1, . . . , θK), θ⃗−j the vector of parameters without parameter θj , and
the number of repeats of θ⋆j as n⋆

j . Let ρ denote a partition and |ρ| its size.
For example, if ρ = {{θ1, θ2}, {θ3}}, then |ρ| = 2. Similarly, for this example
θ⃗⋆ = (θ⋆1, θ

⋆
2) and n⋆ = (2, 1). In the next sections, we discuss and contrast a

number of priors.

7.2.1 Dirichlet Process Prior

The Dirichlet process (DP) is a distribution over distributions (Ferguson, 1973).
We say that G ∼ DP(α,K) is distributed according to a DP if its marginal dis-
tributions are Dirichlet distributed, where α is a concentration parameter and
K is the base distribution, which will depend on the application; for details, see
for example Teh (2010). The DP can be understood as the infinite-dimensional
generalization of the Dirichlet distribution, which makes it popular for mixture
modeling (e.g., Rasmussen et al., 1999). Our modeling approach is similar to
mixture modeling, except that we do not cluster data but parameters — a
cluster corresponds to a partition. The prediction rule of the DP is given by
(e.g., Blackwell & MacQueen, 1973; Ishwaran & James, 2001):

θj+1 | θ1, . . . , θj ∼

{
K with probability α

α+j−1

Categorical (θ⋆1, . . . , θ⋆r | n⋆
1, . . . , n

⋆
r) else ,

(7.2.1)
where α is the concentration parameter and the base distribution of the DP
depends on the application (see Section 7.4). In other words, we draw a new
value for θj from K with probability α/α+j−1, or else set it to a previously ob-
served value. The particular value θ⋆j the parameter θj is set to is proportional
to the number of times θ⋆j was observed previously, given by n⋆

j , resulting in
the well-known “rich-get-richer” property (e.g., Teh, 2010).

The Dirichlet process implies a prior distribution over partitions. The prior
on the partitions ρ is:

π(ρ | α) = α|ρ|Γ(α)

Γ(n+ α)

∏
c∈ρ

Γ(|c|) , (7.2.2)
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where c is an element of ρ, and |c| is its size. While the Dirichlet process
features the infinite-dimensional object K, the prior over partitions results
from integrating it out. Hence the nonparametric model (in which the number
of parameters is not fixed) implies a parametric model (in which the number of
parameters is fixed) for the partitions (Quintana, 2006). This makes it usable
for our purposes, where we have a fixed number of parameters.

The leftmost column in Figure 7.2 shows the DP prior over partitions (top)
and number of inequalities (bottom) for different values of α. Intuitively, one
reasonable requirement for a prior in the context of penalizing multiplicity is to
be monotonically decreasing in the number of partitions, which further implies
a monotonically decreasing prior probability over the number of inequalities.
This is the case for α = 0.50 (beige diamonds) as shown in the top and bottom
panels, and indeed for any value α < 1. The value suggested by Gopalan
and Berry (1998) creates a symmetric prior over the partitions (yellow suns),
implying that the model with no inequalities is a priori as likely as the model
with all inequalities (in the K = 5 case, this yields α = 2.213). The prior
with α = 1 (pink stars) results in a nonincreasing prior over the number of
partitions, but in an increasing prior over the number of inequalities: the
model with one inequality is more likely than the model with no inequalities.

As α→ 0, the prior of the model with all K−1 equalitiesM0 (i.e., the null
model) converges to one, while as α→∞, the prior of the model with K − 1
inequalitiesMBK

(i.e., the full model) converges to one. For prior elicitation,
Gopalan and Berry (1998) note that α is determined by specifying two of
either P (M0), P (MBK

), or their ratio, since P (M0) = α(K−1)!/
∏K

j=1(α+j−1)

and P (MBK
) = αK/

∏K
j=1(α+j−1); see also Table 7.1.

7.2.2 Beta-binomial Prior

The beta-binomial model prior is a popular choice for stochastic search variable
selection in linear regression (George & McCulloch, 1993) and Bayesian model
averaging (e.g., Hinne et al., 2020; Hoeting et al., 1999). It states that the
prior probability of including j predictors out of a total of K predictors is
given by:

BB (j | K, α, β) =

(
K

j

)
B (j + α, K − j + β)

B (α, β)
, (7.2.3)

where α and β are hyperparameters. The prior probability of a particular
regression model is obtained by dividing by the number of ways j out of K
predictors can be included: BB (j | K, α, β) /

(
K
j

)
. The beta-binomial distri-

bution introduces a penalty for including additional predictors and in that way
introduces a correction for multiplicity (Scott & Berger, 2006, 2010).

For the multiple comparison problem discussed in this paper, we consider
the number of inequality constraints and use the beta-binomial prior to in-
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Figure 7.2: Top: Dirichlet process (left), beta-binomial (middle), and uni-
form prior (right) across distinct model types for K = 5 groups and different
prior parameters. Bottom: Same but for the number of inequalities across
models.

Dirichlet process prior Beta-binomial prior Uniform prior

Parameters α (α = 1, β) 7

Prior over partitions α|ρ|Γ(α)
Γ(n+α)

∏
c∈ρ Γ(|c|)

(
K−1
|ρ|−1

)B(|ρ|−1+α, K−|ρ|+β)

B(α, β){K|ρ|}
(BK)−1

Prior monotonically decreasing α ≤ 1 β ≥ K , β ≥
(
K
2

)
7

Prior probability of null model α(K−1)!/
∏K

j=1(α+j−1) B(α, K−1+β)/B(α, β) (BK)−1

Prior probability of full model αK/
∏K

j=1(α+j−1) B(K−1+α, β)/B(α, β) (BK)−1

Prior probability of ratio (null / full) α(K−1)!/αK B(α, K−1+β)/B(K−1+α, β) 1

Table 7.1: Characterizations of the different priors studied in this paper.
Note: β ≥ K implies a prior decreasing in terms of the number of inequalities,
but not in terms of the partitions. β ≥

(
K
2

)
implies both.
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troduce a penalty for each additional inequality among the groups considered.
For K groups, there can be a maximum of K − 1 inequalities, resulting in a
BB (i | K − 1, α, β) prior distribution over the number of included inequali-
ties i out of K groups. To see how this translates to a prior over the partitions
ρ, note that there is a one-to-many correspondence between the number of
inequalities i out of K groups and the resulting partitions ρ. For example,
having i = 1 inequalities with K = 3 groups is consistent with the partitions
{{θ1, θ2}, {θ3}}, {{θ1, θ3}, {θ1}}, and {{θ2, θ3}, {θ1}}, all of which are of size
|ρ| = i + 1. The number of partitions of size |ρ| is given, as discussed above,
by the Stirling number

{
K
|ρ|
}
. For the assignment of the prior probability, it is

only the size of the partition (the number of inequalities) that counts. With
these observations in hand, we arrive at the following (adjusted) beta-binomial
prior distribution over partitions ρ:

π(ρ | K,α, β) =

(
K − 1

|ρ| − 1

)
B (|ρ| − 1 + α, K − |ρ|+ β)

B (α, β)
{
K
|ρ|
} . (7.2.4)

The prediction rule of the beta-binomial prior is given by:

θj+1 | θ1, . . . , θj ∼

{
K with probability Pπ

Categorical (θ⋆1, . . . , θ⋆r | 1, . . . , 1) else .
,

(7.2.5)
where

Pπ =

∑
ρ∈P

θj /∈θ⃗−j⊆ρ

BB (ρ | K, α, β)∑
ρ∈P

θj /∈θ⃗−j⊆ρ

BB (ρ | K, α, β) +
∑

ρ∈P
θj∈θ⃗−j⊆ρ

BB (ρ | K, α, β)
, (7.2.6)

and where P denotes the set of all possible partitions. In essence, Equation
(7.2.6) takes the probability of all possible partitions where θj is distinct from
θ⃗−j , conditional on θ⃗−j being a subset of the considered partition. The sum
over all possible partitions can be simplified using the r-Stirling numbers:

Pπ =

∑K
i=1 BB (i | K, α, β)

{
K−j+r+1

i

}
r+1

r
∑K

j=i BB (i | K, α, β)
{
K−j+r

i

}
r
+
∑K

i=1 BB (i | K, α, β)
{
K−j+r+1

i

}
r+1

,

(7.2.7)

where r is number of unique parameters in θ⃗, that is, the size of the partition.
The beta-binomial prior on the partitions and the induced prior on the

number of inequalities are shown for different parameterizations in the middle
column in Figure 7.2. For α = β = 1, the beta-binomial distribution over the
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partitions has a characteristic U-shape (orange triangles). This prior specifica-
tion in turn implies a uniform prior on the number of inequalities. We follow
M. A. Wilson et al. (2010) who, in the context of regression, suggested to set
α = 1 as a default so that the distribution over model size (here the number of
inequalities) is nonincreasing, and to scale β = λK with the number of groups
to force the prior to be monotonically decreasing, with a default of λ = 1
(M. A. Wilson et al., 2010). This is illustrated as the red line (leftward point-
ing triangles) in Figure 7.2 using β = 5. In the multiple comparison case, we
additionally investigate β =

(
K
2

)
, which implies that the prior on the number

of inequalities of individual models is nonincreasing, see Appendix F.2. The
purple line (upside-down triangles) in Figure 7.2 shows a decreasing prior for
β =

(
5
2

)
= 10. This prior assigns the least mass to models with an increasing

number of inequalities compared to all others beta-binomial priors.
Figure 7.2 shows that the DP prior makes a distinction that the beta-

binomial is, by design, not making: while the beta-binomial prior assigns the
same prior mass to partitions with the same number of (in)equalities, the DP
prior assigns more mass to the partition with the larger cluster. For example,
the beta-binomial does not distinguish between {{θ1, θ2, θ3}, {θ4}, {θ5}} and
{{θ1, θ2}, {θ3, θ4}, {θ5}}, while the DP assigns more mass to the former (see
Figure 7.2). We return to this distinction in the discussion.

Lastly, note that for the beta-binomial prior we have that P (M0) = B(α, K−1+β)/B(α, β)

and P (MBK
) = B(K−1+α, β)/B(α, β). Fixing α = 1, we have that as β → ∞,

the prior of the model with all K − 1 equalities M0 converges to one, while
as β → 0, the prior of the model with K − 1 inequalities MBK

converges to
one; see also Table 7.1. As with the Dirichlet process prior discussed above,
one can use these relations in prior elicitation.

7.2.3 Uniform Prior

For completeness, we give a prior that is uniform over the space of partitions.
The probability mass function is straightforward. All valid configurations of
size K have probability 1/BK . The prediction rule of the uniform prior is given
by:

θj+1 | θ1, . . . , θj ∼

{
K with probability PπU

Categorical (θ⋆1, . . . , θ⋆r | 1, . . . , 1) else ,

(7.2.8)
where

PπU =
BK−j+1, r+1

BK−j+1, r+1 + rBK−j+1, r
(7.2.9)

Here, BK−j+1, r+1 counts the number of models where θj+1 /∈ (θ⋆1, . . . , θ
⋆
r)

conditional on θ1, . . . , θj being assigned to r distinct subsets. Complementarily,
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BK−j+1, r counts the number of models where θj+1 ∈ (θ⋆1, . . . , θ
⋆
r) conditional

on θ1, . . . , θj being assigned to r distinct subsets, which is multiplied by r as
there are r subsets that θj+1 could be assigned to. Under this uniform prior,
all partitions ρ are equally likely, as can be seen in the top right panel in
Figure 7.2. Note that this uniform prior induces a non-uniform prior on the
number of inequalities, as shown in the bottom right panel.

7.2.4 Posterior Model Consistency

Model selection consistency is a key desiderata that a good Bayes factor should
fulfill (e.g., Bayarri et al., 2012; Consonni et al., 2018; Ly et al., 2016a). In the
situation of multiple models, the notion of pairwise model selection consistency
needs to be extended. This extension is referred to as posterior model selection
consistency. Posterior model consistency in a model classM is the convergence
to one, in probability, of the posterior probabilities to the true model (e.g.,
Casella et al., 2009; Moreno et al., 2015). Let Mj ∈ M be the model that
instantiates the hypothesisHj that specifies the (in)equalities amongK groups.
The posterior probability ofMj is given by:

p(Mj | D) =
p(D | Mj)π(Mj)∑BK
i=0 p(D | Mi)π(Mi)

=
BFj0π(Mj)∑BK
i=0 BFi0π(Mi)

. (7.2.10)

It follows that if the Bayes factor is model selection consistent, posterior model
consistency holds (see also Moreno et al., 2015, Theorem 1) — unless the prior
assigns zero mass to the true model. This is not the case for any of the priors
discussed above, and hence whether posterior model consistency holds depends
solely on the priors on the parameters within models.

7.2.5 Stochastic Search Method

When the number of groups is small and the computation of Bayes factors
is swift, one can directly compute the Bayes factors for all hypotheses. Us-
ing the priors we outlined above, one can then obtain posterior distributions
over hypotheses that incorporate the desired multiplicity adjustment. The
number of (in)equalities grows extremely quickly with the number of groups,
however, and for larger number of groups one must rely on stochastic search
methods. Moreover, while directly computing the Bayes factors results in
posterior distributions over hypotheses, it does not yield posterior distribu-
tions over parameters. We therefore set up a stochastic search method that
yields both, allowing researchers to incorporate uncertainty across hypotheses
through model averaging (e.g., Hinne et al., 2020; Hoeting et al., 1999).

Our method is implemented in the programming language Julia (Bezanson
et al., 2017). First, we implemented the prior distributions in Julia. Next,
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we used the library Turing.jl, which is designed for general-purpose proba-
bilistic programming (Ge et al., 2018). Turing enabled us to directly reuse
the distributions defined in Julia code and also provided a multitude of op-
tions for composing different MCMC samplers. We set up a Gibbs sampler
that explored the posterior space in two steps. The first step used Turing’s
built-in Hamiltonian Monte Carlo methods for sampling from the posterior
distributions of the continuous parameters. In all models discussed here, all
parameters are continuous except for the partitions. The second step used
a custom Gibbs algorithm for sampling from the posterior distribution over
partitions. The partitions were represented as a vector of integers denoted γ⃗
that indicate partition membership. By partition membership, we mean that
two parameters θi and θj are in the same partition if and only if γi = γj . For
example, {{θ1}, {θ2, θ3}} could be represented by (1, 2, 2) but also by (3, 1, 1).
We first explain the remainder of the sampling scheme and motivate the dupli-
cate representations in the next paragraph. The number of possible duplicate
representations in γ⃗ for one partition is straightforward to compute, and the
prior over γ⃗ is obtained by taking the prior over the partitions and dividing
uniformly over duplicate representations. Next, we sample each element of
γ⃗ conditional on the other elements. Since the partition membership is dis-
crete, we enumerate all possible values and draw from the resulting categorical
distribution. Sampling individual elements of γ⃗ from the conditional distribu-
tions rather than the joint distribution reduces the complexity from O(BK)
to O(K2).

Although the duplicate representations of γ⃗ for one partition introduce
some additional computational cost, they facilitate exploration of the poste-
rior space. For example, if we had used a one-to-one mapping from partitions
to γ⃗, then updating the first membership in (1, 2, 2) to (2, 2, 2) would not be
a valid configuration, as this should be represented by (1, 1, 1). However, a
transition from (1, 2, 2) to (1, 1, 1) requires updating two parameters and is
therefore less likely to occur. Nevertheless, on the level of partitions, it makes
sense to propose a move from {{θ1}, {θ2, θ3}} to {{θ1, θ2, θ3}}.

7.3 Investigating Multiplicity Adjustment

In this section, we investigate the differences between the above priors in more
detail and compare them to the method proposed by Westfall et al. (1997) and
an uncorrected approach using pairwise Bayes factors. In Section 7.3.1, we use
a small simulation study to illustrate the implications of multiplicity adjust-
ment. In Section 7.3.2, we present the results of a more extensive simulation
study.
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7.3.1 Illustrating Multiplicity Adjustment

Here we illustrate the different multiplicity penalties that the different priors
impose using a small simulation study. We simulate data from a one-way
ANOVA model and analyze it using the specification by Rouder et al. (2012).
The ANOVA model extended with a prior over partitions is given by:

Yij ∼ N (µ+ σθj , 1)

µ ∝ 1

σ2 ∝ 1/σ2

g ∼ IG (1/2, 1/2)

θ⃗u ∼ NK−1 (0, g)

θ⃗c ← Qθ⃗u

θj ← mean of elements of θc in the same partition
ρ ∼ πρ(.) . (7.3.1)

The data follow a Gaussian distribution with a grand mean µ and a group-
specific offset θj . The offsets sum to zero to avoid identification constraints.
This is achieved by projecting θ⃗u from a K − 1 dimensional space onto a
K dimensional space using the matrix Q, which consists of the first K − 1
columns of an eigendecomposition of a degenerate covariance matrix as defined
in Rouder et al. (2012).2 Next, the elements of θ⃗c within the same partition
are averaged to obtain θj . The unconstrained offsets θ⃗u are assigned a g prior
where g itself is assigned an inverse gamma prior with shape and scale equal
to 1/2 (Liang et al., 2008). Note that the model reduces to the approach of
Rouder et al. (2012) whenever the partition indicates that all elements are
distinct.

We simulated from the null model, which assumes that all the groups are
equal, and from the full model, which assumes that all groups are unequal,
drawing 100 observations per group and varying the number of groups K ∈
[2, 3, . . . , 10], repeating each combination 100 times. In the full model, the
means were of increasing size with successive differences of 0.20. For the
analysis we considered six priors: the Dirichlet process prior with α ∈ {0.50, 1}
and α set adaptively to have equal prior mass assigned to the model with
all equalities and the model with all inequalities (i.e., p(H0) = p(H1)), as
done by Gopalan and Berry (1998); the beta-binomial prior with α = 1 and
β ∈ {1,K,

(
K
2

)
}; and the uniform prior. We also included the prior adjustment

method proposed by Westfall et al. (1997) and an uncorrected method using
2Note that this projection is not unique. It can also be achieved with, for example, a QR

decomposition, as recommended by the Stan Development Team (2022).
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Figure 7.3: Left: Probability of making at least one false claim about a
difference between two groups when there is none. Right: Proportion of falsely
claiming no difference between two groups when there is one.

pairwise Bayes factors. We used our methodology as described in Section 7.2.5,
drawing 12,000 MCMC samples and discarding the first 2,000 as a burn-in.

To assess how well the respective priors adjust for multiplicity, we calculated
how frequently the posterior probability that any two groups differ is larger
than 0.50, using the null model as data-generating model. Similarly, to assess
how well the respective priors are capable of detecting true differences, we
calculated how frequently the posterior probability that any two groups do
not differ is larger than 0.50, using the full model as data-generating model.

The left panel in Figure 7.3 shows that using a uniform prior (blue squares)
very quickly leads to false positives as the number of groups increases. This
is not surprising: the uniform prior assigns each model the same prior mass,
hence diminishing the plausibility assigned to H0 dramatically as K increases,
thus increasing the probability of an error. The Dirichlet process prior which
assigns equal mass to the full and the null model (yellow suns), as suggested
by Gopalan and Berry (1998), performs better than the uniform prior but still
does not provide adequate error control. It performs roughly as poorly as the
method which simply computes pairwise Bayesian t-tests (green circles). The
correction proposed by Westfall et al. (1997) performs much better (light blue
circles) but still leads to a relatively high probability of making at least one
error as the number of groups increases. The DP prior with α = 1 (pink stars)
performs better, with the DP prior with α = 0.50 (beige diamonds) and the
set of beta-binomial priors providing good error control.

The right panel in Figure 7.3 shows that the beta-binomial prior with α =
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β = 1 leads to the lowest proportion of falsely claiming no difference between
two groups, followed by the Dirichlet process prior for which p(H0) = p(H1)
and the uniform prior. The method proposed byWestfall et al. (1997) performs
worst, followed by the beta-binomial prior with α = 1 and β =

(
K
2

)
and the

DP prior with α = 0.50. The performance of the uncorrected pairwise Bayes
factor approach is somewhere in the middle. Note that all approaches perform
better as the group size increases, but this is due to our simulation design:
each additional group exhibits a mean larger than the previous one by 0.20
and adds n more observations, which makes falsely claiming no difference less
likely with an increasing number of groups. Instead of looking at absolute error,
we therefore focus on the relative ordering of the priors. Overall, we conclude
that not adjusting for multiple comparisons — either by using a uniform prior
or by using pairwise Bayes factors — naturally leads to the worst performance
and that the method by Westfall et al. (1997) is overly conservative and does
not provide adequate error control with an increasing number of groups. In
the next section, we report on a more extensive simulation study to further
disentangle the differences between the multiple comparison methods.

7.3.2 Simulation Study

In the previous section, we illustrated the importance of adjusting the prior
model probabilities in reducing the familywise error rate when all groups are
equal. Here we explore the multiplicity adjustment of the different methods
in a more exhaustive simulation study. We used the same ANOVA model as
in the previous section and varied the total number of groups K ∈ {5, 9} and
the sample size per group n ∈ {50, 100, 250, 500}. In addition, we varied the
true number of equalities to be {0%, 25%, 50%, 75%, 100%}. For K = 5, there
are 4 possible (in)equalities which resulted in models that have either 0, 1, 2,
3, or 4 equalities. For K = 9, there are 8 possible (in)equalities, resulting in
0, 2, 4, 6, or 8 equalities in the true model. Given the number of equalities,
we sampled a particular partition uniformly from all possible partitions with
that amount of equalities and used this model to simulate data. Each unique
combination was repeated 100 times and each generated data set was analyzed
with the same prior specifications as above. We assessed the familywise error
control as well as statistical power. The results for K = 5 and K = 9 were
similar. Therefore, we focus on the K = 5 in the main text and discuss the
K = 9 case in Appendix F.3.

Note that the hierarchical approach has an additional source of α error
in contrast to pairwise comparisons when there are more than 0 inequalities
because it imposes transitivity. For example, imagine that the true model
postulates that θ1 = θ2 = θ3 6= θ4. However, the sample means are (by
random sampling) x̄1 = 0.1, x̄2 = 0.2, x̄3 = 0.3, x̄4 = 0.35. The hierarchical
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approach would find that θ3 = θ4, but not that θ1 = θ3 since that also implies
θ1 = θ4. Therefore, the model θ1 = θ2 = θ3 6= θ4 and even the equality θ1 = θ2
are not retrieved. In contrast, the pairwise methods violate transitivity as
they only look at two pairs at the time and will happily suggest that θ1 = θ2,
θ2 = θ3, and θ3 = θ4 while simultaneously suggesting that θ1 6= θ4.

Familywise Error Rate

Figure 7.4 shows the probability of at least one error for different methods
across the number of inequalities in the true model and sample sizes. The
top left panel shows that the uniform prior (blue squares), the pairwise Bayes
factors (green circles), the Dirichlet process prior with (p(H0) = p(H1)) (yel-
low stars), and the method proposed by Westfall et al. (1997) (light blue
circles) perform worst and that the other Dirichlet process and beta-binomial
priors provide adequate error control. This mirrors the results above, which
is natural since this part of the simulation is a special case for K = 5. In-
creasing the number of inequalities to 1 (top right) and 2 (bottom left), we
find that the pairwise Bayes factors, the method by Westfall et al. (1997),
and the uniform improve in performance. This is likely due to the fact that,
with more inequalities, there are simply less opportunities to incorrectly claim
that two population means are different. In contrast, the performance of the
other methods decreases when there is at least one inequality; it is difficult to
disentangle a trend with increasing inequalities.

The rightmost panel in Figure 7.4 shows the results averaged over the num-
ber of inequalities in the true model. We find that the method by Westfall
et al. (1997) shows the strongest familywise error control, closely followed by
the the beta-binomial priors with β = K and β =

(
K
2

)
and the DP prior with

α = 0.50. The pairwise Bayes factors perform similar to the Dirichlet process
prior with α = 1, with the beta-binomial prior with β = 1, the symmetric DP
prior, and the uniform prior performing worst. The differences between the
methods become less pronounced with increasing sample size since the data
starts to dominate the prior.

Statistical Power

Figure 7.5 shows the proportion of falsely claiming a difference between two
groups when there is none for different methods across the number of equal-
ities in the true model and sample sizes. The top left panel shows that the
beta-binomial prior with β = 1 performs best and the method proposed by
Westfall et al. (1997) performs worst, again mirroring the results of the small
simulation study above. Increasing the number of equalities in the true model,
we find that the performance of virtually all methods decreases except for the
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Figure 7.4: Familywise error rate across priors and sample sizes under a
model with 0 (top left), 1 (top right), 2 (bottom left), and 3 (bottom right)
true inequalities for K = 5 groups. The rightmost panel shows the average
familywise error rate across inequalities.

uniform prior, which shows a slight increase, especially for large sample sizes.
This overall decrease in performance is likely due to the fact that the average
pairwise difference between groups decreases with the number of equalities. To
illustrate, note that the model with no equalities for K = 4 groups has popu-
lation means µ⃗ = {−0.30,−0.10, 0.10, 0.30}, which yields pairwise differences
[0.20, 0.20, 0.20, 0.40, 0.40, 0.60] with an average of 0.33. In contrast, includ-
ing one equality results in µ⃗ = {−0.25,−0.05, 0.15, 0.15}3, yielding pairwise
differences of [0.20, 0.20, 0.20, 0.40, 0.40] with an average of 0.28.

The rightmost panel in Figure 7.5 shows the results averaged over the num-
ber of equalities in the true model. We find that the method by Westfall et al.
(1997) is highly conservative, trading off the strong familywise error control
with an increase in the proportion of false negatives. Similarly, the priors
that performed worst with respect to familywise error control — the uniform,
symmetric DP, and beta-binomial prior with β = 1 — perform best here. The
other DP and beta-binomial priors as well as the pairwise Bayes factors are

3This is due to the sum-to-zero constraint and the constraint that all successive unequal
groups have a difference of 0.20.
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somewhere in between those two extremes. Note that again the differences
between the methods become less pronounced with increasing sample size.

Figure 7.5: Proportion of falsely claiming a difference between two groups
when there is none across priors and sample sizes under a model with 0 (top
left), 1 (top right), 2 (bottom left), and 3 (bottom right) true inequalities
for K = 5 groups. The rightmost panel shows the average error rate across
inequalities.

Simulation Discussion

Our results show that no single method dominates all others. While the beta-
binomial prior with β = 1 performed best in our initial simulation study
described in Section 7.3.1, including models beyond the null and full model
showed that this prior performed considerably worse in those settings. The
beta-binomial prior with β = K, β =

(
K
2

)
, and the DP prior with α = 0.50

perform very similarly overall. Importantly, both the method proposed by
Westfall et al. (1997) and the pairwise Bayes factors can yield transitivity vio-
lations, while explicitly specifying a prior over partitions cannot. For example,
we might find that µ1 = µ2 and µ2 = µ3 using pairwise Bayes factors with
some threshold, but at the same time conclude that µ1 6= µ3. This is one key
reason why explicitly specifying the prior over partitions is preferable. In the
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next section, we focus on the beta-binomial prior with β = K and apply our
method to two examples.

7.4 Applications

In this section, we apply the beta-binomial setup to two examples: testing the
(in)equality of proportions and variances, respectively. We have developed
a generic Julia package called EqualitySampler that utilizes the probabilistic
programming framework Turing to allow the user to adjust for multiplicity as
proposed in this paper.

7.4.1 Testing Proportions

Nuijten et al. (2016) investigated a sample of 30,717 articles published between
1985 and 2013 in eight major psychology journals for statistical reporting
errors. Our question here is: Which journals make the same amount of errors,
and which make more errors? We answer the question using the following
model specification. For journal j, denote the number of statistical errors
found as ej and the number of statistical tests analyzed as nj . We assume
that underlying each proportion there is a latent true chance of making an
error, θj . Thus, we modeled the data as independent binomials, that is, ej ∼
Binomial (θj , nj). Next, we specify a hierarchical level over the partitions to
assess for which journals the chances of making an error are equal. This leads
to the following model specification:

ej ∼ Binomial (θj , nj)

θuj ∼ Beta(1, 1)
θj ← mean of elements of θuj in the same partition
ρ ∼ beta-binomial(1, 8) . (7.4.1)

The unconstrained chances θuj are assigned beta priors from which — together
with the partitions — the possibly constrained chances are created. Two
chances θi and θj are equal if and only if their indices appear in the same
partition {i, j} ⊆ ρk for some k. Note that the model reduces to the full model
of independent binomials whenever the partitions state that all elements in θ⃗
are distinct. We use a beta-binomial prior with α = 1 and β = 8. The top left
panel in Figure 7.6 shows the posterior distributions for the underlying error
chance for each journal under a model that assumes that they are all different.

We can see that the posterior distributions for JCCP (green), PLOS (pur-
ple), DP (turquoise), and FP (beige) are very close to each other, with FP
showing more pronounced uncertainty. The panel below shows the model-
averaged posterior distributions, clearly demonstrating a shrinkage effect. The
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Figure 7.6: Left: Posterior means of the full model where all proportions
are assumed to be different (top) and posterior means when averaging over all
models using a beta-binomial(α = 1, β = 8) prior (bottom). Right: Posterior
probabilities for pairwise equality across all journals. The abbreviations stand
for: Journal of Applied Psychology (JAP), Psychological Science (PS), Journal
of Consulting and Clinical Psychology (JCCP), Public Library of Science
(PLOS), Developmental Psychology (DP), Journal of Experimental Psychology:
General (JEPG), and Journal of Personality and Social Psychology (JPSP).
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error chances for JAP and PS are pulled toward each other, with JCCP, PLOS,
DP, and FP being shrunk towards each other almost completely, similarly to
JEPG and JPSP. The right panel in Figure 7.6 gives the posterior distribu-
tions for pairwise equality across all journals, reflecting the two main clusters
in the model-averaged density plot on the left.

7.4.2 Testing Standard Deviations

Borkenau et al. (2013) studied whether men and women differ in the variability
of personality traits. Here we focus on five personality traits (agreeableness,
extraversion, openness, conscientiousness, neuroticism) rated by participants’
peers in an Estonian sample consisting of n1 = 969 women and n2 = 716 men.
Our goal is to assess which personality traits across the sexes can be assumed
equal in terms of their variability. This example shows how our methodology
can be used to test group differences while taking the multivariate dependency
of the outcome measure into account. We build on the parameterization pro-
posed by Dablander et al. (in press), who developed a default Bayes factor test
for testing the (in)equality of variances. Let y⃗1 and y⃗2 denote the five-element
vectors of observed data for men and women, respectively, and K = 10 be the
total number of variables. For each sex k ∈ {1, 2}, we have:

Y⃗k ∼ N (µ⃗k,Σk)

µ⃗k ∝ 1⃗

Σk = diag(σ⃗k)Ωk diag(σ⃗k)
Ωk ∼ LKJ(1) ,

where LKJ refers to the Lewandowski-Kurowicka-Joe prior (Lewandowski et
al., 2009). To test the equality of variances both between and across groups, we
define the ten-variable standard deviation vector σ⃗ = [σ⃗1, σ⃗2] with σ̄ denoting
the average standard deviation. Following Dablander et al. (in press), we write
σj = (Kϑj σ̄)

−1, where ϑj = σj/
∑K

j=1 σj is the relative standard deviation and
ϑK = 1−

∑K−1
j=1 ϑj . To complete the model specification, we write:

σj = (Kϑj σ̄j)
−1

σ̄j ∝ σ̄−1
j

ϑj ← mean of elements of ϑu in the same partition
ϑ⃗u ∼ Dirichlet(1, . . . , 1)
ρ ∼ beta-binomial(1, 10) . (7.4.2)

Two standard deviations σi and σj are equal if and only if their indices appear
in the same partition {i, j} ⊆ ρk for some k. When the partition states that
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Figure 7.7: Left: Posterior means of the full model where all standard devi-
ations are assumed to be different (top) and posterior means when averaging
across all models using a beta-binomial(α = 1, β = 10) prior (bottom). Right:
Posterior probabilities for pairwise equality across all personality traits. In the
abbreviations the first letter stands for men (m) or women (w). The second
letter stands for neuroticism (n), extraversion (e), openness (o), agreeableness
(a), and conscientiousness (c).

all standard deviations are distinct we recover the full model. The top left
panel of Figure 7.7 shows the posterior distributions under the full model that
assumes all standard deviations are different.

While all posterior distributions lie close to each other, the standard devia-
tions of openness for men and women overlap particularly much. The bottom
panel shows the model-averaged posterior distributions, which again demon-
strate a shrinkage effect. The right panel of Figure 7.7 shows the posterior
probability of pairwise equality across all personality traits for men and women.
It appears that there are three clusters: (1) men–openness, women–openness,
and women–agreeableness; (2) men–neuroticism, women–neuroticism, women–
conscientiousness, and men–agreeableness; (3) men–conscientiousness, men–
extraversion, and women–extraversion. However, for the personality traits
women–agreeableness, men–agreeableness, and women–extraversion, the ev-
idence is not overwhelming, as indicated by the bimodality in the model-
averaged posterior distributions.
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7.5 Discussion

Testing the (in)equality between groups while adjusting for multiple compar-
isons is a core challenge in many applied settings. In this paper, we have
proposed a flexible class of beta-binomial priors to penalize multiplicity and
make inferences over all possible (in)equalities in relatively general settings.
We compared the beta-binomial priors to a Dirichlet process prior suggested
by Gopalan and Berry (1998), to a uniform prior, to the method proposed by
Westfall et al. (1997), and to an uncorrected method based on pairwise Bayes
factors. We also illustrated our method, which is freely available in the Julia
package EqualitySampler, on two examples.

We found that a beta-binomial prior with α = 1 and β ∈ {K,
(
K
2

)
} as well

as a Dirichlet process prior with α < 1 adequately control the familywise error
rate, while a uniform prior and using only pairwise Bayes factors, unsurpris-
ingly, do not. We also found that the method proposed by Westfall et al. (1997)
compares favorably in terms of error control but not in terms of power. While
we have focused on a posterior probability threshold of 0.50 (i.e., a Bayes fac-
tor of 1), other thresholds will naturally impact the trade-off between the two
types of errors. Importantly, and in contrast to conventional adjustments for
multiple comparisons (e.g., Jeffreys, 1961; Westfall et al., 1997), specifying a
prior over the partitions allows inferences over all possible (in)equalities. This
means that researchers can use the methods we provide to assess not only the
probability of pairwise (in)equalities — as is common in standard post-hoc
tests for, say, ANOVA — but in fact can make probabilistic statements over
any set of (in)equalities they wish to assess. Similarly, the outlined approach
also allows for model-averaging, which as we have seen in the applications
yields shrinkage of the groups towards each other. Using a prior over parti-
tions further avoids violations of transitivity, i.e. claiming for example that
µ1 6= µ3 while both µ1 = µ2 and µ2 = µ3.

As with any statistical method, there are a number of points to keep in
mind. First, while we suggest default values of α = 1 and β = K for the beta-
binomial prior and α ≤ 1 for the DP prior, researchers may wish to use a more
informed prior specification. Values for the prior parameters can be elicited
by specifying model priors for two out of the following: the prior on the null
model, on the full model, or their ratio. Second, the beta-binomial prior differs
from the DP prior in that it assigns models with the same number of partitions
the same prior probability, while the DP prior assigns more mass to the model
with the larger cluster. It is not obvious which of the two behaviors is more
desirable, and it may well depend on the problem under study. Researchers
using the methods we have made available should keep this difference in mind,
although the extent to which it matters in practice remains to be seen.

There are some practical limitations of our implementation that we leave for
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future work. We currently do not allow for factorial designs, for example, for
which dummy or contrast coding is more natural. The key challenge there is to
specify the prior in such a way that it reflects the structure of the experimental
design. For the present, we believe that the Bayesian approach outlined in this
paper can help applied researchers who wish to compare multiple groups.

126



7
Part III

JASP

127



7



8

8
A Tutorial on Bayesian Multi-Model Linear

Regression with BAS and JASP

Linear regression analyses commonly involve two consecutive stages of statis-
tical inquiry. In the first stage, a single ‘best’ model is defined by a specific
selection of relevant predictors; in the second stage, the regression coefficients
of the winning model are used for prediction and for inference concerning the
importance of the predictors. However, such second-stage inference ignores
the model uncertainty from the first stage, resulting in overconfident param-
eter estimates that generalize poorly. These drawbacks can be overcome by
model averaging, a technique that retains all models for inference, weighting
each model’s contribution by its posterior probability. Although conceptually
straightforward, model averaging is rarely used in applied research, possibly
due to the lack of easily accessible software. To bridge the gap between the-
ory and practice, we provide a tutorial on linear regression using Bayesian
model averaging in JASP, based on the BAS package in R. Firstly, we provide
theoretical background on linear regression, Bayesian inference, and Bayesian
model averaging. Secondly, we demonstrate the method on an example data
set from the World Happiness Report. Lastly, we discuss limitations of model
averaging and directions for dealing with violations of model assumptions.

This chapter is published as: van den Bergh, D., Clyde, M. A., Komarlu
Narendra Gupta, A. R., de Jong, T., Gronau, Q. F., Ly, A., & Wagenmakers,
E.-J. (2021a). A tutorial on Bayesian multi-model linear regression with BAS
and JASP. Behavior Research Methods, 1–21.
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L inear regression is a standard statistical procedure in which one contin-
uous variable (known as the dependent, outcome, or criterion variable)
is being accounted for by a set of continuous predictor variables (also

known as independent variables, covariates, or predictors). For concreteness,
consider a researcher who is interested in predicting people’s happiness using
a number of country-specific demographic indicators such as Gross Domes-
tic Product (GDP), public safety, life expectancy, and many others. When
all available predictors are included in the regression equation, the resulting
model will generally overfit the data, the estimates of the regression coeffi-
cients will be unreliable, and the results will generalize poorly to other data
sets (e.g., Myung, 2000). Therefore, most regression analyses start by reducing
the set of initial predictors to a relevant subset. The challenge of identifying
a good subset is known as the model selection or variable selection problem.
For instance, a variable selection procedure may suggest that only wealth and
life expectancy are needed to predict happiness. Once the relevant subset has
been identified, the associated regression model can be used to assess the mag-
nitude of the relations between the criterion variable and the selected subset of
predictors (e.g., how much we expect happiness to change per unit of change
in wealth).

Although common practice, the two-step procedure has been known to be
problematic for over 25 years (e.g., Hurvich & Tsai, 1990; Miller, 1990). Specif-
ically, the second step in the two-step procedure ignores the uncertainty as-
sociated with the first step, that is, the uncertainty with which the model of
interest (i.e., the subset of predictors) was obtained. Consequently, inference
from two-step methods has been shown to be misleading (Draper, 1995) and
result in overconfident parameter estimates and biased inference (Burnham &
Anderson, 2002, Ch. 1.7). As summarized by Claeskens and Hjort (2008, Ch
7.4, p. 199):

“‘Standard practice’ has apparently become to use a model selec-
tion technique to find a model, after which this part of the analysis
is conveniently forgotten, and inference is carried out as if the se-
lected model had been given a priori. This leads to too optimistic
tests and confidence intervals, and generally to biased inference
statements.” (italics in original)

The principled alternative to the two-step procedure is multi-model infer-
ence. Instead of settling, perhaps prematurely, on a single model for inference,
multi-model inference retains all models and calculates for each model a weight
that indicates the degree to which the data support that model. These weights
are usually a function of the posterior model probabilities, which represent the
relative probability in favor of each model after the data are observed (Hoeting
et al., 1999; Raftery et al., 1997). At the same time that the model weights are
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being obtained, parameter estimates are calculated for each model. Then, in-
stead of basing all of our inferences on a single model, we can take into account
all of the models simultaneously. For example, in order to predict a set of new
observations we first generate predictions from the individual models and then
average these predictions using the posterior model probabilities as weights.
This ensures our final prediction for new observations reflects our uncertainty
across the entire model space (Claeskens & Hjort, 2008, Ch. 7). In other
words, multi-model inference accomplishes variable selection and parameter
estimation simultaneously instead of sequentially.

Despite the advantages of multi-model inference (e.g., Burnham et al.,
2011; Hinne et al., 2020; Hoeting et al., 1999) and its successes in fields such
as machine learning (Breiman, 2001), cosmology (Trotta, 2008), and climate
prediction (Tebaldi & Knutti, 2007), the procedure has been applied only
rarely in psychology (but see e.g., Gronau, Van Erp, et al., 2017; Kaplan & Lee,
2016). The lack of multi-model inference in psychological science may be due
in part to the perceived lack of user-friendly software that executes the analysis,
as well as a dearth of tutorial-style explanations that allow psychologists to
interpret the results of multi-model inference.

This aim of this paper is to bridge the gap between theory and practice
by providing a tutorial on Bayesian multi-model inference, with an emphasis
on user-friendly software to execute the analysis. First, we briefly provide
theoretical background on linear regression, Bayesian inference, and Bayesian
multi-model inference. Next we demonstrate the method in action using the
BAS R package (Clyde, 2018) as implemented in JASP (JASP Team, 2022),
an open source software program with a graphical user interface. The pa-
per concludes with a summary and a discussion about pitfalls of regression
modeling.

8.1 Theoretical Background

Before demonstrating Bayesian multi-model linear regression for a concrete
data set we first introduce some basic theory. The impatient reader may skip
this section. Below we first introduce linear regression, its assumptions, and
the most common measure of effect size, R2. We then briefly describe Bayesian
inference and finally introduce multi-model inference.

8.1.1 Linear Regression

The most common definition of multiple regression is:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ϵi, (8.1.1)
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where i refers to the scores of the ith subject and p to the total number of
predictors. The intercept is represented by β0, and the linear effects between
criterion and predictor variables are given by the regression coefficients β1, . . . ,
βp. The residuals (ϵi) are assumed to be normally distributed with mean 0 and
unknown variance σ2. The predictors (x1, x2, . . . , xp) are usually centered
(i.e., modeled with their mean subtracted, for example β1 (xi1 − x1)) so that
inference about the intercept is independent of which predictors are included
in the model. We will refer to collections of parameters or data points (vectors)
using bold notation (e.g., y denotes y1, y2, . . . , yn).

From the definition of linear regression, it is evident that the model space
can be enormous; consequently, linear regression presents a multi-model prob-
lem. With p predictors, x1, . . . ,xp, each of which can be included or excluded
from the model, the total model space consists of 2p members (e.g., with 10
predictors, there are 1024 different models to consider; with 15 predictors, the
space grows to 32, 768 models). If interaction effects are considered, the model
space grows even more rapidly.

Results from a linear regression analysis can be misleading if its assumptions
are violated. The key assumption of linear regression is that the residuals are
normally distributed. Introductory texts often mention other assumptions,
but these assumptions generally concern specific violations of normality. We
recommend three visual checks for assessing normality. As the name linear
regression suggests, the relation between the predictor variables and the crite-
rion variable should be approximately linear. Therefore, the first visual check
we recommend is examining a scatter plot of the criterion and predictor vari-
ables. For example, suppose we wish to predict Happiness using Wealth. We
might observe that the distribution of Wealth is right skewed and that the
relation between Happiness and Wealth is non-linear. Such deviations from
linearity can be corrected using, for instance, a log-transformation. Note that
because of such transformations, linear regression analyses can detect more
than just linear trends. The relation between Happiness and Wealth is shown
in Figure 8.1.

Second, we recommend examining a Q-Q plot to assess the normality of the
residuals. A Q-Q plot shows the quantiles of a theoretical normal distribu-
tion against the observed quantiles of the residuals. If the observed residuals
are approximately normal, then all points in the plot fall approximately on a
straight line. However, not all deviations from normality are easy to detect
in a Q-Q plot. For instance, a Q-Q plot does not clearly show if the residuals
are heteroscedastic, that is, the variance of the residuals is not constant across
predictions. Therefore, our third recommendation is to plot a model’s predic-
tions against a model’s residuals, which is a common visualization to assess
heteroscedasticity and nonlinearity. To illustrate, we again predict Happiness
with Wealth as measured in GPD. The left panel of Figure 8.2 shows a Q-Q
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Figure 8.1: Example of a non-linear relationship between Happiness and
Wealth, measured in terms of GDP. The left panel shows the density estimate
for Happiness, the middle and right panel relate Happiness (y-axis) to GDP
and log-transformed GDP (x-axes), respectively.

plot of theoretical against observed residuals and indicates little deviation from
normality. However, the right panel of Figure 8.2 visualizes the model’s pre-
dictions against the model’s residuals and suggests that the variance of the
prediction error depends on the model’s predictions. For example, the resid-
uals for a prediction of 5 are much more spread out than the residuals for
a prediction of 6. In the right panel, the red line is a smoothed estimate of
the mean at each point, obtained with local polynomial regression (Cleveland
et al., 1992). If the red line were horizontal with intercept zero, this would
indicate that there is no structure left in the residuals that could be captured
by the model (e.g., with interaction effects or higher-order polynomial terms).
However, here the red line varies as a function of the predictions, most likely be-
cause the relation between predictor and criterion is non-linear. Furthermore,
the variance of the residuals differs across the predictions. This indicates that
the residuals are heteroscedastic. A linear regression of Happiness predicted
by log-transformed GDP yields residuals that are better in agreement with
the assumptions of linear regression (see Appendix, Figure G.1).

After applying the regression model of interest and having confirmed that
the assumptions are not badly violated, it is recommended to assess model
fit. Model fit indices provide an idea about how well the model describes the
data. Among the many model fit indices, the most common is the coefficient
of determination R2 (Olive, 2017, p. 31), defined as

R2
Mj

= Cor (y, ŷ | Mj)
2 . (8.1.2)

R2
Mj

is the proportion of variance of the criterion variable y that is explained
by model Mj . The explained variance is computed by squaring the sample
correlation between the observations y and the predictions ŷ ofMj . Usually,
the termMj is omitted for brevity. Since R2 is the square of a correlation it
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Figure 8.2: Assumptions checks for a linear regression where Happiness is
predicted fromWealth, measured in terms of GDP. The left panel shows a Q-Q
plot of the theoretical quantiles expected under a normal distribution (x-axis)
against the quantiles of the observed residuals obtained from Bayesian Model
Averaging (BMA; y-axis). The residuals appear approximately normally dis-
tributed. The right panel plots the predictions under BMA (x-axis) against
the residuals (y-axis). Figures from JASP.

always lies between 0 (poor model fit) and 1 (perfect model fit). It should be
stressed that R2 is not a good measure for model comparison because it does
not penalize models for complexity: when additional predictors are added to a
model, R2 can only increase. Therefore, R2 will always favor the most complex
model. However, the most complex model often fits the data too well, in the
sense that idiosyncratic noise is misperceived to be systematic structure. In
other words, complex models are prone to overfit the data (e.g., Hastie et al.,
2008, Ch. 7; Myung and Pitt, 1997; Vandekerckhove et al., 2015). Because
models that overfit the data treat irreproducible noise as if it were reproducible
signal, predictive performance for new data suffers. Altogether, this makes R2

unsuitable for model selection, unless the competing models have the same
number of predictors.

8.1.2 Bayesian Inference

The next sections provide a brief introduction to Bayesian statistics. For
accessible, in-depth tutorials and an overview of the literature we recommend
the recent special issue in Psychonomic Bulletin & Review (Vandekerckhove
et al., 2018).
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Bayesian Parameter Estimation

Given a specific model Mj –in regression, a particular subset of predictors–
we start a Bayesian analysis by defining prior beliefs about possible values for
the parameters (e.g., the regression coefficients). This belief is represented as
a probability distribution; ranges of likely values have more prior probability
and ranges of less likely values have less prior probability.

As soon as data D are observed, Bayes’ theorem (Equation 8.1.3) can be
used to update the prior distribution to a posterior distribution:

p(β | D,Mj)︸ ︷︷ ︸
Posterior

=

Prior︷ ︸︸ ︷
p(β | Mj) ×

Likelihood︷ ︸︸ ︷
p(D | β,Mj)

p(D | Mj)︸ ︷︷ ︸
Marginal

Likelihood

. (8.1.3)

Equation 8.1.3 shows that our prior beliefs are adjusted to posterior beliefs
through an updating factor that involves the likelihood (i.e., predictive per-
formance for specific values for β) and the marginal likelihood (i.e., predictive
performance across all values for β): values for β that predicted the data better
than average receive a boost in plausibility, whereas values of β that predicted
the data worse than average suffer a decline (e.g., Wagenmakers et al., 2016).
Equation 8.1.3 also shows that the posterior distribution is a compromise be-
tween the prior distribution (i.e, our background knowledge) and the data (i.e.,
the updating factor). The updating process is visualized in Figure 8.3. Note
that the impact of the prior on the posterior becomes less pronounced when
sample size increases. In large samples, the posterior is often dominated by
the likelihood and the posterior is practically independent of the prior (Wrinch
& Jeffreys, 1919). In addition, with more data the posterior distribution be-
comes increasingly peaked, reflecting the increased certainty about the value
of the parameters.

Bayesian Model Selection

The parameter estimation procedure provides us with posterior distributions
for parameter values conditional on a given modelMj . When multiple models
are in play, we can extend Bayes’ theorem and use the data to update the
relative plausibility of each of the candidate models. For the case of two
models, M0 and M1, Equation 8.1.4 shows how the prior model odds (i.e.,
the relative plausibility of M0 and M1 before seeing the data) are updated
to posterior model odds (i.e., the relative plausibility of M0 and M1 after
seeing the data). The change from prior to posterior odds is given by the
Bayes factor (e.g., Jeffreys, 1961; Kass & Raftery, 1995), which indicates the
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Figure 8.3: Illustration of Bayesian updating using Bayes’ theorem for a
single observation (left panel) and ten observations (right panel). The ‘true’
value is 2 and is indicated by the gold triangle on the x-axes. Note that (1)
the posterior depends less on the prior as more data are observed; (2) the
variance (width) of the posterior decreases with sample size. In other words,
we become more certain of our estimates as we observe more data. In the right
panel, the likelihood was normalized for illustrative purposes. This example is
based on normally distributed data with unknown mean and known variance
(for derivations, see Murphy, 2007).

models’ relative predictive performance for the data at hand (i.e., the ratio of
marginal likelihoods):

p(M1 | D)
p(M0 | D)︸ ︷︷ ︸

Posterior model odds

=
p(M1)

p(M0)︸ ︷︷ ︸
Prior model odds

× p(D | M1)

p(D | M0)︸ ︷︷ ︸
Bayes factor

BF10

. (8.1.4)

When the Bayes factor BF10 is 4 this indicates that the data are 4 times more
likely underM1 thanM0. The Bayes factor subscripts indicate which model
is in the numerator and denominator; for instance, if BF10 = 0.20, then 1 /
BF10 = BF01 = 5, which means that the data are 5 times more likely underM0

than under M1 (Jeffreys, 1939). There exist several categorization schemes
to quantify the evidence associated with particular ranges of values (e.g.,
Jeffreys, 1961; Kass & Raftery, 1995). Table 8.1 provides one such scheme.

With more than two candidate models in the set, the posterior model prob-
ability for modelMj is given by
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Table 8.1: A scheme for categorizing the strength of a Bayes factor (from
Lee and Wagenmakers, 2013, based on Jeffreys, 1961). Note that the Bayes
factor is a continuous measure of evidence and that the thresholds provided
here (and in other schemes) are only meant as a heuristic guide to facilitate
interpretation and not as a definite cutoff.

Bayes factorBF10 Interpretation

> 100 Extreme evidence forM1

30 − 100 Very strong evidence forM1

10 − 30 Strong evidence forM1

3 − 10 Moderate evidence forM1

1 − 3 Anecdotal evidence forM1

1 No evidence
1/3 − 1 Anecdotal evidence forM0

1/10 − 1/3 Moderate evidence forM0
1/30 − 1/10 Strong evidence forM0

1/100 − 1/10 Very strong evidence forM0

< 1/100 Extreme evidence forM0

p(Mj | D) =
p(D | Mj)p(Mj)∑
i p(D | Mi)p(Mi)

.

This can also be written as a function of the Bayes factor relative to the null
model:

p(Mj | D) =
BFj0 p(Mj)∑
i BFi0 p(Mi)

.

The change from prior to posterior model odds quantifies the evidence BFMj

that the data provide for a particular model j. The prior model odds are given
by p(Mj)/1−p(Mj) and the posterior model odds are given by p(Mj |D)/1−p(Mj |D).
The change in odds is obtained by dividing the posterior model odds by the
prior model odds:

BFMj =
p(Mj | D)

1− p(Mj | D)

/
p(Mj)

1− p(Mj)
.

Bayes factors generally depend on the prior distribution for the parameter
values. In contrast to estimation, the data do not overwhelm the prior because
the Bayes factor quantifies relative predictive performance of two models on
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a data set.1 This is desirable because complex models usually yield many
poor predictions and therefore the Bayes factor inherently penalizes complexity
and favors parsimony (Jeffreys, 1961). However, without reliable information
suitable for constructing a prior, the relation between Bayes factors and priors
introduces the need for default prior distributions.

There are two types of prior distributions that need to be decided upon.
The first type of prior distribution is the model prior, which assigns a prior
probability to each model that is considered. For the time being, we only
consider a uniform model prior so that all models are a-priori equally likely.
Alternative model priors are discussed in the section Prior Sensitivity.

The second type of prior distribution is the prior on parameters. A popular
choice of default prior distributions for parameters β in linear regression is
the Jeffreys–Zellner–Siow (JZS) prior (i.e., a multivariate Cauchy distribution
on the beta coefficients) which is also used in the implementation shown later.
The JZS prior fulfills several desiderata (see Liang et al., 2008; Zellner, 1986;
Zellner and Siow, 1980 for information on the JZS-prior, see Rouder and Morey,
2012 for default priors in Bayesian linear regression, and see Ly et al., 2016a for
a general introduction on default Bayes factor hypothesis tests). An example
of such a desideratum is that the Bayes factor is the same regardless of the
units of measurement (e.g., the Bayes factor is the same when response time
is measured in milliseconds or years; for more information see Bayarri et al.,
2012). This desideratum is satisfied by assigning a Jeffreys prior to the residual
variance σ2, that is, p(σ2) is proportional to 1/σ2.

Other methods included in JASP are the Akaike Information Criterion (AIC;
Akaike, 1973), the Bayesian Information Criterion (BIC; Schwarz, 1978), the
g-prior (Zellner, 1986), the hyper-g prior (Liang et al., 2008), the hyper-g-
Laplace prior which is the same as the hyper-g prior but uses a Laplace ap-
proximation, and the hyper-g-n prior which uses a hyper-g/n prior (Liang et al.,
2008). In addition, two methods are available that use a g-prior and automat-
ically choose a value for g. Empirical Bayes “global” uses an EM algorithm
to find a suitable value for g while empirical Bayes “local” uses the maximum
likelihood estimate for each individual model as value for g (Clyde & George,
2000). We revisit the possible use of these alternative methods when we discuss
robustness.

8.1.3 Bayesian Multi-Model Inference

As before, assume that there are multiple models in play, each with their own
set of predictors. In the previous section we have seen that the posterior
model probabilities can be obtained by assessing each model’s plausibility and

1As the words imply, predictions follow from the prior distribution; postdictions follow
from the posterior distribution.
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predictive performance, relative to that of the other models in the set. When
the results point to a single dominant model, then it is legitimate to consider
only that model for inference. When this is not the case, however, inference
about the predictors needs to take into account multiple models at the same
time. We consider two important questions: (1) what predictors should be
included to account for the dependent variable? and (2) what have we learned
about the regression coefficients for the predictors? In multi-model inference,
these questions can be addressed by summing and averaging across the model
space, respectively.

First, consider the question ‘if we want to predict Happiness, do we need
the predictor Wealth?’ There may be thousands of regression models, half
of which include Wealth as a predictor, and half of which do not. In BMA
we can quantify the overall support for the predictor Wealth by summing all
posterior model probabilities for the models that include Wealth:

p(inclβj
| D) =

∑
Mj :βj∈Mj

p(Mj | D)

If the summed prior probability of models including Wealth is 0.50, and the
summed posterior probability is 0.95, then the inclusion Bayes factor is 19.
That is:

p(inclβj
| D)

p(exclβj
| D)

=
p(D | inclβj

)

p(D | exclβj
)

p(inclβj
)

p(exclβj
)

Second, consider the question ‘what have we learned about the regression
coefficient for the predictor Wealth?’ In the models that do not feature Wealth,
this coefficient can be considered zero; in the models that do feature Wealth,
the coefficient has a posterior distribution, but a different one for each model.
In BMA, we can provide an overall impression of our knowledge about the
coefficient by averaging the parameter values across all of the models, using
the posterior model probabilities as weights (e.g., Ghosh, 2015; Raftery et al.,
1997). Intuitively, one can first sample a model (using the posterior model
probabilities) and then, from that model, draw a value of the regression co-
efficient from the posterior distribution for that model; repeating this very
many times gives a model-averaged posterior distribution for the regression
coefficient of interest. Specifically, we have:

p(β | D) =
∑
j

p(β | D,Mj) p(Mj | D)
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The same procedure for sampling from the posterior distribution of the re-
gression coefficients can be used to obtain a distribution over model-based
predictions. Letting ŷi denote a prediction for outcome i we obtain:

p(ŷi | D) =
∑
j

p(ŷi | D,Mj) p(Mj | D)

Here, one may use the observed values for the predictors to obtain fits for
the observed values of the criterion variable, or one can use new values for
the predictors to obtain predictions for unseen values of the criterion variable.
Note that the predictions and the residuals are random variables endowed with
probability distributions, rather than single values.

A complementary method is to base all inference on the median probability
model (Barbieri, Berger, et al., 2004) which includes all predictors that have
posterior inclusion probabilities larger than or equal to 0.5. This method is
implemented both in BAS and in JASP.

Although BMA is theoretically straightforward, considerable practical chal-
lenges need to be overcome. The main challenge is that the model space can
be truly enormous, and consequently even advanced computational methods
can grind to a halt. Fortunately, the computational challenge surrounding
Bayesian multi-model inference in linear regression has been mostly overcome
by a recent method called Bayesian Adaptive Sampling (BAS Clyde et al.,
2011b). In principle, BAS tries to enumerate the model space if p ≤ 20. How-
ever, if the model space is too large to enumerate –when p > 20 implying
that there are more than 1, 048, 576 models to consider– BAS uses an efficient
method for sampling from the model space without replacement. An open-
source implementation of BAS is available for R (R Core Team, 2022; package
‘BAS’, Clyde, 2018) and the methodology is also accessible with a graphical
user interface in JASP JASP Team, 2022.

8.2 Example: World Happiness Data

To showcase Bayesian multi-model inference for linear regression we consider
data from the World Happiness Report of 2018. The data set can be obtained
from the appendix of http://worldhappiness.report/ed/2018/. An annotated
.jasp file of the analysis detailed below can be found at https://osf.io/5dmj7/.
The goal of the analysis is to examine which variables are related to Happiness,
and what is the strength of the relation. First we briefly describe the data set.

The World Happiness Data is put together yearly by Gallup, a research-
based consulting company. Gallup regularly conducts public opinion polls
and annually conducts interviews with a large number of inhabitants of many
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different countries.2 The happiness of the interviewees was assessed with the
Cantril Self-Anchoring Striving Scale (Glatzer & Gulyas, 2014). In addition,
interviewees were asked about a variety of topics and the obtained data are
distilled into six variables that may relate to happiness. A description of these
six variables is given in Table 8.2.

Table 8.2: Description of the predictor variables for the Gallup World Hap-
piness Data. For a more detailed description of the variables see technical box
1 of Gallop’s complete report.

Predictor Abbreviation Description
GDP per Capita W The relative purchasing power of

inhabitants of a country, based on data
from the World Bank.

Life Expectancy Le Life expectancy based on data from the
World Health Organization.

Social Support Ss The nation-wide average of responses to the
question: ‘If you were in trouble, do you
have relatives or friends you can count on
to help whenever you need them, or not?’

Freedom F The nation-wide average to the question:
‘Are you satisfied or dissatisfied with your
freedom to choose what you do with your
life?’

Generosity Ge The nation-wide average ‘Have you
donated to a charity in the last month?’

Perception of
Corruption Poc The nation-wide average to the questions

‘Is corruption widespread throughout the
government or not?’ and ‘Is corruption
widespread within businesses or not?’.

We first analyze the data using a standard Bayesian multi-model approach,
which is then extended to deal with interaction effects, nuisance variables
included in all models, and robustness checks.

Before carrying out any analyses it is critical to check the model assump-
tions. We investigate the assumption of linearity by plotting the entire set of
independent variables against the dependent variable, as shown in Figure 8.4.
To replicate Figure 8.4, open JASP and load the data, go to Descriptives,

2Specific information about the data collection can be found on their website http:
//www.gallup.com/178667/gallup-world-poll-work.aspx. Gallop’s complete report can be
downloaded from http://worldhappiness.report/ed/2018/.
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first drag your dependent variable and then all independent variables.3 Then
under Plots click Correlation plot.
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Figure 8.4: A matrix-plot of all variables in the World Happiness Data. The
diagonal plots are the density estimates of the individual variables. The above-
diagonal plots are pairwise scatter plots of two variables, where the straight line
represent the correlation between them. In the first row, Happiness score (y-
axes) is plotted against all independent variables (x-axes). Below the diagonal
the Pearson correlations are displayed. All relations appear approximately
linear by eye. Figure from JASP.

Figure 8.4 shows that all relations between the covariates and Happiness
are approximately linear. Initially, the relation between Happiness and Wealth

3All JASP commands in the input menu are typeset like this.
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was nonlinear (see Figure 8.1), but after log-transforming Wealth this assump-
tion no longer appears violated (as shown in Figure 8.4). Transforming a
variable in JASP can be done by going to the data view, scrolling all the way
to the right and selecting Compute Columns. Next, we can create a new vari-
able, either using a drag and drop scheme or using R-code. This is shown in
Figure 8.5.

Figure 8.5: Compute a new column in JASP by clicking on the ‘+’ in the
top right of the data view.

The other key assumption –normally distributed residuals– can only be
studied after executing the analysis. To execute the analysis in JASP, we go to
the Regression menu and click on Bayesian Linear Regression. Figure 8.6
shows the resulting interface. We enter the data by dragging Happiness to
the box labeled Dependent Variable and by dragging the independent vari-
ables to the box labeled Covariates. As soon as the data are entered the
analysis is carried out and the table on the right of Figure 8.6 is filled out.
Before interpreting the results we assess whether the residuals are approxi-
mately normally distributed. To do so, we go to Plots and check Residuals
vs. fitted. This produces the left panel of Figure 8.7, which shows there is
still structure in the residuals that is not captured by the model. We included
a two-way interactions between Life expectancy and Social support.4 This is
motivated by the following comment in Gallop’s report (page 21):

4The model space considered should be predetermined and preferably preregistered be-
fore commencing with the analysis. We enlarge the model space here to meet the model
assumptions. Strictly speaking, the results should be viewed as exploratory.

143



8

8. A TUTORIAL ON BAYESIAN MULTI-MODEL LINEAR
REGRESSION WITH BAS AND JASP

“There are also likely to be vicious or virtuous circles, with
two-way linkages among the variables. For example, there is much
evidence that those who have happier lives are likely to live longer,
be more trusting, be more cooperative, and be generally better able
to meet life’s demands. This will feed back to improve health, GDP,
generosity, corruption, and sense of freedom.” (original in italics)

Figure 8.6: Screenshot of Bayesian linear regression in JASP. The left panel
shows the input fields; once these are populated, output will appear in the
panel on the right.

After confirming that the assumptions of linear regression have been met,
we can investigate the results. No further action is required; as soon as the
data were entered, JASP executed the analysis and displayed the results in
an output table. The results for the ten models with the highest posterior
probability are shown in Table 8.3.

Table 8.3 shows that the ten best models all contain Life expectancy, Social
support, and Freedom, which suggests that these predictors are important to
account for Happiness. Also, note that the Bayes factor BF01, which quantifies
a model’s relative predictive performance, does not always prefer models with
higher explained variance R2, which quantifies a model’s goodness-of-fit. For
instance, R2 is necessarily highest for the full model that contains all seven
predictors (row 5 in Table 8.3); however, the Bayes factor indicates that the
predictive performance of this relatively complex model is about 66 times
worse than that of the model that contains only Wealth, Life Expectancy,
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Figure 8.7: Residuals vs Predictions for the World Happiness data set for
the model without (left panel) and with (right panel) the interaction effect of
Life expectancy and Social support. The red line is a smoothed estimate of
the mean at each point and is ideally completely flat. Figures from JASP.

Social support, Freedom, and the interaction between Life expectancy and
Social support.

With many different models it can be challenging to quantify the relevance
of individual predictors by showing all models as in Table 8.3 (and its complete
version with all 80 models). In model-averaging, the solution is to take into
account all models simultaneously. This can be accomplished in JASP by
ticking Posterior summary in the input panel and selecting the option Model
averaged. The output, shown here in Table 8.4, provides a summary of
the predictor inclusion probabilities and the posterior distributions averaged
across all models.

Table 8.4 confirms our initial impression about the importance of Wealth,
Life expectancy, Social Support, Freedom, and the interaction between Life
expectancy and Social Support. Each of these predictors are relevant for pre-
dicting Happiness, as indicated by the fact that the posterior inclusion prob-
abilities (0.962, 1.000, 1.000, 1.000, and 0.998 respectively) are all near 1.5
On the other hand, there is evidence against the relevance of Generosity and
Perception of Corruption: the data lowered the inclusion probabilities from
0.5 to about 0.1. The median probability model (i.e., the model that includes
all predictors with a posterior inclusion probability larger than 0.5, Barbieri,
Berger, et al., 2004) consists of Wealth, Life expectancy, Social support, Free-
dom, and the interaction between Life expectancy and Social support. To
obtain the posterior summary for the median probability model, click on the
menu that says Model averaged and change it to Median model.

5Although JASP rounds the posterior inclusion probabilities to 1, they never equal 1
exactly.
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Table 8.3: The 10 best models from the Bayesian linear regression for the
Gallup World Happiness Data. The leftmost column shows the model specifi-
cation, where each variable is abbreviated as in Table 8.2. The second column
gives the prior model probabilities; the third the posterior model probabilities;
the fourth the change from prior to posterior model odds; the fifth the Bayes
factor of the best model over the model in that row; and the last the R2, the
explained variance of each model. Results for all 80 models are presented in
the appendix, Table G.1.

Models P (M) P (M | D) BFM BF01 R2

W+Le + Ss + F
+ Le * Ss 0.013 0.759 248.244 1.000 0.821

W+Le + Ss + F
+ Ge + Le * Ss 0.013 0.097 8.531 7.783 0.822

W+Le + Ss + F
+ Poc + Le * Ss 0.013 0.093 8.101 8.157 0.822

Le + Ss + F
+ Le * Ss 0.013 0.027 2.233 27.591 0.805

W+Le + Ss + F
+ Ge + Poc
+ Le * Ss

0.013 0.012 0.924 65.617 0.823

Le + Ss + F + Ge
+ Le * Ss 0.013 0.005 0.413 145.922 0.807

Le + Ss + F + Poc
+ Le * Ss 0.013 0.004 0.329 182.965 0.807

W+Le + Ss + F 0.013 6.961× 10−4 0.055 1089.774 0.794
Le + Ss + F + Ge

+ Poc + Le * Ss 0.013 6.672× 10−4 0.053 1137.027 0.808

W+Le + Ss + F
+ Poc 0.013 3.179× 10−4 0.025 2386.195 0.799

Note that the prior inclusion probabilities are not equal for all coefficients.
This happens because JASP automatically excludes models with interactions
effects but without their corresponding main effects, as dictated by the prin-
ciple of marginality(for details see Nelder, 1977). Thus the prior inclusion
probability, P (incl) is still obtained by adding up the prior probability of all
models that contain a particular coefficient, but for interaction effects there
are simply fewer models that are added up. This is further explained in the
section Including Interaction Effects.

The change from prior to posterior inclusion probabilities can be visualized
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Table 8.4: Model-averaged posterior summary for linear regression coeffi-
cients of the Gallup World Happiness Data. The leftmost column denotes the
predictor (abbreviations are shown in Table 8.2). The columns ‘mean’ and ‘sd’
represent the respective posterior mean and standard deviation of the parame-
ter after model averaging. P (incl) denotes the prior inclusion probability and
P (incl | data) denotes the posterior inclusion probability. The change from
prior to posterior inclusion odds is given by the inclusion Bayes factor (BFincl).
The last two columns represent a 95% central credible interval (CI) for the
parameters.

95% CI

Coefficient Mean SD P (incl) P (incl|D) BFincl Lower Upper

Intercept 5.346 0.041 1.000 1.000 1.000 5.265 5.421
W 0.263 0.094 0.500 0.962 25.616 0.000 0.393
Le −0.110 0.035 0.600 1.000 2875 −0.183 −0.050
Ss −8.545 2.556 0.600 1.000 131 213 −13.688 −4.167
F 1.699 0.345 0.500 1.000 3772 1.067 2.327
Ge 0.028 0.127 0.500 0.115 0.130 −0.037 0.390
Poc −0.022 0.112 0.500 0.110 0.124 −0.306 0.043
Le * Ss 0.189 0.044 0.200 0.998 2475 0.105 0.267

by selecting Plots and ticking Inclusion probabilities, which produces
the bar graph shown in Figure 8.8.

In addition to providing the inclusion probabilities, Table 8.4 also sum-
marizes the model-averaged posterior distributions using four statistics (i.e.,
mean, sd, and the lower and upper values of an x% central credible interval).
The complete model-averaged posteriors can be visualized by selecting Plots
and ticking Marginal posterior distributions. For example, the poste-
rior distribution for the regression coefficient of Wealth is shown in the left
panel of Figure 8.9. The right panel of Figure 8.9 shows the model-averaged
posterior for the regression coefficient of Generosity; the spike at zero cor-
responds to the absence of an effect, and its height reflects the predictor’s
posterior exclusion probability. The horizontal bar above the distribution
shows the 95% central credible interval.

To summarize, the Bayesian model-averaged analysis showed that the most
important predictors in the Gallup World Happiness Data are Wealth, Social
Support, Life expectancy, and Freedom. There is weak evidence that Generos-
ity and Perception of Corruption are not relevant for predicting Happiness.
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Figure 8.8: Bar graph of posterior inclusion probabilities for the Bayesian
linear regression of the Gallup World Happiness Data. The dashed line repre-
sents the prior inclusion probabilities. Figure from JASP.
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Figure 8.9: The model-averaged posterior of Wealth expressed in GDP (left)
and Generosity (right). In the left panel, the number in the bottom left rep-
resents the posterior exclusion probability. In the right panel, the posterior
exclusion probability is much larger. In both panels, the horizontal bar on top
represents the 95% central credible interval. Figures from JASP.

8.2.1 Including Interaction Effects

In regression analysis we are often not interested solely in the main effects
of the predictors, but also in the interaction effects. For instance, suppose
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that for the analysis of the Gallup World Happiness Data we wish to consider
the two-way interactions between Wealth, Social Support, Freedom, and Life
Expectancy. To do this we click on Model and select all variables of interest
under Components (use ctrl/ or Shift to select multiple variables) and drag
them to Model terms. JASP then automatically includes all possible inter-
actions between the selected variables in the Model terms on the right. To
exclude higher order interactions, we select these in Model terms and click
the arrow or drag them to Components. The result is shown in Figure 8.10.

Figure 8.10: Model component view. By selecting multiple variables in the
left panel and dragging these to the right panel, all interactions between the
selected variables are included in the model. By ticking the box ‘Add to null
model’ the associated variable is included in all models.

As soon as the interaction effects are added to the model, JASP updates
the output.6 Since the interaction effects account for 6 new predictors there
are now 12 predictors in total and 468 models to consider. There are not
212 = 4096 models, because JASP automatically excludes models with inter-
actions effects but without their corresponding main effects, as dictated by
the principle of marginality (Nelder, 1977). The updated posterior summary
is shown in Table 8.5.

Table 8.5 shows that Wealth, Social Support, Life expectancy, and Free-
dom are important for predicting Happiness, as indicated by the posterior
inclusions probabilities. For almost all interaction effects, the posterior inclu-
sion probabilities are smaller than the prior inclusion probabilities, indicating
that the data provide evidence against these effects. The interaction effect
between Life Expectancy and Social Support somewhat improves the model
(BFincl = 8.612).

6When adjusting the model terms it can be inconvenient that JASP continually updates
the results. A trick to disable this is to temporarily remove the dependent variable while
adjusting the model terms.
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Table 8.5: Model-averaged posterior summary for linear regression coeffi-
cients of the Gallup World Happiness Data, including two-way interaction
effects between Wealth, Social Support, Freedom, and Life Expectancy.

95% CI

Coefficient Mean SD P (incl) P (incl|D) BFincl Lower Upper

Intercept 5.346 0.041 1.000 1.000 1.000 5.260 5.425
W 0.233 0.599 0.841 0.982 10.490 −0.945 1.753
Le −0.122 0.084 0.841 0.997 54.237 −0.288 0.051
Ss −6.576 4.190 0.841 1.000 3057.789 −12.821 3.223
F −0.469 2.901 0.841 1.000 1695.479 −6.258 2.608
Ge 0.021 0.117 0.500 0.110 0.124 −0.136 0.236
Poc −0.015 0.108 0.500 0.106 0.119 −0.409 0.058
W * Le 0.002 0.006 0.363 0.200 0.438 −0.0002 0.019
W * Ss −0.186 0.599 0.363 0.241 0.557 −1.969 0.660
W * F 0.076 0.237 0.363 0.181 0.389 −0.066 0.788
Le * Ss 0.168 0.116 0.363 0.831 8.612 0.000 0.402
Le * F 0.011 0.035 0.363 0.180 0.385 −0.0001 0.117
Ss * F 1.072 2.562 0.363 0.228 0.517 −0.263 8.086

Comparing the main effects in Table 8.4 to those in Table 8.5, it might
appear surprising that the support for including the predictors decreased for
all variables. For example, the inclusion Bayes factor for Life Expectancy
decreased from about 2875 to 54, Wealth decreased from about 26 to 10, and
the interaction between Life Expectancy and Social support decreased from
about 2475 to 9. The cause for these change lies in the added interaction
effects. All interaction effects with Wealth led to poorly performing models,
as illustrated by the low inclusion Bayes factors for all interaction effects with
Wealth. As a consequence, the inclusion Bayes factor for Wealth also suffered,
since 312 out of the 396 models considered to calculate the inclusion Bayes
factor contained interaction effects with Wealth.

The effect of model averaging on parameter estimation is clearly present
when comparing the 95% credible intervals in Tables 8.4 and 8.5. For in-
stance, the credible interval for Freedom was [1.06, 2.35] in Table 8.4 but
widens to [−6.3, 2.6] in Table 8.5. There are two reasons for this increase in
uncertainty. First, the posterior probability of the best model is only 0.223,
compared to 0.759 in Table 8.3 (see the online supplement for all posterior
model probabilities). This means that other models contribute substantially
to the model-averaged posterior, which increases the uncertainty in the param-
eter estimates. Second, the results in Table 8.5 are based on a larger model
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space, which potentially leads to a wider range of possible estimates and hence
increases the associated uncertainty.

The instability of the results due to changing the model space is no reason for
concern; rather, it demonstrates the importance of considering all models and
dealing with model uncertainty appropriately. The example above does show,
however, that some rationale should be provided for the model space. Here,
we did not properly motivate the inclusion of the interaction effects because we
wanted to demonstrate the effect of model uncertainty on the results. Instead,
one should decide upon the the model space before executing the analysis and
ideally preregister the model space on the basis of substantive considerations.

8.2.2 Including Nuisance Predictors in All Models

Another common procedure in the toolkit of linear regression is to include
a number of nuisance predictors in all models (in management sience this is
sometimes called hierarchical regression; see also Andraszewicz et al., 2015;
Petrocelli, 2003). Subsequently, the goal is to assess the contribution of the
predictor(s) of interest over and above the contribution from the nuisance
predictors. For example, we could have included Wealth in all models, for
instance because we already know that Wealth has a large effect, but we are
not interested in that effect – we are interested in what the other predictors
add on top of Wealth. To add Wealth as a nuisance variable to the model,
we go to Model and check the box under Add to null model for Wealth (see
Figure 8.10). As with interaction effects, JASP updates the results immediately
and produces a model comparison table similar to Table 8.3. Note that the
Bayes factor BF01 in the fifth column of Table 8.3 by default compares all
models to the best model. When including nuisance predictors, we are more
interested in how much the models improve compared to the null model. We
can change the default setting by going to Order and selecting Compare to
null model. This changes the Bayes factor column such that all models are
compared to the null model instead of to the best model. The resulting table
is shown in Table 8.6. Since we now compare all models to the null model, the
null model is always shown in the first row.

8.2.3 Prior Sensitivity

Priors on Parameters

In the previous analyses we used the default JZS prior on the values of the
regression coefficients. However, it is generally recommended to investigate the
robustness of the results against the choice of prior (van Doorn et al., 2020).
To investigate robustness, one typically uses the same family of distributions
but varies the prior width. A wider prior will imply more spread-out a-priori
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Table 8.6: The 10 best models from the Bayesian linear regression for the
GallupWorld Happiness Data, where the nuisance predictor Wealth is included
in all models. The interpretation of the columns is identical to that of Table 8.3,
except that the Bayes factor BF01 in the fifth column compares all models to
the null model. The table footnote shows a reminder from JASP which variables
are specified as nuisance.

Models P (M) P (M | data) BFM BF01 R2

Null model (incl. W) 0.031 6.143× 10−11 1.904× 10−9 1.000 0.679
Le + Ss + F 0.031 0.439 24.228 7.141× 109 0.794
Le + Ss + F + Poc 0.031 0.200 7.767 3.261× 109 0.799
Le + Ss + F + Ge 0.031 0.169 6.290 2.746× 109 0.799
Ss + F 0.031 0.077 2.572 1.247× 109 0.781
Le + Ss + F + Ge + Poc 0.031 0.043 1.380 6.938× 108 0.802
Ss + F + Poc 0.031 0.032 1.034 5.254× 108 0.786
Ss + F + Ge 0.031 0.030 0.955 4.867× 108 0.786
Ss + F + Ge + Poc 0.031 0.007 0.217 1.131× 108 0.789
Le + F 0.031 0.002 0.057 2.966× 107 0.769

Note. All models include Wealth (W).

uncertainty about the effect, whereas a more narrow prior implies that the
a-priori belief about the effect is more concentrated near zero. To adjust the
prior, we go to Advanced options and under Prior change the value after
JZS. This value is generally referred to as the scale of the JZS prior. The
default choice in JASP is a JZS with a scale of 1/8. This corresponds to the
default choice used in other software, for example the R package “BayesFactor”
(Morey & Rouder, 2021). If the JZS scale in JASP is s, the corresponding
scale for the “BayesFactor” package is

√
2s. Commonly used values for the

larger scales are 1/4 and 1/2, respectively referred to as “wide” and “ultrawide”
priors (Morey & Rouder, 2021; Wagenmakers, Love, et al., 2018). Figure 8.11
shows the marginal prior distribution for the regression coefficients β for these
three scales. Under Advanced options it is also possible to select other prior
distributions than the JZS. However, we recommend against doing so without
proper motivation (see e.g., Bayarri et al., 2012; Consonni et al., 2018; Liang
et al., 2008).

We repeated the main analysis with a JZS scale of 1/4 and 1/2 but the
posterior inclusion probabilities, see Table 8.7, did not change in a meaningful
way (see https://osf.io/5dmj7/ for an annotated .jasp file with the results).
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Figure 8.11: Marginal prior distribution on the regression coefficients (β).
The different line types represent different scales for the prior. As the scale
increases the probability mass near zero decreases and the mass on more ex-
treme values increases.

Table 8.7: Posterior inclusion probabilities given different values for the scale
of the JZS prior. The intercept is omitted from the comparison as it is included
in all models and therefore its inclusion probability is always 1.

P (incl|D)

Coefficient P(incl) s = medium s = wide s = ultrawide

Log GDP 0.5 0.962 0.962 0.962
Le 0.6 1.000 1.000 1.000
Ss 0.6 1.000 1.000 1.000
F 0.5 1.000 1.000 1.000
G 0.5 0.115 0.114 0.111
Poc 0.5 0.110 0.109 0.106
Le * Ss 0.2 0.998 0.998 0.998

Priors on the Model Space

Aside from adjusting the priors on the coefficients, it is also possible to adjust
the prior over the models. An intuitive choice is a uniform model prior, where
each model is assigned prior mass equal to one over the number of models
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considered. This prior was also used in the analyses above. However, if we use
a uniform model prior and then compute the prior probability for a model that
includes x predictors, where x goes from 0 to p, we do not obtain a uniform
prior. Instead, the implied prior over the number of included predictors is bell-
shaped with the most mass on models with p/2 predictors. Thus, a-priori our
prior is biased against sparse models and dense models, and favors something
in between.

A solution to this problem is to use a prior that is uniform over the number
of included predictors. This can be achieved by dividing the total probability,
1, into p+1 chunks. The first chunk represents the combined probability of all
models that include no predictors, the second chunk represents the combined
probability of all models that include one predictor, etc. This model prior
commonly referred to as a beta-binomial model prior and can be tweaked
using two parameters, α and β. The left panel of Figure 8.12 shows how the
total probability is divided for different values of α and β. The default values
in JASP are α = β = 1.7 In the next step, all models within a chunk (i.e.
all models with the same number of predictors) are treated as equally likely
and the probability of the chunk is distributed uniformly among them. This
implies the prior probability of a chunk is divided by the number of models in
that chunk. The right panel of Figure 8.12 shows the prior model probability
for different values of α and β.

We repeated the main analysis with a Beta-binomial prior. Table 8.8 shows
the inclusion probabilities for an uniform model prior and a beta-binomial
model prior. Although the numbers differ, the results are unchanged: The
evidence for the inclusion and exclusion of predictors in the model point in
the same direction for both priors on the model space. For example, the
inclusion Bayes factors that were larger than 1 for a uniform prior on the
model space were also larger than 1 for the beta-binomial prior.

Although much attention goes to the choice of prior distribution, the likeli-
hood of the statistical model is often more important. As stated by Gelman
and Robert (2013):

“It is perhaps merely an accident of history that skeptics and
subjectivists alike strain on the gnat of the prior distribution while
swallowing the camel that is the likelihood. ” (italics in original)

7The α and β parameters of the beta-binomial prior can be set individually. Alternatively
it is possible to choose the Wilson model prior or the Castillo model prior, which are both
variants of the beta-binomial prior (Castillo et al., 2015; M. A. Wilson et al., 2010). The
Wilson model prior sets α = 1 and β = λp, where p is the number of predictors in the model
and λ is a parameter set by the user. The Castillo model prior sets α = 1 and β = pu, where
p is the number of predictors in the model and u is a parameter set by the user. Both the
Wilson and the Castillo prior assign more mass to models with fewer predictors.
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Figure 8.12: A beta-binomial model prior for a model space with 6 predic-
tors. The left panel shows the beta-binomial distribution where the number of
predictors in the model (x-axis) is visualized against the total probability of
all models with that number of predictors (y-axis). The right panel shows how
the number of predictors in the model (x-axis) influences the prior probability
of a single model (y-axis). The right panel is obtained by dividing each prob-
ability in the left panel by the number of models with that many predictors.
The number of models that contain j predictors is obtained by calculating

(
6
j

)
.

This yields for 0 through 6: 1, 6, 15, 20, 15, 6, and 1.

Table 8.8: Prior inclusion probabilities, posterior inclusion probabilities, and
inclusion Bayes factors for a uniform model prior and a beta-binomial model
prior. The intercept is omitted from the comparison as it is included in all
models and therefore its inclusion probability is always 1.

Uniform Beta-binomial

Coefficient P (incl) P (incl|D) BFincl P (incl) P (incl|D) BFincl

Log GDP 0.5 0.962 25.616 0.489 0.983 59.024
Le 0.6 1.000 2875 0.556 1.000 8924
Ss 0.6 1.000 131213 0.556 1.000 398502
F 0.5 1.000 3772 0.489 1.000 5775
G 0.5 0.115 0.130 0.489 0.339 0.536
Poc 0.5 0.110 0.124 0.489 0.330 0.515
Le * Ss 0.2 0.998 2475 0.333 0.999 2336
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In other words, choices about which predictors and interaction effects to con-
sider, choices that influence the likelihood, are more important than the choice
of prior distribution. This again stresses the importance to demarcate the
model space.

8.3 Discussion

This paper provided a tutorial on Bayesian multi-model inference and aimed
to bridge the gap between statistical theory and the applied researcher. Multi-
model inference and regression analyses are subject to a number of limitations,
which are discussed below.

8.3.1 Limitations

At the moment of writing, the linear regression procedures as implemented in
JASP and BAS do not account for missing values; therefore, missing values are
deleted list-wise (i.e., cases with missing values for one or more predictors are
omitted from the analysis entirely). However, Bayesian analyses can handle
missing values by perceiving them as unknown parameters of the model. That
way, the observed value can still contribute to the model and the uncertainty
around the missing values is dealt with accordingly (Little & Rubin, 2002, Ch
10).

A general challenge for regression models arises when the predictors are
multicollinear, that is, very highly correlated. To illustrate, consider the data
of 13 American football punters (available from Faraway, 2005). The goal is to
relate various physical characteristics of the football players to their average
punting distance. Relevant predictors are right leg strength, left leg strength,
right hamstring flexibility, and left hamstring flexibility. Unsurprisingly, the
correlation between the right and left leg predictors is very high. Consequently,
models that contain predictors from one leg benefit little when the predictor
from the other leg is added on top. Thus, models with predictors for both
legs perform poorly compared to models containing information of only one
leg. After calculating the inclusion Bayes factors it is unclear whether any
specific predictor should be included. Paradoxically, when directly compar-
ing the models, the null model is one of the worst models; it performs about
31.8 times worse than the best model with right hamstring flexibility as the
only predictor. See punting.jasp at https://osf.io/5dmj7/ for an annotated
analysis. Nonetheless, these results make sense. The model averaged results
are unable to distinguish between the correlated predictors because individ-
ually they improve the model but jointly they worsen it. For example, the
second best model contains right leg strength as a predictor, the fifth best
model contains left leg strength as a predictor, but the model that contains
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both right and left leg strength as predictors ranks 11th out of 16. Hence,
there is a lingering uncertainty about which predictor to include, even though
directly comparing the different models shows that a model including at least
one predictor already performs better than the null model.

Recognizing multicollinearity is always important in linear regression. This
does not require much additional work; when creating Figure 8.4, the pairwise
correlations can also be examined. Another way to assess multicollinearity is
by calculating the variance inflation factor (Sheather, 2009, Ch. 6.4).

8.3.2 Violation of Assumptions

If the assumption of linearity appears violated for one or more predictors, some
transformations can be used (e.g., a log-transformation). Alternatively, one
could try including the square (or cube) of a predictor, and including that in
the regression equation to capture any nonlinear relations. This is also known
as polynomial regression and can be used to relax the linearity assumption. In
JASP, polynomial regression or other transformations can be managed easily
using Compute Columns. If the relation between the criterion variable and
predictors is innately non-linear, for instance because the criterion variable is
binary, generalized linear models can be used. The R package BAS can also
be used for multi-model inference for generalized linear models.

If the residuals appear non-normal or heteroscedastic, then there is no clear
way how to proceed. Ideally, one first identifies the cause of the violation. Vi-
olations can be caused by a single predictor with a nonlinear relation causing
misfit, or by multiple predictors. Nonlinearities can be dealt with using the
suggestions in the previous paragraph. If the source remains unclear, or is
innate to the data, alternative methods can be used. One alternative is to use
a probabilistic programming language suited for general Bayesian inference,
such as JAGS (Plummer, 2003), NIMBLE (de Valpine et al., 2017), Open-
BUGS (Lunn et al., 2009), or MultiBUGS (Goudie et al., 2017), all of which
are conceptual descendants of WinBUGS (Lunn et al., 2000; Ntzoufras, 2009).
The main advantage of probabilistic programming languages is their flexibility:
for instance, models can be adjusted to accommodate heteroscedastic residuals
(e.g., Reich & Ghosh, 2019, Ch. 4.5.2). These languages also come with disad-
vantages. First, it is easier to make a mistake – either a programming error,
a statistical error, or both. Second, the languages are generic, and because
they are not tailored to specific applications they may be relatively inefficient
compared to a problem-specific method.

In sum, the goal of this tutorial was to familiarize applied researchers with
the theory and practice of Bayesian multi-model inference. By accounting for
model uncertainty in regression it is possible to prevent the overconfidence that
inevitable arises when all inference is based on a single model. We hope that
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tutorial will enable applied researchers to use Bayesian multi-model inference
in their own work.

8.3.3 Acknowledgements

Annotated .jasp files and supplementary materials can be found at https:
//osf.io/5dmj7/.
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9
A Tutorial on Conducting and Interpreting

a Bayesian ANOVA in JASP

Analysis of variance (ANOVA) is the standard procedure for statistical infer-
ence in factorial designs. Typically, ANOVAs are executed using frequentist
statistics, where p-values determine statistical significance in an all-or-none
fashion. In recent years, the Bayesian approach to statistics is increasingly
viewed as a legitimate alternative to the p-value. However, the broad adoption
of Bayesian statistics –and Bayesian ANOVA in particular– is frustrated by the
fact that Bayesian concepts are rarely taught in applied statistics courses. Con-
sequently, practitioners may be unsure how to conduct a Bayesian ANOVA
and interpret the results. Here we provide a guide for executing and inter-
preting a Bayesian ANOVA with JASP, an open-source statistical software
program with a graphical user interface. We explain the key concepts of the
Bayesian ANOVA using two empirical examples.

This chapter is published as: van den Bergh, D., van Doorn, J., Marsman,
M., Draws, T., van Kesteren, E.-J., Derks, K., Dablander, F., Gronau, Q. F.,
Kucharsky, S., Komarlu Narendra Gupta, A. R., Sarafoglou, A., Voelkel, J. G.,
Stefan, A., Ly, A., Hinne, M., Matzke, D., & Wagenmakers, E.-J. (2020). A
tutorial on conducting and interpreting a Bayesian ANOVA in JASP. L’Année
Psychologique/Topics in Cognitive Psychology., 120(1), 73–96.

159



9

9. A TUTORIAL ON CONDUCTING AND INTERPRETING A
BAYESIAN ANOVA IN JASP

U biquitous across the empirical sciences, analysis of variance (ANOVA)
allows researchers to assess the effects of categorical predictors on a
continuous outcome variable. Consider for instance an experiment by

Strack et al. (1988) designed to test the facial feedback hypothesis, that is, the
hypothesis that people’s affective responses can be influenced by their own
facial expression. Participants were randomly assigned to one of three condi-
tions. In the lips condition, participants were instructed to hold a pen with
their lips, inducing a pout. In the teeth condition, participants were instructed
to hold a pen between their teeth, inducing a smile. In the control condition,
participants were told to hold a pen in their nondominant hand. With the
pen in the instructed position, each participant then rated four cartoons for
funniness. The outcome variable was the average funniness rating across the
four cartoons. The ANOVA procedure may be used to test the null hypothesis
that the pen position does not result in different funniness ratings.

ANOVAs are typically conducted using frequentist statistics, where p-values
decide statistical significance in an all-or-none manner: if p < .05, the result is
deemed statistically significant and the null hypothesis is rejected; if p > .05,
the result is deemed statistically nonsignificant, and the null hypothesis is
retained. Such binary thinking has been critiqued extensively (e.g., Amrhein
et al., 2019; Cohen, 1994; Rouder et al., 2016), and some perceive it as a
cause of the reproducibility crisis in psychology (Cumming, 2014; but see
Savalei and Dunn, 2015). In recent years, several alternatives to p-values have
been suggested, for example reporting confidence intervals (Cumming, 2014;
Gardner & Altman, 1986) or abandoning null hypothesis testing altogether
(McShane et al., 2019).

Here we focus on another alternative: Bayesian inference. In the Bayesian
framework, knowledge about parameters and hypotheses is updated as a func-
tion of predictive success – hypotheses that predicted the observed data rela-
tively well receive a boost in credibility, whereas hypotheses that predicted the
data relatively poorly suffer a decline (Wagenmakers et al., 2016). A series of
recent articles show how the Bayesian framework can supplement or supplant
the frequentist p-value (e.g., Burton et al., 1998; Dienes & McLatchie, 2018;
Jarosz & Wiley, 2014; Masson, 2011; Nathoo & Masson, 2016; Rouder et al.,
2016).

The advantages of the Bayesian paradigm over the frequentist p-value are
well documented (e.g., Wagenmakers, Marsman, et al., 2018); for instance,
with Bayesian inference researchers can incorporate prior knowledge and quan-
tify support, both in favor and against the null-hypothesis; furthermore, this
support may be monitored as the data accumulate (Stefan et al., 2019). De-
spite these and other advantages, Bayesian analyses are still used only spar-
ingly in the social sciences (van der Schoot et al., 2017). The broad adoption
of Bayesian statistics –and Bayesian ANOVA in particular– is hindered by the
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fact that Bayesian concepts are rarely taught in applied statistics courses. Con-
sequently, practitioners may be unsure of how to conduct a Bayesian ANOVA
and interpret the results.

To help familiarize researchers with Bayesian inference for common experi-
mental designs, this article provides a guide for conducting and interpreting a
Bayesian ANOVA with JASP (JASP Team, 2022). JASP is a free, open-source
statistical software program with a graphical user interface that offers both
Bayesian and frequentist analyses. Below, we first provide a brief introduction
to Bayesian statistics. Subsequently, we use two data examples to explain the
key concepts of ANOVA.

9.1 Bayesian Foundations

This section explains some of the fundamentals of Bayesian inference. We focus
on interpretation rather than mathematical detail; see the special issue on
Bayesian inference by (Vandekerckhove et al., 2018) for a set of comprehensive,
low-level introductions to Bayesian inference.

The central goal of Bayesian inference is learning, that is, using observations
to update knowledge. In an ANOVA we want to learn about the candidate
models M and their condition-effect parameters β. Returning to the example
of the facial feedback experiment, we commonly specify two models. The null
model describes the funniness ratings using a single grand average across all
three conditions, effectively stating that there is no effect of pen position.
The parameters of the null model are thus the average test score and the
error variance. The alternative model describes the funniness ratings using an
overall average and the effect of pen position; in other words, the means of
the three condition are allowed to differ. Therefore, the alternative model has
five parameters: the average funniness ratings across participants, the error
variance, and for each of the three pen positions the magnitude of the effect.1

To start the learning process we need to specify prior beliefs about the
plausibility of each model, p(M), and about the plausible parameters values
β within each model, p(β |M). These prior beliefs are represented by prior
distributions. Observing data D drives an update of beliefs, transforming the
prior distribution over models and parameters to a joint posterior distribution,
denoted p(β,M | D).2 The updating factor –the change from prior to posterior
beliefs– is determined by relative predictive performance for the observed data

1Note that one of the four parameters, average funniness rating and the three condition
effects, is redundant. That is, we can make identical predictions even when we fix one of the
four parameters to zero.

2The joint posterior distribution describes both the marginal probability distribution, for
example, pβ > 0 | D or pM|D, and the relationship between β and M, for example, in a
particular model the posterior mass of β is more concentrated around 0.
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(Wagenmakers et al., 2016). As shown in Figure 9.1, the knowledge updating
process forms a learning cycle, such that the posterior distribution after the
first batch of data becomes the prior distribution for the next batch.

Figure 9.1: Bayesian learning can be conceptualized as a cyclical process of
updating knowledge in response to prediction errors. The prediction step is de-
ductive, and the updating step is inductive. For a detailed account see Jevons
(Chapters XI and XII 1874/1913). Figure available at BayesianSpectacles.org
under a CC-BY license.

Mathematically, the updating process is given by Bayes’ rule:

Joint posterior
distribution︷ ︸︸ ︷

p(β,M | D) =

Prior model
probability︷ ︸︸ ︷
p(M) ×

Prior param.
probability︷ ︸︸ ︷
p(β |M) ×

Updating factor︷ ︸︸ ︷
p(D | β,M)

p(D)
. (9.1.1)

This rule stipulates how knowledge about the relative plausibility of both mod-
els and parameters ought to be updated in light of the observed data. When
the focus is on the comparison of two rival models, one generally considers
only the model updating term. This term, commonly known as the Bayes
factor, quantifies the relative predictive performance of the rival models, that
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is, the change in relative model plausibility that is brought about by the data
(Etz & Wagenmakers, 2017; Jeffreys, 1939; Kass & Raftery, 1995; Wrinch &
Jeffreys, 1921):

p(M1 | D)
p(M0 | D)︸ ︷︷ ︸

Posterior model odds

=
p(M1)

p(M0)︸ ︷︷ ︸
Prior model odds

× p(D | M1)

p(D | M0)︸ ︷︷ ︸
Bayes factor

BF10

. (9.1.2)

When the Bayes factor BF10 equals 20, the observed data are twenty times
more likely to occur under M1 than under M0 (i.e., support for M1 versus
M0); when the Bayes factor BF10 equals 1/20, the observed data are twenty
times more likely to occur under M0 than under M1 (i.e., support for M0

versus M1); when the Bayes factor BF10 equals 1, the observed data are
equally likely to occur under both models (i.e., neither model is supported
over the other). Note that the Bayes factor is a comparison of two models
and hence it is always a relative measure of evidence, that is, it quantifies
the performance of one model relative to another.3 Likewise, the prior and
posterior odds are both odds ratios, which means they are relative measures
of an effect. For example, a posterior odds of 2 means that the model in the
numerator is twice as likely as the model in the denominator, after we observe
the data. The Bayes factor can be presented as BF10, p(D|M1) divided by
p(D|M0), or as its reciprocal BF01, p(D|M0) over p(D|M1). Typically, BF10

is used to present evidence in favor of the alternative hypothesis whereas BF01

is used to present evidence in favor of the null hypothesis.
The Bayesian paradigm differs from the frequentist paradigm in at least

three key aspects. First, evidence in favor of a particular model, quantified
by a Bayes factor, is a continuous measure of support. Unlike the frequentist
Neyman-Pearson decision rule (usually p < 0.05), there is no need to impose
all-or-none Bayes factor cut-offs for accepting or rejecting a particular model.
Moreover, the Bayes factor can discriminate between “absence of evidence”
(i.e., nondiagnostic data that are predicted about equally well under both
models, such that the Bayes factor is close to 1) and “evidence of absence”
(i.e., diagnostic data that support the null hypothesis over the alternative
hypothesis).

A second difference is that, in the Bayesian paradigm, knowledge about
models M and parameters β is updated simultaneously. Consequently, it is
natural to account for model uncertainty by considering all models, but assign-
ing more weight to those models that predicted the data relatively well. This
procedure is known as Bayesian model averaging (BMA; Hinne et al., 2020;

3For a cartoon that explains the strength of evidence provided by a Bayes fac-
tor, see https://www.bayesianspectacles.org/lets-poke-a-pizza-a-new-cartoon-to-explain-
the-strength-of-evidence-in-a-bayes-factor/
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Hoeting et al., 1999; Jevons, 1874/1913; Jeffreys, 1939, p. 296; Jeffreys, 1961,
p. 365). In contrast, many frequentist analyses first select a ‘best’ model and
subsequently estimate its parameters, thereby neglecting model uncertainty
and producing overconfident conclusions (Ch 7.4 Claeskens & Hjort, 2008).4
Another benefit of BMA is that point estimates and uncertainty intervals can
be derived without conditioning on a specific model. This way, model uncer-
tainty is accounted for in point estimates and uncertainty intervals.

A third difference is that the Bayesian posterior distributions allow for di-
rect probabilistic statements about parameters. For example, based on the
posterior distribution of β we can state that we are 95% confident that the
parameter lies between x and y. This range of parameter values is commonly
known as a 95% credible interval.5 Similarly, we can consider any interval
from a to b and quantify our confidence that the parameter falls in that spe-
cific range.

A fourth difference is that Bayesian inference automatically penalizes for
complexity and thus favors sparsity. Consider a model with a redundant co-
variate. Since the covariate is redundant, a model with this covariate will
make poor predictions. Consequently, the Bayes factor, which compares the
relative predictive performance of two models, will favor the model without
the redundant predictor over the model with the redundant predictor. Key
is that the predictive performance is assessed using parameter values that are
drawn from the prior distributions.

9.2 ANOVA

Traditionally, analysis of variance involves –as the name suggests– a compar-
ison of variances. In the frequentist framework, the variance between each
level of the categorical predictor is compared to the variance within the levels
of the categorical predictor.

When the categorical predictor has no effect, the population variances be-
tween the levels equals the population variances within the levels, and the sam-
ple ratio of these variances is distributed according to a central F-distribution.
Under the assumption that the null hypothesis is true, we may then calculate
the probability of encountering a sample ratio of variances that is at least as
large as the one observed – this then yields the much-maligned yet omnipresent

4Although uncommon, it is possible to average over the models in the frequentist frame-
work. To do so, calculate for each model an information criterion such as AIC, and use a
transformed version as model weights (Burnham & Anderson, 2002).

5Note the difference in interpretation compared to the frequentist 95% confidence interval:
“if we repeat this experiment an infinite number of times and compute an infinite number of
confidence intervals, then 95% of these intervals contain the true parameter value.” See also
Morey, Hoekstra, et al. (2016).
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p-value.
Instead, the Bayesian ANOVA contrasts the predictive performance of com-

peting models (Rouder et al., 2016). In order to make predictions the model
parameters need to be assigned prior distributions. These prior distributions
could in principle be specified from subjective background knowledge, but here
we follow Rouder et al. (2012) and use a default specification inspired by lin-
ear regression models, designed to meet general desiderata such as consistency
and scale invariance (i.e., it does not matter whether the outcome variable is
measured in seconds or milliseconds; see also Bayarri et al., 2012; Liang et al.,
2008).

9.3 Assumptions

Before interpreting the results from an ANOVA, it is prudent to assess whether
its main assumption holds, namely that the residuals are normally distributed.
A common tool to assess the normality of the residuals is a Q-Q plot, which
visualizes the quantiles of the observed residuals against the quantiles expected
from a standard normal distribution. If the residuals are normally distributed
then all the points in a Q-Q plot fall on the red line in Figure 9.2. In contrast
to a frequentist ANOVA, where the residuals are point estimates, a Bayesian
ANOVA provides a probability distribution for each residual. The uncertainty
in the residuals can thus be summarized by 95% credible intervals. The left
panel of Figure 9.2 shows an example where the larger quantiles lie away from
the red line, displaying a substantial deviation from normality. The right panel
of Figure 9.2 shows residuals that are more consistent with what is expected
under a normal distribution.

Introductory texts discuss additional ANOVA assumptions, most of which
follow directly from the normality of the residuals. For some of these assump-
tions, violations can be difficult to detect visually in a Q-Q plot. An example
is sphericity, which is specific to repeated measures ANOVA. One definition of
sphericity is that the variance of all pairwise difference scores is equal. In the
frequentist paradigm, this assumption is usually assessed using Mauchly’s test
(but see Tijmstra, 2018). Another example is homogeneity of variances, which
implies that the residual variance is equal across all levels of the predictors.
Homogeneity of variances can be assessed using Levene’s test (Levene, 1961).

The following sections illustrate how to conduct and interpret a Bayesian
ANOVA with JASP. JASP can be freely downloaded from https://jasp-stats.
org/download/. Annotated .jasp files of the discussed analyses, data sets,
and a step-by-step guide on conducting a Bayesian ANOVA in JASP are avail-
able at https://osf.io/f8krs/. We should stress that the current implemen-
tation of Bayesian ANOVA in JASP is based on the R package BayesFactor
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Figure 9.2: Q-Q plots of non-normally distributed residuals (left) and ap-
proximately normally distributed residuals (right). The vertical bars through
each point represent the 95% central credible interval. If the data are perfectly
normally distributed, all points fall on the red line. Note that the y-axis of
the two panels has a different scale.

(Morey & Rouder, 2021) which is itself based on the statistical work by Rouder
et al. (2012).

9.4 Example I: A Robot’s Social Skills

Do people take longer to switch off a robot when it displays social skills? This
question was studied by Horstmann et al. (2018) and we use their data to
illustrate the key concepts of a Bayesian ANOVA. In the Horstmann et al.
(2018) study, 85 participants interacted with a robot. Participants were told
that the purpose of their interaction with the robot was to test a new algorithm.
After two dummy tasks were completed, the instructor told the participants
that they could switch off the robot if they wanted. The outcome variable was
the time it took participants to switch off the robot. Here we analyze the log-
transformed switch-off times since the Q-Q plot of the raw switch off times
showed a violation of normality. Horstmann et al. (2018) manipulated two
variables in a between-subjects design. First, they manipulated the robots’
verbal responses to be either social (e.g., “Oh yes, pizza is great. One time I
ate a pizza as big as me.”) or functional (e.g., “You prefer pizza. This worked
well. Let us continue.”). Second, either the robot protested to being turned
off (e.g., “No! Please do not switch me off! I am scared that it [sic] will not
brighten up again!”) or it did not. Therefore, the design of this study is a 2x2
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Figure 9.3: Observed log switch-off times for the data of Horstmann et al.
(2018).

between-subjects ANOVA. The data are shown in Figure 9.3.

9.4.1 Interpreting the Bayesian ANOVA

Model comparison The primary output from the JASP ANOVA is pre-
sented in Table 9.1, which shows the support that the data offer for each
model under consideration. The left-most column lists all models at hand:
four alternative models and one null model. The models are ordered by their
predictive performance relative to the best model; this is indicated in the BF01

column, which shows the Bayes factor relative to the best model which fea-
tures only the objection factor. For example, the data are about 73 times
more likely under the model with only the robot’s objection as a predictor
than under the null model. The prior model probability P (M) is 0.2 for all
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models and the resulting posterior model probabilities are given by P (M|D).
The BFM column shows change from prior odds to posterior odds for each
model. For example, for the best model with only the robot’s objection as
a predictor the change in odds is: 0.542/(1−0.542) × (1−0.2)/0.2 ≈ 4.734, which
matches the output of Table 9.1. The right-most column provides an error
percentage indicating the precision of the numerical approximations, which
should not be too large.6

Table 9.1: Model comparison for all models under consideration for the
data of Horstmann et al. (2018). The abbreviations ‘O’ and ‘S’ stand for the
robot’s objection and social interaction type, respectively. The term ‘O * S’
stands for the interaction between the two factors. The ‘Model’ column shows
the predictors included in each model, the P (M) column the prior model
probability, the P (M|D) column the posterior model probability, the BFM
column the posterior model odds, and the BF01 column the Bayes factors of all
models compared to the best model. The final column, ‘error’ is an estimate
of the numerical error in the computation of the Bayes factor. All models
are compared to the best model and are sorted from lowest Bayes factor to
highest.

Model P (M) P (M|D) BFM BF01 error %

O 0.2 0.542 4.735 1.000
O+ S +O * S 0.2 0.303 1.736 1.791 2.770
O+ S 0.2 0.146 0.682 3.719 1.323
Null model 0.2 0.007 0.030 73.373 0.000
S 0.2 0.002 0.009 252.495 0.005

Bayes factors are transitive, which means that if the model with only the
robot’s objection outpredicts the null model by a factor of a, and the null
model outpredicts the model with only social interaction type by a factor of b,
then the model with only the robot’s objection will outpredict the model with
only social interaction type by a factor of a × b. Transitivity can be used to
compute Bayes factors that may be of interest but are missing from the table.
For example, the Bayes factor for the null model versus the model with only
social interaction type can be obtained by dividing their Bayes factors against
the best model: 252.495/73.373 ≈ 3.441 in favor of the null model.

6Error percentages below 20% are generally seen as acceptable. If the error is 20%, then
a Bayes factor of 10 can fluctuate between 8 and 12. Key is that Bayes factors between 8
and 12 lead to the same qualitative conclusions, thus this amount of numerical error is fine.
When the error percentage is deemed too high, the number of samples can be increased to
reduce the error percentage at the cost of longer computation time. For more information,
see van Doorn et al. (2020).
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Note that the Bayes factor is represented as BF01 in Table 9.1; predictive
performance of the best model divided by the predictive performance for a
particular model. Had we shown BF10, we would have needed to take the
reciprocal of the previous calculation to obtain the same result.

Analysis of Effects The previous section compared all available models.
However, as the number of predictors increases, the number of models quickly
grows too large to consider each model individually.7 Rather than studying
the results for each model individually, it is possible to average the results
from Table 9.1 over all models, that is, compute the model-averaged results.
This produces Table 9.2, which shows for each predictor the prior and poste-
rior inclusion probabilities, and the inclusion Bayes factor. A prior inclusion
probability is the probability that a predictor is included in the model before
seeing the data and is computed by summing up the prior model probabilities
of all models which contain that predictor. A posterior inclusion probability
is the probability that a predictor is included in the model after seeing the
data and is computed by summing up the posterior model probabilities of all
models which contain that predictor. The inclusion Bayes factor quantifies
the change from prior inclusion odds to posterior inclusion odds and can be
interpreted as the evidence in the data for including a predictor. For exam-
ple, Table 9.2 shows that the data are about 68.6 times more likely under the
models that include the robot’s objection than under the models without this
predictor.

Table 9.2: Results from averaging over the models in Table 9.1. The abbre-
viations ‘O’ and ‘S’ stand for the robot’s objection and social interaction type
respectively. The first column denotes each predictor of interest, the column
P (incl) shows the prior inclusion probability, P (incl | D) shows the posterior
inclusion probability, and BFInclusion shows the inclusion Bayes factor.

Effects P (incl) P (incl | D) BFInclusion
O 0.6 0.990 68.558
S 0.6 0.445 0.535
O * S 0.2 0.293 1.659

Although model-averaged results are straightforward to obtain, their inter-
pretation requires special attention when interaction effects are concerned. In
JASP, models are excluded from consideration when they violate the prin-
ciple of marginality, that is, they feature an interaction effect but lack the

7In general, given p predictors there are 2p models to consider. If interaction effects are
considered, the model space grows even faster.
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constituent main effects (for details see Nelder, 1977). This model exclusion
rule means that the active model set is not balanced. For example, in Table 9.2
the inclusion odds for the interaction ‘O * S’ is obtained by comparing four
models without the interaction effect against the one model with the interac-
tion effect. As an alternative, Sebastiaan Mathôd has suggested to compute
inclusion probabilities for “matched” models only.8 What this means is that
all models with the interaction effect are compared to models with the same
predictors except for the interaction effect. For example, the model with an
interaction effect between ‘O * S’ in Table 9.2 is compared against the model
with the main effects of ‘O’ and ‘S’, but not against any other models. To
compute inclusion probabilities for main effects, models that feature interac-
tion effects composed of these main effects are not considered. These models
are excluded because they cannot be matched with models that include the
interaction effect but not the main effect, since those violate the principle
of marginality. Note that without interaction effects, the matched and not
matched inclusion probabilities are the same.

Table 9.3 shows the inclusion probabilities and inclusion Bayes factor ob-
tained by only considering matched models. Comparing Table 9.3 to Table 9.2,
the prior inclusion probability of the main effects decreased because these are
based on one model fewer. The posterior inclusion probabilities of the main ef-
fects decreased but that of the interaction effect increased. The inclusion Bayes
factor, the evidence in the data for including a predictor, provides slightly more
evidence for including the main effect of the robot’s objection and the interac-
tion effect, and somewhat more evidence for excluding the main effect of the
social interaction type.

Table 9.3: Results from averaging over the models in Table 9.1 but only
considering “matched” models (see text for details). The abbreviations ‘O’ and
‘S’ stand for the robot’s objection and social interaction type respectively. The
first column denotes each predictor of interest, the column P (incl) shows the
prior inclusion probability, P (incl | D) shows the posterior inclusion probability,
and BFInclusion shows the inclusion Bayes factor.

Effects P (incl) P (incl | D) BFInclusion
O 0.4 0.6872 72.76
S 0.4 0.1524 0.28
O * S 0.2 0.3033 2.018

8See also https://www.cogsci.nl/blog/interpreting-bayesian-repeated-measures-in-jasp.
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Parameter Estimates After establishing which predictors are relevant we
can investigate the magnitude of the relations by examining the posterior dis-
tributions. Table 9.4 summarizes the model-averaged posterior distributions
of each level (βj), using four statistics: the posterior mean, the posterior stan-
dard deviation, and the lower and upper bound of the 95% central credible
interval. The symmetry in the estimates is a consequence of the sum-to-zero
constraint, that is, the posterior mean of O-Yes = −1 × the posterior mean
of O-No = 0.265. Table 9.4 shows that the effect of objection is about 0.265
(95% CI [0.111, 0.418]). A posterior estimate for the observed log response
time of a particular group, say the condition where the robot did not object,
can be obtained by adding the posterior mean of the intercept (i.e., the grand
mean), 1.724, to the posterior mean of the no-objection condition, −0.265,
which yields 1.459.9

Table 9.4: Summary of the marginal model averaged posterior distributions.
Posteriors are summarized using mean, standard deviation, and 95% central
credible intervals (CI).

95% CI
Predictor Level Mean SD Lower Upper

Intercept 1.724 0.077 1.569 1.877
O Yes 0.265 0.077 0.111 0.418

No −0.265 0.077 −0.420 −0.113
S Functional −0.044 0.071 −0.186 0.097

Social 0.044 0.071 −0.098 0.185
O * S Yes & Social −0.132 0.072 −0.278 0.008

Yes & Functional 0.132 0.072 −0.009 0.276
No& Social 0.132 0.072 −0.009 0.276
No& Functional −0.132 0.072 −0.278 0.008

To summarize, the Bayesian ANOVA revealed that the robot’s objection
almost certainly had an effect on switch-off time (BFInclusion = 68.558). We
also learned that the data are not sufficiently informative to allow a strong
conclusion about the effect of the robot’s social interaction type (BFInclusion =
0.535) or about an interaction effect between objection and social interaction
type (BFInclusion = 1.659).

9This calculation is valid only for the posterior means, not for the other posterior sum-
maries.
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Figure 9.4: Observed Machiavellism scores for each of the four Houses of
Hogwarts.

9.4.2 Example II: Post Hoc Tests on the Houses of Hogwarts

After executing an ANOVA and finding strong evidence that a particular pre-
dictor relates to the outcome variable, a common question arises: “Which
levels of the predictor deviate from one another?”. As an illustration, consider
the data from Jakob et al. (2019) where 847 participants filled out a ‘sorting
hat’ questionnaire that determined their assignment to one of the four Houses
of Hogwarts from the Harry Potter books: Gryffindor, Hufflepuff, Ravenclaw,
or Slytherin.10 Subsequently, participants filled out the dark triad question-
naire (Jones & Paulhus, 2014) that was used to derive the outcome variable:
Machiavellism.

In this example, there is only one categorical predictor: The House of Hog-
warts a participant was assigned to. If we compare the model with this pre-
dictor to the null model, we find overwhelming evidence for the alternative
(BF10 = 6.632× 1018). This is a clear indication that Machiavellism differs be-
tween the members of the four houses. However, this result does not indicate
the houses responsible for the difference. To address that question, we need a
post hoc test.

For ANOVA models, the main component of a post hoc test is a t-test on
all pairwise combinations of a predictor’s levels. For a Bayesian ANOVA, the

10The raw data and original analyses can be found at https://osf.io/rtf74/.
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main component is the Bayesian t-test. Table 9.5 shows the Bayesian post hoc
tests for the sorting hat data. As with frequentist inference, Bayesian post hoc
tests are subject to a multiple comparison problem. To control for multiplicity,
we follow the approach discussed in Westfall (1997) which is an extension of the
approach of Jeffreys (1938); for an overview of Bayesian methods correcting
for multiplicity see for instance de Jong (2019).

Westfall’s approach relates the overall null hypothesis p(H0) that all condi-
tion means are equal to each comparison between two condition means. That
way, the prior probability of the overall null hypothesis can be adjusted to
correct for multiplicity and this influences each individual comparison. The
procedure to relate the overall null hypothesis to each comparison is described
below.

A condition mean µi is either equal to the grand mean µ with probability
τ , or µi is drawn from a continuous distribution with probability 1 − τ . It
is key that this distribution is continuous because two values drawn from a
continuous distribution are never exactly equal. Thus, the probability that
two condition means µi and µj are equal is p(µi = µj) = p(µi = µ) × p(µj =
µ) = τ2. From this, the probability of the null hypothesis that all J condition
means are equal follows: p(H0) = p(µ1 = µ2 = · · · = µJ) = p(µ1 = µ)×p(µ2 =
µ) × · · · × p(µJ = µ) = τJ . Solving for τ , we obtain τ = p(H0)

1/J . Thus, the
prior probability that two specific magnitudes are equal can be expressed in
terms of the prior probability that all magnitudes are equal, that is p(µi =
µj) = τ2 = p(H0)

2/J . For example, imagine there are four conditions (J = 4)
and the prior probability that all condition means are equal is 0.5. Then, the
prior probability that two conditions means are equal is: p(µ1 = µ2) =

√
0.5.

The prior odds are then (1−
√
0.5)/

√
0.5 ≈ 0.414.

In sum, the Westfall approach involves, as a first step, Bayesian t-tests for
all pairwise comparisons, which provides the unadjusted Bayes factors. In the
next step, the prior model odds are adjusted by fixing the overall probability
of no effect to 0.5. The adjusted prior odds and the Bayes factor are then used
to calculate the adjusted posterior odds.

Table 9.5 shows the results for the post hoc tests of the sorting hat example.
The adjusted posterior odds show (1) evidence (i.e., odds of about 16) that
Machiavellism differs between Hufflepuff and Ravenclaw; (2) evidence (i.e.,
odds of about 27) that Machiavellism differs between Gryffindor and Hufflepuff;
(3) overwhelming evidence (i.e., odds of about 1.04×109, 5.43×1016, and 5.30×
109) that Machiavellism differs between Gryffindor and Slytherin, between
Hufflepuff and Slytherin, and between Ravenclaw and Slytherin, respectively;
(4) evidence (i.e, odds of 1/0.0432 ≈ 23) that Machiavellism of Gryffindor and
Ravenclaw is the same.

Now that we know which Houses differ, the next step is to assess the magni-
tude of each House of Hogwarts on Machiavellism score. Rather than examin-
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Table 9.5: Post hoc test for the Sorting House data. The first two columns
indicate the houses being compared, the third and fourth column indicate
the adjusted prior model odds and posterior model odds respectively, and the
fifth column indicates the uncorrected Bayes factor in favor of the alternative
hypothesis that the magnitudes differ. The final column shows the numerical
error of the Bayes factor computation.

Level 1 Level 2 Prior Odds Posterior Odds BF10,U error %

Gryffindor Hufflepuff 0.414 27.2 65.6 5.73× 10−5

Gryffindor Ravenclaw 0.414 0.0432 0.104 9.56× 10−5

Gryffindor Slytherin 0.414 1.04× 109 2.50× 109 3.94× 10−16

Hufflepuff Ravenclaw 0.414 15.5 37.3 7.57× 10−8

Hufflepuff Slytherin 0.414 5.43× 1016 1.31× 1017 3.35× 10−23

Ravenclaw Slytherin 0.414 5.30× 109 1.28× 1010 6.36× 10−16

ing a table that summarizes the marginal posteriors, we plot the model aver-
aged posteriors for each house in Figure 9.5. Clearly, Slytherin scores higher
on Machiavellism than the other Houses whereas Hufflepuff scores lower on
Machiavellism than the other Houses. Table H.1 in the appendix shows the
parameters estimates of the marginal posterior effects for each house.

9.5 Concluding Comments

The goal of this paper was to provide guidance for practitioners on to conduct
a Bayesian ANOVA in JASP and interpret the results. Although the focus was
on ANOVAs with categorical predictors, JASP can also handle ANOVAs with
additional continuous predictors. The appropriate analysis then becomes an
analysis of covariance (ANCOVA) and all concepts explained here still apply.
For a general guide on reporting Bayesian analyses see van Doorn et al. (2020).

As with all statistical methods, the Bayesian ANOVA comes with limi-
tations and caveats. For instance, when the model is severely misspecified
and the residuals are non-normally distributed, the results from a standard
ANOVA –whether Bayesian or frequentist– are potentially misleading and
should be interpreted with care. In such cases, at least two alternatives may
be considered. The first alternative is to consider a rank-based ANOVA such
as the Kruskal–Wallis test (Kruskal & Wallis, 1952). This test depends only
on the ordinal information in the data and hence does not make strong as-
sumptions on how the data ought to be distributed. The second alternative is
to specify a different distribution for the residuals. Using software for general
Bayesian inference such as Stan (Carpenter et al., 2017) or JAGS (Plummer,
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Figure 9.5: Posterior distributions of the effect of each House of Hog-
warts on Machiavellism. Slytherin scores higher on Machiavellism than the
other Houses whereas Hufflepuff scores lower on Machiavellism than the other
Houses. The horizontal error bars above each density represent 95% credible
intervals.

2003), it is relatively straightforward to specify any distribution for the resid-
uals. However, this approach requires knowledge about programming and
statistical modeling and is likely to be computationally intensive. Another
limitation of the Bayesian ANOVA is that, especially in more complicated de-
signs, it is not straightforward to intuit what knowledge the prior distributions
represent.

Some limitations are specific to JASP. Currently, it is not possible to use
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post hoc tests to examine whether the contribution of a level differs from zero,
that is, to test whether a specific level deviates from the grand mean. It is also
not possible to handle missing values in any other way than list-wise deletion.
Another limitation relates to sample size planning. Before collecting data, it is
advisable to do some form of sample size planning. Typically, this is done in a
frequentist manner where a power analysis provides one with a sample size that
guarantees a certain rate of finding an effect if it exists and has a particular
magnitude. In the Bayesian paradigm, a comparable method exists which
is called Bayes factor design analysis (BFDA; Schönbrodt & Wagenmakers,
2018). BFDA is a simulation-based approach to find the expected sample size
that will yield a Bayes factor of a certain size, given a specification of the
magnitude of the effect. At the moment of writing it is not possible to use
BFDA in JASP, however, an accessible tutorial is given by Stefan et al. (2019).

We believe that the Bayesian ANOVA provides a perspective on the analy-
sis of factorial designs that can fruitfully supplement or even supplant the
currently dominant frequentist ANOVA. The epistemic advantages of the
Bayesian paradigm are well known (e.g., Jeffreys, 1961; Wagenmakers, Mars-
man, et al., 2018) but in order to be adopted in research practice it is essential
for the methodology to be implemented in an easy-to-use software package
such as JASP. In addition to the software, however, practitioners also require
guidance on how to interpret the results, which was the main purpose of this
paper. In general, we hope that the increased use of the Bayesian ANOVA
will stimulate the methodological diversity in the field, and that it will be-
come more standard to examine the robustness of frequentist conclusions by
comparing them to the Bayesian alternative.
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Bayesian Repeated-measures ANOVA: An

updated Methodology Implemented in
JASP

Analysis of variance (ANOVA) is widely used to assess the influence of one
or more (quasi-)experimental manipulations on a continuous outcome. Tradi-
tionally, ANOVA is carried out in a frequentist manner using p-values, but a
Bayesian alternative has been proposed. Assuming that the proposed Bayesian
ANOVA is closely modeled after its frequentist counterpart, one may be sur-
prised to find that the two can yield very different conclusions, when the design
involves multiple repeated-measures factors. We illustrate such a discrepancy
with a real data set from a two-factorial within-subject experiment. For this
data set, frequentist and Bayesian ANOVA disagree about which main effect
accounts for the variance in the data. The reason for this disagreement is
that frequentist and the proposed Bayesian ANOVA use different model speci-
fications. As currently implemented, the proposed Bayesian ANOVA assumes
that there are no individual differences in the magnitude of effects. We sus-
pect that this assumption is neither obvious to nor desired by most analysts,
because it is untenable in most applications. We argue here that the Bayesian
ANOVA should be revised to allow for individual differences. As a default,
we suggest the standard frequentist model specification, but discuss a recently
proposed alternative, and provide guidance on how to choose the appropri-
ate model specification. We end by discussing the implications of the revised
model specification for previously published results of Bayesian ANOVAs.

This chapter is published as: van den Bergh, D., Wagenmakers, E.-J., & Aust,
F. (in press). Bayesian repeated-measures ANOVA: An updated methodology
implemented in JASP. Behavior Research Methods.
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A nalysis of variance (ANOVA) is ubiquitous in experimental psychol-
ogy, where it is used to assess the influence of one or more (quasi-
)experimental manipulations on a continuous outcome. For instance,

in a Stroop task (Stroop, 1935) participants are asked to name the color of
a printed word. It is typically found that participants respond faster when a
word’s meaning and color are congruent (e.g., blue displayed in a blue font)
and slower when these are incongruent (e.g., blue displayed in a red font). The
relation between the congruency of the colored words and the response times
of the participants can be analyzed with a (repeated-measures) ANOVA. Tra-
ditionally, ANOVAs are carried out in the frequentist paradigm, and p-values
are used to arrive at scientific conclusions.

Rouder et al., 2012 have proposed a general Bayesian modeling framework
for linear models, which they used to develop an influential Bayesian alterna-
tive approach to ANOVA (cited over 1500 times; see also Rouder et al., 2017;
van den Bergh, van Doorn, et al., 2020). Assuming that this Bayesian ANOVA
is closely modeled after its frequentist counterpart, one may be surprised to
find that the two can yield very different conclusions, when the design involves
multiple repeated-measures factors. Using a real dataset, we will show that
discrepancies between frequentist and the proposed Bayesian ANOVA reflect
the fact that they use different model specifications. We believe that many
analysts are unaware of this difference and, critically, that the model specifi-
cation in the Bayesian ANOVA is usually inappropriate.

The frequentist and Bayesian approaches differ in how they model indi-
vidual differences. The frequentist ANOVA allows for individual differences
in treatment effects. The model specification includes separate error strata
(i.e., participant-by-treatment interaction or random slopes) for all but the
highest-order repeated-measures interaction. The proposed Bayesian ANOVA
does not. It includes random intercepts only—we henceforth refer to this as
the RIO-model specification. Although their modelling framework allows for
random slopes, Rouder, Morey and colleagues recommended to omit them
(Rouder et al., 2012, 2017). This recommendation was based on two concerns:
random slope terms greatly increased model complexity and complicates the
interpretation of fixed effects—if a substantial portion of participants has a
negative effect, does it make sense to interpret a positive fixed effect? These
are important concerns, but we believe the omission of random slopes is inap-
propriate in most applications: The RIO-model specification implies the strong
assumption of the complete absence of individual differences in the magnitude
of the effects—a universal effect size for every subject. We are hard-pressed
to think of any psychological effects for which this assumption seems plausi-
ble. We therefore recommend to include random slopes in Bayesian ANOVA
models.

Like the frequentist ANOVA, our recommended model specification con-
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tains the maximal set of random effects, which is why we henceforth refer to it
as the MRE-model specification. Pivoting to the MRE-model specification is
also consistent with recommendations within the broader framework of mixed
models (Barr et al., 2013; Oberauer, 2022; van Doorn, Haaf, et al., 2022), of
which repeated-measures ANOVA is a special case. Besides relaxing an unten-
able assumption a universal effect size for every subject, the Bayesian MRE-
ANOVA resolves non-trivial differences in conclusions between the frequentist
and Bayesian approach, such as the one we demonstrate below. The Bayesian
MRE-ANOVA relies on the modelling framework by Rouder et al., 2012 and
may be thought of as a revision of the Bayesian RIO-ANOVA as recommended
in previous work (Rouder et al., 2012, 2017) and implemented in popular soft-
ware (e.g., the function anovaBF() from the R package BayesFactor (Morey
& Rouder, 2021), which the statistics program JASP inherits).

The outline of this paper is as follows. First we introduce a real data
set, which we use to illustrate the divergence between the frequentist and
Bayesian results using JASP (JASP Team, 2022). We then explain the differ-
ent model specifications and demonstrate that the discrepancy is resolved with
a Bayesian MRE-ANOVA, which is implemented in JASP 0.16.3. Afterward
we discuss the merits and demerits of both model specifications, as well as
a third model specification that was recently proposed (Rouder et al., 2022).
The paper concludes with a discussion on how RIO-ANOVA has affected pub-
lished results of Bayesian ANOVAs.

10.1 Example Data: Stroop Effect

To illustrate how the model specification leads to discrepancies between fre-
quentist and Bayesian ANOVA, we will use an empirical data set kindly pro-
vided by Ronen Hershman and publicly available in the JASP Data Library
(Hershman et al., 2022; Wagenmakers et al., 2020). The data were collected
in an experiment on the Stroop effect (Stroop, 1935). Participants read color
words (here blue, green, yellow, or red), which were presented in one of four
font colors (blue, green, yellow, or red). The combination of color word and
font color could be either congruent (e.g., blue displayed in a blue font) or
incongruent (e.g., blue displayed in a red font). Participants were asked to
ignore the meaning of the word and press one of four response buttons to indi-
cate the font color. This paradigm is well known to produce the Stroop effect:
participants respond faster (and more accurately) to congruent than incongru-
ent word-font color combinations, that is, participants appear to be unable to
ignore the meaning of the words. In addition to congruent and incongruent
combinations, the study at hand used neutral combinations of words and font
color (e.g., the letters XXXX displayed in red font) in order to separately
estimate the extent to which congruent combinations facilitate performance
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and incongruent combinations harm performance. The goal of the study was
to investigate how the Stroop effect is affected by breaks from the task; con-
sequently, the sequence of Stroop-trials was interspersed with “break” trials
(i.e., trials in which a black square, the rest stimulus, signaled that no response
was required). This design makes it possible to compare performance on tri-
als preceded by another Stroop trial with that on trials preceded by a break
trial. Hence, the experiment used a 3 (Congruency: congruent vs. neutral vs.
incongruent) × 2 (Preceding trial: Break vs. Stroop task) repeated-measures
design. Each participant completed 144 congruent, neutral, and incongruent
Stroop trials (totaling 432 trials) as well as 432 break trials in random or-
der. Trials with incorrect or missing responses were excluded and participants
with less than 40 valid trials per condition were excluded from the analysis.1
The raw data of all nineteen participants are displayed in Figure 10.1. The
top left panel shows the average response times of the break and Stroop tri-
als in each Congruency condition. The bottom left panel shows the associated
within-subject differences; their average appears to be close to zero, suggesting
that the nature of the preceding trial has little systematic impact on Stroop
performance. The top right panel shows the average response times of con-
gruent, neutral, and incongruent trials in each Preceding trial condition. The
associated differences are displayed in the bottom right panel; it seems that
on average, congruent responses are faster than incongruent responses, con-
gruent and neutral responses are approximately equally fast, and incongruent
responses are slower than neutral responses.

10.1.1 Discrepancy between frequentist and Bayesian ANOVA

The frequentist repeated-measures ANOVA indicates that the main effect of
preceding trial and the interaction between preceding trial and congruency
are not significant (F [1, 18] = 2.24, p = .152; F [2, 36] = 2.30, p = .115),
whereas the main effect of congruency is significant, F (2, 36) = 22.16, p < .001,
Table 10.1.2 Although Mauchly’s sphericity test is significant and thus the
assumption of sphericity is violated, the Greenhouse-Geisser and Huyhn-Feldt
corrections yield the same qualitative pattern as the uncorrected results, see
Table I.1.

In the Bayesian ANOVA, we use the Bayes factor to compare all models
to the model that best predicts the data (in this case the model including
only the PT effect). The results are shown in Table 10.2, which lists models
according to their performance in decreasing order, with the best model in
the first line and the worst model in the last line. The first column displays

1Pupil size was recorded continuously throughout the experiment. Trials with more than
40% missing values of pupil size were also excluded as invalid.

2For these and other frequentist significance tests we use α = .05.
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Figure 10.1: Raincloud Plots of the Raw Data from the Hershman Stroop
Study. The top left panel shows the average response times (y-axis) for the
break and Stroop conditions (x-axis) in each Congruency condition. The top
right panel shows the average response times for the congruent, neutral, and
incongruent conditions (x-axis) in each Preceding trial condition. The bottom
left panel shows the pairwise differences in response time (y-axis) between
the break and Stroop conditions. The bottom right panel shows the pairwise
differences in response time (y-axis) for all pairs of the Congruency factor. Box
plots and density estimates are shown on the right of each panel. See text for
details.

the predictors in the model. The second column and third column, P(M) and
P(M|data), respectively show the prior and posterior model probabilities. The
fourth column, BF10 shows the Bayes Factor relative to the best performing
model. The final column, error, contains the relative error associated with the
numerical method used to approximate the Bayes factors.

Most importantly, the worst performing model includes only congruency
as a predictor—the only predictor associated with a significant p-value. Note
however that these Bayes factors are not directly analogous to any of the stan-
dard F-tests in the frequentist ANOVA. Rather than comparing each model
to the best model of the set, frequentist F-tests reflect model comparisons
designed to assess the unique variance associated with each factor. To con-
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Table 10.1: Comparison of ANOVA Results for the Hershman Stroop Study
across Different Analytic Approaches. Type II Sum of Squares. a Mauchly’s
test of sphericity indicates that the assumption of sphericity is violated (p <
.05). PT and CO respectively stand for the ‘preceding trial’ and ‘Congruency‘
factors. Column spanners indicate the random effects structure assumed in the
Bayesian ANOVA models; the maximal set of random effects is the new default
in JASP. BF10 indicates Bayes factors model comparisons; BFIncl indicates
model-averaged Bayes factors of models including an effect relative to models
excluding it.

Frequentist Bayesian

RIO MRE SFR

Factor df F p BF10 BFIncl BF10 BFIncl BF10 BFIncl

PT 1, 18 2.242 .152 18.482 11.885 0.781 0.983 8.556 · 1028 2.729 · 1014
COa 2, 36 22.158 < .001 0.969 0.741 7047 6757 2.75 · 104 2.982 · 104
PT * COa 2, 36 2.297 .115 0.170 0.316 0.890 1.560 0.627 2.506

Table 10.2: Bayesian Comparisons of Models including Random Intercepts
but not Random Slopes for Participants. Model formulas omit random inter-
cepts for participants (i.e. + participant), which are included in all models.
P(M) and P(M|data), respectively, indicate prior and posterior model prob-
abilities; BF10 indicates Bayes factors relative to the best performing model;
error is the relative error associated with the numerical method used to esti-
mate the Bayes factors.

Models P(M) P(M|data) BF10 error

PT 0.200 0.444 1.000
PT + Congruency 0.200 0.430 0.969 0.430
PT + Congruency + PT * Congruency 0.200 0.073 0.165 0.503
Null model (incl. subject) 0.200 0.030 0.067 0.344
Congruency 0.200 0.023 0.052 0.366

trast the frequentist and Bayesian results more directly, we first calculate
Bayes factors that reflect the same model comparisons as the F-tests.3 The

3The model comparisons implied by ANOVA F-tests depend on the type of sums of
squares. Here, we describe the model comparisons for the so-called Type II-sums of squares.
Type III-tests compare the full model, including all terms, to models that exclude the effect
of interest—thereby violating the principle of marginality, see Appendix I.2.1. For example,
for the effect of Congruency the Type III-test compares the model PT + Congruency + PT
* Congruency to the model PT + PT * Congruency. When factors are effect coded and the
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results are shown in Table 10.1 in the column BF10 for the Bayesian random
intercept-only analysis. For the effect of Congruency, the analogous Bayes
factor quantifies the evidence for the model with PT + Congruency relative
to the model with only PT: BF10 = 0.969/1.000 = 0.969. The data just barely
favor the model without Congruency. Likewise, for the effect of PT we com-
pare the model with PT + Congruency to the model with only Congruency:
BF10 = 0.969/0.052 ≈ 18.482. The data provide strong evidence for an effect
of PT. In other words, executing the same model comparisons as the F-tests has
not resolved the striking discrepancy between the Bayesian and the frequentist
analyses.

However, the Bayesian analysis is based on a comparison between two spe-
cific models. This approach ignores the possibility that both models may be
outperformed by one or more of the other candidate models. The uncertainty
about which models are the most appropriate can be taken into account by
averaging across all models (Hinne et al., 2020; Hoeting et al., 1999). For exam-
ple, to assess the support for the effect of PT, the performance of all models that
include PT (i.e. PT, PT + Congruency, and PT * Congruency) is contrasted
to the performance of all models that exclude PT, i.e. Congruency and the
Null model. The resulting inclusion Bayes factor takes the entire model space
into account. Applying the inclusion Bayes factor approach yields the results
shown in Table 10.1, column BFInclusion for the Bayesian random intercept-
only analysis. As the table shows, the model-averaged inclusion Bayes factor
(BFInclusion) yields results that are similar to the simple model comparisons
(BF10): Averaging across all models there is strong evidence in favor of includ-
ing PT, and weak evidence against Congruency and PT * Congruency.

In sum, regardless of the specific Bayes factor approach that is taken (i.e.,
comparing against the best model; contrasting two specific models; model-
averaging), the results indicate little evidence regarding the significant effect
of congruency, but strong evidence for the non-significant effect of PT. This
conclusion, however, appears to contradict the data pattern in the bottom left
panel of Figure 10.1, which suggests that there no effect of PT.

10.1.2 Different model specifications

The notable discrepancies between the frequentist and Bayesian results out-
lined in the previous section are caused by a difference in the underlying
model specification. The frequentist ANOVA uses the MRE-model specifica-
tion, which specifies all estimable participant-by-treatment interactions (i.e.,
error strata) for repeated-measures variables (see Appendix of Barr et al.,
2013). In mixed model terms, these participant-by-treatment interactions
amount to random slopes—they allow for individual differences in the effects
design is balanced (as is the case here) Type II and Type III-tests yield the same results.
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of preceding trials and congruency. For our example, the full model includ-
ing all factors is RT ∼ 1 + Congruency * PT + (1 + Congruency + PT |
participant).4 In contrast, the Bayesian RIO-ANOVA omits the participant-
by-treatment interactions; only the participant main effect (i.e., the random in-
tercept) is included. For our example, the full model including all factors is RT
∼ 1 + Congruency * PT + (1 | participant). This RIO-model specifi-
cation implements the unreasonable assumption that there are no individual
differences in the magnitude of the effects. Assuming inter-individually con-
stant main effects is unique to the current default Bayesian ANOVA and causes
the divergence from the frequentist ANOVA. What is more, this assumption
is likely not obvious to most analysts and at odds with what they expect when
conducting repeated-measures ANOVA.

Table 10.3: Estimates of participant random effect variances and standard
deviations from a maximal hierarchical linear model for the aggregated data.

Group Effect Variance Standard deviation
Participants Intercept 3767.15 61.38

Congruency 228.73 15.12
PT 4186.87 64.71

Residual 536.82 23.17

RIO-ANOVA is clearly misspecified for our example data: There is substan-
tial variability in participants’ PT effects, as summarized in Table 10.3—the
random slope variance for PT even exceeds the random intercept variance.
When we repeat the Bayesian ANOVA with the standard model specification
by including random slopes (Table 10.4), the conclusions change substantially:
The model including only Congruency is the best model, whereas the model
including only PT is the worst model—a conclusion opposite to the one from
our previous Bayesian RIO-ANOVA. The results from simple model compar-
isons and model-averaging are now both in agreement with the frequentist
repeated-measures ANOVA. Table 10.1 summarizes the results for the fre-
quentist ANOVA, the Bayesian RIO-ANOVA without random slopes, and the
Bayesian MRE-ANOVA with random slopes.

A third model specification that sits between RIO- and MRE-ANOVA has
recently been proposed (Rouder et al., 2022). While RIO-ANOVA always
omits random slopes, MRE-ANOVA never omits them—even if the corre-
sponding fixed effect is removed from the model. For example, the model
that includes a main effect of PT , but not Congruency, is RT ∼ 1 + PT +

4The random slope for the interaction term (i.e., (Congruency:PT | participant)) is
not estimable for aggregated data, but could be included if each individual response was
submitted to the analysis. This analysis would then yield the same results.
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Table 10.4: Bayesian Comparisons of Models including Random Intercepts
and Random Slopes for Participants. Model formulas omit random inter-
cepts and slopes for participants (i.e. + participant + participant * PT
+ participant * Congruency), which are included in all models. P(M) and
P(M|data), respectively, indicate prior and posterior model probabilities; BF10

indicates Bayes factors relative to the best performing model; error is the rel-
ative error associated with the numerical method used to estimate the Bayes
factors.

Models P(M) P(M|data) BF10 error

Congruency 0.200 0.404 1.000
PT + Congruency 0.200 0.315 0.781 3.953
PT + Congruency + PT * Congruency 0.200 0.281 0.695 6.076
Null model (incl. subject and random slopes) 0.200 5.408 · 10−5 1.339 · 10−4 0.220
PT 0.200 4.457 · 10−5 1.103 · 10−4 6.891

(1 + Congruency + PT | participant). Rouder et al. (2022) argue that
this implies the unreasonable assumption that, when an effect is absent, the
population is split between individuals with positive and individuals with neg-
ative effects, which cancel out to a null effect overall. Instead Rouder et al.
(2022) propose to omit random slopes whenever the corresponding fixed ef-
fect is omitted. So the model that includes a main effect of PT , but not
Congruency, would be RT ∼ 1 + PT + (1 + PT | participant)

As in MRE-ANOVA, this model specification assumes that if an effect is
present, there are individual differences in the magnitude of this effect. Con-
versely, if an effect is absent, it is absent in every individual—like in RIO-
ANOVA. Because this model specification always simultaneously introduces
fixed and random effects, we refer to it as SFR-ANOVA. In JASP this model
specification can be used by enforcing the principle of marginality for random
slopes.

The results of the SFR-ANOVA for the Stroop example are shown in the
rightmost columns of Table 10.1. Unsurprisingly, the results of the SFR-
ANOVA differ from the other two model specifications. The SFR-ANOVA
indicates that there is substantial evidence to include both PT and Congruency.
It is likely that the SFR-ANOVA favors including PT because there is sub-
stantial random slope variance, see Table 10.3, and not because there is a
substantial fixed effect. The performance of the individual models under the
SFR-ANOVA are shown in Table I.2
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Choosing an appropriate model specification

Which of these three model specifications is most appropriate?5 The answers
is, of course, “It depends”. The choice should ideally be guided by substantive
considerations. First, analysts should ask whether it is plausible there are no
individual differences if an effect is present. Whenever this strong assump-
tion is met, the inferences from RIO-ANOVA are valid and efficient; however,
when this assumption is violated, as in the Stroop example, inferences may be
severely biased. We are hard-pressed to think of any psychological effects that
afford the use of RIO-ANOVA. We recommend practitioners who nevertheless
wish to use the RIO-ANOVA to safeguard themselves against model misspec-
ification by inspecting the random slopes with a mixed-effects model. MRE-
and SFR-ANOVA both assume the presence of individual differences for non-
null effects, which makes them more robust and more widely applicable than
RIO-ANOVA.

Next, analysts should ask whether it is plausible to assume that there are
individual differences around null effects. If this is the case, the common
MRE-ANOVA is appropriate; if not, SFR-ANOVA is appropriate. Because
the SFR-ANOVA always simultaneously introduces fixed and random effects,
it purposefully confounds evidence in favor or against a non-zero average popu-
lation effect and individual differences around this effect. The result is a model
comparisons which asks “whether at least one individual shows an effect” (p.
8, van Doorn, Aust, et al., 2022). For example, in the study of extra-sensory
perception (Bem, 2011) SFR-ANOVA is the natural choice. The model com-
parison is well tailored to the research question: Identifying even a single
individual who feels the future would be sensational. Moreover, when study-
ing whether people can foresee which randomly selected stimulus is about
to be presented, it is highly implausible that a null effect would emerge be-
cause some participants can feel the future and reliably perform above chance,
while others also feel the future and somehow reliably perform below chance.
Generally speaking, the SFR-model specification seems appropriate when the
researchers are interested in any effects at the level of the individual (e.g.,
general principles of cognition). But researchers interested in individual-level
effects would be well-advised to consider forging ANOVA altogether and use
a mixed effects model to analyze the unaggregated data instead.

The MRE-ANOVA always includes all random effects and constructs model
comparisons that target only fixed effects. These model comparisons ask
whether there is an effect on average, assuming that individuals differ in any
case. Thus, MRE-ANOVA is appropriate when researchers are interested in

5it bears repeating that all three model specifications are identical if there is only one
repeated-measures factor and they are identical for the highest-order interaction when there
are multiple repeated-measures factors.
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population averages (e.g. public policy). Inference is less likely to be driven
by outlying individuals with atypically strong effects (p. 9, van Doorn, Aust,
et al., 2022). But this robustness comes at a cost: As cautioned by Rouder
et al., 2012 the added random effects substantially increase the flexibility of
MRE-ANOVA null models. As a result MRE-ANOVA can be less sensitive
than the SFR-ANOVA when there are large individual differences (pp. 9–10,
Rouder et al., 2022).

To sum up, RIO-ANOVA makes the strong assumption of the complete
absence of individual differences. We believe that in most psychological appli-
cations this assumption is untenable and requires a strong justification. The
recently proposed SFR-ANOVA is a principled and powerful approach that is
particularly appropriate when individual differences are of interest. As such, it
seems unlikely that evidence for an effect from SFR-ANOVA is the end result
and likely calls for more targeted follow-up analyses. MRE-ANOVA is most
appropriate when the population average is of primary interest and it is more
robust to outlying individuals. We also refer interested readers to a recent
special issue on Bayes factors for linear mixed effect models that further dis-
cusses the choice between SFR- and MRE-model specifications (Rouder et al.,
2022; Singmann et al., 2022; van Doorn, Aust, et al., 2022; van Doorn, Haaf,
et al., 2022; van Doorn et al., 2021).

JASP users can choose between all three model specifications. As discussed
above, we believe that RIO-ANOVA is inappropriate for most applications and,
therefore, it is no longer the default option.6 SFR-ANOVA has only recently
been proposed to address individual differences; it is subject of controver-
sial debate (also see Oberauer, 2022), new to most analysts, and appropriate
follow-up analyses are not readily available.7 For these reasons, the Bayesian
repeated-measures ANOVA in JASP now by default uses the MRE-model
specification. We believe the MRE-model specification is most consistent with
analysts’ expectations—it resolves non-trivial discrepancies with results from
frequentist ANOVA. The new version of JASP introduces additional changes
designed to increase the flexibility of Bayesian ANOVA. These changes are
unrelated to the discrepancy and model specification issues discussed above,
which is why we have relegated them to Appendix I.2.

Of course, all three model specifications are also available in the R-package
BayesFactor. The RIO-ANOVA is conveniently available through the func-
tion anovaBF(). MRE- and SFR-ANOVA can be conducted using the func-
tions generalTestBF() or lmBF().

A practical consequence of using the MRE- and SFR-model specifications is

6RIO-ANOVA remains available through the Legacy results option.
7Note that the R package quid provides a set of principled methods to examine individual

differences using mixed effect models for some designs (Rouder & Haaf, 2021).
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that the added random slopes greatly increase the number of parameters and
make the models more challenging to fit. This leads to longer computation
times, but also to more variation in the Bayes factors (Pfister, 2021). If the
computation time becomes infeasible, we recommend to first explore the model
space using a Laplace approximation. Once the most relevant subset of models
has been determined, these models should be fit using the default method. To
mitigate the increased variability in the results we recommend increasing the
number of samples if the error % for any of the Bayes factors exceeds 20%
(van Doorn et al., 2020).

Deciding on one of the discussed model specifications commits to a set of as-
sumptions about the random effects structure of repeated-measures ANOVA.
Instead we could also model average over the complete model space. Specif-
ically, we could consider a model space where each random slope can be
present or absent, rather than assuming their presence a priori. In this model-
averaging approach the data would decide whether each random slope mat-
ters or not. We opted against the model-averaging approach for three reasons.
First, if random slopes matter, then models without random slopes have a
negligible posterior probability. For example, in the Stroop data the best
performing model without random slopes had a posterior probability of order
10−24. Second, if the random slopes do not matter, then, even though the
model is overspecified, inference on the fixed effects is unlikely to be strongly
affected (Barr et al., 2013). Third, adding models without random slopes con-
siderably increases the computation time required for the analyses (given k

repeated measures factors this introduces 22k−2 additional models.

10.2 Concluding Comments

We illustrated a dramatic discrepancy in conclusions between the standard fre-
quentist and previously recommended Bayesian repeated-measures ANOVA.
This discrepancy is caused by a a difference in model specifications: The
Bayesian ANOVA omits random slopes for repeated-measures factors, which
are included in the frequentist ANOVA. As we have argued, the implied as-
sumption of an absence of individual differences is likely not obvious to most
analysts and inappropriate for most applications. When the a model specifica-
tion with random slopes, which allows for individual differences, is used for the
Bayesian ANOVA its results agree with those from the frequentist ANOVA.

The degree to which the previously recommended RIO-model specification
of the Bayesian repeated-measures ANOVA in BayesFactor (with the func-
tion anovaBF()) and JASP has affected results published in the literature,
unfortunately, remains unclear. As noted above, the model specifications only
differ for analyses with multiple repeated-measures factors. Whether results
are affected depends on the presence and magnitude of estimable random
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slopes (effects other than the highest-order interaction; also see Oberauer,
2022). For data with non-trivial random slope variance, the Bayesian RIO-
ANOVA is misspecified and discrepancies must be expected. In our example
data, the effect is relatively pronounced because the random slopes variance
for one of the main effects is large. We suggest that analysts, who have
conducted a RIO-ANOVA with 2 or more repeated-measures factors, reanal-
yse their data with a MRE-ANOVA and, if necessary, amend or rectify their
conclusions using the new results. Furthermore, we recommend to use MRE-
ANOVA as a default for future analyses, and advise those who insist on using
a RIO-ANOVA to carefully investigate the random slope variances using a
mixed-effects model.
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11
Summary & General Discussion

T his dissertation focused on embracing the uncertainty that is associ-
ated with multi-step inference. Typically, statistical analyses consist
of multiple steps that build on each other and are executed sequen-

tially. Common practice is that each consecutive step ignores the uncertainty
of the preceding steps. Throughout this dissertation we have shown that not
embracing uncertainty leads to overconfidence and biased conclusions. Fur-
thermore, we have demonstrated that this uncertainty can be accounted for
by averaging across models or by performing the steps that involve uncer-
tainty simultaneously in a single model. For example, instead of averaging
the scores from repeated measurements and then analyzing the averages, it is
better to directly analyze the unaggregated data. These situations occur with
scores given to patient by different raters, as in Chapters 3 and 4, but also
with repeated measures ANOVA, as illustrated in Chapters 9 and 10. Here,
I summarize the chapters of this dissertation, discuss their limitations, and
propose suggestions for future research. I conclude with some general remarks
on dealing with uncertainty.

11.1 Part I: Cultural Consensus Theory

Part I was about uncertainty that is ignored when the sample scores of different
raters are averaged to obtain a single score. To account for individual differ-
ences in the raters’ scores, we used two Bayesian hierarchical specifications of
cultural consensus theory and signal detection theory.

Chapter 2 introduced a parsimonious method for estimating the threshold
parameters of signal detection models for ordinal data. Rather than using
K − 1 parameters to model the thresholds of an ordinal response with K
categories, we modeled the thresholds using the Linear in Log Odds function
(Fox & Tversky, 1995; Gonzalez & Wu, 1999), which only required two pa-
rameters. This parametrization is particularly useful for hierarchical data as
the threshold parameters need to be estimated for each participant. For ex-
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ample, in the data of Pratte et al. (2010), 97 participants responded on an
ordinal scale with 6 response categories. While the usual approach requires es-
timating 97× 5 = 485 parameters, our parsimonious alternative only requires
97 × 2 = 194 parameters. However, when the Linear in Log Odds function
is not flexible enough to fit the data, the parsimonious approach should not
be used. This is unlikely when there are few response categories, but as the
number of response categories increases the approach becomes less likely to fit
the data well, as was the case in Chapter 4.

Chapter 3 used and extended a cultural consensus theory model called
the Latent Truth Rater model (LTRM) that was introduced by Anders and
Batchelder (2015). We extended it in three ways to be applicable to data
from patients in forensic psychiatric hospitals. The first extension allowed the
LTRM to describe multiple patients, rather than a single patient. The second
extension introduced latent constructs, so that items could load on a common
factor. The third extension added patient and rater background information
into the model, so that, for example, a patient’s offense could be included.
Next, the extended LTRM was pitted against several machine learning alter-
natives to predict simulated data. Like Chapter 2, this chapter also used the
Linear in Log Odds function to model ordinal ratings.

Chapter 4 applied the model developed in Chapter 3 to patient data of
the Dutch maximum-security Forensic Psychiatric Center Dr. S. van Mesdag.
The goal was to predict violent behavior among the patients using ordinal
scores given by staff members, and a variety of background variables. Initially
we used the Linear in Log Odds function to model ordinal ratings. However,
the patients were scored on a scale with 17 response categories. Both in
simulations and in the observed data we found that 17 response categories
were simply too many to be adequately described with the Linear in Log
Odds function as indicated by a poor fit to the data. Therefore, we reverted
to directly estimating the threshold parameters. We found that the extended
LTRM performed marginally better than the second best model, that is, it
made more accurate predictions for 2 out of 104 patients.

Chapter 4 also combined logistic regression and the cultural consensus
model into a single model, thereby avoiding a two-step approach. However, it
did not do any form of model selection on the predictors making the results
susceptible to overconfidence. This is a limitation of our approach in this
chapter. We did not do exhaustive model averaging as the number of predic-
tors did not allow this. With 52 predictors to consider there are about 4.5
quadrillion (1015) candidate models, which is simply too many to enumerate.
We could have improved this by using a variable selection procedure, as we
did in Chapter 7.
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11.2 Part II: Bayesian Model Averaging

Part II was about uncertainty that is ignored when a single model is selected for
inference after previously being unsure which model to choose. Specifically, we
used Bayesian model averaging to acknowledge the initial uncertainty across
the candidate models and to propagate this uncertainty into the final inference.

Chapter 5 discussed a key problem that occurs in statistical analyses when
inference is conducted in two steps. In the first step, a null hypothesis test is
conducted, and if the null hypothesis is rejected, then the alternative hypoth-
esis is assumed to be true. In the second step, the alternative is interpreted
with absolute certainty as if there was never any doubt about it. For exam-
ple, once the null is rejected, effect sizes are based entirely on the alternative.
We argued that this is problematic, as it completely ignores that during the
hypothesis test there was uncertainty about which hypothesis to use. As a
solution, we proposed to average across the null and alternative hypothesis
using Bayesian model averaging. The practical effect of Bayesian model aver-
aging is that effect size estimates are shrunk more towards zero whenever the
posterior plausibilities of models in which the effect is absent remains high.
Accounting for the posterior plausibility for models in which the effect sizes
are absents avoids overconfident conclusions.

Chapter 6 introduced a default Bayesian hypothesis test for comparing
(in)equalities among variances. We proved that our default test fulfills a num-
ber of desiderata, such as label invariance, predictive matching, information
consistency, model selection consistency, limit consistency, and across sample
consistency. In addition, we showcased our default test using a series of data
examples. Furthermore, we extended our approach to compare models that
contain a mix of equality and inequality constraints. A limitation of Chapter 6
is that it compared variances primarily in a confirmatory manner. However,
it is plausible that when there are more than two groups, researchers do not
have a list of a-priori meaningful models that they intend to compare.

Chapter 7 complemented the confirmatory comparison of variances in Chap-
ter 6 by outlining a method to compare equality constraints in an exploratory
manner for an arbitrary parameter vector, such as variances. Chapter 7 com-
pared three different prior distributions over the model space of equality con-
straints. We introduced the beta-binomial prior over partitions and derived a
sampling scheme for it. Next, we used a stochastic search algorithm to sample
from the posterior distribution of equality constraints. This allowed us to do
inference averaged across all possible equality constraints. We demonstrated
our method using two data examples, one where we examined the proportion
of statistical reporting errors in eight psychology journals and one where we
investigated the standard deviations of men and women across five personality
traits (openness, conscientiousness, extraversion, agreeableness, and neuroti-
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cism). A limitation of the method in Chapter 7 is that it does not allow for
inequality constraints, unlike Chapter 6.

11.3 Part III: JASP

Part III was about conducting inference using the open-source statistical soft-
ware program JASP while accounting for model uncertainty. We aimed to
improve the accessibility of Bayesian model averaging for applied researchers
by providing easily digestible tutorials and freely accessible software imple-
mentations.

In Chapter 8 we provided a tutorial on Bayesian model averaging tailored
to Bayesian linear regression. We explained the theoretical background behind
linear regression, Bayesian inference, and Bayesian multi-model inference. Us-
ing the World Happiness data example, we demonstrate the merits of Bayesian
model averaging, and how straightforward it is to conduct in JASP. Further-
more we discussed the sensitivity of the results to the choice of prior distri-
butions by adjusting the prior distributions on the regression coefficients and
adjusting the prior distribution on the model space. We discuss two different
priors for the model space, the uniform and the beta-binomial model prior.
Finally, we concluded with some limitations of the implementation in JASP,
such as the lack of missing-data handling.

Chapter 9 was similar in spirit to Chapter 8 but focused on Analysis of Vari-
ance (ANOVA). We focused on the importance of acknowledging model uncer-
tainty and interpretation of model-averaged results. In addition, we discussed
post-hoc tests for Bayesian ANOVAs. A limitation of the methodology we
recommend is that our suggested post-hoc tests actually constitute a two-step
procedure. In a first step, we do model averaged inference. In a second step,
we conduct post-hoc tests (essentially Bayesian t-tests) to examine whether
different levels of a categorical predictor differ from another. While we correct
for multiple testing by adjusting the prior model odds of the null hypothesis
(de Jong, 2019; Westfall et al., 1997), our suggested approach does ignore the
model uncertainty that was present in the first step. In Chapter 7 we developed
a method to sample equality constraints that overcomes this limitation. This
method can be used to jointly explore the model space over predictors (i.e.,
which predictors should be included) and the model space over post-hoc tests
(i.e., which levels of a categorical variable are equal to one another). These
ideas will be implemented once combined with the developments of Chapter 7.

Chapter 10 presents an amelioration of the Bayesian ANOVA in and out-
side of JASP. The status quo before this chapter was the default approach
to Bayesian ANOVAs (Rouder et al., 2012), which did not include random
slopes if interactions between repeated-measures factors were present (but see
Oberauer, 2022; van Doorn, Aust, et al., 2022). Chapter 10 illustrated using
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a data example of a Stroop task the consequences of the default approach
lacking random slopes. In this data example there were non-neglible random
slopes present and as a consequence the original default approach yielded dras-
tically different conclusions than the frequentist repeated measures ANOVA,
which did include random slopes. We concluded that without random slopes
there is an increased risk of model misspecification, and we therefore changed
the default in JASP to always include random slopes. A limitation of the
new default model specification is that it always assumes that random slopes
are present. This leads to loss of power when these slopes are absent in the
population. Finally, a pragmatic limitation is that the new default is much
more computationally intensive than the original one and therefore also much
slower.

11.4 Future Directions

By now, the drawbacks of multi-step inference and ignoring uncertainty are
hopefully evident. Here I outline future directions for applied and method-
ological research.

For applied research, the most important thing is to bring the recommenda-
tions in this dissertation into practice and no longer apply two-step procedures.
This may sound obvious, but it is not an easy feat as time has shown that
this has not been accomplished so far. By now, the problems with two-step
inference in linear regression have been known for over 30 years (Hurvich and
Tsai, 1990; Miller, 1990, Chapter 8). Yet two-step inference is still used. An-
other probably less obvious example of two-step inference is assumption checks,
which are frequently used in applied research. It is very common to first test
if the data are normally distributed before deciding which analysis to conduct.
While assumption checks are conducted to safeguard against model misspecifi-
cation, they are actually a model selection procedure in disguise. For example,
a Levene’s test is often used to decide whether to conduct a t-test assuming
equal variances (i.e., a Student’s t-test) or one assuming unequal variances
(i.e., a Welch’s t-test). By first making a binary decision for either t-test and
in a second step conducting the t-test, the analysis ignores all uncertainty
about whether the variances are equal or not. A better approach would be to
model average across the two t-tests (see for example Maier et al., 2022).

To fully eradicate the tenacious two-step inference changes are needed in
three areas. First and probably most important, alternatives to two-step in-
ference, such as model averaging, need to be easily accessible in statistical
software. Second, universities and other institutions that prepare future gen-
erations of academics are still teaching two-step inference. These institutions
should teach alternative methods. However, their options to teach alterna-
tives are limited as long as popular statistical software does not implement
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them. Third, journal editors and reviewers need to be aware. They should
inform authors who rely on two-step inference to its shortcomings, and suggest
alternative analyses that are less prone to overconfidence. In line with these
ideas, one pragmatic step for future research is to implement the methods in
Chapters 6 and 7 in JASP. While open source packages are available in R and
Julia that implement the methods in these chapters, their implementation in a
statistics program with a graphical user interface would greatly increase their
accessibility and ease of use.

I believe that future methodological research should focus on composable
inference, that is, developing analyses and other inference techniques such that
they can be easily combined in any form or fashion. By composing inference
methods rather than executing them in isolation, the pitfalls of multi-step
approaches are avoided. For example, in Chapter 4 we manually composed
a cultural consensus model and a logistic regression model to obtain a single
model for inference. There are at least two challenges for composable inference.
The first challenge concerns the implementation of composable inference. For
example, in Chapter 3 we augmented a logistic regression model with the
results from a cultural consensus theory model. However, to achieve this we
needed to re-implement both models into one overarching model, which is a
time consuming and error-prone process. In addition, this did not allow us
to reuse existing implementations of Bayesian logistic regression (e.g., brms;
Bürkner, 2017).

The second and more methodological challenge concerns hypothesis testing.
For many hypothesis tests, there is a large body of literature that discusses
their strengths and weaknesses. It is unclear to what extend these properties
hold when a hypothesis test is used as a part of composable inference. For
example, if a t-test is conducted with a latent variable as dependent variable,
do the properties still hold? While the answers to these and similar questions
are generally unknown, there are already studies testing hypotheses within
composed analyses (e.g., Böhm et al., 2018), which highlights the importance
of more research on this topic.

To the best of my knowledge, the only existing implementation of truly
composable inference is the probabilistic programming language (PPL) Tur-
ing (Ge et al., 2018). Similar to other popular PPLs such as Stan (Carpenter
et al., 2017) and JAGS (Plummer, 2003), Turing offers a generic way to repre-
sent Bayesian models and to do inference on the posterior distribution without
the need to program the technical details. In contrast to other PPLs, Turing
allows one to nest different models, essentially enabling composable inference.
For example, suppose a first model specifies an autoregressive process. Next,
we define a second model that uses an autoregressive process as a prior dis-
tribution for a particular parameter. Key here is that we do not need to
re-implement (or copy) the model definition of the autoregressive process in
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order to reuse it in the second model. Subsequently, when inference for the
second model is carried out all uncertainty introduced by the autoregressive
process is handled as if only one model had been defined.

Another way to conduct composable inference is by trying to save sequen-
tially conducted multi-step inference. The key difficulty here is to find a
general way to capture the uncertainty of one step in order to propagate it
to the next steps. One way to attempt this is by considering uncertainty
as measurement error and using an errors-in-variables approach to propagate
the uncertainty from one step to the next (Fuller, 1987; Matzke et al., 2017).
In errors-in-variables models, observations are viewed as noisy draws from a
distribution with unknown mean and known variance. Next, the noisy obser-
vations are used to learn about the latent mean which is then used to carry
out inference. A similar strategy can be used to propagate uncertainty in
multi-step inference. The results of a preceding step can be seen as noisy
draws while the standard errors or posterior standard deviations can be used
as the known variances. An advantage of the errors-in-variables approach is
that it is fairly easy to implement and that several inference steps can still be
performed consecutively, which can be computationally efficient. A disadvan-
tage, however, is that the variance does not include all the uncertainty and
thus some is ignored. Another disadvantage is that errors-in-variables cannot
be used in multi-model inference, as in Chapters 5, 7, 8, 9, and 10.

11.5 Final Remarks

A central lesson of this dissertation is that multi-step approaches should be
avoided. Typical for multi-step inference is that uncertainty in earlier steps
is conveniently forgotten in subsequent steps. Neglecting this uncertainty ul-
timately leads to overconfident inference. Rather than forgetting about the
uncertainty of previous steps, this uncertainty should be embraced and the fi-
nal inferences should account for the uncertainty introduced in all steps. This
dissertation introduced new methods and improved the accessibility of older
methods. I hope that with this dissertation the practice of ignoring uncer-
tainty by tying together several inferential steps becomes a relic of the past
and that future studies embrace the uncertainty of the individual steps by
adopting multi-model inference.
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K enmerkend voor de empirische wetenschap is het omgaan met onzek-
erheid. Onzekerheid kent vele bronnen en vindt zijn weg naar em-
pirisch onderzoek op zowel verwachte als onverwachte manieren. Stel

bijvoorbeeld dat een wetenschapper het mentale welzijn van een proefpersoon
wil meten met een vragenlijst. Ze stelt de proefpersoon een reeks vragen en de
proefpersoon geeft eerlijk antwoord. In deze situatie zijn de antwoorden van
de proefpersoon, dat wil zeggen de data, ruizige metingen van datgene waarin
de wetenschapper geïnteresseerd is, namelijk het welzijn van de proefpersoon.
Om met deze onzekerheid rekening te houden is het gebruikelijk dat weten-
schappers meerdere vragen stellen en aannemen dat de ruis in de antwoorden
op individuele vragen verdwijnt bij het middelen. Dit is een bekende bron
van onzekerheid, ook wel bekend als meetfout. Een minder bekende bron van
onzekerheid is afkomstig van statistische modellen en de beslissingen die tussen-
tijds worden genomen bij het uitvoeren van statistische analyses. In statistis-
che modellen en de bijbehorende analyses worden bijvoorbeeld vaak aannames
gedaan. Deze aannames kunnen echter worden geschonden en daarom hangen
de conclusies van die analyses af van de (on)zekerheid waarmee aan de aan-
names wordt voldaan. In de empirische praktijk zien we vaak dat dit resulteert
in een tweestaps-procedure. Eerst wordt onderzocht of de aannames van een
volgende test worden geschonden. Worden deze aannames niet geschonden,
dan wordt de test van belang uitgevoerd. Deze tweestaps-procedure begaat
echter een subtiele fout. De door de tweede test gerapporteerde onzekerheid
houdt geen rekening met de (on)zekerheid waarmee de eerste test heeft bepaald
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of de aannames zijn geschonden. In feite wordt de onzekerheid van de eerste
test volledig genegeerd, waardoor de tweede test overmoedige resultaten oplev-
ert. In het algemeen bestaat de data analyse in empirische studies vaak uit
meerdere tussenstappen en tussentijdse beslissingen. Elk van deze stappen
gaat gewoonlijk gepaard met onzekerheid en vrijwel geen enkele tussentijdse
beslissing wordt met absolute zekerheid genomen. In veel studies wordt de
onzekerheid van de verschillende tussenstappen echter genegeerd, waardoor
een vals betrouwbaarheidsniveau ontstaat dat de conclusies kan beïnvloeden.
Het centrale thema van dit proefschrift is de onzekerheid die ontstaat bij het
uitvoeren van multi-stap inferentie en hoe alle onzekerheid in de uiteindelijke
resultaten kan worden verwerkt.

13.1 Onzekerheid Binnen een Model

Het eerste deel van dit proefschrift gaat over onzekerheid binnen een statistisch
model. Dit deel illustreert dat beslissingen die voorafgaan aan de toepassing
van een statistisch model of analyse onzekerheid kunnen verbergen. Stel dat
een groep patiënten met een psychische stoornis door vijf psychiaters wordt
gescoord op verschillende items, zoals psychotisch gedrag, impulsief gedrag en
probleeminzicht. Een gebruikelijke eerste stap bij het analyseren van dergelijke
data is het nemen van het steekproefgemiddelde van alle vijf de psychiaters om
één score voor elke patiënt op elk item te verkrijgen. In een tweede stap worden
deze gemiddelden onderworpen een statistische test. Deze tweestapsprocedure
gaat voorbij aan een belangrijke bron van onzekerheid, namelijk dat de ver-
schillende psychiaters niet allemaal dezelfde score gaven. Om precies te zijn,
door het naïef middelen van de scores wordt impliciete een aanname gemaakt
dat de vijf psychiaters uitwisselbaar zijn en dat hun individuele verschillen
irrelevant zijn. Doorgaans is deze veronderstelling ongegrond omdat verschil-
lende psychiaters verschillende achtergronden hebben en zinvolle individuele
verschillen kunnen hebben die resulteren in heterogeen scoringsgedrag. Maar
door deze bron van onzekerheid onder het tapijt te vegen, wordt de variabiliteit
in de antwoorden genegeerd. Dit leidt tot een te groot vertrouwen in wat nu de
“waargenomen” data zijn (d.w.z. de gemiddelde scores) die in latere analyses
worden gebruikt. Om te zien waarom dit leidt tot een opgeblazen vertrouwen,
merk op dat deze procedure op zijn minst de standaardfouten negeert die
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samengaan met de steekproefgemiddelden. Daarom zijn de waarnemingen die
door latere analyses worden gebruikt variabeler dan de analyses weten. Maar
omdat alle latere analyses blind zijn voor deze variabiliteit, zijn de onzeker-
heidsintervallen kleiner dan ze zouden moeten zijn, wat leidt tot overmoedige
conclusies.

Het doel van het eerste deel van dit proefschrift was om modellen te on-
twikkelen die expliciet rekening houden met het feit dat verschillende indi-
viduen de scores hebben gegeven en om de onzekerheid goed te kwantificeren.
Hoewel de in dit deel geanalyseerde data zich richten op patiënten in foren-
sisch psychiatrische ziekenhuizen en dus vrij gespecialiseerd zijn, is de struc-
tuur van de geanalyseerde data vrij gebruikelijk in de empirische wetenschap.
Bijvoorbeeld, data verzameld via vragenlijsten die herhaaldelijk door deelne-
mers worden ingevuld of data in de onderwijspsychologie waarbij opstellen of
andere producten door meerdere beoordelaars worden gescoord, hebben vaak
een soortgelijke structuur. Als zodanig zijn de in dit deel ontwikkelde metho-
den generaliseerbaar naar andere toepassingen buiten een forensische setting.

13.2 Onzekerheid Tussen Meerdere Modellen

Het tweede deel van dit proefschrift gaat over onzekerheid wanneer er meerdere
modellen in het spel zijn. Stel dat we het risico op een geweldsuitbarsting in
het cohort van onze patiënten met een psychische stoornis willen voorspellen.
Met behulp van alle beschikbare data willen we een model construeren dat het
risico op een geweldsuitbarsting in de toekomst nauwkeurig voorspelt. Als we
echter naïef alle door psychiaters gescoorde items en andere achtergrondvari-
abelen opnemen, lopen we het risico op overfitting en kan ons model toekom-
stige geweldsuitbarstingen slecht voorspellen. Een gebruikelijke aanpak om
overfitting tegen te gaan is het gebruik van een tweestaps-procedure, waar-
bij in de eerste stap één model wordt geselecteerd en in de tweede stap dat
model wordt geïnterpreteerd en gebruikt voor voorspellingen. Deze procedure
in twee stappen gaat echter opnieuw systematisch voorbij aan de onzekerheid
en kan leiden tot overmoedige conclusies. Er bestaat grote onzekerheid over
welk model het “beste” model is dat in de tweede stap moet worden gebruikt.
Soms is er niet een enkel best model dat superieur is aan alle andere kandidaat-
modellen. In plaats daarvan is er vaak een overvloed aan modellen die ade-
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quate voorspellingen doen en redelijke verklaringen bieden voor de gegevens.
Maar door één model te kiezen, negeren we deze modelonzekerheid en doen we
alsof we het enige echte model hebben ontdekt waarop we onze conclusies kun-
nen baseren. Daardoor worden we overmoedig en overschatten we de grootte
van de vastgestelde effecten (bijv. Hoeting et al., 1999; Porwal and Raftery,
2022, Chapter 5)

Het tweede deel van dit proefschrift had tot doel nieuwe statistische meth-
oden te ontwikkelen om de onzekerheid over verschillende modellen te kwan-
tificeren. De belangrijkste benadering die centraal staat in dit deel is model
averaging. In plaats van een enkel model te selecteren voor voorspellingen,
maken we voorspellingen met behulp van alle beschouwde modellen en wegen
we de voorspellingen van elk model naar hun relatieve plausibiliteit in het licht
van de data.

13.3 Onzekerheid Aanvaarden voor Iedereen

Het derde deel van dit proefschrift gaat over het toegankelijk maken van mod-
elmiddeling voor iedereen zonder wiskundige achtergrond en programmeerken-
nis. Een groot deel van de statistische literatuur houdt zich bezig met de
ontwikkeling van nieuwe en belangrijke methoden. Maar de weg om deze
methoden in de praktijk te brengen is echter vol obstakels, als er al een be-
gaanbaar pad te zien is. Geïnteresseerden kunnen bijvoorbeeld de wiskundige
achtergrond missen om de afleidingen te begrijpen of de programmeerken-
nis om een nieuwe techniek toe te passen. Deze belemmeringen maken het
moeilijk om nieuwe ontwikkelingen in praktijk te brengen. Het derde deel re-
flecteert op de literatuur over Bayesiaanse modelvergaring en richtte zich op
het aanpassen, verfijnen en ontwikkelen van modelvergaringstechnieken aan
statistische paradigma’s die relevant zijn voor de psychologische praktijk. Dit
werd gedaan door de technieken te implementeren in het gratis en open-source
statistische softwareprogramma JASP (JASP Team, 2022). Hierdoor is het
mogelijk om de in de eerste twee delen van het proefschrift ontwikkelde ideeën
en technieken in de praktijk te brengen zonder dat daarvoor een diepgaande
wiskundige achtergrond of geavanceerde programmeerkennis nodig is.
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13.4 Slotopmerkingen

De centrale les van dit proefschrift is dat analyses die uit meerdere stappen
bestaan moeten worden vermeden. Kenmerkend voor multi-step inferentie is
dat onzekerheid in eerdere stappen gemakshalve wordt vergeten in volgende
stappen. Het verwaarlozen van deze onzekerheid leidt uiteindelijk tot over-
moedige inferentie. In plaats van de onzekerheid van eerdere stappen te ver-
geten, moet deze onzekerheid worden omarmd en moet in de uiteindelijke
conclusies rekening worden gehouden de onzekerheid van alle stappen. Dit
proefschrift introduceerde nieuwe methoden en verbeterde de toegankelijkheid
van oudere methoden. Ik hoop dat met dit proefschrift de praktijk van het
negeren van onzekerheid door verschillende inferentiestappen samen te voegen
een overblijfsel uit het verleden wordt en dat toekomstige studies de onzeker-
heid van de afzonderlijke stappen omarmen door multi-model inferentie toe te
passen.
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A
Appendix of Chapter 2

This appendix contains both the formal BUGS model definition and the graph-
ical representation of the SDT threshold model and the hierarchical SDT
threshold model. The R code that calls the BUGS code is available at https:
//osf.io/v3b76/. The model definition and graphical representation define all
priors and relations between parameters and data. For more information on
the BUGS modeling language and the graphical representation of these models,
see Lee and Wagenmakers (2013).
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A. APPENDIX OF CHAPTER 2

A.1 SDT Threshold Model

xnk δc xsl

γc

a b fslfnk

µs σsµn σn

K noise items L signal items

C options

2

Figure A.1: Graphical model representa-
tion of the SDT threshold model.

Thresholds
a ∼ Gamma(0, 5)
b ∼ Gaussian(0, 3)

γc ← logit
( c

C

)
δc ← aγc + b

Signal
µs ∼ Uniform(0, 5)

σs ∼ Uniform(1, 3)

fsl ∼ Gaussian(µs, 1/σ
2
s)

xsl ←


1, if fslk ≤ δ1

c, if δc−1 < fsl ≤ δc

C, if fsl > δC−1

Noise
µn ← 0

σn ← 1

fnk ← Gaussian(µn, 1/σ
2
n)

xnk ←


1, if fnk ≤ δ1

c, if δc−1 < fnk ≤ δc

C, if fnk > δC−1
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A.2 Hierarchical SDT Threshold Model

xnki δc xsli

γc

ai bi fslifnki

µsi σsi
µn σn

ξ ζα β

I people

K noise items L signal items

C options

1

Figure A.2: Graphical model represen-
tation of the hierarchical SDT threshold
model.

Hierarchical
α ∼ Gaussian(1, 1)I(0,inf)
β ∼ Gaussian(0, 1)
ξ ∼ Gaussian(1, 0)I(0,inf)
ζ ∼ Gaussian(1.1, 0)I(1,5)

Thresholds
ai ∼ Gaussian(α, 1)
bi ∼ Gaussian(β, 1)

γc ← logit
( c

C

)
δci ← aiγc + bi

Signal
µsi ∼ Gaussian(ξ, 1)
σsi ∼ Gaussian(ζ, 1)
fsli ∼ Gaussian(µsi, 1/σ

2
si)

xsli ←


1, if fslk ≤ δ1

c, if δc−1 < fsl ≤ δc

C, if fsl > δC−1

Noise
µn ← 0

σn ← 1

fnki ← Gaussian(µn, 1/σ
2
n)

xnki ←


1, if fnk ≤ δ1

c, if δc−1 < fnk ≤ δc

C, if fnk > δC−1
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Figure A.3: Bivariate hex plots of the group-level parameters. A brighter
color indicates a higher frequency of samples. The Pearson correlation between
the posterior samples is shown on top of each panel. Note the negligible trade-
off between the parameters.
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Figure A.4: Prior predictive ROCs for the proposed priors (left panel; see
Figure A.2 for the priors) versus the standard uninformative gamma priors
(right panel; α, β, ξ, ζ ∼ Gamma(0.01, 0.01)).
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Figure A.5: Posterior predictive ROCs for the proposed priors (left panel;
see Figure A.2 for the priors) versus the standard uninformative gamma priors
(right panel; α, β, ξ, ζ ∼ Gamma(0.001, 0.001)).
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Figure A.6: Parameter retrieval of the group level parameters of the simula-
tion study with the hierarchical model.
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Figure A.7: Posterior predictive check for the data from Pratte et al. (2010).
Observed proportions of a rating per person (x-axis) versus posterior predic-
tive means of the model (y-axis). The model fits ratings with a higher observed
proportion better than those with a lower observed proportion. This occurs be-
cause those ratings constitute more observations and are weighed more by the
likelihood. Lower proportions are captured less well by the model. Likewise,
the lower proportions are based on less data and are therefore more noisy.
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B.1 Example Analysis
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Figure B.1: Approximate posterior densities for the differences in latent
constructs of two fictitious patients with response pattern. The probability
that the difference is larger than 0 is above 0.99 for all constructs.
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Figure B.2: The left panel plots the means of the observed ratings against
the posterior means of the latent variables. The right panel shows for each
combination of patients i, j the absolute difference in means, |x̂i− x̂j |, against
the absolute difference in posterior means of the latent variables, |η̂i−η̂j |. Note
that in the left panel, there is a difference in intercept because the responses
are on a scale from 1 to 5, whereas the latent variables are assumed to have a
mean of 0. The large spread in the right panel demonstrates that the sample
mean is an unreliable indicator of the truth underlying the data.

B.2 Parameter Recovery
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Figure B.3: Parameter recovery for the Latent Truth Rater model displayed
in Figure 3.1. The data set consisted of 1 patient, 200 items, and 300 raters.
Items had 5 possible outcomes.
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Table C.1: Overview of the 22 IFTE Items, the factor on which they load,
and the origin of the question. The first item is the that is treated as the 23rd

item here. In the third column, “Prop.” is short for “Proposed by clinicians”.
Adapted from Schuringa et al. (2014).

Item description Factor Origin

Has the patient changed in this last period? - -
Does the patient show problem insight? Protective behaviors HKT-R
Does the patient have psychotic symptoms? Problematic behavior HKT-R
Does the patient use any drugs or alcohol? Problematic behavior HKT-R
Does the patient show impulsive behavior? Problematic behavior HKT-R
Does the patient show antisocial behavior? Problematic behavior HKT-R
Does the patient show hostile behavior? Problematic behavior HKT-R
Does the patient show sufficient common social skills? Resocialization skills HKT-R
Does the patient show sufficient skills to take care of oneself? Resocialization skills HKT-R
Does the patient cooperate with your treatment? Protective behaviors HKT-R
Does the patient admit and take responsibility for the crime(s)? Protective behaviors HKT-R
Does the patient show adequate coping skills? Protective behaviors HKT-R
Does the patient comply with the rules
and conditions of the center and/or the treatment? Problematic behavior HKT-R

Does the patient show sufficient labor skills? Resocialization skills HKT-R
Does the patient have antisocial associates? Problematic behavior HKT-R
Does the patient have balanced daytime activities? Resocialization skills HKT-R
Does the patient show sufficient financial skills? Resocialization skills Prop.
Does the patient use his medication
in a consistent and adequate manner? Protective behaviors Prop.

Does the patient show sexual deviant behavior? Problematic behavior Prop.
Does the patient showmanipulative behavior? Problematic behavior Prop.
Does the patient show skills to prevent drug and alcohol use? Protective behaviors ASP
Does the patient show skills to
prevent physical aggressive behavior? Protective behaviors ASP

Does the patient show skills to prevent sexual deviant behavior? Protective behaviors ASP
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Appendix of Chapter 5

D.1 Posterior Distribution for
Effect Size under the Spike-and-Slab Model

The main text featured a paired samples t-test, both for the example and
for the demonstration of regularities regarding the prior probability of the
spike and the prior width of the slab. In this online Appendix we detail the
prior distributions for this t-test and explain how the spike-and-slab shrinkage
is related to Bayes factors. More generally, we show to derive the posterior
distribution for effect size δ under the spike-and-slab model. We first derive
the results for the slab and spike individually and combine them afterwards.

Following Rouder et al. (2018), we assume that the observed differences be-
tween the paired samples, denoted Zi, are normally distributed with unknown
mean δ and a variance of 1. As prior distribution for δ we use a normal distri-
bution with mean 0 and variance σ2. This implies Zi ∼ N (δ, 1) for the data
and δ ∼ N

(
0, σ2

)
for the prior. The posterior distribution for δ is obtained

through Bayes’ theorem:
Posterior

distribution︷ ︸︸ ︷
p (δ | Z) =

Prior
distribution︷︸︸︷

p (δ) ×

Likelihood︷ ︸︸ ︷
p(Z | δ)
p (Z)︸ ︷︷ ︸

Marginal
Likelihood

.

The likelihood is given by:

p(Z | δ, slab) =
N∏
i=1

N (Zi | δ, 1)

= (2π)−
N
2 exp

(
−N

2

(
Z̄ + s2Z + δ2 − 2Z̄δ

))
,

where Z̄ and s2Z are the sample mean and sample variance of Zi respectively.
Next, we compute the marginal likelihood by integrating out the likelihood
times prior with respect to δ:
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p (Z | slab) =
∫ ∞

−∞
p(Z | δ) p (Z) dδ

= (2π)−
N+1

2 exp

(
−N

2

(
Z̄ + s2Z

))
,

×
∫ ∞

−∞
exp

(
−1

2

(
δ2
(
N +

1

σ2

)
− δ

2NZ̄

σ2

))
dδ.

Here we may recognize a Gaussian integral and use the following identity:∫ ∞

−∞
exp

(
−ax2 + bx+ c

)
dx =

√
π

a
exp

(
b2

4a
+ c

)
.

Filling in the identity and simplifying yields:

p (Z | slab) = (2π)−
N
2 exp

(
−N

2

(
Z̄ + s2Z

)) exp

(
N2Z̄2

2
(
N+ 1

σ2

)
)

√
N + 1

σ2

.

Next, we can obtain an expression for the posterior distribution. However,
often it suffices to write out the expression for the likelihood times prior and
then identify the result as a known distribution. This is particularly com-
mon in Gibbs sampling where one is interested in the conditional posterior
distributions. We also do this here, as it reduces inference about the posterior
distribution (e.g., what is the mean or variance) to inference about a known
distribution, in this case a normal distribution:

p (δ | Z, slab) ∝ (2π)−
N
2 exp

(
−N

2

(
Z̄ + s2Z

))
exp

(
−N

2

(
δ2 − 2Z̄δ

))
× (2π)−

1
2 exp

(
− 1

2σ2
δ2
)

∝ exp

(
−1

2

(
δ2
(
N +

1

σ2

)
− δ

2NZ̄

σ2

))
.

We recognize a normal distribution with variance σ2
1 = 1

N+ 1
σ2

and mean µ1 =

NZ̄σ2
1. Thus we have p (δ | Z) ∝ N

(
µ1, σ

2
1

)
.

Next we compute the same for the spike. The spike states that Zi ∼ N (0, 1)
and contains no parameters to estimate. Thus there are no prior distributions
to specify and all that needs to be computed is the marginal likelihood:

p (Z | spike) = (2π)−
N
2 exp

(
−N

2

(
Z̄ + s2Z

))
.
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Using both marginal likelihoods we can now obtain the Bayes factor in favor
of the spike:

BF01 =
p (Z | spike)
p (Z | slab)

=

√
N + 1

σ2

exp

(
N2Z̄2

2
(
N+ 1

σ2

)
) .

The posterior probability of the slab then equals:

pslab | Z =
pspike

pspike + (1− pspike)BF01
,

and the posterior probability of the spike is the complement. It then follows
that the cumulative distribution function for the spike-and-slab posterior is
given by:

P (δ ≤ x | Z) =

{
pslab | ZΦ(x;µ1, σ1) if x < 0,
pspike | Z + pslab | ZΦ(x;µ1, σ1) if x ≥ 0,

where Φ(x;µ1, σ1) is the cumulative normal distribution. Due to the discon-
tinuity at x = 0 there is no useful closed form expression for the posterior
density. Nevertheless, the posterior mean of the spike-and-slab model is avail-
able in closed form. Using the law of total probability, we have:

p(δ | Z) = pspike | Zp(δ | spike,Z) + pslab | Zp(δ | slab,Z).

Computing the mean of left hand side yields:∫ ∞

−∞
δ p(δ | Z) dδ = pspike | Z

∫ ∞

−∞
δ p(δ | spike,Z) dδ,

+ pslab | Z
∫ ∞

−∞
δ p(δ | slab,Z) dδ,

= 0 + pslab | Z (µδ | slab,Z) .

Here (µδ | slab,Z) is the posterior mean of effect size under the slab. In a
similar fashion, other statistics may be obtained. However, it is also possible
to draw samples from marginal posterior distribution. To obtain a sample s,
first draw u from a uniform distribution on [0, 1]. If u < pslab | Z draw s
from p(δ | slab,Z), otherwise s is zero. This approach is often used when the
integrals become too unwieldy to compute analytically. For example, the R
package BAS uses this procedure to compute credible intervals (Clyde et al.,
2011a).
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E.1 Jeffreys’s Bayes Factor for the Agreement of Two Standard
Errors

Our work was inspired by Jeffreys (1939, pp. 222-224), who developed a
test for the “agreement of two standard errors”. Specifically, let σ1 and σ2
be the standard errors for the two groups, respectively. Jeffreys estimates the
standard errors by the expectation of the respective sum of squares, (n1−1)σ2

1

and (n2−1)σ2
2, where n1 and n2 are the respective sample sizes. Under the null

hypothesis, the expectations are pooled such that λ = (n1 + n2 − 2)σ2
1, where

σ2
1 = σ2

2. Under the alternative hypothesis, we have λ = (n1−1)σ2
1+(n2−1)σ2

2,
which can be written as a mixture such that (n1−1)σ2

1 = ϑλ and (n2−1)σ2
2 =

(1− ϑ)λ. Because λ is common to both models, we can assign it an improper
prior and integrate it out. The test-relevant parameter is ϑ ∈ [0, 1], which
Jeffreys assigns a uniform prior. After Laplace-approximating the integral
under the alternative, Jeffreys arrives at the (approximate) Bayes factor:

BFJ
01 =

(N − 2)3/2

2
√

π(n1 − 1)(n2 − 1)
exp

(
2
n2 − n1

N − 2
z − (n1 − 1)(n2 − 1)

N − 2
z2
)

,

(E.1.1)
where N = n1 + n2 and z = log

(
s1
s2

)
, and where s1 and s2 are the sample

standard deviations.
As a side note, we first attempted a parameterization that, unbeknownst

to us, Jeffreys substituted for his 1939 averaging idea in the third edition of
the Theory of Probability (Jeffreys, 1961): σ2

1 = σ2
2e

ξ. We abandoned this
idea because we could not generalize it to K > 2 groups and instead adopted
Jeffreys’s original averaging idea.

Figure E.1 shows that our Bayes factor with u = 1 matches Jeffreys’s 1939
Bayes factor very closely, as is expected from the uniform prior on ϑ. The error
is due to his approximate solution. For completeness, we also show Jeffreys’s
1961 Bayes factor, which is not limit consistent. It strikes us as a curiosity that
Jeffreys would develop a test for the standard error instead of the population
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Figure E.1: Comparison of the Bayes factor proposed by Jeffreys (1939) and
our Bayes factor with u = 1 for K = 2 groups as a function of the sample size
and the effect size ϕ = {1, 1.1, 1.2, 1.3, 1.4, 1.5}.

variance. Since the standard error decreases with the (square root of) the
sample size, applying Jeffreys’s test to data of unequal group sizes confounds
the result (if we were to take his test as a test concerning equality of variances).
Formally, both Bayes factors Jeffreys derived are not limit consistent because
if we gather infinite data for only one group, the Bayes factor in favor of H1

will go to infinity instead of converging to a bound (Ly, 2018, ch. 6). For our
Bayes factor, we adopt Jeffreys’s averaging idea to parameterize the problem,
but we focus on the population precisions instead of the standard errors.

E.2 Derivation of the proposed Bayes factor

E.2.1 Integrating out the nuisance parameters

Let Yji
iid∼ N (µj , τ

−1
j ), where i = 1, 2, . . . , nj and j ∈ [K]. For both the null

and the alternative models we integrate the nuisance parameters µjs out with
respect to the right Haar priors µj ∝ 1. This implies that for the observations
y{j} from the jth group consisting of nj observations the likelihood function
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is

f(y{j} | τj) :=
∫

f(y{j} |µj , τj)π(µj)dµj , (E.2.1)

= (2π)−
nj

2 τ
nj

2
j exp(−1

2νjs
2
jτj)

∫
exp(−n

2 τj(ȳj − µj)
2)dµj , (E.2.2)

= (2π)−
νj
2 n

−1
2

j τ
νj
2

j exp(−1
2νjs

2
jτj). (E.2.3)

For data from the K samples combined, i.e., y[K], and the parametrisation
τj = ϑj τ̄K this yields

f(y[K] | ϑ⃗, τ̄ ) = (2−1K)−
ν+

2 C(n)
[ K∏
j=1

ϑ
νj
2
j

]
τ̄

ν+

2 exp
(
− 2−1Kτ̄

K∑
j=1

ϑjνjs
2
j

)
,

(E.2.4)

where C(n) = (2π)−ν+/2(n1 . . . nK)1/2 and ν+ =
∑K

j=1 νj . A natural prior on
the nuisance parameter τ̄ is π(τ̄ ) ∝ τ̄−1 and a standard gamma integral leads
to the marginalized likelihood

h̃(y[K] | ϑ⃗) =
∫

f(y[K] | ϑ⃗, τ̄ )π(τ̄ )dτ̄ = C(n)Γ
(ν+
2

)[ K∏
j=1

ϑ
νj
2
j

]( K∑
j=1

ϑjνjs
2
j

)−ν+

2
.

(E.2.5)

Since ϑj > 0 and
∑K

j=1 ϑj = 1 the vector ϑ := (ϑ1, . . . , ϑK) can be fully
described by K−1 free parameters. Any ϑj can be singled out in the following,
but for concreteness, we do so for the Kth one. To rewrite the marginalized
likelihood h̃(y[K] | ϑ⃗) in terms of the K − 1 proportions ϑ, note that

K∑
j=1

ϑjνjs
2
j = ϑ1ν1s

2
1 + ϑ2ν2s

2
2 + . . .+ ϑK−1νK−1s

2
K−1 +

(
1−

K−1∑
j=1

ϑj

)
νKs2K

(E.2.6)

= νKs2K −
K−1∑
j=1

[νKs2K − νjs
2
j ]ϑj , (E.2.7)

which implies that

( K∑
j=1

ϑjνjs
2
j

)−ν+

2
= (νKs2K)−

ν+

2

(
1−

K−1∑
j=1

[1− νjs
2
j

νKs2K
]ϑj

)−ν+

2
. (E.2.8)
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This leads to

h̃(y[K] | ϑ⃗) = C(n)Γ
(ν+
2

)
(νKs2K)−

ν+

2

[ K∏
j=1

ϑ
νj
2
j

](
1−

K−1∑
j=1

[1− νjs
2
j

νKs2K
)]ϑj

)−ν+

2
,

(E.2.9)
which will be used to derive desiderata on the prior on the test relevant pa-
rameters. To highlight the fact that ϑ⃗ is effectively K−1 dimensional, we can

replace
[∏K

j=1 ϑ
νj
2
j

]
=
[∏K−1

j=1 ϑ
νj
2
j

]
(1− ϑ⃗+)

νK
2 , where ϑ⃗+ :=

∑K−1
j=1 ϑj .

E.2.2 Deriving the proposed Bayes factors

The marginalized likelihood fully specifies the marginal likelihood of the null,
as the plugin ϑj = 1/K yields

p(y[K] |M0) = C(n)Γ
(ν+
2

)
(νKs2K)−

ν+

2

(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)−ν+

2
. (E.2.10)

We let h(y[K] | ϑ⃗) = h̃(y[K] | ϑ⃗)
h̃(y[K] | ϑ⃗= 1

K )
be the reduced likelihood, see Eq. (6.1.7), and

the Bayes factor is then

BF10(y
[K]) =

(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)ν+

2 (E.2.11)

×
∫ [K−1∏

j=1

ϑ
νj
2
j

]
(1− ϑ⃗+)

νK
2

(
1−

K−1∑
j=1

[1− νjs
2
j

νKs2K
]ϑj

)−ν+

2
π1(ϑ⃗)dϑ⃗,

(E.2.12)

where ϑ⃗ ∈ RK−1, and the integral is over the K − 1 simplex. A natural
prior for ϑ⃗ would be a Dirichlet prior with hyperparameters u, where u =
(u1, . . . , uK−1, uK) with non-negative components. For νj ≥ 1 for all j ∈ [K]
and by definition of the multivariate integral representation of the type D
Lauricella function of K − 1 variables (Lauricella, 1893), this Bayes factor is
analytic and given by

BF10(y
[K]) =

B( ν⃗2+u⃗)

B(u⃗)

(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)ν+

2
FD

(
ν+

2 ; ν⃗
2 + u⃗ ; ν+

2 + u+ ; 1⃗−
−→
νs2

νKs2K

)
(E.2.13)

where B(u⃗) = Γ(u1)···Γ(uK)
Γ(u+) is the multivariate beta function, 1⃗ = (1, . . . , 1) ∈

RK−1 and where
−→
νs2 = (ν1s

2
1, . . . , νK−1s

2
K−1) is the K − 1 vector of sums of

squares.
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E.2.3 Default approach to non-overlapping Bayes factors

Note that non-overlapping hypotheses can also be expressed in terms of the
location parameter δ = − log( ϑ

1−ϑ) ∈ R, which transforms the point null
hypothesis H0 : ϑ = 1/2 to H0 : δ = 0 yielding a comparison between

H̆0 : |δ| < ϵ and H̆1 : |δ| > ϵ, (E.2.14)

where ϵ defines the half width of the null-region. Berger and Delampady
(1987) showed that for the location problem X̄ ∼ N (δ, σ2/n) with a unimodal
and symmetric prior, and ϵ ≤ σ

2
√
n
, the standard (point null) Bayes factor

characterizes the behavior of the null-region Bayes factor comparing H̆1 to H̆0

with the priors truncated accordingly.
Note that the prior ϑ ∼ Beta(u, u) underlying Eq. (6.3.1) induces a type III

generalized logistic distribution on δ with density

π(δ) = 1
B(u,u)e

−δu(1 + e−δ)−2u. (E.2.15)

This prior is unimodal and symmetric around H0 : δ = 0. In terms of δ the
marginalized likelihood h̃(y[K] |ϑ), see appendix Eq. (E.2.8), is

h̃(y[K] | δ) ∝ exp(−ng(δ)), where g(δ) ≈ c
2δ +

1+c
2 log(1 +

s21
s22
ce−δ), (E.2.16)

whenever n1 = cn and n2 = n. Sufficiently large n combined with a Taylor
expansion of g(δ) at its maximum point, that is, at δ̂ = log(

s21
s22
), yields the

approximation

h̃(y[K] | δ) ∝ exp
(
− nc

4(1+c)

(
δ − log(s21/s

2
2)
)2)

. (E.2.17)

Hence, one way to take a null interval is by setting ϵ ≤ (1+c)√
nc

. The resulting
null-region Bayes factor will then behave similarly to Eq. (6.3.1).

E.3 Properties of the proposed Bayes factor

E.3.1 Labelling Invariant

Proof of labelling invariance, Theorem 6.2.1. The goal is to show that the in-
tegral of the reduced likelihood times prior remains the same after applying
the permutation ϱ that swaps the labels K for an arbitrary i ∈ [K − 1]. For
this integral to remain the same, it suffices to show that the reduced likelihood
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h(s2 | ϑ⃗) and its permuted version

h(ϱ(s2) | ϑ⃗) =
(
1 +

νKs2K
νis2i

+
∑

j∈[K−1]\{i}

νjs
2
j

νis2i

)ν+

2
[ ∏
j∈[K−1]\{i}

ϑ
νj
2
j

]
(E.3.1)

×ϑ
νK
2

i (1− ϑ⃗+)
νi
2

(
1− θ⃗+ +

νKs2K
νis2i

ϑi +
∑

j∈[K−1]\{i}

νjs
2
j

νis2i
ϑj

)−ν+

2
,

(E.3.2)

are conditionally symmetric. This means that as a function of ϑi with all other
coordinates fixed, i.e., ϑj for j ∈ [K − 1] \ {i}, the reduced likelihood and its
permuted version are symmetric around ϑ̆−i :=

1
2

(
1−

∑
j∈[K−1]\{i} ϑj

)
.

This can be shown by studying the functions g(x) and gϱ(−x), where g(x)

is the composition of x 7→ ϑi = ϑ̆−i + x and ϑi 7→ h(s2 | ϑ⃗), whereas gϱ(−x) is
the composition of x 7→ ϑi = ϑ̆−i−x and ϑi 7→ h(ϱ(s2) | ϑ⃗). A straightforward,
but tedious computation then shows that g(x) = gϱ(−x) for all x ∈ (0, ϑ̆−i).
For the Bayes factor to be labelling invariant, we thus require the prior to be
symmetric in the similar fashion. For the Dirichlet prior this implies ui = uK ,
and for this to hold for all pairs of permutations, we require uj = u for all
j ∈ [K].

E.3.2 Predictive Matching

Proof of predictive matching, Theorem 6.2.2. Case (a) with n1 = . . . = nK =
1 implies that ν1s

2
1 = . . . = νKs2K = 0 regardless of the data, which implies

that the likelihood of the data Eq. (E.2.4) is identical to the constant function
1, thus, independent of τ̄ and ϑ⃗. Viewing the prior τ̄ ∝ τ̄−1 on the nuisance
parameter that appears in both the numerator and the denominator of the
Bayes factor as a limit of τ̄ ∼ Γ(u, u) with u ↓ 0 shows that without loss of
generality we can set the Bayes factor to 1, whenever π1(ϑ⃗) is proper.

For case (b) and without loss of generality we consider the case with νK = 1
and νj = 0 for all j ∈ [K−1]. The reduced likelihood h(s2 | ϑ⃗) is then actually
independent of s2K , as we then get

BF10(s
2) =

∫
(s2K)−

1
2 (1− ϑ⃗+)

1
2 (1− ϑ⃗+)

−1
2π1(ϑ⃗)dϑ

(s2K)−
1
2 ( 1

K )
1
2 (1− K−1

K )−
1
2

=

∫
π1(ϑ⃗)dϑ⃗. (E.3.3)

Thus, for all data sets s2 of insufficient size BF10(s
2) = 1 whenever π1(ϑ⃗) is

proper.
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E.3.3 Information Consistency

Proof of information consistency, Theorem 6.2.3. Assuming labelling invariance
we can let the s2K with fixed nK grow without loss of generality. For fixed n
the order of integral and limit can be interchanged and reveals that

lim
s2K→∞

(E.3.4)

The integrand becomes unbounded whenever uK ≤ ν+−νK
2 . Recall that the

minimal sample size has only two groups with two observations, say, ν1 = 1
and νK = 1. The requirement that lims2K→∞ BF10(s

2) should already diverge
at the minimal sample sizes implies that uK ≤ 1/2. By symmetry we require
this for all uj for j ∈ [K].

E.3.4 Model selection consistency

For model selection consistency we note that the Bayes factor depends on the
data via the statistic W⃗ = (W1, . . . ,WK−1) with

Wj :=
νjs

2
j

νKs2K
=

σ2
j νj

σ2
KνK

(∑nj

i=1
(Yji−Ȳj)

2

σ2
j

)
/νj(∑nK

i=1
(YKi−ȲK)2

σ2
K

)
/νK

=:
σ2
j νj

σ2
KνK

Xj , for j ∈ [K − 1],

(E.3.5)

where Xj ∼ F (νj , νK) is an F -distributed random variable with degrees of
freedom νj and νK by virtue of the data being normally distributed.

Letting nj := cjn for cj > 0, j ∈ [K], thus, cK = 1, and σ2
j := γjσ

2
K where

γj > 0 for j ∈ [K], thus, γK = 1, note that Wj ≈ cjγjXj for n large. Observe
that since Xj is F -distributed we know that

E(Xj) =
n

n− 2
= 1 +O(1/n) and Var(Xj) =

2n2((1 + cj)n− 2)

cjn(n− 2)2(n− 4)
= O(1/n).

(E.3.6)

Hence, Chebyshev’s inequality can be applied to show thatXj−1 = OP (n
−1/2).

The intuition to use the continuous mapping theorem and the replacement
X⃗ = 1⃗ ∈ RK−1 in BF10 forms the basis of the proof of Theorem 6.2.4. What
needs taking care of is the dependence of the Bayes factor on n.

Proof of model selection consistency, Theorem 6.2.4. The proof relies on a Tay-
lor approximation that holds with high probability and the subsequent asymp-
totic analysis of the Taylor terms. Key to this analysis is the large sample
behavior of gamma functions. What is remarkable is that under the null the
exponential growing terms cancelled out perfectly in all Taylor terms.
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Notation for partial derivatives For the Taylor terms, we express the
Bayes factor as follows BF10(s

2, n) =
B(n2 c+u)

B(u) b(X⃗)GD(X⃗), where with Z⃗ ∈
RK−1, Zj = 1− cjγjXj , the X⃗-dependent functions are

b(X⃗) := (1 +
K−1∑
j=1

cjγjXj)
c+
2 n, (E.3.7)

GD(X⃗) := FD(
c+
2 n ; n

2 c⃗+ u⃗ ; c+
2 n+ u+ ; Z⃗). (E.3.8)

For the Taylor series we employ multi-index notation to describe Leibniz’s
product rule for partial derivatives. The idea is to identify a partial derivative
to a K − 1-dimensional vector of non-negative integers m⃗ ∈ NK−1

0 . Each mj

represents the multiplicity of partial derivative with respect to the variable xj ,
thus, ∂m⃗b(X⃗) := ∂m⃗+∏K−1

j=1 ∂x
mj
j

b(X⃗) and more specifically

∂m⃗b(X⃗) = (c+2 n)−m⃗+

(K−1∏
j=1

(cjγj)
mj

)
(1 +

K−1∑
j=1

cjγjXj)
c+
2 n−m⃗+ , (E.3.9)

where (a)−l := Γ(a+1)/Γ(a− l+1) denotes the falling factorial, e.g., (a)−3 =
a(a − 1)(a − 2) for a ∈ N. It can be shown that (a)−l = (−1)l(−a)l and
that (a)−l/l! =

(
a
l

)
. Note that b(X⃗) also appears on the right-hand side. To

simplify notation we write

∂m⃗b := ∂m⃗b(X⃗)
∣∣∣
X⃗=1⃗

=
(
〈c,γ〉

)c+
2 n

(
c+
2 n)−m⃗+

(∏K−1
j=1 (cjγj)

mj

)
(
⟨c,γ⟩

)m⃗+
. (E.3.10)

Note that the first order partial derivatives are described by the vectors m⃗ = e⃗k
for k ∈ [K − 1].

Similarly, let l⃗ ∈ NK−1
0 with m⃗ � l⃗, that is, 0 ≤ mj ≤ lj for j ∈ [K−1], then

r⃗ = l⃗− m⃗ ∈ NK−1
0 can be thought of as the remaining multiplicities of l⃗ once

the partial derivatives are taken with multiplicities m⃗. This vector notation
combined with differentiation under the integral sign shows that

∂ r⃗GD(X⃗) := ∂r⃗+∏K−1
j=1 ∂x

rj
j

GD(X⃗), (E.3.11)

= (−c+
2 n)−r⃗+

∏K−1
j=1 (

cj
2 n+uj)rj

(
c+
2 n+u+)r⃗+

(K−1∏
j=1

(cjγj)
rj
)
GD,r⃗(X⃗), (E.3.12)

where, formally by Eq. (E.3.19) below,
∏K−1

j=1 (
cj
2 n+uj)rj

(
c+
2 n+u+)r⃗+

=
∏K−1

j=1 c
rj
j

c
r⃗+
+

(
1 +O(n−1)

)
, (E.3.13)
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and where

GD,r⃗(X⃗) = FD(
c+
2 + r⃗+ ; n

2 c⃗+ u⃗+ r⃗ ; c
2n+ u+ + r⃗+ ; Z⃗). (E.3.14)

Observe that GD(X⃗) = GD,⃗0(X⃗).
With this notation the partial derivative of the Bayes factor accounting for

multiplicities l⃗ is

∂ l⃗BF10(s
2, n) =

B(n2c+ u)

B(u)

∑
m⃗⪯l⃗

(
l⃗

m⃗

)
∂m⃗b(X⃗)∂ l⃗−m⃗G(X⃗)

 , (E.3.15)

where
(
l⃗
m⃗

)
=
(
l1
m1

)
· · ·
(
lK−1
mK−1

)
=
∏K−1

j=1
lj !

(lj−mj)!mj !
and where the sum is over

all subvectors m⃗ of l⃗. For instance, with l⃗ = e⃗k this means m⃗ = 0⃗ and m⃗ = e⃗k.
Note that ∂ l⃗BF10(s

2, n) only describes one entry of the l⃗+-dimensional array
of the total derivative of BF10(s

2, n) of order l⃗+.

Taylor approximation Because the samples variances of the Xjs are of
order 1/n, Chebyshev’s inequality in conjunction with a union bound can be
used to show that for any ϵ there exists an N such that if n > N the following
Taylor approximation holds with chance at least 1− ϵ

BF10(s
2, n) ≈

B(n2c+ u)

B(u)

( ∑
l⃗∈NK−1

0

∂ l⃗
[
bG(X⃗)

]
X⃗=1⃗

Ql⃗

l⃗!

)
, (E.3.16)

where ∂ l⃗
[
bG(X⃗)

]
X⃗

equals the sum on the right-hand side of Eq. (E.3.15) eval-

uated at X⃗ = 1⃗, Q⃗ = (X⃗ − 1⃗), Q⃗l⃗

l⃗!
=
∏K−1

j=1

Q
lj
j

lj !
. Below we will show that for

large n the Bayes factor behaves as

BF10(s
2, n) ≈ T̆ (0)

∑
l⃗∈NK−1

0

h
l⃗
(u, c,γ)

Q⃗l⃗

l⃗!
, (E.3.17)

where under the null h
l⃗
(u, c,γ, n) = O(1) and under the alternative h

l⃗
(u, c,γ, n) =

O(nl⃗+), and where T̆ (0) is the zeroth order term of the Taylor approximation
studied in the next paragraph.

The T (0) term The large sample behavior of the Bayes factor basically
follows from gamma function asymptotics. The first object of interest is the
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deterministic term associated with l⃗ = 0⃗, i.e., the Bayes factor evaluated at
X⃗ = 1⃗, but still dependent on the n term is

T (0) := BF10(s
2, n)

∣∣∣
X⃗=1⃗

=
B(n2c+ u)

B(u)
(〈c,γ〉)

c+
2 nGD. (E.3.18)

The large sample behavior of the beta function follows that of gamma functions.
Laplace’s method implies that for v, b > 0

Γ(vn+ b) =
√
2π(vn)vn+b−1

2 e−vn
[
1 + 6b2−6b+1

12 (vn)−1 +O(n−2)] (E.3.19)

as n→∞. Hence,

B(n2c+ u) = (4π)
K−1
2 n

1−K
2 c

1
2
+

(K−1∏
j=1

(cj)
−1
2

)
g(c,u, n)

[
1 +O(n−1)

]
, (E.3.20)

where the exponential behavior is captured by

g(c,u, n) = (c+)
−c+n

2 −u+

K−1∏
j=1

(cj)
cjn
2 +uj . (E.3.21)

Note that the product only goes up to K − 1, since cK = 1 by definition.
The hard part is to show consistency under the null. For this the exponential

behavior of g(c,u, n) needs to be cancelled by that of GD, and we will show
that it does so perfectly. To study the large n behavior of GD, and more
generally GD,r⃗, we apply a Pfaff transform (Lauricella, 1893, p. 148) yielding

GD,r⃗ =
(K−1∏

j=1

cjγ
−
cj
2 n−uj−rj

j

)
FD

(
u+ ; n

2 c⃗+ u⃗+ r⃗ ; c+
2 n+ u+ + r⃗+ ;

−−→
cγ−1
cγ

)
(E.3.22)

where
−−→
cγ−1
cγ ∈ RK−1 with (

−−→
cγ−1
cγ )j =

cjγj−1
cjγj

. This rewrite of GD,r⃗ shows a
cancellation of the (cjγj)rj terms in front of theGD,r⃗ in Eq. (E.3.12). Note that
in the Lauricella function in Eq. (E.3.22) the lower term and the upper terms
of the second kind depend on n in a linear fashion. The n dependence in these
terms balance out as n→∞ making the Lauricella function in Eq. (E.3.22) of
order 1 as n grows. This is made rigorous by Lemma 1, which shows that the
Lauricella function Eq. (E.3.22) converges to a (generalized) negative binomial
series as n→∞. Thus,

GD,r⃗ ≈ ĞD,r⃗ =
(K−1∏

j=1

(cjγj)
−
cj
2 n−uj−rj

)(
1− 1

c+

K−1∑
j=1

cjγj−1
γj

)−u+

, (E.3.23)
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for n large. For T (0) set r⃗ = 0⃗, which shows that for large n

T (0) ≈ T̆ (0) := C0(K,γ, c,u)n
1−K
2
( ⟨c,γ⟩

c+

)c+
2 n
(K−1∏

j=1

γ
−
cj
2 n

j

)
, (E.3.24)

where the n independent term C0(K,γ, c,u) is as asserted in Eq. (6.2.3). A
plugin of the null hypothesis γ = 1, thus, 〈c,γ〉 = c+, in Eq. (E.3.24) shows
that the exponentially growing terms are all equal to one, and therefore T (0) =

O(n
1−K
2 ).

The T
(1)
e⃗k

terms The analysis of the gradient is similar to that of T (0). It
suffices to study the gradient coordinate wise. In particular,

T
(1)
e⃗k

:=
B(n2c+ u)

B(u)
(〈c,γ〉)

c+
2 nckγk

c+
2 n
[

GD
⟨c,γ⟩ −

ckn+2uk
c+n+2u+

GD,e⃗k

]
. (E.3.25)

The same operations as before, a Pfaff transform and Eq. (E.3.23), shows that

T̆
(1)
e⃗k

= T̆ (0)
(
c+
2

( ckγk
⟨c,γ⟩ −

ck
c+

)
n+ cku+−c+uk

c+
+O(n−1)

)
, (E.3.26)

as n → ∞. Hence, under the alternative he⃗k(u, c,γ, n) := T̆
(1)
e⃗k

/T̆ (0) =

O(n) and accounting for the stochastic term Qk = (Xk − 1) = OP (n
−1/2)

leads to
∑K−1

k=1 he⃗k(u, c,γ, n)Qk = OP (n
1/2). On the other hand, under

the null he⃗k(u, c,1, n) = T̆
(1)
e⃗k

/T̆ (0) = O(1), as then again 〈c,γ〉 = c+ and( ckγk
⟨c,γ⟩ −

ck
c+

)
= 0, thus, a perfect cancellation of the O(n) term. Consequently,∑K−1

k=1 he⃗k(u, c,γ, n)Qk = OP (n
−1/2).

Higher order terms The higher order terms exhibit the same behavior.
Let l⃗ ∈ NK−1, then for n large the partial derivative associated to l⃗ of the
Bayes factor behaves as

T̆
(⃗l+)

l⃗
=
∑
m⃗⪯l⃗

(
l⃗

m⃗

)
T̆ (0)(c+2 n)−m⃗+

(−c+
2 n)−(⃗l+−m⃗+)

∏K−1
j=1 (cjγj)

mj

⟨c,γ⟩m⃗+

∏K
j=1 c

lj−mj
j

c
(⃗l+−m⃗+)

+

(
1 +O(n−1)

)
.

Note that (c+2 n)−m⃗+
(−c+

2 n)−(⃗l+−m⃗+)
is a polynomial in n of order l⃗+. Hence,

h
l⃗
(u, c,γ, n) := T̆

(⃗l+)

l⃗
/T̆0 = O(nl⃗+). We now show that under the null, the

polynomial (c+2 n)−m⃗+
(−c+

2 n)−(⃗l+−m⃗+)
is zero and h

l⃗
(u, c,1, n) = T̆

(⃗l+)

l⃗
/T̆0 =

O(1), where the constant term comes from the approximation of the ratio of
Pochhammer symbols, i.e., Eq. (E.3.13), e.g., Eq. (E.3.26). To see that there
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is no n contribution under the null, we plugin γ = 1 and rewrite the sum over
m⃗ � l⃗ as a sum over m⃗+ = p for p = 0, 1, . . . , l⃗+ and a subsequent sum over
all subvector m⃗ that sum to p, which yields

h
l⃗
(u, c,1, n) =

∏K−1
j=1 c

lj
j

c
l⃗+
+

l⃗+∑
p=0

(c+2 n)−p(−c+
2 n)−p

∑
m⃗⪯l⃗
m⃗+=p

(
l⃗

m⃗

)
. (E.3.27)

Next we apply the Chu-Vandermonde identity twice, once over the sum on
the right-hand side of the previous display and once after using the identity
(a)−l/l! =

(
a
l

)
, which leads to

h
l⃗
(u, c,1, n) =

∏K−1
j=1 c

lj
j

c
l⃗+
+

l⃗+∑
p=0

(
l⃗+
p

)
(c+2 n)−p(−c+

2 n)−(⃗l+−p)
(E.3.28)

=
∏K−1

j=1 c
lj
j

c
l⃗+
+

l⃗+!

l⃗+∑
p=0

(c+
2 n

p

)(−c+
2 n

l⃗+ − p

)
= 0. (E.3.29)

This shows that under the null, none of the Taylor terms lead to a growth in
n.

The stochastic terms in the assertion both under the null and the alternative
follow from the definition of the exponential series by rewriting the sum of the
Taylor approximation of interest, i.e., Eq. (E.3.17), in terms of p̃ ∈ N0 and a
subsequent sum over all subvectors l⃗ such that l⃗+ = p̃.

Model selection consistency under the alternative To show that
the Bayes factor increases under the alternative, irrespectively of γj being
larger or smaller than 1, we study the exponential term of Eq. (6.2.2)

v(n) =
(
〈c,γ〉

)c+
2 n

K−1∏
j=1

γ
−
cj
2 n

j (E.3.30)

The claim is that v monotonically increases in n. Suppose that this is not true,
then the ratio of subsequent terms

v(n+ 1)/v(n) =
(
〈c,γ〉

)c+
2

K−1∏
j=1

γ
−
cj
2

j (E.3.31)

would be less or equal to one. The gradient of v(n + 1)/v(n) with respect to
γ is of the form

ck
2

( c+
⟨c,γ⟩ −

1
γk

)
v(n+ 1)/v(n) (E.3.32)
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and this reveals a (global) minimum at γ = 1 at which v(n + 1)/v(n) = 1.
Hence, any γ 6= 1 leads to an exponentially increasing Bayes factor BF10(s

2, n).

The proof of the previous theorem relies on a particular Lauricella function
GD to be of order 1 as n increases as shown in the following lemma.

Lemma 1 (Limit of a particular Lauricella function). For all vj , bj > 0,
j ∈ [m] and |xj | < 1, we have that

lim
n→∞

FD(a ; nv⃗ + b⃗ ; v+n+ b+ ; x⃗) =
(
1−

m∑
i=1

vi
v+

xi

)−a
, (E.3.33)

as n→∞. �

Proof. The proof follows from the asymptotic behavior of the gamma function
combined with repeated use of the (negative) binomial series.

Firstly, note that the n dependence occurs in the lower and the upper terms
of the second type, which cancels out as n grows large. To show this consider
the definition of the Pochhammer raising factorial that combined with the
Laplace approximation Eq. (E.3.19) for constants v, b > 0 leads to

(vn+ b)k =
Γ(vn+ b+ k)

Γ(vn+ b)
= (vn)k

[
1 + k(k + 2b− 1)(vn)−1 +O((vn)−2)

]
(E.3.34)

as n→∞.
Secondly, to describe the large n behavior of the particular type D Lauricella

hypergeometric series FD := FD(a ; nv⃗ + b⃗ ; v+n+ b+ ; x⃗) we use the notation
i[k : m] = (ij , . . . , im) ∈ Nm−(k−1) to denote the vector of indexes from k to
m. Based on this notation and by Eq. (E.3.34), we have for n large that

FD =
∑
i[1:m]

(a)i[1:m]+(v1n+ b1)i1 · · · (vmn+ bm)im
(v+n+ b+)i[1:m]+

xi11
i1!
· · · x

im
m

im!
(E.3.35)

≈
∑
i[1:m]

(a)i[1:m]+v
i1
1 · · · vimm

v
i[1:m]+
+

xi11
i1!
· · · x

im
m

im!
=

∞∑
i=0⃗

(a)i[1:m]+

( v1
v+

x1)
i1

i1!
· · ·

(vmv+ xm)im

im!
.

The last equality defines the limit of FD with respect to n. It also captures the
essence of the repeated use of the binomial series, namely, the redistribution
of the scaling factor v−i[1:m]+

+ over the variables x.
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Thirdly, with the notation i[2 : m] it is simple to isolate the summation
with respect to i1 only, which combined with the binomial series yields

limFD =
( ∞∑

i1=0

(a)i[1:m]+

( v1
v+

x1)
i1

i1!

) ∑
i[2:m]

( v2
v+

x2)
i2

i2!
· · ·

(vmv+ xm)im

im!
(E.3.36)

=
(
v+−v1x1

v+

)−a ∑
i[2:m]

(a)i[2:m]+

(
v+−v1x1

v+

)−i[2:m]+ ( v2
v+

x2)
i2

i2!
· · ·

(vmv+ xm)im

im!
.

Note that, as before, the scaling factor
(
v+−v1x1

v+

)−i[2:m]+
can be redistributed

over the variables resulting in ( vk
v+−v1x1

xk)
ik/ik! for k = 2, . . . ,m. The sum-

mation with respect to i2 is again a binomial series and yields

limFD =
(
v+−v1x1

v+

)−a(
v+−v1x1−v2x2

v+−v1x1

)−a
(E.3.37)

×
∑
i[3:m]

(a)i[3:m]+

(
v+−v1x1−v2x2

v+−v1x1

)−i[3:m]+ ( v3
v+−v1x1

x3)
i3

i3!
· · ·

( vm
v+−v1x1

xm)im

im!
.

Observe that the numerator and denominator of the first and second −a expo-
nentiated terms in the previous display are equal and thus cancel. Repeating
this procedure tom and telescoping through the−a exponentiated terms yields
the results.

E.3.5 Limit and across-sample consistency

Proof of across-sample consistency, Theorem 6.2.5. To simplify notation we
write n := nK and s⃗s =

−→
νs2, where ssj = νjs

2
j is the sum of squares of

the jth sample. Since S2
K is

√
n-consistent we can find an N such that for all

n > N the following statement holds with chance at least 1− ϵ

BF[K]
10 (s⃗2, S2

K , n) = BF[K]
10 (s⃗2, σ2

0, n) +
hn√
n
T̃1(n) + oP (n

−1
2 )T̃2(n), (E.3.38)

where hn is a bounded sequence of random variables due to S2
K−σ2

0 = OP (n
−1
2 )

and where

T̃1(n) =
(

∂
∂xBF

[K]
10 (s⃗2, x, n)

)∣∣∣
x=σ2

0

, (E.3.39)

T̃2(n) =
(

∂2

∂x2BF[K]
10 (s⃗2, x, n)

)∣∣∣
x=σ2

0

. (E.3.40)

To prove the theorem we have to show that limn→∞ BF[K]
10 (s⃗2, σ2

0, n) exists, is
equal to Eq. (6.2.9), and that both T̃1(n) and T̃2(n) are bounded in n. To this
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end, we want to first take the limit and then integrate. To see that this is
permissible we first show that the integrand of BF[K]

10 (s⃗2, σ2
0, n) as a sequence

in n is uniformly bounded in ϑ⃗.

Uniformly boundedness of the integrand To further simplify notation
we introduce the vectors a⃗, c⃗ ∈ RK−1 with aj =

νj
2 for j ∈ [K − 1] and b = n

2 .
By definition of BF[K]

10 (s⃗2, σ2
0, n), the innocuous replacement n = νK we have

that

BF[K]
10 (s⃗2, σ2

0, n) = (1 + s⃗s+
nσ2

0
)a++b

∫
h̃(s⃗2, σ2

0, n | ϑ⃗)π1(ϑ⃗)dϑ⃗, (E.3.41)

where π1(ϑ⃗) is the Dirichlet prior with parameters u and where

h̃(s⃗2, σ2
0, n | ϑ⃗) =

(K−1∏
j=1

ϑ
aj
j

)
(1− ϑ⃗+)

b(1−
K−1∑
j=1

[1− ssj
nσ2

0
]ϑj)

−(a++b), (E.3.42)

is the marginalized likelihood with σ2
0 in place of s2K , thus, h̃(s⃗2, σ2

0, n | ϑ⃗0) =

(1+ s⃗s+
nσ2

0
)−(a++b). By definition of the exponential function as a series, the first

term in Eq. (E.3.41) remains bounded, that is,

lim
n→∞

(1 + s⃗s+
nσ2

0
)
ν⃗++n

2 = e
s⃗s+
2σ2

0

(
1− s⃗s+

4nσ2
0
( s⃗s+

σ2
0
− 2ν⃗+) +O(n−2)

)
. (E.3.43)

The prior does not play a role in the asymptotics for n→∞, as we will show
that ∫

h̃(s⃗2, σ2
0, n | ϑ⃗)π1(ϑ⃗)dϑ⃗ ≤ C(u)

∫
h̃(s⃗2, σ2

0, n | ϑ⃗)dϑ⃗. (E.3.44)

for a certain constant C(u) independent of n.

Case (i) The case with u all at least 1, we can take C(u) to be the maximum
of the prior Dir(ϑ⃗ ; u) on ϑ⃗ in the K − 1 simplex. The maximum of the
marginalized likelihood h̃(s⃗2, σ2

0, n | ϑ⃗) at each n can be found by setting the
partial derivatives to zero. At each fixed n Lemma 2 can be used to find the
maximum ϑ̂ as a function of a⃗, b, c⃗. By definition of a⃗, b, c⃗ and by denoting the
observed precisions t⃗ ∈ RK−1 by tj := (s2j )

−1, it then follows that ϑ̂k = tk
σ−2
0 +t⃗+

,
which is free of n. A plugin and a direct calculation show that the maximum
value of the marginalized likelihood at each n is

fmax,n :=
(K−1∏

k=1

t
νk
2
k

)
(σ2

0)
ν⃗+
2 e−

ν⃗+
2 [1− ν⃗2+

4n +O(n−2)]. (E.3.45)

Hence, as a sequence in n the integrand is uniformly bounded by a constant.
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Case (ii) For any uj < 1, j ∈ [K − 1] the prior diverges at ϑj = 0 and
C(u) cannot be taken to be the maximum value of the prior on the K − 1
simplex. Instead, C(u) can be the maximum of π1(ϑ⃗) for ϑ⃗ in a subset R
containing ϑ̂. Since the true variances are assumed to be non-zero, finite and
the data continuous, we can take R with high probability to be a compact
subset that intersects with

⊕K−1
j=1 [ϵj , 1−ϵj ] ⊂ [0, 1]K−1 for ϵj depending on uj .

On R the proof of Case (i) can be repeated to show that that the integrand is
bounded. For any uj < 1, j ∈ [K−1] the integrand over ϑj ∈ [0, ϵj) behaves as

ϑ
νj
2 +uj−1

j +O(|ϑj |). On this domain the integrand remains integrable whenever
uj > −νj

2 , which is true by assumption. The same arguments extend to the
case with uK < 1.

Identifying the K − 1-sample Bayes factor Uniform boundedness al-
lows us to interchange the limit and integral and conclude that the limiting
integral exist, and implies that BF[K]

10 (s⃗2, σ2
0, n) converges to∫ (∏

ϑ
νj
2 +uj−1

j

)
(1− ϑ⃗+)

uK− ν⃗+
2 −1 exp

(
−
∑ ssj

2σ2
0
(

ϑj

1−ϑ⃗+
)
)
dϑ⃗

B(u) exp(− s⃗s+
2σ2

0
)

. (E.3.46)

From the change of variables ϑj =
ξj

1+ξ+
, thus, dϑ⃗ = (1 + ξ+)

−Kdξ⃗, and by
definition of the integral representation of the multivariable Tricomi function
U , see for instance (Ng et al., 2011; Phillips, 1988), we have that the resulting
K − 1 sample Bayes factor is given by

BF[K−1]

10 ;σ2
0
(s⃗2) =

∫ (∏K−1
j=1 τ

νj
2

j

)
exp(−1

2

∑K−1
j=1 νjs

2
jτj)πσ2

0
(τ⃗ |M[K−1]

1 )dτ⃗

(σ2
0)

− ν⃗+
2 exp(− (

−→
νs2)+
2σ2

0
)

,

=

(∏K−1
j=1 Γ(

νj
2 + uj)

)
U
(
ν⃗
2 + u⃗ ; ν⃗+

2 − uK + 1 ;
−→
νs2

2σ2
0

)
B(u⃗, w) exp(− (

−→
νs2)+
2σ2

0
)

, (E.3.47)

where
−→
νs2 = (ν1s

2
1, . . . , νK−1s

2
K−1) denotes the vector of sums of squares,

(
−→
νs2)+ =

∑K−1
j=1 νjs

2
j , and ν⃗+ :=

∑K−1
j=1 νj , as before. This Bayes factor is

based on uniform priors on the nuisance parameters µ⃗ ∈ RK−1, and an inverse
Dirichlet distribution on the precisions τ⃗ = (τ1, . . . , τK−1) ∈ RK−1 scaled by
1/σ−2

0 , that is,

πσ2
0
(τ⃗ |M[K−1]

1 ) =
(σ2

0)
K−1

∏K−1
j=1 (σ2

0τj)
uj−1

B(u⃗, w)(1 + σ2
0 τ⃗+)

u⃗++w
, (E.3.48)
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where we wrote w = uK so the statement only involves vectors of length K−1.
Recall that ssj = νjs

2
j summarizes the observations of the jth sample.

Observe also that the numerator of this limiting Bayes factor resembles the
marginalized likelihood, i.e., Eq. (E.2.3), of the K − 1 samples with their
respective precisions τ⃗ = (τ1, . . . , τK−1) all fixed at 1/σ2

0. Hence, up to the

factor (σ2
0)

− ν⃗+
2 the denominator defines the marginal likelihood of the lower-

dimensional null hypothesis HK−1
0 : τj = σ−2

0 for j ∈ [K − 1] with µj ∝ 1.
The missing factor is retrieved from the numerator by the change of variable
τj =

ϑj

σ2
0(1−ϑ⃗+)

and yields the assertion above Eq. (6.2.8).

The lower dimensional Bayes factor BF[K−1]

10 ;σ2
0
(s⃗2) is in general hard to com-

pute, because the Tricomi function U (⃗b ; c ; x⃗) defines a K − 1-dimensional
integral. Phillips (1988) showed that if c < 1, the following simplification
holds

U (⃗b ; c ; x⃗) =
∫ ∞

0
e−ttb⃗+−c

K−1∏
j=1

(t+ xj)
−bjdt. (E.3.49)

For BF[K−1]

10 ;σ2
0
(s⃗2) this simplification holds whenever ν⃗+ < 2uK , which will be of

little practical use when, for instance, uK = 1/2. Theorem 6.2.5 now shows that
for the case with ν⃗+ ≥ 2uK the lower dimensional Bayes factor BF[K−1]

10 ;σ2
0
(s⃗2)

can be well approximated by a one-dimensional integral, because the type
D Lauricella function in BF10(s

2) has a simplified one-dimensional integral
representation due to u+ > 0.

Residual terms To show that the convergence is at rate 1/
√
n, we show

that both T̃1(n) and T̃2(n) in Eq. (E.3.38) are of order 1. The analysis is
analogous to showing the existence of BF[K−1]

10 .

For T̃1(n) we study the derivative of the Bayes factor BF[K]
10 (s⃗2, x, n) with

respect to x. For this we swap the order of integration and differentiation and
consider

g := ∂
∂x

h(s⃗2,x,n | ϑ⃗)
h(s⃗2,x,n | ϑ⃗0)

∣∣∣
x=σ2

0

= g1 + g2 (E.3.50)
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where

g1 := − s⃗s+
nσ4

0
(a+ + b)(1 + s⃗s+

nσ2
0
)a++b−1 (E.3.51)

×
(K−1∏

j=1

ϑ
aj
j

)
(1− ϑ⃗+)

b(1−
K−1∑
j=1

[1− ssj
nσ2

0
]ϑj)

−(a++b), (E.3.52)

g2 :=
1

nσ4
0
(a+ + b)(1 + s⃗s+

nσ2
0
)a++b (E.3.53)

K−1∑
k=1

sskϑk

[(K−1∏
j=1

ϑ
aj
j

)
(1− ϑ⃗+)

b(1−
K−1∑
j=1

[1− ssj
nσ2

0
]ϑj)

−a+−1−b

]
. (E.3.54)

Note that by definition of a⃗, b, s⃗s the terms Eq. (E.3.51) and Eq. (E.3.53)

converge to − s⃗s+
2σ4

0
e
s⃗s+
2σ2

0 and 1
2σ4

0
e
s⃗s+
2σ2

0 , respectively. The proof that Eq. (E.3.52)
is uniformly bounded in n is exactly as before. The same proof holds for each
member in the sum of Eq. (E.3.54) by relabelling the power corresponding to
ϑk to ak + 1. Hence, limit and integral can be interchanged and we conclude
that the limiting integral exists. A computation as before shows that

T̆1 := lim
n→∞

(
∂
∂xBF10(s⃗2, x, n)

)∣∣∣
x=σ2

0

=

∏K−1
j=1 Γ(

νj
2 + uj)

2B(u)σ4
0 exp(−

s⃗s+
2σ2

0
)
G2, (E.3.55)

where

G2 :=

K−1∑
k=1

(νk2 + uk)U( ν⃗2 + u⃗+ e⃗k ;
ν⃗++1

2 − w + 1 ; s⃗s
2σ2

0
) (E.3.56)

− s⃗s+U( ν⃗2 + u⃗ ; ν⃗+
2 − w + 1 ; s⃗s

2σ2
0
), (E.3.57)

where e⃗k ∈ RK−1 denotes the kth basis vector that is one at the kth entry
and zero elsewhere. The analysis of the third order term is a repeat of that of
T̆1 and implies that the last term in Eq. (E.3.38) is indeed oP (n

−1
2 ) and the

result follows.

If YKi has four moments, then S2
K is asymptotically normal. In particular,

for normal data this explicitly means
√
n(S2

K−τ−1)
d→ N (0, 2τ−2) and implies

the following result.

Proof of asymptotic normality across-samples. A rewrite of Eq. (E.3.41) shows
that nK

√
nK

(
BF[K]

10 (y[K])− BF[K−1]

10 ;σ2
K
(y[K−1])

)
=
√
nK

(
S2
K − τ−1

)
T̃2(nK) (E.3.58)

+ oP (1)T̃3(nK). (E.3.59)
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A series expansion of T̃2(nK) in nK shows that T̃2(nK) = T2 +
1
n T̆2 + O( 1

n2
K
)

and the result follows. The term T̆2 can be derived explicitly as was done in the
proof of the previous theorem, but does not matter for the assertion, but its
presence reveals a finite sample O(n−1/2

K ) bias that vanishes as nK →∞.

The proof of across sample consistency relies on the following lemma.
Lemma 2 (Maximum of the marginalized likelihood). If a⃗, c⃗, ϑ⃗ ∈ RK−1 and
b ∈ R all positive and ϑ⃗+ < 1, then

f (⃗a, b, c⃗ | ϑ⃗) =
(K−1∏

j=1

ϑ
aj
j

)
(1− ϑ⃗+)

b(1−
K−1∑
j=1

[1− cj ]ϑj)
−(a++b), (E.3.60)

attains its maximum at

ϑ̂k =
ak
∏K−1

j ̸=k cj

b
∏K−1

j=1 cj +
∑K−1

i=1 ai
∏K−1

j ̸=i cj
, (E.3.61)

where
∏K−1

j ̸=k cj denotes the product of the elements of c⃗ with the kth element
taken out. �
Proof. Recall that the maximum is invariant under smooth transformations,
which allows us to study the problem in the parametrisation ξ⃗ = (ξ1, . . . , ξK−1),
where ϑj =

ξj

1+ξ⃗+
. The target function becomes

f (⃗a, b, c⃗ | ξ⃗) =
(K−1∏

j=1

ξ
aj
j

)
(1 +

K−1∑
j=1

cjξj)
−(a++b), (E.3.62)

and a direct computation shows that its gradient consists of elements
∂

∂ξk
f (⃗a, b, c⃗ | ξ⃗) = f (⃗a, b, c⃗ | ξ⃗)

[
ak
ξk
− (a++b)ck

1+
∑K

j=1 cjξj

]
. (E.3.63)

It is now easy to verify that for ξ̂ = (ξ̂1, . . . , ξ̂K−1) with ξ̂k = ak
bck

the vector of
partial derivatives is zero. Straightforward calculations show that for k 6= l ∈
[K − 1] that

∂2

∂ξk∂ξl
f (⃗a, b, c⃗ | ξ⃗) = f (⃗a, b, c⃗ | ξ⃗)

[
ak
ξk
− (a++b)ck

1+
∑K

j=1 cjξj

]
ξ⃗=ξ̂

= b2ckcl
a++b (E.3.64)

and for k ∈ [K − 1]

∂2

∂ξ2k
f (⃗a, b, c⃗ | ξ⃗) = f (⃗a, b, c⃗ | ξ⃗)

[
ak
ξk
− (a++b)ck

1+
∑K

j=1 cjξj

]
ξ⃗=ξ̂

= − (bck)
2(a[−k]++b)
ak(a++b) ,

(E.3.65)

from which we conclude that ξ̂ is a maximum. The transformation ϑ̂ = ξ̂k
1+ξ̂+

yields the results.
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E.4 Analysis Code

Here, we provide the code for all examples given in the main text.

devtools::install_github('fdabl/bfvartest', build_vignettes = TRUE)
library('bfvartest')

# 5.1 Sex Differences in Personality
twosd_test(n1 = 969, n2 = 716, sd1 = sqrt(15.6),

sd2 = sqrt(19.9), u = 0.50)

# 5.2 Testing Against a Single Value
x <- c(6.2, 5.8, 5.7, 6.3, 5.9, 5.8, 6.0)
n <- length(x)
sd_x <- sd(x) # use rounded 0.22 in the paper

## (i) BF_{+0}
onesd_test(

n = n, s = sd_x, popsd = sqrt(0.10),
u = 0.50, alternative_interval = c(1, Inf), log = FALSE

)

## (ii) BF_{10}
onesd_test(

n = n, s = sd_x, popsd = sqrt(0.10),
u = 0.50, alternative_interval = c(0, Inf), log = FALSE

)

## (iii) BF_{+0} informed
onesd_test(

n = n, s = sd_x, popsd = sqrt(0.10),
u = 2.16, alternative_interval = c(1, Inf), log = FALSE

)

# 5.3 Comparing Measurement Precision
n <- 990
sdigit <- 0.98
slaser <- 0.89

## (i) BF_{+0}
twosd_test(

n1 = n, n2 = n, sd1 = slaser, sd2 = sdigit,

276



Analysis Code

u = 0.50, alternative_interval = c(1, Inf), log = FALSE
)

## (ii) BF'_{0+} non-overlapping interval
1 / twosd_test(

n1 = n, n2 = n, sd1 = slaser, sd2 = sdigit, u = 0.50,
log = FALSE, null_interval = c(0.90, 1.10),
alternative_interval = c(1.10, Inf)

)

# 5.4 The "Standardization" Hypothesis in Archeology
ns <- c(117, 171, 55)
sds <- c(12.74, 8.13, 5.83)
hyp <- c('1=2=3', '1,2,3', '1>2>3')
res <- ksd_test(hyp = hyp, ns = ns, sds = sds, u = 0.50,

iter = 6000)
res$BF

# 5.5 Increased Variability in Mathematical Ability
ns <- c(3280, 6007, 7549, 9160, 9395, 6410)
sds <- c(5.99, 5.39, 4.97, 4.62, 3.69, 3.08)
hyp <- c('1=2=3=4=5=6', '1,2,3,4,5,6', '1>2>3>4>5>6')
res <- ksd_test(hyp = hyp, ns = ns, sds = sds, u = 0.50,

iter = 6000)
res$BF
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F.1 Example Code

The code below illustrates the proportion example in subsection 7.4.1. To in-
stall the package enter the Pkg REPL by typing ] and add EqualitySampler.
Alternatively, the package can be installed by importing the Pkg package:
import Pkg; Pkg.add(EqualitySampler).

using EqualitySampler, EqualitySampler.Simulations
import DataFrames as DF,

LinearAlgebra as LA,
NamedArrays as NA,
CSV,
AbstractMCMC

# assumes the working directory is the root of the GitHub repository
journal_data = DF.DataFrame(CSV.File(joinpath("simulations", "demos",

"data", "journal_data.csv")))

# K
n_journals = size(journal_data, 1)
# no of observed errors
errors = round.(Int, journal_data.n .* journal_data.errors)
# no of possible errors
observations = journal_data.n

# run 4 chains in parallel with 15_000 iterations per chain of which
# the first 5_000 are discarded
mcmc_settings = MCMCSettings(;iterations = 15_000, burnin = 5_000,

chains = 4, parallel = AbstractMCMC.MCMCThreads)

# nothing indicates no equality sampling is done and samples are
# drawn from the full model
chn_full = proportion_test(errors, observations, nothing;

mcmc_settings = mcmc_settings)
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# use a BetaBinomial(1, k) over the partitions
partition_prior = BetaBinomialPartitionDistribution(n_journals,

1, n_journals)
chn_eqs = proportion_test(errors, observations, partition_prior;
mcmc_settings = mcmc_settings)
# chn_full and chn_eqs contain posterior samples

# the posterior probability that two journals are equal
eqs_mat = compute_post_prob_eq(chn_eqs)
NA.NamedArray(

LA.UnitLowerTriangular(round.(eqs_mat; digits = 3)),
(journal_data.journal, journal_data.journal)

)
# 8×8 Named LinearAlgebra.UnitLowerTriangular{Float64, Matrix{Float64}}
# A \ B | "JAP" "PS" "JCCP" "PLOS" "FP" "DP" "JEPG" "JPSP"
# -------+---------------------------------------------------------------
# "JAP" | 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# "PS" | 0.134 1.0 0.0 0.0 0.0 0.0 0.0 0.0
# "JCCP" | 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
# "PLOS" | 0.0 0.0 0.909 1.0 0.0 0.0 0.0 0.0
# "FP" | 0.0 0.0 0.861 0.87 1.0 0.0 0.0 0.0
# "DP" | 0.0 0.0 0.864 0.886 0.881 1.0 0.0 0.0
# "JEPG" | 0.0 0.0 0.059 0.063 0.09 0.08 1.0 0.0
# "JPSP" | 0.0 0.0 0.0 0.0 0.005 0.0 0.852 1.0
# The table above is approximately equal to the right panel of Figure 7.6

F.2 Beta-binomial Prior with Decreasing Prior Model Odds

Proposition 3. The prior density of the beta-binomial distribution over par-
titions is decreasing for α = 1 and β ≥

(
K
2

)
, and strictly decreasing for α = 1

and β >
(
K
2

)
.

Proof. The prior density of the Beta-binomial over partitions is given by:

π (ρ | K,α, β) =

(
K − 1

|ρ| − 1

)
B (|ρ| − 1 + α, K − |ρ|+ β)

B (α, β)
{
K
|ρ|
} .

To examine the ratio of two consecutive model sizes we evaluate the ratio of
the prior for partitions ρ and q with |q| = |ρ|+ 1:

π (ρ | K, α, β)

π (q | K, α, β)
=

(
K−1
|ρ|−1

)(
K−1
|ρ|
) B (|ρ| − 1 + α, K − |ρ|+ β)

B (|ρ|+ α, K − |ρ| − 1 + β)

{
K

|ρ|+1

}{
K
|ρ|
} , (F.2.1)

=
|ρ|

K − |ρ|
β +K − |ρ| − 1

α+ |ρ| − 1

{
K

|ρ|+1

}{
K
|ρ|
} . (F.2.2)
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Using the recurrence relation of the Stirling numbers
{
n+1
k

}
= k

{
n
k

}
+
{

n
k−1

}
,

the ratio { K
|ρ|+1
}/{K|ρ|} is equivalent to {K+1

|ρ|+1
}/{ K

|ρ|+1
} − (|ρ| + 1). This ratio of

Stirling numbers was studied by Berg (1975) and their property 2 provides
this inequality {

K+1
|ρ|+1

}{
K

|ρ|+1

} − |ρ| − 1 ≥

{
K+1
|ρ|
}{

K
|ρ|
} − |ρ|.

It follows that the ratio in Equation (F.2.1) is maximal at |ρ| = K−1 and has
value

(
K
2

)
. Next, we fix α = 1 and solve π(K|K−1, 1, β)/π(K|K, 1, β) = 1 for β which

yields β =
(
K
2

)
. Thus β ≥

(
K
2

)
implies π (j + 1 | K, 1, β) ≥ π (j | K, 1, β)

(resp. β >
(
K
2

)
implies π (j + 1 | K, 1, β) > π (j | K, 1, β)).

F.3 Simulation Results for K = 9

Here we present the extended simulation results for the K = 9 group case.
Figure F.1 mirrors the results for the K = 9 case, namely that the pairwise
Bayes factors, the method proposed by Westfall et al. (1997), and the uniform
prior generally increase in performance as the number of inequalities increase,
while the other priors generally decrease in performance. Averaging over the
settings, we again find that the beta-binomial prior with β = 1, the uniform
prior, and the symmetric DP prior exhibit the worst error control, with the
method proposed by Westfall et al. (1997) performing best, closely followed
by the beta-binomial prior with β =

(
K
2

)
and the DP prior with α = 0.50.
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Figure F.1: Familywise error rate across priors and sample sizes under a
model with 0 (top left), 3 (top right), 5 (bottom left), and 7 (bottom right)
true inequalities for K = 9 groups. The rightmost panel shows the average
familywise error rate across inequalities.
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Figure F.2: Proportion of falsely claiming a difference between two groups
when there is none across priors and sample sizes under a model with 0 (top
left), 3 (top right), 5 (bottom left), and 7 (bottom right) true inequalities
for K = 9 groups. The rightmost panel shows the average error rate across
inequalities.
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G.1 Complete Model Comparison Table

Table G.1: Bayesian multi-model inference for the World Happiness example:
all 80 models. The leftmost column gives the model specification; the second
column gives the prior model probabilities; the third the posterior model prob-
abilities; the fourth the change from prior odds to posterior odds; the fifth the
Bayes factor relative to the best model; and the last gives R2.

Models P (M) P (M | data) BFM BF10 R2

W + Le + Ss + F + Le * Ss 0.013 0.759 248.244 1.000 0.821
W + Le + Ss + F + Ge + Le * Ss 0.013 0.097 8.531 7.783 0.822
W + Le + Ss + F + Poc + Le * Ss 0.013 0.093 8.101 8.157 0.822
Le + Ss + F + Le * Ss 0.013 0.027 2.233 27.591 0.805
W + Le + Ss + F + Ge + Poc + Le * Ss 0.013 0.012 0.924 65.617 0.823
Le + Ss + F + Ge + Le * Ss 0.013 0.005 0.413 145.922 0.807
Le + Ss + F + Poc + Le * Ss 0.013 0.004 0.329 182.965 0.807

W + Le + Ss + F 0.013 6.961 × 10−4 0.055 1089.774 0.794

Le + Ss + F + Ge + Poc + Le * Ss 0.013 6.672 × 10−4 0.053 1137.027 0.808

W + Le + Ss + F + Poc 0.013 3.179 × 10−4 0.025 2386.195 0.799

W + Le + Ss + F + Ge 0.013 2.676 × 10−4 0.021 2834.341 0.799

W + Ss + F 0.013 1.216 × 10−4 0.010 6239.227 0.781

W + Le + Ss + Poc + Le * Ss 0.013 8.133 × 10−5 0.006 9327.093 0.795

W + Le + Ss + F + Ge + Poc 0.013 6.763 × 10−5 0.005 11 216.690 0.802

W + Le + Ss + Ge + Le * Ss 0.013 6.430 × 10−5 0.005 11 796.826 0.794

W + Ss + F + Poc 0.013 5.121 × 10−5 0.004 14 813.739 0.786

W + Le + Ss + Le * Ss 0.013 4.945 × 10−5 0.004 15 340.968 0.786

W + Ss + F + Ge 0.013 4.745 × 10−5 0.004 15 988.688 0.786

W + Le + Ss + Ge + Poc + Le * Ss 0.013 2.911 × 10−5 0.002 26 057.578 0.799

Le + Ss + Ge + Le * Ss 0.013 1.404 × 10−5 0.001 54 049.136 0.782

Le + Ss + Poc + Le * Ss 0.013 1.313 × 10−5 0.001 57 757.710 0.782

W + Ss + F + Ge + Poc 0.013 1.102 × 10−5 8.710 × 10−4 68 808.309 0.789

Le + Ss + F 0.013 8.251 × 10−6 6.518 × 10−4 91 942.898 0.772

Le + Ss + F + Ge 0.013 8.136 × 10−6 6.427 × 10−4 93 244.135 0.780

Le + Ss + F + Poc 0.013 7.467 × 10−6 5.899 × 10−4 101 586.552 0.780

Le + Ss + Ge + Poc + Le * Ss 0.013 6.790 × 10−6 5.364 × 10−4 111 729.632 0.787

Le + Ss + Le * Ss 0.013 5.554 × 10−6 4.388 × 10−4 136 585.291 0.771

W + Le + F 0.013 2.891 × 10−6 2.284 × 10−4 262 420.104 0.769

Le + Ss + F + Ge + Poc 0.013 2.704 × 10−6 2.136 × 10−4 280 537.628 0.784

W + Le + F + Ge 0.013 9.872 × 10−7 7.799 × 10−5 768 432.339 0.773

W + Le + F + Poc 0.013 6.255 × 10−7 4.941 × 10−5 1.213 × 106 0.772

W + Le + Ss + Poc 0.013 4.229 × 10−7 3.341 × 10−5 1.794 × 106 0.770

W + Le + Ss + Ge + Poc 0.013 4.004 × 10−7 3.163 × 10−5 1.894 × 106 0.778

W + F 0.013 2.744 × 10−7 2.168 × 10−5 2.764 × 106 0.751

W + Le + Ss + Ge 0.013 1.846 × 10−7 1.459 × 10−5 4.109 × 106 0.768

W + Le + F + Ge + Poc 0.013 1.459 × 10−7 1.152 × 10−5 5.200 × 106 0.775

W + F + Ge 0.013 9.281 × 10−8 7.332 × 10−6 8.174 × 106 0.757
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Models P (M) P (M | data) BFM BF01 R2

Le + Ss + Ge + Poc 0.013 6.433 × 10−8 5.082 × 10−6 1.179 × 107 0.764

W + F + Poc 0.013 5.171 × 10−8 4.085 × 10−6 1.467 × 107 0.755

W + Ss + Ge + Poc 0.013 5.068 × 10−8 4.004 × 10−6 1.497 × 107 0.763

W + Ss + Poc 0.013 4.817 × 10−8 3.806 × 10−6 1.575 × 107 0.754

Le + Ss + Poc 0.013 3.788 × 10−8 2.992 × 10−6 2.003 × 107 0.753

W + Ss + Ge 0.013 2.468 × 10−8 1.949 × 10−6 3.074 × 107 0.752

Le + Ss + Ge 0.013 2.443 × 10−8 1.930 × 10−6 3.105 × 107 0.752

W + F + Ge + Poc 0.013 1.226 × 10−8 9.687 × 10−7 6.186 × 107 0.758

W + Le + Ss 0.013 9.055 × 10−9 7.153 × 10−7 8.378 × 107 0.748

W + Ss 0.013 9.655 × 10−10 7.628 × 10−8 7.857 × 108 0.730

Le + Ss 0.013 3.475 × 10−10 2.745 × 10−8 2.183 × 109 0.726

W + Le + Ge 0.013 7.183 × 10−11 5.674 × 10−9 1.056 × 1010 0.730

W + Le + Ge + Poc 0.013 6.835 × 10−11 5.399 × 10−9 1.110 × 1010 0.739

W + Le + Poc 0.013 3.995 × 10−11 3.156 × 10−9 1.899 × 1010 0.727

Le + F + Ge 0.013 3.838 × 10−11 3.032 × 10−9 1.977 × 1010 0.727

Le + F 0.013 2.344 × 10−11 1.852 × 10−9 3.236 × 1010 0.715

Le + F + Poc 0.013 8.976 × 10−12 7.091 × 10−10 8.452 × 1010 0.721

Le + F + Ge + Poc 0.013 6.562 × 10−12 5.184 × 10−10 1.156 × 1011 0.729

W + Ge 0.013 4.111 × 10−12 3.248 × 10−10 1.845 × 1011 0.708

W + Ge + Poc 0.013 3.515 × 10−12 2.777 × 10−10 2.158 × 1011 0.717

W + Le 0.013 2.243 × 10−12 1.772 × 10−10 3.382 × 1011 0.705

W + Poc 0.013 1.730 × 10−12 1.366 × 10−10 4.386 × 1011 0.704

W 0.013 9.747 × 10−14 7.701 × 10−12 7.782 × 1012 0.679

Le + Ge + Poc 0.013 1.394 × 10−14 1.101 × 10−12 5.442 × 1013 0.693

Le + Ge 0.013 1.326 × 10−14 1.048 × 10−12 5.719 × 1013 0.682

Ss + F + Ge 0.013 3.208 × 10−15 2.534 × 10−13 2.365 × 1014 0.687

Ss + F + Ge + Poc 0.013 2.238 × 10−15 1.768 × 10−13 3.389 × 1014 0.695

Le + Poc 0.013 1.655 × 10−15 1.307 × 10−13 4.584 × 1014 0.672

Ss + F + Poc 0.013 7.308 × 10−16 5.774 × 10−14 1.038 × 1015 0.680

Ss + Ge + Poc 0.013 2.201 × 10−16 1.739 × 10−14 3.446 × 1015 0.674

Ss + F 0.013 1.144 × 10−16 9.036 × 10−15 6.632 × 1015 0.659

Ss + Ge 0.013 3.897 × 10−17 3.079 × 10−15 1.947 × 1016 0.654

Le 0.013 3.039 × 10−17 2.400 × 10−15 2.497 × 1016 0.639

Ss + Poc 0.013 9.778 × 10−18 7.725 × 10−16 7.758 × 1016 0.647

Ss 0.013 4.226 × 10−21 3.339 × 10−19 1.795 × 1020 0.590

F + Ge 0.013 1.565 × 10−32 1.237 × 10−30 4.846 × 1031 0.417

F + Ge + Poc 0.013 5.599 × 10−33 4.424 × 10−31 1.355 × 1032 0.424

Ge + Poc 0.013 6.897 × 10−36 5.448 × 10−34 1.100 × 1035 0.346

F + Poc 0.013 6.589 × 10−36 5.206 × 10−34 1.151 × 1035 0.345

Ge 0.013 1.971 × 10−36 1.557 × 10−34 3.849 × 1035 0.313

F 0.013 9.958 × 10−37 7.867 × 10−35 7.618 × 1035 0.306

Poc 0.013 2.300 × 10−41 1.817 × 10−39 3.298 × 1040 0.188

Null model 0.013 1.435 × 10−46 1.134 × 10−44 5.286 × 1045 0.000
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G.2 Residuals versus Predictions for log-Wealth
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Figure G.1: Assumptions checks for Happiness predicted by log-transformed
Wealth. In contrast to the right panel of Figure 8.2, the red line is completely
flat and the variance is approximately constant across the predicted values.
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H.1 Parameter Estimates for the Sorting Hat Data

Table H.1: Parameter estimates for each of the houses in the data of Jakob et
al. (2019). The interpretation of each column is identical to that of Table 9.4.

95% CI
Predictor Level Mean SD Lower Upper

Intercept 26.923 0.215 26.46 27.337
Sorting house Gryffindor −0.568 0.357 −1.28 0.140

Hufflepuff −2.610 0.360 −3.34 −1.898
Ravenclaw −0.696 0.330 −1.36 −0.037
Slytherin 3.874 0.418 3.04 4.719
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I.1 Within-Participant Effects with Sphericity Corrections

Table I.1: Within-Participant Effects with Sphericity Corrections. Identical
to Table 10.1 but includes sphericity corrections. The general results remain
unchanged. Table from JASP.

Cases Sphericity
Correction

Sum of
Squares df Mean

Square F p

PT — 57532.64 1.00 57532.64 2.24 .152
Residuals — 461800.53 18.00 25655.59

Congruency — 33727.79 2.00 16863.89 22.16 < .001
Greenhouse-Geisser 33727.79 1.51 22314.52 22.16 < .001
Huynh-Feldt 33727.79 1.62 20814.49 22.16 < .001

Residuals — 27398.21 36.00 761.06
Greenhouse-Geisser 27398.21 27.21 1007.05
Huynh-Feldt 27398.21 29.17 939.35

PT * Congruency — 3124.49 2.00 1562.25 2.29 .115
Greenhouse-Geisser 3124.49 1.33 2345.32 2.29 .137
Huynh-Feldt 3124.49 1.39 2233.94 2.29 .134

Residuals — 24488.84 36.00 680.25
Greenhouse-Geisser 24488.84 23.98 1021.22
Huynh-Feldt 24488.842 25.18 972.72

I.2 Changes to Bayesian ANOVAs in JASP

The latest version of JASP (0.16.3) introduces additional changes designed
to increase the flexibility of Bayesian ANOVA, which we discuss below. In

291



I. APPENDIX OF CHAPTER 10

contrast to the modified model specification presented in the main text, these
additional changes have no consequence for the results of previous analyses.

I.2.1 Principle of Marginality

A long-standing debate in the statistical literature concerns which models to
compare when testing main effects in the presence of interactions.1 One op-
tion is to compare the complete model, containing all possible main effects
and interactions, to the nested model that omits the to-be-tested main effect.
In our example, the model PT + PT * Congruency would be compared to
PT + Congruency + PT * Congruency. This top-down approach is recom-
mended by the US Food and Drug Administration (1988) and corresponds to
Type III-sums of squares in frequentist ANOVA. Proponents of the principle
of marginality reject the top-down approach (Nelder, 1977; Venables, 2000):
They argue that testing main effects in the presence of interactions, while pos-
sible, tests practically nonsensical hypotheses (p. 50 Nelder, 1977). Therefore,
analysts should proceed to test simple effects rather than main effects. Ac-
cordingly, the principle of marginality demands that a model which includes
an interaction must include all main effects that are marginal to (i.e. part
of) it. The top-down model comparison violates the principle of marginality
because the null model PT + PT * Congruency omits the main effect PT that
is marginal to the interaction PT * Congruency. A test of main effects that
respects the principle of marginality compares a model including only main
effects to the nested model that omits the to-be-tested main effect. In our ex-
ample, the model PT would be compared to PT + Congruency. This approach
corresponds to Type II-sums of squares in frequentist ANOVA.

Because the principle of marginality is a general statement about model
specification, the controversy is not limited to pairwise model comparisons. In
a model averaging context, proponents of the principle of marginality argue to
exclude all models that violate the principle from consideration (i.e. assign a
prior probability of 0), rather than considering every possible model (Rouder
et al., 2016).

It is worth noting that the two approaches only diverge if the effects are
correlated, i.e. main and interaction effects compete to account for variance
in the dependent variable. Effects may be correlated when, for example, inde-
pendent variables are observed rather than manipulated or when the design is
unbalanced design. If all effects are uncorrelated, both approaches will yield
the same results.

For frequentist ANOVA, JASP users can choose either Type II or Type III
sums of squares (with the latter, violating the principle of marginality, being

1The same considerations apply to testing lower-order (e.g., two-way) interactions in the
presence of a higher-order (e.g., three-way) interaction.
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the default). In contrast, the Bayesian ANOVA in JASP previously enforced
the principle of marginality, both in pairwise model comparisons and model
averaging. Now, JASP also allows Bayesians to consider the complete model
space and perform the pairwise model comparisons recommended by the Food
and Drug Administration. As is customary, in repeated-measures ANOVA
the principle of marginality is only applied to fixed effects; we include all
random slope effects in all models.2 Whether the principle of marginality
should extend to random slopes is subject of current debate (Heathcote &
Matzke, 2021; Rouder et al., 2022; van Doorn et al., 2021).

I.2.2 Model priors

A change to all Bayesian ANOVAs is that the prior over the models can be ad-
justed. Previously, we used a uniform model prior by default. This means that
the prior probability of each model is equal to one divided by the total num-
ber of models. However, the uniform model prior does not penalize for model
complexity and a-priori favors models with half of the total predictors. We
now provide five alternatives, the Beta-binomial prior (Scott & Berger, 2010),
the Wilson prior (M. A. Wilson et al., 2010), the Castillo prior (Castillo et
al., 2015), the Bernoulli prior, and a custom option. The Beta-binomial prior
assigns prior mass to the number of included predictors and then distributes
this mass equally across all models with that number of predictors. For ex-
ample, given a Beta-binomial prior (1, 1) the prior probability of the set of
models that include one predictor is equal to the set of models with two pre-
dictors. The prior probability of a specific model that includes one predictor
can be obtained by dividing the prior probability of including one predictor
by the number of models that include one predictor. The Wilson prior and
Castillo prior are variants of the Beta-binomial prior tailored to large designs
with many predictors. The Bernoulli prior requires the specification of a prior
probability p for including any predictor. If the total number of variables is
denoted K and a particular model includes j variables then the prior proba-
bility of that model is given by pj(1− p)K−j . A straightforward extension of
the Bernoulli prior is to specify a value for p individually for each predictor,
which is the manual prior.

I.2.3 Parameter priors

Aside from prior distributions over models, the Bayesian ANOVA also requires
the specification of a prior distribution on the effects within a model (i.e.,

2In our example, the unabridged specification including random slopes reads PT +
participant + participant * PT + participant * Congruency and PT + Congruency
+ participant + participant * PT + participant * Congruency.
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the coefficients). Following Rouder et al. (2012), we use the Jeffreys–Zellner–
Siow prior. This prior has one hyperparameter called r, which determines the
width of this distribution. Previously, one value of r could be specified for
the groups of fixed effects, covariates, and random effects. Now, analysts have
more flexibility: It is possible to supply separate values of r for any individual
fixed and random effects considered.

I.3 Model Table for Simultaneous Fixed and Random Effects

Table I.2: Bayesian Comparisons of Models while introducing Fixed and
Random Effects Simultaneously. Model formulas simultaneously introduce
fixed effects and random slopes (i.e. PT + PT * participant). P(M) and
P(M|data), respectively, indicate prior and posterior model probabilities; BF10
indicates Bayes factors relative to the best performing model; error is the
relative error associated with the numerical method used to estimate the Bayes
factors.

Models P(M) P(M|data) BF10 error

PT + Congruency 0.200 0.615 1.000
PT + Congruency + PT * Congruency 0.200 0.385 0.627 3.893
PT 0.200 2.235 · 10−5 3.636 · 10−5 9.973
Null model (incl. subject and random slopes) 0.200 1.637 · 10−26 2.663 · 10−26 1.903
Congruency 0.200 7.185 · 10−30 1.169 · 10−29 1.906
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