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Abstract: The azimuthal angular decorrelation of a vector boson and jet is sensitive to
QCD radiation, and can be used to probe the quark-gluon plasma in heavy-ion collisions.
By using a recoil-free jet definition, the sensitivity to contamination from soft radiation on
the measurement is reduced, and the complication of non-global logarithms is eliminated
from our theoretical calculation. Specifically we will consider the pnT recombination scheme,
as well as the n → ∞ limit, known as the winner-take-all scheme. These jet definitions
also significantly simplify the calculation for a track-based measurement, which is preferred
due to its superior angular resolution. We present a detailed discussion of the factorization
in Soft-Collinear Effective Theory, revealing why the transverse momentum ~qT is more
complicated than the azimuthal angle. We show that potential glauber contributions do not
spoil our factorization formalism, at least up to and including order α3

s. The resummation
is carried out using the renormalization group, and all necessary ingredients are collected
or calculated. We conclude with a detailed phenomenological study, finding an enhanced
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matching correction for high jet pT due to the electroweak collinear enhancement of a boson
emission off di-jets. We also compare with the Pythia event generator, finding that our
observable is very robust to hadronization and the underlying event.

Keywords: Factorization, Renormalization Group, Jets and Jet Substructure, Resumma-
tion
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1 Introduction

At hadron colliders, the simplest jet measurements involve a single jet, which recoils against
a color-singlet object produced alongside it. In the transverse plane momentum conservation
enforces an (almost) back-to-back orientation of the jet and the color singlet. We will focus
on the case of a Z boson balancing against the jet, but our approach can also be applied to
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other color singlets such as a photon, W or Higgs boson. With only a single jet in the final
state, this process is the minimal extension beyond the 0-jet case at hadron colliders, and
of significant experimental interest at hadron colliders [1–7]. In particular, in heavy-ion
collisions [5, 7] the boson provides an inert reference for the jet since it does not interact
strongly with the quark-gluon plasma [8]. Therefore the process can be used to study the
medium properties.

Accordingly, efforts towards precise theoretical predictions for boson-jet correlations have
been made in hadron collisions: Fixed-order results have been calculated to next-to-next-to-
leading order in the QCD corrections [9–21], while resummed results for the near-planar
case exhibiting Sudakov logarithms have been derived to next-to-leading logarithmic (NLL)
accuracy at hadron colliders for various vector (and scalar) bosons [22–27]. Efforts have
also been made in heavy-ion collisions to study the azimuthal decorrelation [23] as well as
the transverse momentum imbalance and other related observables (see [28] for a review).

In this paper, we study the deviation from the back-to-back configuration in V+jet
production, by including QCD corrections from the dominant contribution from soft
and collinear radiation. We demonstrate in detail that the azimuthal decorrelation, in
combination with a recoil-free jet definition, has a particularly simple theoretical description:
the non-global logarithms (NGLs) [29] are absent.1 This allows us to obtain resummed
predictions at next-to-next-to-leading logarithmic (NNLL) accuracy, as first reported in [30],
and opens up the possibility for an N3LL analysis to match to the next-to-next-to-leading
order (NNLO) calculations in [9–21], since many ingredients are already available. Also, if
the jet is measured using charged particle tracks, rather than the full set of all final state
particles, this can be described using the track function formalism [31, 32] with minimal
nonperturbative input (an integral over the track functions). In contrast, the azimuthal
decorrelation with the standard jet axis suffers — as is typical for jet observables — from
the presence of non-global logarithms, which has so far hindered resummation beyond the
NLL accuracy. The effects of NGLs are instead power suppressed in the case we consider.
While our main focus is on the Winner-Take-All (WTA) recombination scheme [33, 34],
we also determine the effect of a different choice of recoil-free (i.e. momentum-weighted)
axis. This only leads to a minor modification in the constant term in the jet function. We
furthermore explore the other component of the V+jet transverse momentum imbalance,
which we refer to as the radial decorrelation. Because the factorization structure is much
more complicated, even for a recoil-free axis, we do not further pursue it here, but include
it as an illustrative foil to the azimuthal decorrelation.

The program outlined in the previous paragraph is conducted based on a factorization
formula derived using Soft-Collinear Effective Theory (SCET) [35–39]. We calculate the
necessary ingredient functions, where not yet available, and explore potentially factorization
violating effects from Glauber gluons, identifying the order at which they may first contribute.

1Different recombination schemes for the azimuthal angle were first considered in ref. [22]. The H1
scheme they consider (which corresponds to n = 1 in eq. (4.20)) does not have non-global logarithms of the
azimuthal decorrelation. Unlike the case we study, the H1 scheme does have non-global logarithms of the jet
radius parameter R, since the contribution of soft radiation inside the jet is suppressed compared to soft
radiation outside it, due to a cancellation φ− sinφ ≈ O(φ3).
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Our main result consists of a phenomenological study, consisting of numerical results for
the analytic resummation at NNLL accuracy. We include a discussion of the resummation,
perturbative uncertainties, nonperturbative effects, and the matching to fixed order. We
furthermore study features of this observable using Pythia, and compare to our NNLL
result. As promised by the recoil-free axis, we find that the observable is insensitive to
soft effects (hadronization, underlying event), a rather small sensitivity to the jet radius,
and negligible differences when measuring the decorrelation on tracks. The uncertainty
band of our resummed predictions are reduced when going from NLL to NNLL. Our
resummed results are consistent with Pythia, except for the matching corrections from the
NLO cross section (as we didn’t match Pythia to NLO). These matching corrections are
substantial for high jet pT , and arise from the boson being emitted from a leading order
dijet configuration. Though this is formally power suppressed in the back-to-back limit, it
is enhanced by an electroweak logarithm. While we focus on the WTA axis, we also explore
pnT -weighted recombination schemes, and these conclusions also hold there (if n > 1).

The paper is structured as follows: We introduce the kinematic setup and discuss
different observables measuring the transverse momentum decorrelation of the V+jet pair
in section 2. Section 3 establishes the factorization formula, gathers the available ingredient
functions, and includes a brief discussion of factorization violation induced by a Glauber
mode. Section 4 contains various calculations relating to the jet function: The linearly
polarized jet function appearing in our factorization formula, as well as the changes to the
jet function induced by the use of a different recoil-free jet axis or track-based measurements,
respectively. We establish our resummation strategy in section 5 (with certain ingredients
relegated to appendix A) which is then carried out to derive the results in section 6. We
conclude in section 7.

2 Boson-jet correlation

2.1 Geometry of the collision

We begin by describing the geometry of the collision and defining the observable for which
we perform the resummation. It will be instructive to contrast our target observable, the
azimuthal decorrelation, with the closely related radial decorrelation. (These correspond to
the two components of the difference in transverse momentum between vector boson and jet.)
This comparison will demonstrate in detail where simplifications due to the choice of a recoil-
free recombination scheme arise and how non-global effects are suppressed: While using a
recoil-free axis removes non-global logarithms for the azimuthal decorrelation, the radial
variety still suffers from NGLs and needs to include effects related to the technical definition
of this axis. For concreteness we discuss the case of the Winner-Take-All (WTA) axis.

The geometric setup is illustrated in the left panel of figure 1, where we choose to align
the y-axis with the reconstructed jet axis (its projection onto the transverse plane, to be
precise). Our starting point is momentum conservation in the transverse plane, which reads

~pT,a + ~pT,b + ~pT,S + ~pT,c + ~pT,V = 0, (2.1)
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Figure 1. Left: The azimuthal angle between the vector boson (green) and jet axis (blue) is
related to the momentum of the vector boson px,V transverse to the colliding protons (red) and
jet. Collinear initial (purple) and final-state (blue) radiation and soft radiation (magenta) is also
shown. Right: Schematic of the transverse plane: the angle φc between WTA axis (along y axis)
and collective collinear momentum, the angle φij between two generic collinear emissions i and j,
and the angular decorrelation observable δφ. These quantities are of the same parametric size.

and expresses that the vector boson (with transverse momentum ~pT,V ) recoils against
emissions off the beams (~pT,a, ~pT,b), soft radiation (~pT,S), and the total collinear radiation
in the jet (~pT,c). Note that ~pT,c is non-trivial, i.e. possesses both x and y-components, as
we chose to align our coordinate axes with the reconstructed jet axis ~pT,J , which in the
WTA case does not follow the collective momentum of all collinear emissions in the jet: As
detailed in ref. [34], the WTA axis always follows the orientation of one input particle (not
necessarily the most energetic one, which would not be collinear safe), whereas the total
momentum in general is not aligned with any individual particle direction.

To illustrate this point, we revisit the WTA recombination scheme and the associated
axis in detail: in sequential jet clustering algorithms, particles are pairwise recombined and
assigned a joint 4-momentum. For the WTA recombination scheme, this joint momentum
is taken massless, and points along the direction of the “harder” of the two particles in
the pair. The criterion to determine which of two particles is the harder is typically the
hierarchy in either the particle energy (“WTA-E-scheme”) or the transverse momentum
(“WTA-pT -scheme”).2 The latter choice is of course more suitable for hadron colliders and
shall therefore be used here. The magnitude of the newly combined pseudo-particle is the
sum of the energies or the scalar sum of transverse momenta — the “winner” absorbs the

2See e.g. ref. [40] vs. [34]. Note that this scheme choice also affects the order in which particles are
clustered, which in the former is determined by their energy, while in the latter it follows from their
transverse momentum.
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loser, so to speak. The WTA axis is then simply the final pseudo-particle after clustering.
It is in principle possible that many soft emissions are clustered into one highly energetic
pseudo particle that emerges as the winner, but this is extremely unlikely because they
would have to be clustered together first to stand a chance against collinear emissions,
contrary to the expectation that they are spread out over the jet. Thus the WTA axis will
be aligned with one of the collinear emissions, rendering its direction free of soft recoil.

The WTA axis is a particularly powerful tool when combined with SCET, because it
can exploit the parametric hierarchy of the modes in SCET to simplify the calculation: As
stated, the magnitude of the jet axis will be a sum of transverse momenta

|~pT,J | =
∑
i

|~pT,i|, (2.2)

where the sum runs over all emissions in the jet. One consequence of the WTA recombination
is then that soft emissions inside the jet can affect the magnitude as participants in this sum,
but never the orientation, as soft emissions always lose against collinear emissions when
determining with which emission the axis should be aligned. The dependence of the axis
on soft emissions can be expanded away and represents a subleading effect in the effective
theory — and in some cases even the dependence in the magnitude can be expanded away,
with more details laid out in the following two sections.

The azimuthal angle is now directly related to the (dimensionful) offset between vector
boson and reconstructed jet momentum, defined as

~qT ≡ ~pT,V + ~pT,J

= ~pT,J − ~pT,c − ~pT,a − ~pT,b − ~pT,S . (2.3)

In the absence of QCD radiation, ~qT vanishes, and the limit of small ~qT is of interest for
the resummation. The angular decorrelation can be e.g. written as δφ = arcsin qx/|pT,V | ≈
qx/|pT,V |, and is essentially a dimensionless version of the dimensionful ~qT .

2.2 Azimuthal and radial decorrelation

Besides the azimuthal decorrelation, which represents the tangential offset qx as shown in
figure 1, we can define a second quantity of interest here, the radial decorrelation, using qy.
Using eq. (2.1) these can be written as

qx = px,V + px,J qy = py,V + py,J (2.4)
= px,V = py,J − py,a − py,b − py,S − py,c
= −px,a − px,b − px,S − px,c

where we used that px,J = 0 due to the alignment of the y-axis with the WTA axis. We
expect the contributions from the beams to be isotropic in the transverse plane (and their x-
or y-dependence therefore to be similar) and the soft function to capture the y-dependence
via its dependence on the geometry of the beam-jet system, so to proceed we need to
understand the relation between ~pT,J and ~pT,c, i.e. the reconstructed WTA axis and the
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collective collinear momentum of the jet, and their components.3 Right from the start it
is clear that the radial decorrelation is more complex, as it involves a large cancellation
between the boson and jet axis magnitude.

For ~pT,c and its decomposition into x- and y-components, this yields the situation
illustrated in the right panel in figure 1. Thus

px,c = |~pT,c| · sinφc ≈ |~pT,c| · φc, (2.5)

where ~pT,c (which is of the order of the center-of-mass energy Q) is the vector sum of all
collinear emissions off the parton initiating the jet, and φc measures the angular separation
between the WTA axis and the collective collinear momentum flow.

To obtain δφ or qx, we still need to include the collinear and soft contributions in eq. (2.4).
As the x-direction is perpendicular to the plane containing both the jet and the beams, we
expect the appropriate SCET modes to scale — with notation pµ = (nb · p, na · p, p⊥) — as

pa ∼ Q(1, φ2
c , φc), pb ∼ Q(φ2

c , 1, φc),
pS ∼ Q(φc, φc, φc), pc ∼ Q(1, φ2

c , φc)J ,
(2.6)

where the scaling for the jet — with subscript J — is to be understood as scaling of lightcone
components based on the jet direction, i.e. pµ = (n̄J · p, nJ · p, p⊥)J . We thus find a SCETII
situation, as expected for a de facto transverse momentum measurement.

Finally, note that there is no special dependence on soft in-jet radiation: It is always
expanded away when the jet axis direction is determined, but it can also be expanded away
in the magnitude in this case, as the azimuthal decorrelation only depends on the direction
of the jet axis, which determines the coordinate system we use to define it.

2.3 Properties of the radial decorrelation

We will now contrast this surprisingly simple observable with the radial decorrelation qy,
where the details of the recombination become explicitly relevant. We emphasize that we
do not wish to actually perform the resummation for this observable, but merely include
this discussion to highlight why the azimuthal decorrelation is so amenable to precision
calculations.

A key insight is that while py,J in eq. (2.4) includes a sum over collinear (and soft)
momenta, it makes use of a scalar sum and aligns it with a collinear emission’s direction,
while py,c is a component of a vector sum. Iterating the law of cosines/binomial theorem
over all relevant momenta, the vector and scalar sum of collinear momenta can be related,
to

|~pT,c| =
∣∣∣∣∑
i∈c

~pT,i

∣∣∣∣ =
∑
i∈c
|~pT,i| ·

√√√√1−
2
∑
i<j |~pT,i||~pT,j |(1− cosφij)

(
∑
i∈c |~pT,i|)

2 . (2.7)

Here φij are the pairwise opening angles between emissions i and j, which satisfy φij � 1
because i and j are both collinear. Thus we can expand the above expression to obtain∣∣∣∣∑

i∈c
~pT,i

∣∣∣∣ ≈∑
i∈c
|~pT,i| −

∑
i<j |~pT,i||~pT,j |φ2

ij

2
∑
i∈c |~pT,i|

. (2.8)

3This is also true for qx, which depends implicitly on ~pT,J , through our choice of coordinate system.

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
6

We can now derive the expression for the radial decorrelation: As px,J = 0 due to
our choice of conventions, py,J is the scalar sum of all momenta inside the jet, which for
R� δφ includes all collinear radiation, as well as the soft emissions that end up in the jet:
py,J = |~pT,J | =

∑
i∈(s∈J) |~pT,i|+

∑
i∈c |~pT,i|. This leads to

qy = py,J − |~pT,c| cosφc − py,S − py,a − py,b

= −py,a − py,b︸ ︷︷ ︸
beam functions

+
∑

i∈(s∈J)
|pT,i| − py,S︸ ︷︷ ︸

soft function

+
∑
i∈c
|~pT,i|

φ2
c

2 +
∑

(i<j)∈c |~pT,i||~pT,j |φ2
ij

2
∑
i∈c |~pT,i|︸ ︷︷ ︸

jet function

, (2.9)

where the leading scalar sum of collinear momenta cancelled, and the corresponding functions
in the factorization are indicated. The expected power counting of the modes involved is
also non-trivial: The jet power counting is determined by its ⊥-component, which must scale
as O(Qφc), as the angle between WTA axis (i.e. one of the emissions) and the collective
collinear momentum has to be parametrically similar to the opening angle of collinear
splittings. The transverse components py,a and py,b for the beams must scale as O(Qφ2

c) to
contribute at equal footing with the jet contributions in (2.9). The soft contributions are
isotropic and a similar argument applies. It thus follows that

pa ∼ Q(1, φ4
c , φ

2
c), pb ∼ Q(φ4

c , 1, φ2
c),

pS ∼ Q(φ2
c , φ

2
c , φ

2
c), pJ ∼ Q(1, φ2

c , φc)J ,
(2.10)

which is an interesting combination of SCETI and SCETII characteristics. For the beams
this is a transverse momentum measurement, and so they share the virtuality of the soft
emissions, as typical in SCETII. The jet, however, measures essentially an invariant-mass-like
observable, a SCETI situation.

We also note that the differing treatment of soft radiation inside and outside the jet
means this observable exhibits non-global logarithms. This is a persistent feature: while it
is e.g. possible to remove the term depending on pairs of collinear emissions from eq. (2.9)
by determining the magnitude of ~pT,J using a vector-sum-based recombination scheme, the
inclusion of soft in-jet emissions will also be present in such a case.

From the above discussion we can now understand why the azimuthal decorrelation is
so simple, by comparison: The non-trivial effects present in its radial sibling, including the
appearance of non-global logarithms, are O(φ2

c) effects, and are therefore power suppressed
compared to the dominant contributions to azimuthal decorrelation in (2.5), which are O(φc).

2.4 Extensions

We conclude this section, by discussing other recoil-free axes, double differential measure-
ments in the azimuthal and radial decorrelation and tracks for the radial decorrelation:

First, we note that the choice of a recoil-free axis other than the WTA-axis (in essence
the FastJet [41] recombination scheme of equation (4) with wi = pnTi and 1 < n <∞, see
also eq. (4.20)) constitutes a small change for the azimuthal recombination: as long as it is
recoil free, only the jet function will be changed, and we will calculate the corresponding
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jet function in section 4.2. (For the radial decorrelation this may be a more intricate affair,
as subleading effects are elevated by virtue of a large cancellation.)

Second, we point out that measuring any quantity in the ~q-plane other than the
elementary qx and qy is a de facto double-differential measurement, and requires the
specification of the relative scaling of the qx and qy components, to cleanly establish which
contributions to the observable from the different regions (or ingredient functions) are
subleading and can be neglected. This ultimately is a consequence of the different scaling
of qx and qy themselves, in terms of power counting. In particular, one could consider
qx ∼ qy or q2

x ∼ Qqy, which correspond to making the factorization of the azimuthal or
radial decorrelation differential in both qx and qy, or something in between (see e.g. ref. [42]
for a factorization description of double differential measurements).

Finally, we point out that using track-based measurements is a possibility for the
azimuthal decorrelation, and will be discussed in 4.3, but is firmly ruled out for the radial
decorrelation. The reason is simply that the vector boson will always be fully reconstructed
with all of its transverse momentum, but the jet axis is only established based on the
particles included in the jet recombination. If all collinear particles are clustered into the
jet, the jet axis magnitude is roughly equal to the total collinear transverse momentum,
and the cancellation against the vector boson transverse momentum establishes the radial
decorrelation as a small quantity, which vanishes in the singular limit. A resummation
program can then be set up. If tracks are used, however, only the subset of charged particles
in the final state contributes to the jet axis. The difference to the vector boson pT is
therefore a large quantity, finite even in the singular limit, and given by the transverse
momentum of the neutral particles in the jet. The azimuthal decorrelation is unaffected, as
it does not involve a large cancellation.

3 Factorization

In the previous section we performed an analysis of the contributions to the transverse
momentum ~q of the boson+jet system from soft and collinear emissions, indicating that
these contributions are dominant at leading power. In the limit where qx is small, the
infrared structure of QCD results in large logarithms of ln(Q/qx) caused by soft and collinear
emissions from initial state beam partons and final state jet partons (and similarly for
qy). To obtain reliable predictions in this limit, we will derive a factorization formula
in section 3.1, that enables us to resum these large logarithms, which will be discussed
in section 5. Resummation to next-to-next-to-leading logarithmic accuracy requires the
ingredients of the factorization theorem at one-loop order, given in section 3.3 or calculated
in section 4,4 as well as their anomalous dimensions at two-loop order (and the three-loop

4The calculation of the one-loop gluon jet function is detailed in section 4.1, showing for the first time how
to obtain the linearly-polarized contribution. Generalizing the WTA recombination scheme to the recoil-free
pnT scheme (with n > 1) only results in a modification of the jet function, which is calculated in section 4.2.
Switching to track-based measurements also only affects the jet function constant, this calculation is outlined
in 4.3.
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cusp anomalous dimension), collected in section 5.1. Finally, in section 3.4 we discuss the
contribution from Glauber gluons, showing that they may first appear at O(α4

s).

3.1 Factorization formula for azimuthal decorrelation

As the sum of momenta in (2.4) shows, the component qx of the vector boson perpendicular
to the jet axis receives contributions from a linear sum of four terms. Three of these terms
represent the characteristic emissions from one of the hadronic directions, and by choosing the
WTA axis, the other term is the momentum component of all soft radiation in the collision.
We will consider the case where the azimuthal decorrelation δφ = arcsin(qx/pT,V ) ≈
qx/pT,V � R, so that contributions from out-of-jet emissions are suppressed by powers of
δφ/R. This implies that the observable δφ is not sensitive to the non-global correlation
between radiation inside and outside the jet. Starting with these assumptions, we can
factorize the cross section, which allows us to calculate the δφ distribution at high logarithmic
accuracy. The corrections to this factorization are suppressed by powers of δφ, and can be
included for the region where δφ is not small by matching to the fixed-order prediction for
the cross section, as discussed in section 5.2.

A factorization formula for the boson-jet transverse momentum imbalance qT was
derived by some of us in ref. [25], for the case where jets are defined using the anti-kt
algorithm with the standard recombination scheme. In that case, the jet axis is along
the direction of the total jet momentum, and is sensitive to recoil from soft radiation
enclosed within the jet boundary. As a consequence, the cross section receives nonglobal
contributions that involve soft radiation inside and outside the jet, preventing a simple
factorization of collinear and soft contributions (though there has been substantial progress
in resumming nonglobal logarithms, see e.g. [29, 43–52]). Here we instead use the WTA
recombination scheme for jet clustering, which is only sensitive to the total amount soft
emissions. The WTA axis is sensitive to the distribution of collinear radiation in the jet, but
the contributions from collinear emissions off the beams are the same as for the standard
jet axis case.

We start from a general differential momentum distribution of all the particles in an
event and project it onto the observable qx,

dσ
dqx dpT,V dyV dηJ

=
∫

dΦN
dσ

dΦN dpT,V dyV
δ(qx − q̂x) δ(ηJ − η̂J) , (3.1)

where dΦN =
∏N dpi θ(p0

i ) δ(p2
i ) is the complete phase space of final state particles except the

boson, whose transverse momentum and rapidity are denoted by pT,V and yV , respectively.5

Similarly, the transverse momentum and pseudo-rapidity of the jet are labelled pT,J and
ηJ . The delta function restricts the value of the observable qx, through the measurement
function q̂x, which is a function of final state particle momenta {pi}. The leading power

5As the jet and vector boson recoil in the transverse plane, we could choose to keep pT,J differential,
instead of pT,V . However, pT,J is the reconstructed jet momentum, and as such loses its sensitivity to
the hard scattering kinematics if we measure the angular decorrelation using tracks: the neutral particles’
contribution will then be missing, and pT,J will no longer be parametrically similar to pT,V . We therefore
pick the more robust pT,V .
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region of soft and collinear emissions, denoted as XIR, thus constitutes the relevant degrees
of freedom in the SCET of the observable qx,

dΦN → dXIR = dXa dXb dXc dXS , (3.2)

where dXa, dXb, dXc and dXS correspond to the differential phase space of collinear
emissions of beam a, beam b and jet c, as well as soft emissions from these collinear
directions.

From (2.4) we see that the measurement q̂x simplifies, as

qx = −px,a − px,b − px,S − px,c , (3.3)

with the contribution from each factorized IR sector given by6

px,a = px,Xa , px,b = px,Xb , px,S = px,XS , px,c = px,Xc . (3.4)

Therefore, at leading power, the differential cross section can be organized as follows,

dσ
dqx dpT,V dyV dηJ

=
∫

dpx,a dpx,b dpx,c dpx,S δ
(
qx + px,a + px,b + px,c + px,S

)
× dσ

dpx,a dpx,b dpx,c dpx,S dpT,V dyV dηJ
. (3.5)

In the next section we will discuss how the soft-collinear decoupling in the SCET La-
grangian allows us to factorize the multi-differential cross section dσ/(

∏
i dpx,i dpT,V dyV dηJ )

to obtain
dσ

dqx dpT,V dyV dηJ
=
∫

dpx,a dpx,b dpx,c dpx,S δ
(
qx + px,a + px,b + px,c + px,S

)
(3.6)

×
∑
ijk

Hij→V k(pT,V , yV − ηJ)B̃i(xa, px,a)B̃j(xb, px,b)J̃k(px,c)S̃ijk(px,S , ηJ) .

Here the indices i, j, k label the partonic channels of the hard scattering processes, encoded
in the hard function H, producing a high-transverse momentum boson V recoiling against
the jet. The contribution to qx of collinear initial and final-state radiation is described
by the beam functions B̃ and jet function J̃ , and the soft function S̃ accounts for the
contribution from soft radiation. (The tilde signifies that these functions are defined in
momentum space, not impact parameter space.) The treatment of Lorentz and color indices
in deriving eq. (3.6) will be discussed in the next section, and leads to a linearly-polarized
contribution from gluon beams and jets, for which there is a corresponding change to the
hard function H. The Bjorken variables xa and xb are determined by the boson and jet
kinematics,

xa = 1√
s

(
eηJpT,V + eyV

√
p2
T,V +m2

V

)
, xb = 1√

s

(
e−ηJpT,V + e−yV

√
p2
T,V +m2

V

)
.

(3.7)
6Remember that px,c sensitively depends on the WTA scheme, since the y-axis is along the jet direction.
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We can eliminate the convolution in the above factorization formula by switching to the
impact parameter variable bx, which is the Fourier conjugate of qx,

dσ
dqx dpT,V dyV dηJ

=∫ dbx
2π e

ibxqx
∑
ijk

Hij→V k(pT,V , yV − ηJ)Bi(xa, bx)Bj(xb, bx)Jk(bx)Sijk(bx, ηJ) (3.8)

The factorization formula in impact parameter space thus has a product form. In the next
section we will present some details of the derivation of the above factorization formula,
and discuss each factorized component.

3.2 Derivation of factorization formula

We will derive the factorization theorem using Soft-Collinear Effective Theory (SCET) [35–
39]. For an introduction to SCET, see e.g. refs. [53, 54]. The leading operators describing
the hard scattering for Z+jet production are [55]

OSνqq̄ (b, ta, tb, tc) =

χ̄nb(b+ tbn̄b)S†nb(bx)Snc(bx)Bν,Anc⊥(b+ tcn̄c)tAS†nc(bx)Sna(bx)χna(b+ tan̄a)
OTνqq̄ (b, ta, tb, tc) =

χ̄nb(b+ tbn̄b)S†nb(bx)Snc(bx)iσνρB
ρ,A
nc⊥(b+ tcn̄c)tAS†nc(bx)Sna(bx)χna(b+ tan̄a) . (3.9)

The superscripts S and T on the operators label different quark spin structures. The
four-vector b denotes the position of the operator and the ti will be integrated over in the
matching in eq. (3.10) below. The lightcone directions na, nb and nc are along the two
beams and jet directions, and χni = W †niξni (χ̄ni = ξ̄niWni) is the collinear quark field and
Bµni⊥ = 1

gW
†
ni iD

µ
ni⊥Wni the collinear gluon field, which include collinear Wilson lines Wni

for gauge invariance. They appear in combination with soft Wilson lines Sni in the pattern
outlined by the square brackets. Multipole expansions simplify the coordinate dependence
of the soft Wilson lines, and are implied for the b-dependence of the collinear ones, as well.
We have here labelled the fields according to the qq̄ → Zg channel, and the other channels
can be obtained by a permutation of the lightcone directions. To keep the notation compact
in the following, we will denote these SCET operators as Oνj , with the index j labeling
the partonic channels and quark spin structures, and denote the collinear fields collectively
as [φni ]αiai with Lorentz and color indices αi and ai. The contribution from operators with
additional collinear fields is power suppressed by O(δφ).

The SCET operators are matched to the full electroweak current which produces the
boson,

JνEW(bµ)→
∑
j

∫
dta dtb dtcCj(ta, tb, tc)Oνj (bµ, ta, tb, tc) , (3.10)

where Cj ’s are the Wilson coefficients. In the case of direct photon production, the cross
section differential in the infrared degrees of freedom has the following form after performing
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the integrals over the ti:

dσ
dXIR

=
2παeme2

q

ECM

d3pV
(2π)32EV

∑
j,k

εp∗µ ε
q
ν 〈PaPb|O

µ†
j (b)|XIR〉〈XIR|Oνk(0)|PaPb〉

× C̃∗j (n̄a · Pa, n̄b · Pb, n̄c · Pc)C̃k(n̄a · Pa, n̄b · Pb, n̄c · Pc) , (3.11)

where εpµ is the polarization vector of the boson with the index p labeling the polarization
states, and |Pa〉 and |Pb〉 are the initial hadron states with momenta Pa and Pb. Here αem
is the electromagnetic coupling constant, eq is the electric charge of the quark (in terms of
elementary charge units), and for Z production one replaces e2

q by

e2
q →

(
1− 2 |eq| sin2 θW

)2 + 4e2
q sin4 θW

8 sin2 θW cos2 θW
. (3.12)

With the capability of tagging the boson polarization, one will be able to assign a
specific polarization tensor εp∗µ εqν . For observables inclusive in boson polarization, the
polarization sum and the Ward identity give

dσ
dXIR dpT,V dyV

= −
αeme

2
q pT,V

2(2π)ECM

∑
j,k

〈PaPb|Oµ†j (b)|XIR〉〈XIR|Oµk(0)|PaPb〉

× C̃∗j (n̄a · Pa, n̄b · Pb, n̄c · Pc)C̃k(n̄a · Pa, n̄b · Pb, n̄c · Pc) . (3.13)

Together with the factorization of infrared degrees of freedom, |XIR〉 = |Xa〉|Xb〉|Xc〉|XS〉,
the above matrix element factorizes into a product of three collinear matrix elements and
one soft matrix element.

For particular quark spins or gluon polarizations either in the initial or final state,7 one
needs to project the fields onto the corresponding components. The collinear matrix elements
associated with the incoming protons give the bare quark and gluon beam functions,

〈Pi|[φf†ni ]
α′i
a′i

(b+ t′in̄i)[φfni ]
αi
ai (tin̄i)|Pi〉

=
δa′iai
di

∫ 1

0

dxi
xi

∑
j

[Pαiα
′
i

ni ]jfB
j
f (xi,~bT , ε)e

ixin̄i·Pi
(
ni·b

2 +t′i−ti
)
. (3.14)

Here [Pαiα
′
i

ni ]jf is the Dirac or Lorentz structure of the beam function for parton flavor f
and spin or polarization structure j, di is the dimension of the color representation of a
generic collinear field φni , and ε = (4− d)/2 is the dimensional regulator.

For the quark beam function (i.e. i = a, b, f = q, q̄), only a single Dirac structure
contributes at leading power,

[Pαiα
′
i

ni ]q = 1
2(/ni)

αiα
′
i xi n̄i · Pi . (3.15)

Another possible Dirac structure, γµ⊥, would need to be combined with a transverse mo-
mentum, and is therefore power suppressed. For the gluon beam function (i = a, b, f = g),

7Polarized beams can induce preferred quark spins and gluon polarizations. Even for the case of
unpolarized beams considered here, there is a contribution from linearly-polarized gluons [56–59].
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there are two independent Lorentz structures: transverse (T ) and linear (L) polarization,
for which the projectors are [59, 60],

[Pαiα
′
i

ni ]Tg = − 1
d− 2g

αiα
′
i

T = − 1
d− 2

[
gαiα

′
i − 1

2(nαia n
α′i
b + nαib n

α′i
a )
]
,

[Pαiα
′
i

ni ]Lg = 1
d− 2g

αiα
′
i

T + bαiT b
α′i
T

~b 2
T

. (3.16)

The linear polarization contributes, because the collinear gluon splitting is intrinsically
polarized.

The collinear matrix elements associated with the outgoing jet are the quark and gluon
jet functions. Before introducing any jet definition, one has

eibpx,V 〈0|[φfnJ ]α
′
J

a′J
(b+ t′J n̄J)[φf†nJ ]αJaJ (tJ n̄J)|0〉

= eibpx,V 〈0|[φfnJ ]α
′
J

a′J
(0)e−ipx,c·(b+t′J n̄J−tJ n̄J )[φf†nJ ]αJaJ (0)|0〉. (3.17)

One can, then, make the following decomposition

e−ipc·(b+t′J n̄J−tJ n̄J ) = e−in̄J ·c(nJ ·na4 n̄a·b+
nJ ·nb

4 n̄b·b+t′J−tJ)eipx,cb. (3.18)

Below, we shall drop the first phase factor on the right hand side of this equation, which
specifies the jet momentum that enters the hard function and the conservation of p± with
respect to the beam directions, respectively. As discussed in section 2.1, the jet definition
respects factorization, meaning that the jet functions are only dependent on nJ -collinear
modes. Effectively, a jet definition simply defines the transverse momentum and rapidity of
the jet:

eibxpx,V 〈0|[φfnJ ]α
′
J

a′J
(0)eipx,cbxδ(2)(~pT,J − ~̂pT,J)δ(ηJ − η̂J)[φf†nJ ]αJaJ (0)|0〉

= eibxqx〈0|[φfnJ ]α
′
J

a′J
(0)eiδxbxδ(2)(~pT,J − ~̂pT,J)δ(ηJ − η̂J)[φf†nJ ]αJaJ (0)|0〉

≡
δa′JaJ

2(2π)d−1 e
iqxbx

∑
j

[Pα
′
JαJ

nJ ]jfJ
j
f (bx, pT,J , ηJ , ε) (3.19)

with8

δx ≡ px,c − px,J , qx = px,V + px,J . (3.20)

Here the momentum px,c corresponds to the x-component of the momenta of the jet
constituents, and the operators ~̂pT,J and ŷJ give the jet momentum transverse to the beam
and jet rapidity, respectively. The decomposition of the Dirac and Lorentz structures is

8As shown in section 4.1, it is more convenient to evaluate jet functions in a frame in which px,J 6= 0.
Therefore, we keep the dependence of px,J explicit here.
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similar to the beam functions (with a different normalization),

[Pα
′
JαJ

nJ ]q = 1
2(/nJ)α′JαJ n̄J · PJ ,

[Pα
′
JαJ

nJ ]Tg = −gα
′
JαJ
⊥ = −gα′JαJ + 1

2(nα
′
J
J n̄αJJ + n̄

α′J
J nαJJ ) ,

[Pα
′
JαJ

nJ ]Lg = g
α′JαJ
⊥ + (d− 2)b

α′J
⊥ bαJ⊥
~b2⊥

, (3.21)

where this is now perpendicular to the jet (not beam) direction, as indicated by the ⊥
(instead of T ).

The soft matrix element associated with the soft operator Osj give the soft function,

Sj(bx) = 2
N2
c − 1Tr〈0|T̄[Os,a†j (bx)]T[Os,aj (0)]|0〉 , (3.22)

where T (T̄) denote (anti-)time ordering. The overall factor is chosen such that at tree-level
the soft function equals 1. The qq̄g color space is one-dimensional, but there is a different
soft function for each partonic channel j, because it matters whether the jet or beam are in
the adjoint representation for the gluon. E.g. for a gluon jet Osj is S†nbSnct

aS†ncSna . In the
remainder of this paper we will label the soft function with the full partonic channel ijk,
where i, j, k are now parton flavors.

The hard functions are the square of the matching coefficients of SCET operators
and observable independent. These are at tree-level given by the corresponding QCD
matrix-elements M and including factors that account for averaging over spin/color states
of incoming partons (indicated by the bar in M) and the flux factor,

Hij→V k = xaxbpT,V
8πŝ2 |M(ij → V k)|2 . (3.23)

At one-loop order, this equation still holds after renormalization and dropping infrared
divergences (which cancel in the matching between QCD and SCET). Note that the indices
of the projectors in eqs. (3.16) and (3.21) will be contracted with the matrix elements of
the hard scattering. If an observable is not sensitive to the spin or polarizations states,
the typical spin-averaged hard function is sufficient. However, in our case we will get a
different expression when the initial or final gluon is linearly polarized, and we need to
sum all polarizations in eq. (3.8), which affects both the gluon beam/jet function and the
hard function.

3.3 One-loop ingredients

Here we provide one-loop expressions of the beam, jet, soft and hard functions. Our
observable leads to rapidity divergences in the beam, jet and soft function that are not
regulated by dimensional regularization. We use the η-regulator [61, 62] to regularize
rapidity divergences, and the resulting evolution in the rapidity scale ν can be used to
resum the corresponding rapidity logarithms. This is discussed in section 5.1, where also
the anomalous dimensions needed for next-to-next-to-leading logarithmic resummation
are collected.
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The beam functions are matched to collinear parton distribution functions (PDFs) with
perturbatively calculable matching coefficients [62–65]

Bi(x, bx, µ, ν) =
∑
j

∫ dx′

x′
Iij
(
x

x′
, bx, µ, ν

)
fj(x′, µ)

[
1 +O(Λ2

QCD
~b 2
T )] . (3.24)

The matching coefficients I have been calculated up to three-loop order [66–76], and the
linearly-polarized contribution at two-loop order [77]. Up to one-loop order, they are given
by

Iqq(z, bx, µ, ν) = δ(1−z) + αs
4π

[
CFLb

(
3 + 4 ln ν

ω

)
δ(1−z)− 2Pqq(z)Lb + 2CF (1−z)

]
+O(α2

s),

ITgg(z, bx, µ, ν) = δ(1− z) + αs
4π

[
Lb

(
β0 + 4CA ln ν

ω

)
δ(1− z)− 2Pgg(z)Lb

]
+O(α2

s),

Iqg(z, bx, µ, ν) = αs
4π [−2Pqg(z)Lb + 4TF z(1− z)] +O(α2

s),

ITgq(z, bx, µ, ν) = αs
4π [−2Pgq(z)Lb + 2CF z] +O(α2

s),

ILgg(z, bx, µ, ν) = −αs4πCA
4(1− z)

z
+O(α2

s),

ILgq(z, bx, µ, ν) = −αs4πCF
4(1− z)

z
+O(α2

s), (3.25)

with

ω = n̄i · pi = xiEcm , Lb = ln µ2b 2
x

4e−2γE
, β0 = 11

3 CA −
4
3TFnf , (3.26)

and the splitting functions

Pqq(z) = CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]
,

Pgg(z) = 2CA
[

z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+ β0

2 δ(1− z) ,

Pqg(z) = TF
[
z2 + (1− z)2

]
,

Pgq(z) = CF
1 + (1− z)2

z
. (3.27)

The one-loop jet functions for the WTA recombination scheme are [30, 78, 79]

Jq(bx, µ, ν) = 1 + αs
4πCF

[
Lb

(
3 + 4 ln ν

ω

)
+ 7− 2π2

3 − 6 ln 2
]

+O(α2
s) ,

J T
g (bx, µ, ν) = 1 + αs

4π

[
Lb

(
β0 + 4CA ln ν

ω

)
+ CA

(
131
18 −

2π2

3 − 22
3 ln 2

)

+ TFnf

(
−17

9 + 8
3 ln 2

)]
+O(α2

s) ,

J L
g (bx, µ, ν) = αs

4π

[
−1

3CA + 2
3TFnf

]
+O(α2

s) . (3.28)
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The result for the linearly-polarized gluon jet function was first quoted in our letter [30],
and we therefore provide a calculation of the gluon jet functions in section 4.1. There we
also calculate jet functions for other recoil-free axes and for track-based measurements.

Up to order α2
s, the soft function can be obtained [30] from the standard TMD soft

function, which is known up to three loop order [70, 80, 81]. The contribution involving
exchanges between three Wilson lines vanishes due to color conservation [82]. For exchanges
involving only two Wilson lines, we can perform a boost to make them back-to-back. Since
our observable is perpendicular to the boost, only the rapidity regulator is affected, which
can be taken into account in a straightforward manner [83]. The resulting one-loop soft
functions are
αs
4πS

(1)
ijk(bx, µ, ν) = αs

4π

[
(Ci + Cj − Ck)

ωij
2 + (Ci + Ck − Cj)

ωik
2 + (Cj + Ck − Ci)

ωjk
2

]
,

(3.29)

where the color factor Ci is CF if parton i is an (anti-)quark and CA if it is a gluon, and

ωij = −2L2
b + 4Lb

(
ln µ

2

ν2 − ln ni · nj2

)
− π2

3 . (3.30)

The hard function for the process ij → V k is given by

Hij→V k =
x1x2p

2
T,V

8πŝ2 |Mij→V k|2 (3.31)

for which the tree-level matrix elements are

|Mqq̄→V g|2 =
16π2αsαeme

2
q

(
N2
c − 1

)
N2
c

t̂2 + û2 + 2ŝm2
V

t̂û
,

|Mqg→V q|2 = −
16π2αsαeme

2
q

Nc

ŝ2 + t̂2 + 2ûm2
V

ŝt̂
,

|Mqq̄→V gL |
2 = −

32π2αsαeme
2
q(N2

c − 1)
N2
c

ŝm2
V

ût̂
,

|MqgL→V q|
2 =

32π2αsαeme
2
q

Nc

ûm2
V

ŝt̂
, (3.32)

and gL denotes a linearly-polarized gluon. For Z production one replaces eq in analogy
to (3.12), and the partonic Mandelstam variables are

ŝ = m2
V + 2p2

T,V + 2pT,V
√
m2
V + p2

T,V cosh(ηJ − yV ) ,

t̂ = −p2
T,V − pT,V

√
m2
V + p2

T,V exp(ηJ − yV ) ,

û = −p2
T,V − pT,V

√
m2
V + p2

T,V exp(yV − ηJ) . (3.33)

The loop corrections that enter the hard function have been calculated at one-loop order
in refs. [84–89], and we give their expressions in the appendix B. The resulting one-loop
hard function for a transversely polarized gluon can be obtained from the appendices
of [55, 90, 91]. Since the beam and jet function for a linearly-polarized gluon only start at
one-loop, the tree-level hard function suffices in this case.
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(a) Collinear overlap (b) Remnant recoil (c) IS splittings (d) Jet spectators

Figure 2. Glauber topologies. Glauber and Lipatov emissions are colored in red, Glauber emissions
are dashed. The diagrams describe (a) the collinear overlap of active-spectator interactions, (b)
rescattering of the proton remnants, (c) Glauber bursts after perturbative initial state (IS) splittings,
and (d) spectator-spectator exchanges involving the jet, respectively.

3.4 Glauber interaction and factorization breaking

We conclude this section by briefly commenting on the appearance of a Glauber mode and
its impact on the validity of the factorization theorem in (3.6) and (3.8), following the
framework laid out in ref. [92], supplemented by the results of refs. [93, 94].

Ref. [92] explains in detail that Glauber rungs connecting active lines to other active or
to spectator lines can be absorbed9 into the soft (for active-active) or collinear Wilson lines
(for active-spectator), and only the pure spectator-spectator Glauber exchanges require
special attention. Before we discuss our specific application, we first summarize and clarify
a few points:

First, we note that in line with the expectation that “spectator gluons or quarks may
be created by collinear radiation from active lines”, according to ref. [92], we take only the
parton lines directly connected to the hard scattering vertex as “active”. This implies that
collinear splittings in the initial state, as well as the branching of the jet progenitor parton
generate spectators, and that thus there are three collinear sectors containing spectators
(two proton remnants, one jet sector).

Second, we note that for single-scale observables, refs. [93, 94] demonstrate that
pure Glauber exchanges (i.e. without soft emissions off Lipatov vertices) do not lead to
factorization violation.

Third, we resolve the ambiguity of the Glauber mode for three distinct rapidity sectors
by observing that Glauber modes only ever connect two of them, and that the frames
in which these are pairwise back-to-back are connected by — generically — O(1) boosts.
Together with the collapse rule this means that the different Glauber dipoles communicate
only via soft emissions from Lipatov vertices, whose power counting is isotropic, and
therefore unchanged by the boosts relating the different Glauber frames.

Lastly, we follow the diagrammatic conventions of ref. [92] for the discussion below,
where auxiliary interactions are introduced that create active and spectator lines from
incoming hadron fields, to be able to focus on the topology of the appearing diagrams.

Moving on to the discussion of our case: We begin with Glauber exchanges involving
Lipatov vertices off Glauber rungs connecting to at least one active parton, as e.g. in

9Alternatively, the Glauber mode is then a true subset of the corresponding soft or collinear mode, so
a dedicated Glauber contribution does not add anything that is not already covered by the naive soft or
collinear mode.
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figure 2(a). Following ref. [92], the Glauber exchange is an element of the soft or collinear
sector, the Lipatov vertex therefore represents soft radiation off either another soft, or off a
collinear emission. In the former case (the soft overlap for active-active Glauber exchange),
this simply is the soft dynamics encoded in the soft Wilson line structure and Lagrangian.
For the latter case, it corresponds to a soft emission off a collinear field, which does not
appear in the SCETII Lagrangian. Instead it has been integrated out and is thus accounted
for in the matching of QCD to SCET, where a soft Wilson line is introduced for every
collinear Wilson line. This soft Wilson line then accounts for the Lipatov emissions off the
Glauber subset of the corresponding collinear Wilson line (besides other soft effects). This
leaves us with Glauber exchanges between spectators only, which also have at least one
Lipatov emission. It is clear that the lowest order that such diagrams could appear in the
perturbative expansions is O(α2

s).
Focusing on Glauber exchanges between the proton remnants, we naively expect that

a contribution of the form of figure 2(b) could appear at O(α2
s), when interfering with

a suitable tree-level diagram. However, such interference is prohibited by momentum
conservation: The proton remnants have transverse momenta of O(ΛQCD), the typical
scale of intra-proton dynamics, while the Glauber exchange represents a recoil between the
involved spectators, causing them to have transverse momentum of O(qx). This does not
match up with any tree level conjugate diagram. Accordingly, the conjugate amplitude also
requires some perturbative exchange (Glauber or otherwise), which pushes the contribution
to O(α3

s). In addition, such diagrams do not contribute to our observable, as we only measure
properties of the jet: Any recoil of beam remnants is never measured, and accompanying
soft emissions are not relevant, because we use the WTA axis. For a diagram to have any
effect it must impart recoil on the active partons or the jet constituents: The WTA axis
follows a collinear emission in the jet, which can only pick up Glauber effects by direct
recoil, or by inheriting recoil from the partons initiating the hard scattering.

An example for an allowed diagram would be figure 2(c), where a perturbative splitting
of an initial state gluon creates spectators that already have transverse momentum of O(qT ),
such that a Glauber exchange does not fall prey to momentum conservation. Such diagrams
appear, by virtue of the initial state branching, at the earliest at O(α4

s). Lastly, we turn
to diagrams involving the jet, like e.g. figure 2(d). As stated above, spectators in the jet
can arise from perturbative splittings of the parton initiating the jet, which means such
topologies start at O(α3

s) at the lowest. Momentum conservation does not pose an obstacle
here, as the soft emission across the cut can attach to the beam spectator in the conjugate
amplitude, pushing its transverse momentum to the right scaling. However, an explicit
calculation of the loop diagram in figure 2(d) shows that it evaluates to zero, as may have
been expected due to its similarity with deep-inelastic scattering. Explicitly, as only two
rapidity sectors are involved, we can boost to a frame in which they are back-to-back. Of
the four non-Glauber propagators involving the loop momentum k, two will then depend
only on n · k, and two only on n̄ · k, after expansions around the momentum scaling for
Glauber and collinear modes. These two subsets correspond to the two collinear sectors,
i.e. two propagators arise from the jet, the other from the beam remnant and active line.
The two propagators arising from the jet have poles on the same side of the real line, and
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the loop integral thus evaluates to zero by residues.10 Numerator factors and the rapidity
regulator do not change this outcome.

We thus conclude that effects of perturbative Glauber exchanges are suppressed by at
least O(α3

s) compared to the accuracy achieved in this paper.

4 Jet function calculations

4.1 Gluon jet function calculation at order αs
Next we present the calculation of the one-loop gluon jet functions. According to eq. (3.19),
they are defined through

J µν
g ≡

∑
j

[Pµνn ]jgJ j
g (bx, ~pT,J , ηJ , ε)

= 2(2π)d−1

N2
c − 1 〈0|B

aµ
n⊥(0) (0) eiδxbxδ(2)(~pT,J − ~̂pT,J)δ(yJ − ŷJ)Baνn⊥(0)|0〉 (4.1)

where the transverse momentum of the jet with respect to the initial parton is encoded in

δx = px,c − px,J . (4.2)

In our original coordinates px,J = 0, but we will instead perform our calculation in a frame
where the total collinear momentum px,c = 0. In this subsection we drop the subscript J
on light-cone coordinates for brevity. As discussed in section 2.1, the difference between
~pT,J and ~pT,c is O(λ), so we can replace ~̂pT,J → ~pT,c, and similarly we can replace yJ by yc.
Then, following the same steps as for the standard jet axis in ref. [25], we can switch to
coordinates along the momentum of the initial parton, to obtain

J µν
g = 2(2π)d−1

N2
c − 1 n̄ · pJ〈0|Baµn⊥(0)eiδxbxδ(n̄ · pJ − n̄ · pc)δ(d−2)(~p⊥,c)Baνn⊥(0)|0〉. (4.3)

Using the projectors in eq. (3.21), one finds at tree-level

J T
g = 1

d− 2[Pµνn ]Tg Jgµν = 1 +O(αs),

J L
g = 1

(d− 2)(d− 3) [Pµνn ]LgJgµν = O(αs). (4.4)

All one-loop diagrams for the gluon jet functions are shown in figure 3. The relevant
Feynman rules for Bµn⊥ = 1

gW
†
niDµ

n⊥Wn are given by

μ, a α, bp

= −iδab

p2 + i0

(
gαµ⊥ −

n̄αpµ⊥
n̄ · p− i0

)
,

p1, α, b

p2, β, c

μ, a

= igfabcµ̃εw2νη
[
gαµ⊥

n̄β

(n̄ · p2)1+η − g
βµ
⊥

n̄α

(n̄ · p1)1+η

]
, (4.5)

10See in particular the discussions surrounding equations (11.9) and (B.6) in [92].
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(a) (b)

(d)(c)

p1

p2

Figure 3. One-loop diagrams contributing to the gluon jet functions. The ⊗ denotes the collinear
gluon field Bµn⊥ (dressed with Wilson lines).

where g is the renormalized coupling with µ̃2 = µ2eγE/(4π), and we use the η-regulator [61,
62] to regularize rapidity divergences. The w in eq. (4.5) is an (artificial) coupling used to
derive the corresponding rapidity evolution. Diagram (d) vanishes in Feynman gauge, and
the others contribute to the jet function according to,

αs
4π J µν(1)

g =
∫

dΠ2 e
iδxbx

[
nfM

µν
a + 1

2M
µν
b + 1

2M
µν
c

]
(4.6)

where the 1/2 is an identical particle factor and

Mµν
a = g2TF

(p1 · p2)2 µ̃
2ε(− 2pµ⊥p

ν
⊥ − g

µν
⊥ p1 · p2

)
,

Mµν
b = g2CA

(p1 · p2)2 µ̃
2ε[(d− 2)pµ⊥p

ν
⊥ + 2gµν⊥ p1 · p2

]
,

Mµν
c = −g

2w2CA
p1 · p2

µ̃2ε
(
ν

ωJ

)η
gµν⊥

[ 1 + z

(1− z)1+η + 2− z
z1+η

]
, (4.7)

with p1 · p2 = ~p 2
⊥/(2z(1− z)). The two-body collinear phase space entering in eq. (4.6), is

defined as∫
dΠ2 ≡ 2(2π)d−1ωJ

2∏
i=1

∫ dp−i dd−2pi⊥
2p−i (2π)d−1 δ(p

−
J − p

−
1 − p

−
2 )δ(d−2)(~p1⊥ + ~p2⊥)

= 1
4π

∫ dd−2p⊥
(2π)d−2

∫ 1

0

dz
z(1− z) (4.8)

which we rewrite in terms of the transverse momentum ~p⊥ and momentum fraction z,

~p⊥ = ~p1⊥ = −~p2⊥, z = p−1
p−J

= 1− p−2
p−J
. (4.9)

The amplitudes in eq. (4.7) are also expressed in terms of these variables. For the WTA
scheme, one has

δx =
{
− px

1−z for 1
2 > z > 0

px
z for 1 > z > 1

2
. (4.10)
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The evaluation of J i
g involves the following two integrals

I1(bx) ≡
∫ dd−2p⊥

(2π)d−2
eibxpx

~p 2
⊥

= 1
4π (πb2x)εΓ(−ε),

I2(bx) ≡
∫ dd−2p⊥

(2π)d−2
p2
xe

ibxpx

(~p 2
⊥)2 = 1

8π (2ε+ 1)(πb2x)εΓ(−ε). (4.11)

For J T
g , one has

J T
g = 1− g⊥µν

d− 2

∫
dΠ2 e

iδxbx
[
nfM

µν
a + 1

2M
µν
b + 1

2M
µν
c

]
. (4.12)

By using eq. (4.8) and eq. (4.11), this leads to

J T
g = 1 + αsµ̃

2ε
∫ 1

0
dz I1

(
bx
ẑ

){
w2CA

(
ν

ωJ

)η[ 1 + z

(1− z)1+η + 2− z
z1+η

]
+ 2CA[z(1− z)− 1] + 2TFnf

(
1− 4

d− 2z(1− z)
)}

= Zg + αs
4π

[
CA

(
4Lb ln ν

ωJ
+ 11

3 Lb −
2
3π

2 + 131
18 −

22
3 ln 2

)
+

− TFnf
(4

3Lb + 17
9 −

8
3 ln 2

)]
, (4.13)

where

ẑ = max{z, 1− z}, Lb = log
(

b2xµ
2

4e−2γE

)
, ωJ = 2pT,J cosh ηJ , (4.14)

and the jet function renormalization is

Zg = 1− αsCA
πη

w2e(Lb−γE)εΓ(−ε) + αs
4πε

[
CA

(
4 ln ν

ωJ
+ 11

3

)
− 4

3nfTF
]
. (4.15)

From this, one can easily obtain the one-loop anomalous dimensions

ΓJg
ν = αsCA

π
Lb,

ΓJg
µ = αs

2π

[
CA

(
4 ln ν

ωJ
+ 11

3

)
− 4

3nfTF
]

= 2CAΓcusp ln ν

ωJ
− 2γg , (4.16)

which agree with their all-order form in eq. (5.3).
For J L

g , one only needs to include the terms ∝ pµ⊥pν⊥ in eq. (4.7). It can then easily
be evaluated by using the two integrals in eq. (4.11), yielding

J L
g = g2

2 µ̃
2ε (d− 2)CA − 4TFnf

(d− 2)(d− 3)

∫
dΠ2

eiδxbx

(p1 · p2)2 [Pµνn ]Lg p
µ
⊥p

ν
⊥ (4.17)

= 2αsµ̃2ε (d− 2)CA − 4TFnf
(d− 2)(d− 3)

∫ 1

0
dz z(1− z)

[
(d− 2)I2

(
bx
ẑ

)
− I1

(
bx
ẑ

)]
.
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Since

(d− 2)I2

(
bx
ẑ

)
− I1

(
bx
ẑ

)
= − 1

4π +O(ε), (4.18)

J L
g is finite at this order (as required, since it vanishes at tree-level). It is given by

J L
g = −αs4π (2CA − 4TF )

∫ 1

0
z(1− z) = αs

4π

(
−1

3CA + 2
3TFnf

)
. (4.19)

4.2 Recombination scheme dependence

The WTA algorithm is not the only recombination scheme that can be used to construct a
recoil-free jet axis. In this subsection we will employ a more general recombination scheme.
It turns out that this only changes the finite part of the jet function, and at the end of this
section we give explicit results.

A recombination scheme dictates how particles are merged during the clustering
procedure. The simplest is to add the momentum four-vectors, which is known as the
E-scheme. In the rest of this paper we focus on the WTA-scheme, specifically the WTA-pT -
scheme, described in section 2.1. Here, we consider a generalization in which the momenta
pi and pj of two particles (or pseudojets) are recombined into pr as follows

pT,r = pT,i + pT,j ,

φr = (pnT,iφi + pnT,jφj)/(pnT,i + pnT,j),
yr = (pnT,iyi + pnT,jyj)/(pnT,i + pnT,j), (4.20)

in terms for the transverse momentum pT , azimuthal angle φ and rapidity y. The azimuthal
angle and rapidity are combined in a way that favors the direction of the harder particle,
with the weight of the factors pnT,i controlled by the power of n ≥ 1. For n > 1 this
recombination scheme is recoil free, implying that the same factorization theorem holds as
for the WTA scheme (which corresponds to n→∞). Since only the jet function depends
on n, consistency of the factorization implies that only the constant term of the jet function
depends on it, which is borne out by an explicit calculation.

Now, let us calculate gluon jet functions at one loop using the general scheme in
eq. (4.20). For two collinear partons, using coordinates along the parton that initiates the
jet, one has φi ≈ px,i/pT,i and px = px,1 = −px,2 such that11

δx = pT,J
pnT,1φ1 − pnT,2φ2

pnT,1 + pnT,2
= p−J

(p−1 )n px
p−1
− (p−2 )n px

p−2

(p−1 )n + (p−2 )n
= zn−1 − (1− z)n−1

zn + (1− z)n px (4.21)

in terms of the kinematic variables in eq. (4.9). As a consistancy check, one can easily see
that δx reduces to the expression for the WTA axis in eq. (4.10) in the limit n→∞. With
the following replacement

ẑ → ẑn =
∣∣∣∣ zn + (1− z)n

zn−1 − (1− z)n−1

∣∣∣∣, (4.22)

11Here, it does not matter whether one uses pT,i or p−i as long as the jet radius is not too large. Our
final result, however, shows explicit breaking of boost invariance along the beam axis, resulting from the
rapidity regulator.
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Figure 4. Finite part (i.e. Lb = 0) of the contributions from gluons (JCA
) and quarks (Jnf

) to the
gluon and to the quark (JCF

) jet function for the recombination scheme in eq. (4.20) with n > 1.
The results for the WTA scheme (black dashed lines) are approached for n → ∞. JCA

, Jnf
and

JCA
are defined in eq. (4.26) and eq. (4.29), respectively.

one can straightforwardly evaluate the gluon jet functions for the general recombination
scheme by extending the calculation in the previous section.

For J L
g , one can easily see that eq. (4.19) is valid for all the values of n because the

dependence on ẑn drops out in eq. (4.18). J T
g is given by the first two lines of eq. (4.13)

with the replacement for ẑn in eq. (4.22). The 1/η pole arises only from the following
expansions

1
(1− z)1+η → −

1
η
δ(1− z), and 1

z1+η → −
1
η
δ(z) (4.23)

in the integrand of eq. (4.13). Since

I1

(
bx
ẑn

)∣∣∣∣
z=0 or 1

= I1(bx), (4.24)

the ẑn-dependence drops out and the 1/η term is the same as for the WTA Scheme. Similarly,
the only source for the 1/ε pole in J T

g comes from the pole in I1 with(
µ2eγE

4π

)ε
I1

(
bx
ẑn

)
= − 1

4π

[1
ε

+ Lb − ln(ẑ2
n)
]

+O(ε). (4.25)

Hence, the jet function renormalization in eq. (4.15) and the anomalous dimensions in
eq. (4.16) are valid for any value of n > 1, as required by consistency of the factorization. By
using the expansion in eq. (4.25), we obtain the constant term of J T

g (i.e. taking Lb = 0)

J T
g

∣∣
Lb=0 = 1 + αs

2π

{
CA

∫ 1

0
dz ln(ẑ2

n)
[

z

1− z + 1− z
z

+ z(1− z)
]

+ TFnf

[1
3 +

∫ 1

0
dz ln(ẑ2

n)((1− z)2 + z2)
]}

≡ 1 + αs
4π (CAJCA + TFnfJnf ) (4.26)
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For n→∞, it reproduces that for the WTA scheme:

JCA |n→∞ = 131
18 −

22 ln 2
3 − 2π2

3 , Jnf |n→∞ = 8 ln 2
3 − 17

9 . (4.27)

One can also find analytic results for specific values of n. E.g. for the p2
t scheme (n = 2),

we have

JCA |n=2 = 58
9 −

10π
3 + π2 , Jnf |n=2 = 2π

3 −
2
9 . (4.28)

The two constants JCA and Jnf are plotted as function of n in figure 4. The analytic result
for the WTA scheme is also shown, and one can see that it is approached in the limit n→∞.
For n = 1 the jet is no longer recoil-free. This is reflected in a diverging constant in the
n→ 1 limit, indicating that the poles of the jet function, and thus the entire factorization
are different for n = 1. Similarly, the finite part of Jq in general depends on n and takes
the form

Jq

∣∣
Lb=0 = 1 + αsCF

4π

[
1 + 2

∫ 1

0
dz ln(ẑ2

n)1 + z2

1− z

]
≡ 1 + αsCF

4π JCF . (4.29)

In figure 4, JCF is also shown. For the p2
t scheme and for the WTA scheme,

JCF
∣∣
n=2 = 7− 3π + π2 , JCF

∣∣
n→∞ = 7− 2π2

3 − 6 ln 2 . (4.30)

4.3 Track-based jet function

Next, we will consider the case where the jet is measured using only charged particles,
exploiting the superior angular resolution of the tracking system. Since this does not modify
the effect of soft radiation on the measurement, which still contributes through the total
recoil, this only affects the jet function. This is similar to the different recombination
schemes considered in section 4.2, and we can reuse much of the calculation, though we will
restrict ourselves to the effect of a track-based measurement for WTA scheme. In particular,
the jet function anomalous dimensions are not modified but only the constant, which should
be contrasted with the complicated jet function encountered for a track-based measurement
of thrust in ref. [32].

We will account for the conversions of the partons to charged particles using the track
function formalism [31, 32]. At one-loop order, the jet consists of (at most) two partons
and for qx � ΛQCD they can be treated as fragmenting independently into charged hadrons
moving in the same direction as the original partons. Denoting the total momentum
fractions of charged hadrons produced by each of the two partons by z1 and z2, the only
change due to a track-based measurement is that the condition which parton “wins” gets
modified:

ẑ = max{z, 1− z} → ẑch =
{
z z1z > z2(1− z)
1− z z1z < z2(1− z)

. (4.31)

We also need to take into account the nonperturbative distribution of z1 (and z2) which is
described by a track function Tf (z1, µ), where f is the flavor of the parton. For example, for
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the gluon jet function in eq. (4.6), the corresponding track-based measurement (indicated
by the bar) is

αs
4π J̄ µν(1)

g =
∫

dz1dz2

∫
dΠ2 e

iδx,chbx
[∑
q

Tq(z1)Tq(z2)Mµν
a + Tg(z1)Tg(z2)1

2M
µν
b

+ Tg(z1)Tg(z2)1
2M

µν
c

]
, (4.32)

where |δx,ch| = |px|/ẑch, and the track functions depend on the flavor of the partons in the
final state. Note that different quark flavors have different track functions, but Tq = Tq̄ due
to charge conjugation invariance.

The subsequent steps directly parallel those in section 4.2, so we find again that the
one-loop jet function for the linearly-polarized gluon J̄ L

g is not modified, while for the
transversely-polarized gluon and quark we have

J̄ T
g

∣∣
L⊥=0 = 1 +

∫
dz1dz2

αs
2π

{
Tg(z1)Tg(z2)CA

∫ 1

0
dz ln(ẑ2

ch)
[

z

1− z + 1− z
z

+ z(1− z)
]

+
∑
q

Tq(z1)Tq(z2)TF
[1

3 +
∫ 1

0
dz ln(ẑ2

ch)((1− z)2 + z2)
]}

,

J̄q

∣∣
L⊥=0 = 1 +

∫
dz1dz2 Tq(z1)Tg(z2)αsCF4π

[
1 + 2

∫ 1

0
dz ln(ẑ2

ch)1 + z2

1− z

]
, (4.33)

in direct analogy to eqs. (4.26) and (4.29).

5 Resummation and matching

5.1 Renormalization group evolution

In section 3 we have given the derivation of the factorization formula and the explicit
expressions for the one-loop ingredients. Within the EFT framework one then uses the
renormalization group (RG) evolution equations to resum the large logarithms between
different scales. In addition to the standard UV divergences regularized by the dimensional
regularization, the jet, beam and soft functions also involve rapidity divergences, as these
modes are not separated in invariant mass but rapidity, see eq. (2.6). In order to resum
the corresponding rapidity logarithms we apply the rapidity RG method developed in
refs. [61, 62]. Different regulator choices (e.g. [80, 95–99]) or resummation via the collinear
anomaly framework [65, 100] are also possible and (up to the possibility of scale variation)
equivalent. To achieve next-to-next-to-leading logarithmic resummation, we need the one-
loop fixed order ingredients in section 3.3 and the two-loop anomalous dimensions (except
for the cusp term in the anomalous dimensions, which is required at three loop order).

Generally, the RG equations for a function F are given by

d
d lnµF (µ) = ΓFµF (µ), d

d ln ν F (µ, ν) = ΓFν F (µ, ν), (5.1)

where ΓFµ and ΓFν denote the standard and rapidity anomalous dimensions, respectively.
For the beam, jet and soft function, this multiplicative form of the evolution equation only

– 25 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
6

holds in impact parameter space, and the anomalous dimension depends on bx. In addition
the anomalous dimension may e.g. depend on the hard kinematics or the jet direction,
which we omit.

The anomalous dimension of the hard function are

ΓHij→V kµ = Γcusp(αs)
(
Ci ln û2

p2
T,V µ

2 + Cj ln t̂2

p2
T,V µ

2 + Ck ln
p2
T,V

µ2

)
+ 2

(
γiµ + γjµ + γkµ

)
(αs) ,

(5.2)
where Ci and γiµ are the color factor and non-cusp anomalous dimension for parton i,
i.e. CA and γgµ for a gluon, and CF and γqµ for an (anti-)quark. As we always have (up to
permutation) two quarks and a gluon in our process, the non-cusp anomalous part simplifies
to
∑
a γ

a
µ = 2γqµ + γgµ. The expressions for the partonic Mandelstam variables in terms of

the kinematics of the boson and jet are collected in eq. (3.33). The perturbative expansion
for Γcusp and γaµ have been collected in appendix A.

The anomalous dimensions of the beam functions are

ΓBiµ (αs) = 2CiΓcusp(αs) ln ν

ωi
+ γBiµ (αs) ,

ΓBiν (αs) = 2CiAΓcusp(µ, µB)− Ci
γν(αs)

2 (5.3)

where ωi is explicitly defined in eq. (3.26), µB = 2/eγEbx (so Lb = lnµ2/µ2
B), and the cusp

anomalous dimension Γcusp, non-cusp anomalous dimension γBiµ , and rapidity anomalous
dimension γν in appendix A. The function AΓcusp is obtained by replacing γi → Γcusp in
Aγi in eq. (A.10). The jet function J satisfies the same anomalous dimension as the beam
function, where now ωJ = n̄J · pJ = 2pT,J cosh ηJ .

The anomalous dimensions of the soft function are

ΓSijkµ (αs) = Γcusp(αs)
[
(Ci + Cj + Ck) ln µ

2

ν2 − Ci ln αjiαik
αjk

− Cj ln αijαjk
αik

(5.4)

− Ck ln αikαkj
αij

]
+ (Ci + Cj + Ck)γSµ (αs)

ΓSijkν (αs) = −2(Ci+Cj+Ck)AΓcusp(µ, µB) + (Ci+Cj+Ck)
γν(αs)

2

with

αij ≡
ni · nj

2 . (5.5)

From eqs. (5.2), (5.3), (5.4) and the non-cusp anomalous dimensions in appendix A, it
is straightforward to verify that the factorized cross section in (3.8) is independent of the
renormalization scale µ and rapidity renormalization scale ν:

γ
Hij→V k
µ (αs) + γ

Sijk
µ (αs) + γBiµ (αs) + γ

Bj
µ (αs) + γ

Jk
µ (αs) = 0 ,

γ
Sijk
ν (αs) + γBiν (αs) + γ

Bj
ν (αs) + γ

Jk
ν (αs) = 0 . (5.6)
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Figure 5. We evolve all ingredients from their natural (µ, ν) scale to the scale of the soft function
along the indicated paths. We take the different νi into account though they are of the same
parametric size.

Using the renormalization group equations to evolve all ingredients in eq. (3.8) from
their natural µ and ν scales to a common scale, the all-order resummation formula can be
written as

dσresum
dqx dpT,V dyV

=
∑
ijk

∫ ∞
0

dbx
π

cos(bxqx)
∏
a=ijk

(
νS
νa

)ΓBaν (µB)
exp

(∫ µB

µH

dµ
µ

ΓHij→V kµ (αs)
)

×Hij→kV (pT,V , yV − ηJ , µH)Bi(x1, bx, µB, νi)Bj(x2, bx, µB, νj)
×Jk(bx, µB, νk)Sijk(bx, µB, νS) , (5.7)

where we use i to label the parton flavor but also the rapidity scales of the beams and jets,
and understand ΓBkν to refer to the jet function rapidity anomalous dimension. We chose
to evolve the beam and jet function from their natural rapidity scales νi to the rapidity
scale νS of the soft function at the common invariant mass scale µB, and evolve the hard
function from µH down to the scale µB, as summarized in figure 5. The evolution factor
can be evaluated analytically as

exp
(∫ µB

µH

dµ
µ

ΓHij→V kµ (αs)
)

=
(

û2

p2
T,V µ

2
H

)−CiAΓcusp (µH ,µB)( t̂2

p2
T,V µ

2
H

)−CjAΓcusp (µH ,µB)(p2
T,V

µ2
H

)−CkAΓcusp (µH ,µB)

× exp

2(Ci + Cj + Ck)S(µH , µB)− 2
∑
a=ijk

Aγa(µH , µB)

 . (5.8)

The functions A and S are given in appendix A. The natural scales for the various ingredients
in the resummation formula are taken to be

µH =
√
m2
V + p2

T,V , µB = νS = 2e−γE/b∗, νa = ωa = n̄a · pa , (5.9)

where we avoid unphysical results in the large-b region, by applying the b∗-prescription [64]

b∗ = |bx|/
√

1 + b2x/b
2
max , (5.10)

with bmax = 1.5 GeV−1.
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Figure 6. Uncertainties estimated by varying the renormalization scale µB (left) and µH (right)
up and down by a factor of 2. The rapidity scale variation is not shown, as it is negligible for our
central scale choice for µB .

In figure 6 we show the resummation results at NLL and NNLL accuracy, separately
displaying the various contributions to the perturbative uncertainties. Specifically, we assess
the uncertainties by varying µH , µB and νS up and down by a factor of two around their
default values in (5.9). The fact that the uncertainty band is smaller at NNLL than at NLL,
and that the bands overlap over almost the entire range, suggest that this is a reasonable
estimate. In our full result we will combine these uncertainties by taking the envelope.

To model non-perturbative corrections, we furthermore will include the multiplicative
function e−SNP(b)

e−SNP(bx) = e−g1b2x
∏
a=ijk

exp
(
−Ca
CF

g2
2 ln |bx|

b∗
ln ωa
Q0

)
. (5.11)

We take the same nonperturbative function SNP as for transverse momentum distributions
in [101], assuming that the nonperturbative contribution to the rapidity anomalous dimension
(with coefficient g2) can be obtained for a gluon beam or jet function by Casimir scaling.
It is not clear whether this should also be the case for the nonperturbative model (with
parameter g1) and we take it the same for quark and gluon beams/jets, finding that it has
a negligible effect on numerics anyway. We will use the results for the nonperturbative
parameters obtained in ref. [101]: Q2

0 = 2.4 GeV2, g1 = 0.212 GeV2 and g2 = 0.84. The
sensitivity of our predictions to these nonperturbative parameters is explored in figure 7,
finding minimal sensitivity to g1 but sensitivity to g2 at the percent level in the region
of ∆φ ∼ π.

5.2 Matching to fixed-order MCFM

In the back-to-back region where δφ→ 0 (∆φ→ π), the resummation formula will cure the
divergence behavior of fixed-order results. However, if δφ is not small, the factorization
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Figure 7. Variations of the nonperturbative parameters g1 and g2 in (5.11) for different jet
transverse momentum cuts: pT,J > 60 GeV (left) and pT,J > 200 GeV (right).

formula receives large corrections of powers of δφ. In this region, the resummation should
be switched off, since ln δφ is no longer large, and we therefore need to use fixed-order
calculations that include these power corrections.

We use an additive matching scheme, in which the “naive” matched result of NNLL
resummed prediction and the fixed-order can be obtained by the following relation

dσnaive(NLO + NNLL) = dσ(NNLL) + dσ(NLO)− dσ(NLO singular)︸ ︷︷ ︸
dσ(NLO non−singular)

, (5.12)

where we use MCFM [102, 103] to calculate the NLO results. The NLO singular distribution
removes the overlap between the first two terms and can be obtained by expanding the
resummation formula (5.7) to O(αs). The NLO non-singular distribution is given by the
difference between NLO and NLO singular results, as indicated in the above definition.

In principle, as δφ becomes large, the NNLL resumed cross section reduces to the NLO
singular, leading to a cancellation between the first and third term in eq. (5.12). However,
as is clear from (5.7), the numerical Fourier transformation from b-space to the momentum
space rapidly oscillates when the resummation turns off and the evolution factor approaches
1. To avoid the corresponding numerical instability, we apply a transition function t(∆φ)
as follows:

dσ(NLO + NNLL) = [1− t(∆φ)]dσnaive(NLO + NNLL) + t(∆φ)dσ(NLO) (5.13)
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Figure 8. Left: the transition function defined in (5.13) with transition points at approximately
180 − r degrees with r = 10, 12, 14, 16, 18 and 20. Right: the NLO non-singular divided by the
NLO singular, indicating the appropriate choice of transition point.

The transition function we use is defined as

t(∆φ) = 1
2 −

1
2 tanh

[
4− 240(π −∆φ)

r

]
, (5.14)

where the parameter r fixes the transition point to be at approximately 180− r degrees.
Different choices of r are illustrated in the left panel of figure 8. In the right panel we show
the difference of the NLO and NLO singular cross section, divided by the NLO singular.
This indicates that the power corrections to our factorization theorem are order one around
∆φ of 160o and 170o for pT,J > 60GeV (blue curves) and pT,J > 200GeV (green curves),
respectively, which leads us to choose r = 20 and 10 in these two kinematic regions. The
dependence on the choice of transition point r is shown in figure 9. The nonsingular is
in principle much smaller than the singular, but because the singular is resummed, there
is less of a difference between them. Therefore we can see a sizable effect on how the
nonsingular correction is treated in the resummation region, particularly when the jet pT is
large. We will discuss the origin of this large nonsingular correction in section 6.2, arguing
that it should not be Sudakov suppressed in the back-to-back limit, which is why we use an
additive rather than multiplicative matching.

We conclude this section by presenting expressions for the NLO singular at the level of
the integrated cross section,

Σsingular(δφcut) =
∫ δφcut

0
d(δφ) dσ

d(δφ) dpT,V dyV
. (5.15)

At order αs we have

Σ(1)
singular(δφ

cut) =
∑
ab

∫ 1

x1

dz1
z1
fa/p(x1/z1, µ)

∫ 1

x2

dz2
z2
fb/p(x2/z2, µ)

×
∑
ijk

(
H(0)
ij→V kC

(1)
ij←ab +HL,(0)

ij→V kC
L,(1)
ij←ab

)
. (5.16)

– 30 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
6

155 160 165 170 175

20

40

60

80

100

120

140

165 170 175

2

4

6

8

Figure 9. Varying the transition point in matching our NNLL resummation to the NLO for
pT,J > 60GeV (left) and 200GeV (right).

The first term on the second line is the contribution from the unpolarized gluon beam/jet
functions, while the second term is the linearly-polarized contribution, as indicated by the
superscript L. The one-loop coefficients are given by

C
(1)
ij←ab = Aijδiaδjbδ(1− z1)δ(1− z2) + δ(1− z2)δjb

[
4Pia(z1)

(
L− ln µ

2pT

)
+Ria(z1)

]
+ δ(1− z1)δia

[
4Pjb(z2)

(
L− ln µ

2pT

)
+Rjb(z2)

]
(5.17)

C
(1),L
ij←ab = ALijδiaδjbδ(1− z1)δ(1− z2) + δ(1− z2)δjbLia(z1) + δ(1− z1)δiaLjb(z2),

where L = ln δφcut, the splitting functions are given in eq. (3.27), and

Rqq(z) = 2CF (1− z), Rgg(z) = 0, Rqg(z) = 2z(1− z), Rgq(z) = 2CF z,

Lgg(z) = −CA
4(1− z)

z
, Lgq(z) = −CF

4(1− z)
z

. (5.18)

For the different partonic channels, the coefficients Aij are given by

Aqq̄ = CF

[
−8L2 + L

(
−12 + 8 ln ŝ

4p2
T

)
− π2

]
+ CA

(
−4L2 − 8 ln 2L+ 25

12 −
7π2

6

)

+ β0

(
−2L+ 2 ln µ

4pT
+ 17

12

)
+H

(1)
qq̄→gV (µh = 2pT ) ,

Aqg = CF

[
−8L2 + L

(
−12 + 8 ln −û

4p2
T

)
+ 7− 5π2

3 − 6 ln 2
]

+ CA

(
−4L2 + 4L ln ŝt̂

4p2
T û
− π2

2

)
+ β0

(
−2L+ 2 ln µ

2pT

)
+H

(1)
qg→qV (µh = 2pT ),

ALqq̄ = −CA3 + 2TFnf
3 , ALqg = 0 , (5.19)

where the partonic Mandelstam variables are given in terms of the kinematics of the hard
scattering in eq. (3.33).
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6 Results

We start in section 6.1 with a detailed study of the azimuthal angle between a recoil-
free jet and Z boson using the Pythia Monte Carlo parton shower. This allows us to
investigate the effect of hadronization and underlying event, and corroborate conclusions of
our factorization analysis with regards to the dependence on the jet radius, recombination
scheme and track-based measurements. Our resummed predictions are shown in section 6.2.
We also explain sizable non-singular corrections, particularly at large pT,J , which may be
largely removed by boson isolation cuts.

6.1 Monte Carlo analysis

In this subsection we present a phenomenological study of recoil-free boson-jet correlation
using the Pythia 8.3 [104] Monte Carlo parton shower. The Z+jet events in 13TeV
proton-proton collisions at the LHC are simulated with the decay of the Z boson turned
off. In experiments the clean, leptonic decay channels of Z boson are reconstructed with
suitable cuts on the lepton kinematics. In these Monte Carlo studies we sum over all the Z
boson polarization states to match our analytic calculation.

In all events, jets are reconstructed using the anti-kt algorithm [105] with R = 0.5 (also
R = 0.8 or R = 1.0 when studying the jet radius dependence) using FastJet 3 [41] and
|ηJ | < 2. The azimuthal angle is defined as the one between the Z boson and the leading
jet in each event.12 We consider two kinematic regions: pT,J > 60GeV and pT,J > 200GeV,
to study the dependence of this observable on the hard energy scale. Two million events for
each region are simulated, providing sufficient statistics to obtain smooth distributions.

We first examine the sensitivity of the azimuthal decorrelation to hadronization and
underlying event in the left panel of figure 10, which shows the ∆φ distributions with or
without hadronization or underlying event contributions. In Pythia the underlying event is
modeled as multi-parton interactions (MPI). We see that the shape of the ∆φ distribution
is remarkably insensitive to hadronization and MPI, which suggests that it is dominated by
perturbative contributions. This is expected: due to our recoil-free jet definition, these soft
contributions do not interfere with the jet finding, and only provide a total recoil of the
V+jet system. Since the azimuthal angle is a vector quantity, the net effect of this recoil
tends to be (close to) zero. There is a change in the normalization of the absolute cross
section, because the additional radiation affects the number of events having a jet with
sufficient transverse momentum.

In order to exploit the high angular resolution of charged particle tracking, we study
the case where the recoil-free axis is determined only by charged tracks, and the difference
compared to using all charged and neutral particles is examined. This is shown in the
right panel of figure 10. As can be seen, the azimuthal decorrelation distributions using the
recoil-free axis determined by charged particles or all the particles within jets are almost
identical, in line with the our conclusion in section 4.3 that this difference is beyond NLL
accuracy.

12Note that in some studies this angle is instead defined for an inclusive jet sample [5, 106]. In our
factorization analysis the contribution from additional jets is power suppressed, assuming δφ� R.
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Figure 10. Normalized ∆φ distribution for Z+jet in Pythia. Left: at the parton level with or
without MPI contributions, as well as at the hadron level (including MPI). Right: at the hadron
level using all or only charged particles for WTA axis definition.
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Figure 11. Normalized ∆φ distribution for Z+jet in Pythia. Left: for WTA, p2
T and pT

recombination schemes. Right: for WTA with jet radii R = 0.5, 0.8 and 1.0. Our factorization
predicts that the cross section is independent of R if δφ� R.

To contrast the WTA axis choice, we provide distributions for jets defined using the
more general pnt recombination scheme in eq. (4.20). In the left panel of figure 11 we examine
the case where n = 1 (the standard), n = 2 and n → ∞ (WTA). Since the WTA axis is
sensitive to momentum-conserving collinear splittings within jets and following the energetic
branch, the ∆φ distribution is broader near the back-to-back region. The difference between
the recoil-free n = 2 and WTA axis is beyond NLL order, as discussed in section 4.2, and is
indeed small. The difference with the recoil-sensitive case n = 1 is larger.
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Figure 12. The δφ differential distributions at NLO order for jet transverse momentum pT,J >

60 GeV (left) and pT,J > 200 GeV (right) with jet radius R = 0.5 (blue), 1.0 (red) and the R-
independent singular terms (green). The non-singular cross section (difference of the NLO and NLO
singular) is shown in the lower panels.

We also compare the distributions for jets with different radii as a way to highlight
again the insensitivity to soft, typically wide angle, radiation, in the limit where the jet
radii are much larger than the azimuthal decorrelation, δφ � R. The right panel of
figure 11 shows the ∆φ distributions for jets reconstructed using different jet radii, namely
R = 0.5, R = 0.8 and R = 1.0. The shapes of the distributions are very similar as
expected from our factorization analysis. The differences for ∆φ in the vicinity of 180◦ arise
because these distributions are normalized. However, some normalization is necessary when
comparing different jet radii, because the jet radius has a non-negligible (5–10%) effect on
the normalization of the cross section through the cut on the jet transverse momentum.

6.2 Resummed predictions

In this section we present numerical results from the resummation formula in eq. (5.7),
which we match to MCFM [102, 103] using the procedure described in section 5.2. The
electroweak parameters are given by

mZ = 91.1876 GeV, αem = 1/132.34 , cos θW = 0.88168 , (6.1)

and we use CT14nlo [107] with αs(mZ) = 0.118 for the collinear PDFs.
We start in figure 12 with a detailed comparison of our factorization formula in eq. (5.7),

expanded at NLO in eq. (5.16), with predictions from MCFM. As confirmed in the upper
panels of this figure, the singular terms agree with the NLO for both pT,J > 60GeV and
pT,J > 200GeV. The lower panels of this figure show the importance of the matching
procedure at NNLL because of O(αs(δφ)0) power corrections, which are not contained
in our factorization formula. More explicitly, our factorization in eq. (5.7) only includes
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Figure 13. Diagrams for the gg → Zqq̄ contribution to Z+jet production (diagrams where the
direction of the quark line is reversed are omitted). Our factorization formula only includes the
singular contributions in the expansion of diagrams (a) and (b) around the back-to-back limit of the
boson and jet. There are power corrections at O(αs(δφ)0) from expanding diagrams (a) and (c) for
the emission of a Z-boson off dijets, which are included via matching.
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Figure 14. The distribution in the azimuthal angle ∆φ12 between the two final-state partons at
NLO. For pT,J . mV there is a collinear singularity at ∆φ12 → 0, while for pT,J � mV there is also
a collinear singularity at ∆φ12 → 180◦ from a Z boson emitted from a dijet partonic configuration.

singular 1/(δφ) terms from expanding around the back-to-back limit of the boson and
jet, missing an important contribution to the power corrections that arises from a dijet
configuration where a Z boson is emitted from one of the jets. This contribution enters
at the same order in the coupling and is enhanced for pT,J � mZ , as will be discussed
below. To illustrate the difference between the contributions in the factorization theorem
and this important nonsingular correction, consider the diagrams for the gg → qq̄Z process
in figure 13: Diagrams (a) and (b) contribute to our factorization theorem in the region of
phase-space where a final-state quark is collinear to one of the incoming gluons. However,
diagram (a) and the new diagram (c) are also enhanced for the region of phase space
describing a Z emission of a dijet configuration. This contribution is included by the
matching procedure in section 5.2 and discussed more below.

For pT,J � mV , the order αs(δφ)0 power corrections from the Z emission off dijets are
power suppressed in mV . This can be seen by expanding the diagrams in figure 13 describing
soft-collinear corrections around the back-to-back limit, yielding contributions proportional
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Figure 15. Our resummed predictions (blue) matched to NLO (green) for the Z+jet azimuthal
decorrelation ∆φ for pT,J > 60GeV (left) and pT,J > 200GeV (right). Our predictions are compared
to Pythia simulations at the hadron level with MPI contributions (black) and the NLO (red). The
band represents the perturbative uncertainty, which is estimated by scale variation (see section 5.1).
The larger nonsingular corrections (from the matching) are discussed in the text.

to 1
m2
V

1
(δφ)2p2

T,V
at the amplitude level,13 while the Z emission of dijets is proportional to

1
m4
V
. Accordingly, at low pT , the Z emission off dijets is expected to be independent of

the azimuthal angle based on the above expansion. Indeed, the non-singular in figure 12
is almost constant at small δφ. This is also confirmed by looking at the azimuthal angle
∆φ12 of the two final-state partons shown in figure 14. We find that for pT,J . mV (e.g. the
65GeV> pT,J > 55GeV bin) the ∆φ12 distribution is flat near ∆φ12 = 180◦. This flatness
is the reason that we do not expect the nonsingular to go to zero at ∆φ → 180◦, and
don’t employ a multiplicative matching that would enforce that. Indeed, collinear and soft
emissions will smear the nonsingular δφ distribution, but since it is (almost) constant it
will not change (much).

Figure 14 also shows that at high pT,J there are large contributions from the Z emission
off back-to-back dijets, in addition to soft-collinear QCD radiation for back-to-back boson-jet
production. The latter is the focus of this paper, incorporated in the resummation formula
eq. (5.7), while the former is included by matching and needed at NNLL and beyond.
When pT,J � mV , it is insufficient to include this contribution by matching in the region
mV /pT,J . δφ� 1, as it now also contains large logarithms of δφ that require resummation.
Alternatively, one can also remove the contribution of a Z boson emitted from a dijet by
introducing an isolation cone around the boson (or its decay products).

We conclude by showing in figure 15 our resummed predictions at NNLL+NLO accuracy,
and comparing to Pythia results at hadron level with MPI contributions for the two pT,J
regions. We show the resummed predictions with and without matching, in view of the
large power corrections we just discussed, and also include the NLO cross section as a
separate curve. The NLO cross section divergences as ∆φ→ 180◦, which is remedied by

13Including numerator factors it only gives rise to a NLO term ∝ 1/δφ in the cross section.
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the resummation. Our resummed results without matching agree with the shape of Pythia
simulations. By including the matching, our predictions smoothly approach NLO for smaller
values of ∆φ, where resummation is not needed. The large nonsingular correction (larger
than our uncertainty bands) is important to include and cannot be neglected as ∆φ→ 180◦.
It is not accounted for in the Pythia simulations we used. Simply attempting to include it
through a K-factor does not yield the correct shape, particularly at high pT,J .

7 Conclusions

In this paper we describe our calculation of the cross section for a vector boson and
jet, differential in the azimuthal decorrelation δφ, at next-to-next-to-leading logarithmic
order. We provide substantially more details than our earlier work [30], an expanded
phenomenological analysis, and also include a Pythia study. We discuss for the first
time why the azimuthal angle is simpler than the total transverse momentum ~qT , potential
Glauber contributions, different recoil-free recombination schemes, the jet radius dependence,
and the non-singular matching.

Our focus is on the region δφ� 1, which dominates the cross section and requires the
resummation of logarithms of δφ to obtain reliable predictions. We carried out a detailed
study of its factorization in SCET, deriving a factorization formula. We investigated
potential factorization-violating Glauber contributions, finding that they could first appear
at order α4

s. Many of the ingredients in the factorization are available, and we present
calculations of the jet functions, including the linearly polarized jet function, as well as jet
functions for pnT -weighted recombination schemes. We find that these different recombination
schemes only change the constant term in the jet function, having a minimal effect on the
prediction. Furthermore, we verify the independence on the jet radius predicted by the
factorization (for R� δφ) in Pythia. By using the (rapidity) renormalization group we
achieve the resummation of logarithms of δφ.

The key to obtaining predictions beyond NLL is a recoil-free recombination scheme,
which reduces the effect of soft radiation to a total recoil of the V+jet system, eliminating
non-global logarithms. This is in contrast to the standard recombination scheme, or other
transverse momentum measurements such as the radial decorrelation, which involve NGLs.
A recoil-free recombination scheme is also interesting for studying the properties of the
medium in heavy-ion collisions, because it is more sensitive to collinear splittings inside
the jet and less sensitive to contamination of soft radiation. Indeed, we observe negligible
effects of hadronization and MPI contributions in Pythia, as well as compatibility with
track-based measurements. Our resummed predictions are matched to MCFM in the region
where δφ is no longer small. Here we find that the non-singular contributions are quite
large, particularly for high jet pT , increasing the sensitivity to the details of the matching
procedure. It would be interesting to investigate the resummation of these power corrections.

We have established the azimuthal angle between a vector boson and a recoil-free jet,
as a robust observable for which high precision is possible. In this paper we achieve NNLL
order, but NNNLL is within reach. As the effect of the underlying event, hadronization and
from performing the measurement using charged particle tracks is minimal, it is attractive
experimentally.
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A Anomalous dimensions

In general, for the (next-to)i -leading logarithmic (NiLL) resummation, one needs up to
(i− 1)-loop fixed-order ingredients, i-loop non-cusp anomalous dimensions and the (i+ 1)-
loop cusp anomalous dimension and QCD beta function. In this appendix, we collect the
beta function and all the anomalous dimensions that are needed for this paper.

For the beta function,
dαs(µ)
d lnµ = −2εαs + β(αs), β(αs) = −2αs

∞∑
n=0

βn

(
αs
4π

)n+1
(A.1)

one has up to three loops [108, 109]

β0 = 11
3 CA −

4
3TFnf ,

β1 = 34
3 C

2
A −

20
3 CATFnf − 4CFTFnf ,

β2 = 2857
54 C3

A +
(

2C2
F −

205
9 CFCA −

1415
27 C2

A

)
TFnf +

(44
9 CF + 158

27 CA
)
T 2
Fn

2
f , (A.2)

where nf is the number of active quark flavors.
Identifying standard anomalous dimensions by their associated functions, and using

the universality of the rapidity anomalous dimension, we write the perturbative expansions
of cusp, non-cusp, and rapidity anomalous dimensions as

Γcusp =
∞∑
n=0

(
αs
4π

)n+1
Γn , γiµ =

∞∑
n=0

(
αs
4π

)n+1
γin , γν =

∞∑
n=0

(
αs
4π

)n+1
γνn. (A.3)

The cusp anomalous dimension is, up to three loops, given by [110, 111]

Γ0 = 4 ,

Γ1 =
(

268
9 − 4π2

3

)
CA −

80
9 TFnf ,

Γ2 = C2
A

(
490
3 − 536π2

27 + 44π4

45 + 88
3 ζ3

)
+ CATFnf

(
−1672

27 + 160π2

27 − 224
3 ζ3

)

+ CFTFnf

(
−220

3 + 64ζ3

)
− 64

27 T
2
Fn

2
f . (A.4)
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The non-cusp anomalous dimension for the hard function can be extracted [112–114] from
the massless quark and gluon form factor, which are known at three loop order [115]. They
are given by

γq0 = −3CF ,

γq1 = C2
F

(
−3

2 + 2π2 − 24ζ3

)
+ CFCA

(
−961

54 −
11π2

6 + 26ζ3

)
+ CFTFnf

(
130
27 + 2π2

3

)
,

γg0 = −β0 = −11
3 CA + 4

3 TFnf ,

γg1 = C2
A

(
−692

27 + 11π2

18 + 2ζ3

)
+ CATFnf

(
256
27 −

2π2

9

)
+ 4CFTFnf , (A.5)

for gluons. The non-cusp anomalous dimensions for the beam and soft functions are given
by [70]

γ
Bq
0 = 6CF ,

γ
Bq
1 = C2

F

(
3− 4π2 + 48ζ3

)
+ CFCA

(
17
3 + 44π2

9 − 24ζ3

)
+ CFTFnf

(
−4

3 −
16π2

9

)
,

γ
Bg
0 = 2β0 ,

γ
Bg
1 = C2

A

(64
3 + 24ζ3

)
− 32

3 CATFnf − 8CFTFnf , (A.6)

γS0 = 0 , γS1 = CA

(64
9 − 28 ζ3

)
+ β0

(
56
9 −

π2

3

)
. (A.7)

Finally, the non-cusp rapidity anomalous dimension is given by [68–70, 80]

γν0 = 0 , γν1 = −CA
(128

9 − 56 ζ3

)
− β0

112
9 . (A.8)

The most convenient choice of scales in our problem is µ = µJ = µS = µB and ν = µB .
With this choice, the simplest path to solve the RG equations, eq. (5.1), is shown in figure 5.
With µ = µB fixed, the beam and jet functions run from their natural rapidity scales νi
down to ν = µB, the natural rapidity scale of the soft function. Only the hard function is
required to run in µ from µH to µB. Generically, the hard anomalous dimension takes the
form

Γ(αs) = CΓΓcusp(αs) ln Q
2
Γ
µ2 + γ(αs). (A.9)

The corresponding ordinary RG running boils down to the evaluation of the following
functions:

S(µH , µ) =
∫ µ

µH

dµ̄
µ̄

ln µH
µ̄

Γcusp(αs(µ̄)), Aγi(µH , µ) = −
∫ µ

µH

dµ̄
µ̄
γi(αs(µ̄)). (A.10)
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In terms of these two functions, one has

e

∫ µ
µH

dµ̄
µ̄

Γ(µ̄) =
(
Q2

Γ
µ2
H

)−CΓAγcusp (µH ,µ)

e2CΓS(µH ,µ)−2Aγ(µH ,µ). (A.11)

At NNLL, we only keep terms up to O(αs), that is

Aγi(µH , µ) = −
∫ αs(µ)

αs(µH)

dα
β(α)γ

i(α)

= 1
2
γi

0
β0

∫ αs(µ)

αs(µH)

dα
α

1 +
∞∑
l=1

(
α
4π
)l γi

l

γ0
l

1 +
∞∑
l=1

(
α
4π
)l βl
β0

= 1
2
γi

0
β0

[
ln r + αs(µH)

4π

(
β1
β0
− γi1
γi0

)
(1− r)

]
(A.12)

and

S(µH , µ) = −
∫ αs(µ)

αs(µH)

dᾱ
β(ᾱ)Γcusp(ᾱ)

∫ ᾱ

αs(µH)

dα
β(α)

= Γ0
4β2

0

{ 4π
αs(µH)

(
r − 1
r
− log r

)
+
(
β1
β0
− Γ1

Γ0

)
(r − 1− log r) + β1

2β0
log2 r

− αs(µH)
8π

[Γ2
Γ0

(r − 1)2 + β2
β0

(1− r2 + 2 log r) + β2
1
β2

0
(r − 1)

× (r − 1 + 2 log r)− β1
β0

Γ1
Γ0

(r2 − 4r + 2r log r + 3)
]}

(A.13)

with

r ≡ αs(µ)
αs(µH) . (A.14)

B One-loop hard function

In this appendix we give the expressions of the one-loop hard function. Since we do not
need the one-loop hard function for a linearly-polarized gluon at NNLL accuracy, we only
give the results for an unpolarized gluon here. After factorizing the LO hard function, the
one-loop hard function has the form as

H(1)
ij→V k = H(0)

ij→V kCij→V k(t̂, û). (B.1)

– 40 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
6

For the qq̄ → V g channel, we have

Cqq̄→V g(t,u) =CA
π2

6 +CF

(
−16+ 7π2

3

)
+2CA ln2 s

m2
V

+CA ln2 m
2
V − t
m2
V

+CA ln2 m
2
V −u
m2
V

+ln s

m2
V

(
−6CF −2CA ln s

2

tu

)
−CA ln2 tu

m4
V

−6CF ln µ
2

s

−2CA ln s
2

tu
ln µ

2

s
+(−CA−2CF ) ln2 µ

2

s

+2CALi2

(
m2
V

m2
V − t

)
+2CALi2

(
m2
V

m2
V −u

)

+ 2
T0(u, t)

{
CF

(
s

s+ t
+ s+ t

u
+ s

s+u
+ s+u

t

)
+(−CA+2CF )

[
−m

2
V

(
t2 +u2)

tu(t+u) +2
(

s2

(t+u)2 + 2s
t+u

)
ln s

m2
V

]

+
(
CA

t

s+u
+CF

4s2 +2st+4su+ tu

(s+u)2

)
ln −t
m2
V

+
(
CA

u

s+ t
+CF

4s2 +4st+2su+ tu

(s+ t)2

)
ln −u
m2
V

−(−CA+2CF )
[
s2 +(s+u)2

tu

(
1
2 ln2 s

m2
V

− 1
2 ln2 m

2
V − t
m2
V

+ln s

m2
V

ln −t
s−m2

V

+Li2

(
m2
V

s

)
−Li2

(
m2
V

m2
V − t

))

+ s2 +(s+ t)2

tu

(
1
2 ln2 s

m2
V

− 1
2 ln2 m

2
V −u
m2
V

+ln s

m2
V

ln −u
s−m2

V

+Li2

(
m2
V

s

)
−Li2

(
m2
V

m2
V −u

))]
, (B.2)

and for the qg → V q channel we have

Cqg→V q(t,u) =CA
7π2

6 +CF

(
−16+ π2

3

)
−6CF ln s

m2
V

−CA ln2 −st
m4
V

+CA ln2 m
2
V − t
m2
V

+2CA ln
(
s−m2

V

)
t

m2
V u

ln −u
m2
V

+CA ln2 −u
m2
V

−2CA ln
(
m2
V −s

)
st

m2
V u

2 ln −u
s

−2CA ln2 −u
s
−2CF ln2 −u

s
+
(
−6CF +2CA ln t

u
+4CF ln −u

s

)
ln µ

2

s

−(CA+2CF ) ln2 µ
2

s
−2CALi2

(
m2
V

s

)
+2CALi2

(
m2
V

m2
V − t

)

+ 2
T0(s, t)

{
CF

(
u

s+u
+ s+u

t
+ u

t+u
+ t+u

s

)
+
(
CA

s

t+u
+CF

st+2su+4tu+4u2

(t+u)2

)
ln s

m2
V
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+
(
CA

t

s+u
+CF

st+4su+2tu+4u2

(s+u)2

)
ln −t
m2
V

+(−CA+2CF )
[
−m

2
V

(
s2 + t2

)
st(s+ t) +2

(
2u
s+ t

+ u2

(s+ t)2

)
ln −u
m2
V

]

−(−CA+2CF )
[
u2 +(t+u)2

st

(
1
2 ln2 s

m2
V

− 1
2 ln2 m

2
V −u
m2
V

+ln s

m2
V

ln −u
s−m2

V

+Li2

(
m2
V

s

)
−Li2

(
m2
V

m2
V −u

))

+ u2 +(s+u)2

st

(
−π

2

2 −
1
2 ln2 m

2
V − t
m2
V

− 1
2 ln2 m

2
V −u
m2
V

+ln −t
m2
V

ln −u
m2
V

−Li2

(
m2
V

m2
V − t

)
−Li2

(
m2
V

m2
V −u

))]}
, (B.3)

with the function T0 defined as

T0(u, t) = u

t
+ t

u
+ 2m2

V

(
m2
V − t− u

)
tu

. (B.4)
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