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We study the one-dimensional Hubbard model for two-component fermions with infinitely strong on-site
repulsion (t − 0 model) in the presence of disorder. Our analytical treatment demonstrates that the type of
disorder drastically changes the nature of the emerging phases. The case of spin-independent disorder can be
treated as a single-particle problem with Anderson localization. On the contrary, recent numerical findings
show that spin-dependent disorder, which can be realized as a random magnetic field, leads to the many-body
localization-delocalization transition. We find an explicit analytic expression for the matrix elements of the
random magnetic field between the eigenstates of the t − 0 model with potential disorder on a finite lattice.
Analysis of the matrix elements supports the existence of the many-body localization-delocalization transition
in this system and provides an extended physical picture of the random magnetic field.

DOI: 10.1103/PhysRevB.107.184202

I. INTRODUCTION

Anderson localization (AL) describing the behavior of
noninteracting quantum particles in disorder is a cornerstone
concept in condensed matter physics [1]. A conceptual exten-
sion of this effect in the presence of interparticle interactions
is known as many-body localization (MBL) [2,3]. In the vast
majority of settings, the MBL problem is extremely diffi-
cult for analytical treatments. Thus, to a large extent the
progress in the field is driven by numerics. In particular,
vanishing steady transport, absence of thermalization, and
area-law scaling of entanglement entropy in the MBL phase
were demonstrated numerically [4–11] (for review, see, e.g.,
Refs. [12–14] and references therein). Traditional setups for
analyzing MBL transition are one-dimensional (1D) models,
such as the Heisenberg XXZ spin chain and the Fermi-
Hubbard model [15–19]. On the one hand, these systems
are paradigmatically important for condensed matter. On the
other hand, they can be in some limits treated analytically.
In addition, these 1D systems can be realized using control-
lable ensembles of neutral atoms in optical potentials [20–22],
trapped ions [23], and superconducting circuits [24,25].

The disordered Fermi-Hubbard model has been a subject
of intensive research in the recent years [26–33]. The interest
in this model is related to its rich physics, which is caused
by various types of disorder (with respect to spin or charge),
range of the strength of the interparticle interaction, and types

of boundary conditions. Additional motivation comes from
the recent experimental realization of the disordered Fermi-
Hubbard chain in a system of cold neutral atoms [34,35].

Recent numerical results suggest that a sufficiently strong
random potential localizes the charge sector of the 1D Fermi-
Hubbard chain, whereas the spin sector remains delocalized
[36–39]. It was also reported that in a sufficiently strong
random magnetic field spin excitations are localized whereas
states in the charge sector remain extended [40]. Recently,
the disordered Fermi-Hubbard model for two-component
fermions with infinitely strong on-site repulsion (the t − 0
model) was investigated numerically [19]. It was demon-
strated that in the spin-independent (potential) disorder the
states exhibit AL. On the contrary, in a sufficiently weak
spin-dependent disorder (random magnetic field) the states
remain ergodic and the system undergoes the MBL transition
at strong disorder. Reenterant AL-MBL for two-component
disorder was also demonstrated [19].

In this work, we provide analytical arguments to sup-
port these numerical findings. We employ factorization of
the charge and spin degrees of freedom, which allows one
to eliminate the spin degrees of freedom for both open and
periodic boundary conditions. We then analytically study the
system in two regimes: (i) potential disorder, which drives the
corresponding single-particle system to AL and (ii) random
magnetic field that causes possible localization-delocalization
(MBL) transitions.
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The paper is organized as follows. In Sec. II, we briefly
overview the 1D Hubbard model with the focus on its strong-
coupling regime, U → +∞. Then, in Sec. III we discuss in
detail the mapping of the t − 0 model onto free fermions. In
Sec. IV, we study the effect of disorder in the limit of infinite
intercomponent on-site interaction. We demonstrate that in
the case of spin-independent disorder the physical picture is
drastically different from that in the case of spin-dependent
disorder. In the former case the disordered t − 0 Hamiltonian
can be exactly mapped onto the tight-binding model of free
spinless fermions with on-site disorder and quasi-periodic
boundary conditions, which is well-known to exhibit AL.
However, in the case of random magnetic field such mapping
is no longer possible. We analytically calculate the matrix
elements of the random magnetic field in the eigenbasis of
the t − 0 Hamiltonian with potential disorder. We show that
the random magnetic field strongly couples the localized
single-particle states, which may lead to the delocalization
transition. Finally, in Sec. VI we summarize our results and
conclude.

II. CLEAN 1D HUBBARD MODEL AND ITS STRONG
COUPLING LIMIT

A. 1D Hubbard Hamiltonian

The Hamiltonian of the 1D spin-1/2 Fermi-Hubbard model
in a lattice of L sites is given by

HFH = − t
L∑

j=1

∑
σ=↑,↓

(c†
j,σ c j+1,σ + H.c.)

+ U
L∑

j=1

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)
, (1)

where the operator c j,σ (c†
j,σ ) annihilates (creates) a fermion

in the spin-σ state at the jth site of the lattice, nj,σ = c†
j,σ c j,σ

is the number operator, t is the nearest-neighbor hopping
amplitude, and U is the strength of the on-site interac-
tion between different spin components. Fermionic creation
and annihilation operators satisfy the canonical anticom-
mutation relations {c j,σ , c†

k,σ ′ } = δ j,kδσ,σ ′ and {c j,σ , ck,σ ′ } =
{c†

j,σ , c†
k,σ ′ } = 0. Hereinafter we impose periodic boundary

conditions, cL+1,σ = c1,σ , so that the Hamiltonian (1) is trans-
lation invariant. For finite U , the local Hilbert space H j is
four-dimensional and is spanned by the following states:

H j = {|0〉 j, c†
j,↑|0〉 j, c†

j,↓|0〉 j, c†
j,↑c†

j,↓|0〉 j}, (2)

so that the total Hilbert space ⊗L
j=1H j is 4L-dimensional.

Over the last decades, the Hamiltonian (1) has been exten-
sively studied in various contexts and there is a vast literature
on its rich physics (see, e.g., Ref. [41] for review). The
model is exactly solvable by the (nested) Bethe ansatz for
arbitrary U , which was first shown in the pioneering work
of Lieb and Wu [42]. An alternative solution of the Hubbard
model is provided by the algebraic Bethe ansatz, which re-
lies on the so-called R matrix that completely determines the
model. For the Hubbard model (1) the R matrix was found by
Shastry [43].

B. 1D Hubbard model in the limit of U → +∞
In the limit of infinitely strong repulsion, U → +∞, the

Hamiltonian (1) reduces to the so-called t − 0 model de-
scribed by the Hamiltonian [41,44]

Ht−0 = −t P
L∑

j=1

∑
σ=↑,↓

(c†
j,σ c j+1,σ + H.c.)P, (3)

where the Hermitian operator

P =
L∏

j=1

(1 − n j,↑n j,↓) (4)

satisfies P2 = P and projects out the states with doubly
occupied sites. Thus, the physical Hilbert space becomes 3L-
dimensional, since the state c†

j,↑c†
j,↓|0〉 j in Eq. (2) is separated

from the rest by an infinite energy. Note that the t − 0 model
is nontrivial only away from half-filling. By transferring the
left projector P through the sums over j and σ to the right in
Eq. (3), one can rewrite the t − 0 Hamiltonian as

Ht−0 = − t
L∑

j=1

∑
σ=↑,↓

(c†
j,σ c j+1,σ (1 − n j )

+ c†
j+1,σ c j,σ (1 − n j+1))P, (5)

where n j = n j,↑ + n j,↓, and the projector P in Eq. (5) can be
safely omitted and restored at will since the Hamiltonian (5)
acts on the projected Hilbert space P ⊗L

j=1 H j .
The t − 0 model in Eq. (5) possesses all the conservation

laws of the Hubbard Hamiltonian (1) with a finite U , plus an
additional one. Indeed, since the doubly occupied states are
not allowed in the U → +∞ limit, particles cannot exchange
their positions. As a result, the spin pattern, or ordering, is
conserved. For open boundary conditions, the spin pattern is
frozen and the spin degrees of freedom are completely decou-
pled from the charge sector. On the other hand, for periodic
boundary conditions the situation is more subtle. In this case,
because of the hopping between the boundary sites, the spin
pattern can change, but only in a cyclic way. This cyclic
change in the spin pattern results in the coupling between the
charge and spin degrees of freedom.

In the limit of infinite U the Bethe ansatz solution of the
Hubbard model (1) is drastically simplified, since all spin
configurations become degenerate [41]. Because of this de-
generacy, in the t − 0 model the spin part of an eigenstate can
be an arbitrary linear combination of those for the Hubbard
model in the limit U → +∞. In the case of periodic boundary
conditions the only requirement is that the spin part of an
eigenstate is also an eigenvector of the cyclic shift operator.
As was shown in Refs. [45–49], it is convenient to take the
eigenstates of the isotropic XY spin chain (also called the XX
or XX0 model) for the spin part of the eigenstates of the t − 0
model. The reason is that the XX model is noninteracting, so
that its eigenstates are simple to deal with. This is in stark con-
trast with the case of an arbitrarily large but finite U . There,
the spin sector of the Hubbard Hamiltonian can be effectively
described by the XXX model, whose eigenstates are much
more complicated since they correspond to interacting spin
excitations [41,50].
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Thus, in the sector with fixed numbers of spin-up and spin-
down particles (N↑ and N↓), the Bethe eigenstates of the t − 0
Hamiltonian (3) are given by the product of the eigenstate of
N = N↑ + N↓ noninteracting spinless fermions on L sites and
the eigenstate of the XX spin chain in an auxiliary lattice of
M = N↓ sites [47,49]. The size of this sector of the Hilbert
space is

(L
N

)× (N
M

)
, where

(X
Y

)
is the binomial coefficient. The

conservation of the spin pattern further reduces the dimen-
sionality of the sector to

D = Zσ

(
L

N

)
, (6)

where Zσ is the length of the orbit of a spin pattern σ =
{σ1, . . . , σN } under the action of the cyclic group CN . The
value of Zσ for a given spin pattern σ can be immediately read
off from the periodicity of the pattern. Therefore, for M > 0
one has 2 � Zσ � N , and the lower bound is achieved for the
Néel state, whereas the upper bound is realized for a generic
aperiodic spin pattern. Obviously, in the spin-polarized case
(M = 0 or M = N ) one has Zσ = 1. In what follows we
always work in the sector with the fixed spin pattern.

C. Eigenstates of the t − 0 model

In the Hilbert space sector with the fixed spin pattern σ =
{σ1, . . . , σN }, which consists of N spins in total and contains
M down spins, the eigenstate of the t − 0 Hamiltonian can be
written as [45]

∣∣�σ
t−0(k, ϕ)

〉 = ∑
1�x1<...<xN�L

ψk,ϕ (x) ×
Zσ−1∑

j=0

χσ
ϕ ( j)

×
N∏

l=1

c†
xl ,σl+ j

|0〉, (7)

where ψk,ϕ (x) and χσ
ϕ ( j) are the wave functions of the charge

and spin degrees of freedom, respectively, and the spin indices
satisfy σ j+Zσ

≡ σ j . The eigenstates (7) are parametrized by
the set k = {k1, . . . , kN } of N momenta of the charge degrees
of freedom and the total spin quasi-momentum ϕ. The charge
part of the many-body wave function corresponds to the Slater
determinant of N free spinless fermions on a ring penetrated
by the magnetic flux ϕ and reads

ψk,ϕ (x) = det
1�a,b�N

{
1√
L

exp[i(ka + ϕ/L)xb]

}
. (8)

On the other hand, the spin part of the many-body wave
function corresponds to a single free particle with the quasi-
momentum −ϕ:

χσ
ϕ ( j) = 1√

Zσ

exp{−iϕ j}. (9)

Due to the periodic boundary conditions the charge rapidities
ka and the spin quasimomentum ϕ satisfy the quanization
conditions exp{ikaL} = 1, with 1 � a � N , and
exp{−iϕZσ} = 1, so that we have

ka = 2π

L
κa, κa ∈ {0, 1, . . . , L − 1}, (10a)

ϕ = 2π

Zσ

s, 0 � s � Zσ − 1. (10b)

The energy of the eigenstate (7) is given by

E (k, ϕ) = −2t
N∑

a=1

cos (ka + ϕ/L). (11)

The eigenstates (7) are orthonormal and form a complete set
in the Hilbert space sector with the fixed spin pattern.

We note that the form (7) of the eigenstates in the sector
with fixed spin pattern σ is less known as compared to the
eigenstates belonging to the sector with the fixed values of N
and M. For the sake of completeness we discuss the relation
between the two sectors in Appendix A. Here we only would
like to emphasize that the advantage of the sector with fixed σ

is that both the spectrum (11) and the eigenstates (7) depend
on spin degrees of freedom via a single parameter – total
quasimomentum ϕ. This is no longer true for the eigenstates
in the sector with fixed N and M, in which case only the
spectrum depends solely on ϕ, whereas the eigenstates depend
on M distinct spin quasimomenta.

III. MAPPING OF THE t − 0 MODEL
ON TO FREE FERMIONS

Remarkably, the infinite-U Hubbard (t − 0) model admits
an elementary solution that does not require the use of Bethe
ansatz. This solution relies on a certain decomposition of the
spin-1/2 fermionic operators c j,σ into the charge and spin de-
grees of freedom, and a unitary transformation that eliminates
the spin dependence of the t − 0 Hamiltonian (3). Below we
outline the main steps of this alternative approach.

A. Fermionic operator mapping

At the first step, one represents the operators c j,σ , c†
j,σ

of physical spinful fermions in terms of the operators of
spinless fermions f j , f †

j and the Pauli matrices σα
j , rep-

resenting the charge and spin variables, respectively. The
operators f j and f †

j satisfy the canonical anticommutation

relations { f j, f †
k } = δ j,k and commute with the Pauli matrices,

[ f j, σ
α
k ] = [ f †

j , σ
α
k ] = 0. Equivalent forms of this mapping

were independently obtained in a large number of works (see,
e.g., Refs. [51–56]), and one has the following operator map-
ping:

c†
j,↑ = ( f †

j + (−1) j+1 f j )σ
+
j ,

c†
j,↓ = f †

j

1 − σ z
j

2
+ (−1) j f j

1 + σ z
j

2
,

(12)

where σ+
j = (σ x

j + iσ y
j )/2. Let us emphasize that the map-

ping in Eq. (12) yields a canonical transformation of the
spin-1/2 fermionic operators c j,σ and c†

j,σ [57]. From Eq. (12)
one immediately obtains that the number operators of spinful
fermions become

n j,↑ = 1
2

(
1 + σ z

j

)
, n j,↓ = n j,↑ − N jσ

z
j , (13)

where we introduced the number operator of spinless fermions

N j = f †
j f j . (14)
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In order to complete the mapping one has to specify the
transformation of the local Hilbert space in Eq. (2). Following
Refs. [58,59], for the physical vacuum |0〉 j we take

|0〉 j = |�〉 j | ⇓〉 j, (15)

where |�〉 j is the vacuum of spinless fermions, and | ⇓〉 j is
the spin-down state. Using Eq. (12), for the states with one
fermion we obtain

c†
j,↓|0〉 j = f †

j |�〉 j | ⇓〉 j = |�〉 j | ⇓〉 j,

c†
j,↑|0〉 j = f †

j σ
+
j |�〉 j | ⇓〉 j = |�〉 j | ⇑〉 j, (16)

where |�〉 j = f †
j |�〉 and | ⇑〉 j = σ+

j | ⇓〉 j . Finally, for the

doubly occupied site c†
j,↑c†

j,↓|0〉 j we use Eq. (12) and write

c†
j,↑c†

j,↓ = (−1) j+1(1 − N j )σ+
j . This immediately yields the

mapping

c†
j,↑c†

j,↓|0〉 j = (−1) j+1|�〉 j | ⇑〉 j . (17)

B. Mapping of the t − 0 model and elimination of the spin
degrees of freedom

Applying the transformation in Eq. (12) to the t − 0 Hamil-
tonian (5), one obtains [60]

Ht−0 = −t
L∑

j=1

Pj, j+1( f †
j f j+1 + H.c.), (18)

where the spin degrees of freedom enter the Hamiltonian (18)
only via the permutation operator

Pi, j = 1
2 (1 + σ i · σ j ), (19)

with σ j = {σ x
j , σ

y
j , σ

z
j } being the vector of Pauli matrices.

Quite remarkably, the spin degrees of freedom can be ef-
fectively eliminated from the Hamiltonian (18), as was first
shown by Kumar for the case of open boundary conditions
[56,60,61] and later extended to the case of periodic boundary
conditions in Ref. [62]. This is achieved with the help of the
unitary transformation

U =
L∏

j=2

Uj, Uj = (1 − N j ) + N j Tj, (20)

where N j is given by Eq. (14) and the unitary operator Tj acts
on the spin degrees of freedom. Explicitly it is given by

Tj = Pj, j−1Pj−1, j−2 . . . P2,1, 2 � j � L. (21)

The operator Tm satisfies the relations T m
m = 1, T †

m =
T −1

m = T m−1
m , and acts on the spin operators as

T †
m σk Tm =

⎧⎪⎨
⎪⎩

σk+1, k < m,

σk, k > m,

σ1, k = m.

(22)

Since the operator Tm is unitary, we can write

Tm = ei�m , �m = �†
m, (23)

which for m = L becomes the operator of lattice momentum
�L [41].

The unitary transformation with the operator U in Eq. (20)
reduces the Hamiltonian (18) to

Htb = U† Ht−0 U = −t
L−1∑
j=1

le f t ( f †
j f j+1 + H.c.) + HB, (24)

where the term HB is given by

HB = −t U†PL,1( f †
L f1 + f †

1 fL )U , (25)

and it vanishes for open boundary conditions. In the sec-
tor with the fixed number of particles N , the expression in
Eq. (25) can be significantly simplified (see Appendix C for
the derivation), and one has

HB = −t (e−i�̃L−N e−i �N f †
L f1 + H.c.), (26)

where we denoted �̃L−N = T −N
L �L−N T N

L and for N = L − 1
it is understood �1 ≡ 0. Then, taking into account the trans-
lational invariance and replacing in Eq. (26) the operators �p

with their eigenvalues Kp = 2πk/p, where k ∈ {0, . . . , p −
1}, one immediately reduces Eq. (18) to

Htb = − t
L−1∑
j=1

( f †
j f j+1 + H.c.)

− t (e−i(KN +KL−N ) f †
L f1 + H.c.). (27)

Thus, we see that the Hamiltonian (27) describes free spinless
fermions in a ring with twisted (quasiperiodic) boundary con-
ditions. The twisting phase KN + KL−N originates from the
coupling between the charge and spin degrees of freedom. In
the next subsection we show that this phase is nothing else
than the spin quasimomentum −ϕ entering the Bethe-ansatz
eigenstate (7) of the t − 0 model.

C. Eigenstates of Htb

One can now easily check that the eigenstates of the tight-
binding Hamiltonian Htb in Eq. (27) are

∣∣�σ
tb(k, ϕ)

〉 = U†
∣∣�σ

t−0(k, ϕ)
〉 = |ψk,ϕ〉 ⊗ ∣∣χσ

ϕ

〉
, (28)

where the eigenstate of the t − 0 model |�σ
t−0(k, ϕ)〉 is given

by Eq. (7). The states |ψk,ϕ〉 and |χσ
ϕ 〉 read

|ψk,ϕ〉 =
∑

1�x1<...<xN�L

ψk,ϕ (x)|x〉, (29a)

|χσ
ϕ 〉 =

Zσ−1∑
j=0

χσ
ϕ ( j)|C jσ〉, (29b)

where the wave functions ψk,ϕ (x) and χσ
ϕ ( j) given by Eqs. (8)

and (9), respectively. The states |x〉 and |C jσ〉 in Eq. (29)
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read

|x〉 =
N∏

l=1

f †
xl
|�〉, (30a)

|C jσ〉 = | σN+ j, . . . , σ1+ j︸ ︷︷ ︸
N

,⇓, . . . ⇓︸ ︷︷ ︸
L−N

〉, (30b)

and in Eqs. (28) and (29) we took into account that for a
product state

∏N
l=1 c†

xl ,σl+ j
|0〉 one has [59]

U†
N∏

l=1

c†
xl ,σl+ j

|0〉 ≡ |x〉 ⊗ |C jσ〉. (31)

We note that the following relations hold for the eigenstates
of the Hamiltonian (27):

e−i�N
∣∣�σ

tb(k, ϕ)
〉 = eiϕ

∣∣�σ
tb(k, ϕ)

〉
,

e−i �̃L−N
∣∣�σ

tb(k, ϕ)
〉 = ∣∣�σ

tb(k, ϕ)
〉
, (32)

where Tm is given by Eq. (21). Therefore, for the twisting
phase in Eq. (27) we have

−(KN + KL−N ) = ϕ, (33)

where ϕ is the spin quasimomentum [see Eqs. (9) and (10)].
In other words, the spin quasimomentum plays the role of an
effective magnetic flux for the charge degrees of freedom.

IV. DISORDERED t − 0 MODEL

We now turn to the one-dimensional t − 0 model in the
present of disorder and consider the operators

Vcharge =
L∑

j=1

ε j (n j,↑ + n j,↓), (34a)

Vspin =
L∑

j=1

h j (n j,↑ − n j,↓), (34b)

with ε j and h j being the random on-site potential and mag-
netic field, respectively. For our purposes the specific forms
of the distributions for ε j and h j are not important and can
be arbitrary. Projecting the operators Vcharge and Vspin onto the
subspace with no doubly occupied sites, we take into account
that one has PVcharge(spin)P = Vcharge(spin)P, where P is given by
Eq. (4). Therefore, one can safely omit the projector P since
all operators act on the projected Hilbert space. We then add
both terms in Eq. (34) to the t − 0 Hamiltonian (3) and obtain

Htot = Ht−0 + Vcharge + Vspin. (35)

Disorder of any type breaks translational invariance, and in
addition the random magnetic field breaks the SU (2) symme-
try. However, both the purely potential disorder Vcharge and the
random magnetic field Vspin conserve the numbers of spin-up
and spin-down particles. Importantly, both types of disorder
do not violate the conservation of the spin pattern.

A. Random potential

We first consider the case of a purely potential (spin-
independent) disorder, i.e., we put Vspin ≡ 0 in Eq. (35). Using

the mapping in Eq. (13) in order to express the number oper-
ators of spinful fermions n j,σ in terms of the charge and spin
degrees of freedom, one finds

Vcharge =
L∑

j=1

ε j
(
1 + (1 − N j )σ

z
j

)
. (36)

Then, we take into account that N j |�〉 j = |�〉 j and N j |�〉 j =
0. Since in the limit of U → +∞ the local Hilbert space is
spanned by the three states given by Eqs. (15) and (16), we
see that the action of the operator (1 − N j )σ z

j differs from
zero only for the state |�〉 j | ⇓〉 j and yields (−1)|�〉 j | ⇓〉 j .
Therefore, in Eq. (36) one can simply replace σ z

j → −1, and
we obtain

Vcharge =
L∑

j=1

ε jN j . (37)

One then needs to perform a unitary transformation of
Vcharge in Eq. (37) with the operator U from Eq. (20). Taking
into account that N j and U commute, one has U†VchargeU =
Vcharge, and the total Hamiltonian becomes

HA = U†HtotU = Htb + Vcharge, (38)

where Htb is given by Eqs. (27) and (33). The Hamilto-
nian (38) describes one-dimensional noninteracting spinless
fermioins with quasiperiodic boundary conditions subject to
the potential disorder. It is well known that this model exhibits
Anderson (single-particle) localization at an arbitrarily weak
disorder strength. However, since the disorder potential in
Eq. (38) only acts on the charge degrees of freedom, any
cyclic permutation of the spin pattern has the same energy, just
like in the disorder-free case. Therefore, the spin eigenstates
remain plane waves, as given by Eqs. (9) and (29). Thus,
the eigenstates of the Hamiltonian (38) are labeled by the
set of coordinates r = {r1, . . . , rN } of localized single-particle
charge degrees of freedom and the total quasimomentum ϕ of
the spin degrees of freedom, so that one has

|�σ (r, ϕ)〉 = |ψϕ (r)〉 ⊗ ∣∣χσ
ϕ

〉
, (39)

where the spin part |χσ
ϕ 〉 is given by Eq. (29b) and the charge

part reads

|ψϕ (r)〉 = 1

N!

L∑
x1=1

. . .

L∑
xN =1

ψϕ (r, x)|x〉, (40)

with the wave function ψϕ (r, x) being the Slater determinant
of spinless fermions

ψϕ (r, x) = det
1�a,b�N

{ψϕ (ra, xb)}, (41)

where ψϕ (ra, x) is a wave function of a single particle local-
ized around the site ra ∈ {x1, . . . , xN } of the chain.

B. Random magnetic field

Let us now turn to the case of nonzero random magnetic
field. Under the mapping (13), the operator Vspin in Eq. (34)
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becomes

Vspin =
L∑

j=1

h jN jσ
z
j . (42)

Thus, one can not eliminate the σ z
j operator as was done in the

case of potential disorder, since the operator N jσ
z
j acts differ-

ently on the states |�〉 j | ⇓〉 j and |�〉 j | ⇑〉 j . Then, performing
the unitary transformation of Vspin with the operator U from
Eq. (20), we arrive at

Ṽspin = U†VspinU =
L∑

j=1

h jN jσ
z
N+1−ν1, j

, (43)

where we used the results of Appendix D for U†σ z
jU and

introduced the counting function

ν1, j =
j∑

k=1

Nk, (44)

which counts the number of occupied sites in an interval
of length j [63]. A few comments regarding ν1, j are in or-
der. First, the counting function obviously satisfies ν1,L = N .
Second, due to the periodic boundary conditions, one has
ν1+L, j+L = ν1, j . Finally, an extra care is needed with the first-
quantized representation of the counting function. Consider
the action of ν1,xm on the state |x〉 = f †

x1
. . . f †

xm
. . . f †

xN
|�〉.

Clearly, we have

ν1,xm |x〉 =
xm∑

k=1

N∑
l=1

δk,xl |x〉. (45)

Therefore, for the set x = {x1, . . . , xm, . . . , xN } that can be
ordered by some permutation R ∈ SN as

1 � xR1 < . . . < xRm < . . . < xRN � L, (46)

from Eq. (45) one obtains [64]

ν1,xm |x〉 = Rm|x〉. (47)

Thus, for an ordered sector 1 � x1 < . . . < xl . . . < xN , i.e.,
for R = 1, one simply has ν1,xm |x〉 = m|x〉. This fact greatly
simplifies treatment of the random magnetic field Ṽspin.

From Eq. (43) we see that the random magnetic field results
in a complicated nonlocal coupling between the charge and
spin sector, so that for Vspin �= 0 the Hamiltonian (35) cannot
be factorized into the spin and charge parts.

V. MATRIX ELEMENTS OF THE RANDOM
MAGNETIC FIELD

In this section we proceed with deriving analytic expres-
sions for matrix elements of the random magnetic field Ṽspin

in Eq. (43), calculated between the eigenstates (39) of the
Anderson Hamiltonian (38).

A. General case

First we observe that the random magnetic field Ṽspin in
Eq. (43) does not couple sectors with different spin patterns
σ. Then, using Eq. (39), we have

〈�σ (r, ϕ)|Ṽspin|�σ (r′, ϕ′)〉 =
∑
x,x′

∑
j, j′

χσ
ϕ

∗( j)χσ
ϕ′ ( j′)

× ψ∗
ϕ (r, x)ψϕ′ (r′, x′) 〈x; C jσ|Ṽspin|x′; C j′σ〉, (48)

where for brevity we denoted |x; C jσ〉 ≡ |x〉 ⊗ |C jσ〉. Taking
into account that the random magnetic field is given by Ṽspin =∑L

j=1 h jN jσ
z
N−ν1, j+1 [see Eq. (43)], we obtain

Ṽspin|x; C jσ〉 =
N∑

�=1

hx�
ε(σ j+ν1,x�

)|x; C jσ〉, (49)

where ε(⇑) = 1, ε(⇓) = −1, and we took into account that
σ z

N−m+1|C jσ〉 = ε(σm+ j )|C jσ〉, as follows from the definition
of |C jσ〉 in Eq. (30b). Note that one can write

ε(σm) = 1 − 2
M∑

k=1

δm,yk , (50)

where 1 � yk � N are the coordinates of M down spins in the
spin pattern σ = {σ1, . . . , σN }. Therefore, taking into account
that the states |x; C jσ〉 are orthonormal, we can write the
matrix element (48) as

〈�σ (r, ϕ)|Ṽspin|�σ (r′, ϕ′)〉 = 1

N!

L∑
x1=1

. . .

L∑
xN =1

N∑
�=1

hx�
ψ∗

ϕ (r, x)ψϕ′ (r′, x) ×
Zσ∑
j=1

ε(σ j+ν1,x�
)χσ

ϕ
∗( j)χσ

ϕ′ ( j)

=
∑

1�x1<...<xN�L

N∑
�=1

hx�
ψ∗

ϕ (r, x)ψϕ′ (r′, x) × 1

Zσ

Zσ∑
j=1

ε(σ j+�)ei(ϕ−ϕ′ ) j,

(51)

where in the second equality we replaced the repeated summation over x1, . . . , xN with the ordered one and took into account
that in the ordered sector x1 < . . . < xN the counting function becomes simply ν1,x�

= �, as can be seen from its definition (44).
Then, using Eq. (50) for ε(σm), we can rewrite in Eq. (51) the sum over j as

1

Zσ

Zσ∑
j=1

ε(σ j+�)ei(ϕ−ϕ′ ) j = δϕ,ϕ′ − 2

Zσ

Zσ
M
N∑

k=1

ei(ϕ−ϕ′ )(yk−�), (52)
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where 1 � yk � Zσ are the positions of down spins in the pattern σ, and the summation is only over the first ZσM/N positions
of down spins (ZσM/N is always an integer). Then, taking into account that δϕ,ϕ′e−i(ϕ−ϕ′ )� = δϕ,ϕ′ , we reduce the matrix element
(51) to the following (almost) factorized form

〈�σ (r, ϕ)|Ṽspin|�σ (r′, ϕ′)〉 = Fϕ,ϕ′ (r, r′)Sσ
ϕ−ϕ′ , (53)

where we used the results of Appendix E 3 and denoted the spin part Sσ
ϕ−ϕ′ and the charge part Fϕ,ϕ′ (r, r′) by

Sσ
ϕ−ϕ′ = δϕ−ϕ′,0 − 2

Zσ

Zσ
M
N∑

k=1

ei(ϕ−ϕ′ )yk , (54a)

Fϕ,ϕ′ (r, r′) =
N∑

�=1

e−i(ϕ−ϕ′ )�
∑

1�x1<...<xN�L

hx�
ψ∗

ϕ (r, x)ψϕ′ (r′, x) = e−i N+1
2 (ϕ−ϕ′ )

N∑
l=1

N∑
s=1

(−1)l+s

×
L∑

x=1

hxψ
∗
ϕ (rl , x)ψϕ′ (r′

s, x)D(l,s)
ϕ,ϕ′ (x|r, r′), (54b)

with the function D(l,s)
ϕ,ϕ′ (x|r, r′) given by

D(l,s)
ϕ,ϕ′ (x|r, r′) = det

1�a,b�N
(a �=l,b�=s)

{
L∑

y=1

e−i sgn(x−y)(ϕ−ϕ′ )/2ψ∗
ϕ (ra, y)ψϕ′ (r′

b, y)

}
. (55)

Note that the charge part of the matrix element Fϕ,ϕ′ (r, r′) still depends on the spin quasimomenta ϕ and ϕ′, so that the charge
and spin degrees of freedom are not fully decoupled. One can easily check that for the homogeneous magnetic field, hj = h, the
matrix element (53) reduces to 〈�σ (r, ϕ)|Ṽspin|�σ (r′, ϕ′)〉 = (N − 2M ) h δϕ,ϕ′δr,r′ , as it should. In Appendix F we discuss some
other special cases of the matrix elements (53).

The results presented in Eqs. (53)–(55) constitute one of
the main findings of the present work and provide analytic
expressions for the matrix elements of the random magnetic
field (34b) calculated between the Anderson localized (single-
particle) eigenstates of the Hamiltonian (38). One can see that
the random magnetic field strongly hybridizes the localized
eigenstates |�σ (r, ϕ)〉 (since there is an extensive number
of nonzero off-diagonal matrix elements), which may lead
to their delocalization. Let us now make a remark. Note
that the matrix elements (53)–(55) depend on a realization
{h j}L

j=1 of the random magnetic field. No assumptions were
made on the disorder distribution so that our results are valid
for any distribution of the random magnetic field. Thus, the
next step is to investigate the statistical properties of the
matrix elements for various random magnetic distributions,
e.g., the uniform distribution. However, this is beyond the
scope of the present paper, and we leave this for future
work.

VI. CONCLUSIONS

In conclusion, we have analytically studied the one-
dimensional Hubbard model for two-component fermions
with infinitely strong on-site repulsion (the t − 0 model) in
the presence of disorder. We have used the fact that the spin
and charge degrees of freedom of this model are effectively
factorized. In the absence of disorder, this factorization allows
one to effectively integrate out the spin degrees of freedom
from the t − 0 model. The resulting Hamiltonian becomes
simply the tight binding model for free noninteracting spinless
fermions representing the charge degrees of freedom. The
spin degrees of freedom are also free, and for open boundary

conditions they are completely eliminated [65]. For periodic
boundary conditions that we consider, the situation is more
peculiar and the spin quasimomentum twists the boundary
conditions for spinless fermions. We then investigated the
influence of disorder on the effective model and demonstrated
that the type of disorder drastically changes the nature of
emerging phases. The case of potential (spin-independent)
disorder can be treated as a single-particle problem which
exhibits Anderson localization for the charge degrees of free-
dom. At the same time, the spin degrees of freedom are not
affected by the potential disorder and they remain extended.
We then considered the case of spin-dependent disorder (ran-
dom magnetic field). Unlike in the case of the potential
disorder, the spin and charge degrees of freedom can no longer
be factorized and one deals with a genuine many-body system
with disorder. We have analytically calculated the matrix el-
ements of the random magnetic field in the eigenbasis of the
t − 0 Hamiltonian with potential disorder, i.e., the Anderson-
localized single-particle states. The resulting matrix elements,
given by Eqs. (53)–(55), are represented by determinants of
a matrix whose entries are simple functions involving the
localized single-particle states. Note that the matrix elements
depend on a realization of the random magnetic field, so that
our results are valid for any disorder distribution. It would be
interesting to investigate the statistical properties of the matrix
elements for various distributions of the random magnetic
field. To do this one needs to relate the statistical properties
of the localized single-particle states to those of the matrix
elements of the random magnetic field. Note that the form of
the matrix elements (53)–(55) is especially convenient for this
task, since the dependence on single-particle states is rather
transparent.
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Our analysis of the matrix elements shows that the spin-
dependent disorder strongly couples the charge and spin
degrees of freedom and hybridizes the localized single
particle states, which may lead to the many-body localization-
delocalization transition. This expectation is in agreement
with the numerical observation of Ref. [19] that the ran-
dom magnetic field causes the localization-delocalization
transition. In order to perform a direct comparison be-
tween our results and those of Ref. [19], one needs to
investigate the statistical properties of the matrix elements
with a uniformly distributed random magnetic field (as
in Ref. [19]). Thus, the results of the present work are
important for further analytical studies of many-body lo-
calization in the Hubbard model. Our findings are also
relevant for ongoing experiments with ultracold gases in
optical lattices, where the type of disorder can be con-
trolled.

Finally, let us mention that it would be also interesting to
investigate the 1/U corrections for the case of a very large
but finite on-site repulsion between different spin components.

However, in this case one has to deal with the significantly
more complicated eigenstates of the finite-U Hubbard model
[41,44,50]. We expect that in this case the many-body lo-
calization transition would be present already with a purely
potential (spin-independent) disorder.
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APPENDIX A: EIGENSTATES OF THE t − 0 MODEL
IN THE SECTOR WITH FIXED N AND M

In this Appendix we discuss the relation between the eigenstates of the t − 0 model in the sector with a fixed spin pattern
σ = {σ1, . . . σN } (see Sec. II C) and those in the sector with fixed total number of particles N and number of spin-↓ particles M.
Obviously, the latter is larger in size (except for the cases M = 0, 1, N − 1, N , in which the sector with fixed σ and the one with
fixed N, M coincide), since one can construct various patterns σ for fixed N and M.

In the sector with fixed values of N and M the Bethe ansatz eigenstates of the t − 0 Hamiltonian (3) can be written as [41,47]∣∣�N,M
t−0 (k,λ)

〉 = ∑
1�x1<...<xN�L

∑
σ1,...,σN =↑,↓∑N

s=1 δσs ,↓=M

ψk,ϕ (x)ξλ(σ)c†
x1,σ1

. . . c†
xN ,σN

|0〉, (A1)

where the summation over σ1, . . . , σN includes only the terms containing exactly M down spins, ψk,ϕ (x) is the charge wave
function given by Eq. (8) in the main text, and ξλ(σ) is the spin wave fucntion that reads

ξλ(σ) = det
1�a,b�M

{
1√
N

eiλayb(σ)

}
, (A2)

where ym(σ) gives the position of the mth down spin in the sequence σ = {σ1, . . . , σN }. The eigenstates (7) are parametrized
by the sets of N charge rapidities k = {k1, . . . , kN } and M spin rapidities λ = {λ1, . . . λM}, with the total spin quasimomentum
being

ϕ =
M∑

m=1

λm mod 2π. (A3)

The charge and spin rapidities satisfy the quantization condition

eikaL = 1 (1 � a � N ), eiλbN = (−1)M+1 (1 � b � M ), (A4)

known as the Bethe ansatz equations. Their solutions are given by

ka = 2π

L
κa, κa ∈ {0, 1, . . . , L − 1},

λb = 2π

N

[
lb − N

2
+ 1

4
(1 + (−1)N−M )

]
, lb ∈ {0, 1, . . . , N − 1}. (A5)

In some cases it might be convenient to shift the charge quantum numbers as κa → κa − �L/2�, where �x� denotes the integer
part of x. The energy of the eigenstate (A1) coincides with the one given by Eq. (11) in the main text, which reads E (k, ϕ) =
−2t

∑N
a=1 cos(ka + ϕ/L). Note that the energy only depends on the total quasimomentum ϕ of the spin degrees of freedom and

not on the individual spin rapidities λb.
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We now proceed with transforming the eigenstate (A1), which belongs to the sector with fixed N and M, into the
eigenstate (7) that lies in the sector with a fixed spin pattern σ. Taking into account that σ is conserved, it is convenient to
rewrite the summation over σ1, . . . , σN in Eq. (7) in a different way. Namely, let us explicitly separate in Eq. (A1) the summation
over spin patterns σ that can not be transformed into each other by cyclic permutations from the summation over those patterns
that are connected by a cyclic permutation:

∑
σ1,...,σN =↑,↓∑N

s=1 δσs ,↓=M

ξλ(σ)
N∏

j=1

c†
x j ,σ j

|0〉 =
∑
σ∈P

Zσ−1∑
r=0

ξλ(Crσ)
N∏

j=1

c†
x j ,σ j+r

|0〉, (A6)

where P is the set of inequivalent spin configurations σ that can not be connected by cyclic permutations, Zσ is the period of
pattern σ [see discussion after Eq. (6) in the main text], and Crσ is the r-fold cyclic permutation of σ = {σ1, . . . , σN }, i.e., one
has

Crσ = {σ1+r, . . . , σN+r}. (A7)

Taking into account that the positions of down spins become ym(Crσ) = ym(σ) − r [since the whole pattern is shifted by r
positions as shown in Eq. (A7)], we immediately obtain

ξλ(Crσ) = det
1�a,b�M

{
1√
N

eiλayb(σ)e−irλa

}
= e−ir

∑M
m=1 λaξλ(σ) = e−irϕξλ(σ). (A8)

Thus, taking into account Eqs. (A6) and (A8), one can rewrite the eigenstate (A1) as [45]∣∣�N,M
t−0 (k,λ)

〉 ≡ ∑
σ∈P

√
Zσ ξλ(σ)

∣∣�σ
t−0(k, ϕ)

〉
, (A9)

where the state

∣∣�σ
t−0(k, ϕ)

〉 = ∑
1�x1<...<xN�L

ψk,ϕ (x)
1√
Zσ

Zσ−1∑
r=0

e−iϕr
N∏

l=1

c†
xl ,σl+r

|0〉, (A10)

is nothing else than the eigenstate of the t − 0 model in the sector with fixed spin patterns σ, given by Eq. (7) in the main text.
Note that the spin indices in Eq. (A9) are periodic, σ j+Zσ

≡ σ j .

APPENDIX B: ACTION OF Uk IN EQ. (20)

In this Appendix we derive explicit expressions for the unitary transformations U †
k f jUk , U †

k σα
j Uk , and U †

k Pi, jUk , where Uk is
given by Eq. (20), f j is the fermionic annihilation operator, σα

j are the Pauli matrices, and Pi, j is the permutation operator from
Eq. (19).

First of all, for the fermionic operator f j one has

U †
k fkUk = fkTk, U †

k f jUk = f j, (k �= j), (B1)

which follows immediately from Eq. (20) and the relation [N j, fk] = −δ j,k fk . Note that one clearly has U †
k N jUk = N j for any

j and k.
Let us now consider the transformation

U †
k σ jUk = (1 − Nk )σ j + NkT †

k σ jTk, (B2)

where 2 � k � L, σ j is the vector of Pauli matrices, and we took into account that N 2
k = Nk . Then, using Eq. (22) we obtain

U †
k σ jUk =

⎧⎨
⎩

(1 − Nk )σ j + Nk σ j+1, j < k,

(1 − N j )σ j + N j σ1, j = k,

σ j, j > k.

(B3)

Finally, we are interested in the transformation U †
k Pi, jUk . Taking into account Eq. (19) for the permutation operator, we have

U †
k Pi, jUk = 1

2 (1 + U †
k σ iUk · U †

k σ jUk ). (B4)

Since Pi, j = Pj,i, without loss of generality we may assume that i < j. Then, depending on the ordering of (i, k) and ( j, k), from
Eq. (B3) one obtains three distinct cases given below:

U †
k Pi, jUk = (1 − Nk )Pi, j + NkPi+1, j+1, (i < k and j < k), (B5)

U †
k Pi,kUk = (1 − Nk )Pi,k + NkPi+1,1, (i < k and j = k), (B6)
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U †
k Pi, jUk = (1 − Nk )Pi, j + NkPi+1, j, (i < k and j > k). (B7)

APPENDIX C: DERIVATION OF HB IN EQ. (26)

In this Appendix we derive the simplified form of the boundary term

HB − t U†PL,1( f †
L f1 + f †

1 fL )U . (C1)

Using the results of Appendix B, it is straightforward to derive Eq. (26). First of all, note that we can write

P1,L f †
1 fL = P1,LN1 f †

1 fL, (C2)

since N j f †
j = f †

j . Then, using Eq. (20) for the operator U and taking into account Eq. (B7) with i = 1 and j = L, we have

U†N1P1,L f †
1 fLU =

2∏
k=L

U †
k N1P1,L f †

1 fL

L∏
k=2

Uk =
3∏

k=L

U †
k [(1 − N2)N1P1,L + N2N1P2,L] f †

1 fL

L∏
k=3

Uk =
4∏

k=L

U †
k [(1 − N3)(1 − N2)

× N1P1,L + N3(1 − N2)N1P2,L + (1 − N3)N2N1P2,L + N3N2N1P3,L] f †
1 fL

L∏
k=4

Uk, (C3)

where the expression in the square brackets can be formally written as PN1+N2+N3, L, since it produces the same result when
acting on a given state in the occupation number basis. Thus, repeatedly using Eq. (B7), we obtain

U†N1P1,L f †
1 fLU = U †

L PL,
∑L−1

l=1 Nl
f †
1 fLUL = [(1 − NL )PL,

∑L−1
l=1 Nl

+ NLP1,1+∑L−1
l=1 Nl

]
f †
1 fLTL, (C4)

where we took into account Eq. (B1) for U †
L fLUL and Eq. (B6) with i =∑L−1

l=1 Nl and k = L. Then, since N j f j = 0, one has

U†N1P1,L f †
1 fLU = PL,

∑L−1
l=1 Nl

TL f †
1 fL = (1 + NL − NL )PL,

∑L−1
l=1 Nl

TL f †
1 fL = PL,

∑L
l=1 Nl

TL f †
1 fL = PL,N TL f †

1 fL, (C5)

where 1 � N < L is the total number of fermions. Thus, using Eqs. (C2) and (C5), one can write the boundary hopping term HB

as

HB = −t
(
T −1

L PL,N f †
L f1 + PL,N TL f †

1 fL
)
. (C6)

Then, it is convenient to write

PL,N TL = TN T −N
L TL−N T N

L = ei�N T −N
L ei�L−N T N

L = ei�N eiT −N
L �L−N T N

L , (C7)

where we took into account Eq. (23). Thus, Eq. (C6) yields

HB = −t (ei �N ei�̃L−N f †
1 fL + e−i�̃L−N e−i �N f †

L f1), (C8)

where �̃L−N = T −N
L �L−N T N

L and for N = L − 1 it is understood �1 ≡ 0, which gives Eq. (26) in the main text.

APPENDIX D: DERIVATION OF U †σz
j U IN EQ. (43)

Using Eq. (20) for the unitary operator U , we obtain

U†σ jU =
2∏

k=L

U †
k σ j

L∏
k=2

Uk =
j+1∏
k=L

U †
k [(1 − N j )σ j + N jσ1]

L∏
k= j+1

Uk

=
j+2∏
k=L

U †
k [(1 − N j )((1 − N j+1)σ j + N j+1σ j+1) + N j ((1 − N j+1)σ1 + N j+1σ2)]

L∏
k= j+2

Uk, (D1)

where we assumed that 2 � j � L − 1 and took into account Eq. (B3). We now observe that the expression in the square brackets
can be formally written as

(1 − N j )σ j+N j+1 + N jσ1+N j+1 , (D2)

since it produces the same result when acting on a given state in the occupation number basis. Continuing the procedure, from
Eq. (D1) we obtain

U†σ jU =
L−p∏
k=L

U †
k

[
(1 − N j )σ j+∑L−p−1

l= j+1 Nl
+ N jσ1+∑L−p−1

l= j+1 Nl

] L∏
k=L−p

Uk, (D3)
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where 1 � p � L − j − 1. Finally, we arrive at the relation

U†σ jU = (1 − N j )σ j+∑L
k= j+1 Nk

+ N jσ1+∑L
k= j+1 Nk

, (D4)

where 1 < j < L. The cases j = 1 and j = L should be treated separately, and we obtain

U†σ1U = σ1+∑L
k=2 Nk

, U†σLU = (1 − NL )σL + NLσ1. (D5)

From Eqs. (D4) and (D5) we see that the transformation (20) shifts σ j to some other position j′ that depends on the number of
occupied sites in the interval [ j + 1, L] of the chain. In other words, U†σ jU effectively acts as a permutation. It then follows
immediately that U† ∑L

j=1 σ j U =∑L
j=1 σ j .

APPENDIX E: OVERLAPS INVOLVING SLATER DETERMINANTS

For completeness, in this Appendix we present detailed calculations of various overlaps involving Slater determinants (see,
e.g., Ref. [66] for a related discussion). Consider the following Slater determinant of single particle states ψn(x):

ψ (n, x) = det
1�a,b�N

{
ψna (xb)

} =
∑

P∈SN

(−1)P
N∏

j=1

ψn j (xP j ) =
∑

P∈SN

(−1)P
N∏

j=1

ψnP j (x j ) ≡ A
N∏

j=1

ψn j (x j ), (E1)

where SN is the symmetric group of order N , P is a permutation {1, 2, . . . , N} → {P1, P2, . . . , PN}, and we introduced the
antisymmetrization operator A, which is Hermitian and satisfies A2 = N!A.

1. Inner product of Slater determinants

For the inner product of two Slater determinants one has

〈φ(m)|ψ (n)〉 ≡ 1

N!

L∑
x1=1

. . .

L∑
xN =1

φ∗(m, x)ψ (n, x) = 1

N!

L∑
x1=1

. . .

L∑
xN =1

∑
P∈SN

(−1)P
N∏

j=1

φ∗
mj

(xP j )A
N∏

j=1

ψn j (x j )

= 1

N!

L∑
x1=1

. . .

L∑
xN =1

N∏
j=1

φ∗
mj

(x j )
∑

P∈SN

(−1)PA
N∏

j=1

ψn j (xP j ) =
∑

P∈SN

(−1)P
N∏

j=1

L∑
x=1

φ∗
mj

(x)ψnP j (x)

= det
1�a,b�b

{
L∑

x=1

φ∗
ma

(x)ψnb (x)

}
,

(E2)

which is nothing else than the determinant of single particle inner products. For orthonormal single particle states satisfying∑L
x=1 φ∗

ma
(x)ψnb (x) = δma,nb we arrive at 〈φ(m)|ψ (n)〉 = δm,n.

2. Matrix elements of a symmetric single-body operator V sym
1 (x1, . . . , xN ) = ∑N

l=1 f (xl )

Consider a single-body operator V sym
1 (x) =∑N

l=1 f (xl ), which is totally symmetric under an arbitrary exchange of the
coordinates x1, . . . , xN . Its matrix element between two Slater determinants are given by

〈φ(m)|V sym
1 |ψ (n)〉= 1

N!

L∑
x1=1

. . .

L∑
xN =1

φ∗(m, x)
N∑

l=1

f (xl )ψ (n, x)= 1

N!

L∑
x1=1

. . .

L∑
xN =1

∑
P∈SN

(−1)P
N∏

j=1

φ∗
mj

(xP j )
N∑

l=1

f (xl )A
N∏

j=1

ψn j (x j )

= 1

N!

L∑
x1=1

. . .

L∑
xN =1

N∏
j=1

φ∗
mj

(x j )
N∑

l=1

f (xl )
∑

P∈SN

(−1)PA
N∏

j=1

ψn j (xP j )

=
N∑

l=1

N∑
s=1

L∑
x=1

f (x)φ∗
ml

(x)ψns (x)
∑

Q∈SN

(−1)Qδs,Ql

N∏
j=1

( j �=l )

L∑
x=1

φ∗
mj

(x)ψnQ j (x)

=
N∑

l=1

N∑
s=1

(−1)l+s
L∑

x=1

f (x)φ∗
ml

(x)ψns (x) det
1�a,b�N
(a �=l,b�=s)

{
L∑

x=1

φ∗
ma

(x)ψnb (x)

}
,

(E3)

where in the last equality the factor of (−1)l+s appears after the summation over Q because of the Kronecker symbol δs,Ql .
Setting f (x) = 1/N in Eq. (E3), so that one has V sym

1 ≡ 1, we immediately see that one of the summations (say the one over l)
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gives the cofactor expansion of the determinant. Then, the remaining sum (say, the one over s) has N identical terms, so that
Eq. (E3) reduces to Eq. (E2).

3. Matrix elements of a symmetric many-body operator V sym(x1, . . . , xN ) = ∑N
l=1 eiθν1,xl f (xl )

Finally, we consider a many-body operator V sym(x1, . . . , xN ) =∑N
l=1 eiθν1,xl f (xl ), where ν1,xl is the counting function given

by Eqs. (44) and (45) in the main text. Taking into account that for the ordered sector x1 < . . . < xl < . . . < xN one has ν1,xl = l ,
we write

〈φ(m)|V sym|ψ (n)〉 = 1

N!

L∑
x1=1

. . .

L∑
xN =1

φ∗(m, x)
N∑

r=1

eiθν1,xr f (xr )ψ (n, x)

=
N∑

r=1

eiθr
∑

1�x1<...<xN�L

f (xr )
∑

P,Q∈SN

(−1)P+Q
N∏

j=1

φ∗
mP j

(x j )ψnQ j (x j ), (E4)

where we replaced the repeated sumation over x1, . . . xN with the ordered one. We then rewrite the ordered summation in the
second line of Eq. (E4) as follows:

∑
1�x1<...<xN�L

→
⎛
⎝ x2∑

x1=1

. . .

xr∑
xr−1=1

⎞
⎠ L∑

xr=1

⎛
⎝ L∑

xr+1=xr+1

. . .

L∑
xN =xN−1+1

⎞
⎠. (E5)

Note that in Eq. (E5) we extended the ordered sector to 1 � x1 � . . . � xr−1 � xr < . . . < xN . This is allowed since the terms
with x j−1 = x j do not contribute to the matrix element (E4) due to the presence of Slater determinants. Thus, using Eq. (E5) we
reduce Eq. (E4) to

〈φ(m)|V sym|ψ (n)〉 =
N∑

r=1

eiθr
∑

P,Q∈SN

(−1)P+Q
L∑

xr=1

f (xr )φ∗
mPr

(xr )ψnQr (xr ) ×
x2∑

x1=1

. . .

xr∑
xr−1=1

r−1∏
j=1

φ∗
mP j

(x j )ψnQ j (x j )

×
L∑

xr+1=xr+1

. . .

L∑
xN =xN−1+1

N∏
j=r+1

φ∗
mP j

(x j )ψnQ j (x j ). (E6)

Note that because of the summation over the permutations P and Q, the summands in the ordered summations over x1 � . . . �
xr−1 and xr+1 < . . . < xN in Eq. (E6) are symmetric functions of the corresponding variables. This allows us to replace the
ordered summations with the repeated ones:

∑
1�x1�...�xr−1�xr

→ 1

(r − 1)!

xr∑
x1=1

. . .

xr∑
xr−1=1

,
∑

xr+1�xr+1<...<xN�L

→ 1

(N − r)!

L∑
xr+1=xr+1

. . .

L∑
xN =xr+1

. (E7)

Then Eq. (E6) can be written as

〈φ(m)|V sym|ψ (n)〉 =
N∑

l=1

N∑
s=1

L∑
x=1

f (x)φ∗
ml

(x)ψns (x) ×
N∑

r=1

eiθr

(N − r)!(r − 1)!

∑
P,Q∈SN

(−1)Q+Pδl,Prδs,Qr

×
r−1∏
j=1

x∑
y=1

φ∗
mP j

(y)ψnQ j (y)
N∏

j=r+1

L∑
y=x+1

φ∗
mP j

(y)ψnQ j (y). (E8)

One can easily check that Eq. (E8) significantly simplifies and it yields

〈φ(m)|V sym|ψ (n)〉 = ei N+1
2 θ

N∑
l=1

N∑
s=1

(−1)l+s
L∑

x=1

f (x)φ∗
ml

(x)ψns (x) × det
1�a,b�N
(a �=l,b�=s)

⎧⎨
⎩

L∑
y=1

ei sgn(x−y)θ/2φ∗
ma

(y)ψnb (y)

⎫⎬
⎭, (E9)

where we used the fact that one can write eiθ/2∑x
y=1 φ∗

ma
(y)ψnb (y) + e−iθ/2∑L

y=x+1 φ∗
ma

(y)ψnb (y) =∑L
y=1 ei sgn(x−y)θ/2φ∗

ma
(y)

ψnb (y), since the term with y = x gives zero contribution to the matrix element (E8).
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APPENDIX F: SPECIAL CASES OF THE MATRIX ELEMENTS (53)

1. Matrix elements with ϕ′ = ϕ

First, we consider matrix elements that are diagonal in the spin degree of freedom, i.e., those with ϕ = ϕ′. From Eq. (54a)
one immediately sees that we have

Sσ
0 = 1 − 2M

N
. (F1)

Using the results of Appendix E, in particular Eq. (E3), we can further simplify the charge part (54b), which in the case of ϕ′ = ϕ

yields

Fϕ,ϕ (r, r′) =
N∑

l=1

N∑
s=1

(−1)l+s
N∏

a=1
a �=l

N∏
b=1
b�=s

δra,r′
b

L∑
x=1

hxψ
∗
ϕ (rl , x)ψϕ (r′

s, x), (F2)

where we used the fact that the single particle wave functions with the same value of ϕ are orthonormal,∑L
x=1 ψ∗

ϕ (ra, x)ψϕ (r′
b, x) = δra,r′

b
.

It is easy to see that in the case of a single spin component, i.e., for M = 0 or M = N one has Zσ = 1 so that ϕ = ϕ′ = 0 is
the only possibility. Therefore, in the single-component case we obtain Sσ

0 = 1 for M = 0 and Sσ
0 = −1 for M = N . The charge

part of the matrix element in this case follows from Eq. (F2) with ϕ = ϕ′ = 0.

2. Néel spin configuration

We now look at a less trivial case, namely the Néel spin configuration. In this case we have M = N/2, Zσ = 2 (recall that Zσ

coincides with the period of a spin pattern), and ϕ, ϕ′ ∈ {0, π} [see Eq. (10)], so that we have ϕ − ϕ′ ∈ {0,±π}. Consider first
ϕ = ϕ′. In this case from Eq. (F1) we have Sσ

0 = 0, so that the diagonal in spin (ϕ = ϕ′) matrix elements (53) vanish. Without
loss of generality we may assume that the spin pattern σ always has σ1 =⇓, so that y1 = 1. Then, from Eq. (54a) we see that for
the off-diagonal (ϕ′ �= ϕ) matrix elements the spin part is simply Sσ

±π = 1, and Eq. (53) yields

〈�σ (r, ϕ)|Ṽspin|�σ (r′, ϕ′)〉 = (1 − δϕ,ϕ′
)
Fϕ,ϕ′ (r, r′). (F3)
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listic Eigenstates in Disordered Chaotic Spin Ladders and
the Fermi-Hubbard Model, Phys. Rev. Lett. 123, 036403
(2019).

[33] U. Krause, T. Pellegrin, P. W. Brouwer, D. A. Abanin, and M.
Filippone, Nucleation of Ergodicity by a Single Mobile Impu-
rity in Supercooled Insulators, Phys. Rev. Lett. 126, 030603
(2021).

[34] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[35] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. H.
Madhusudhana, I. Bloch, and M. Aidelsburger, Observing non-
ergodicity due to kinetic constraints in tilted Fermi-Hubbard
chains, Nat. Commun. 12, 4490 (2021).
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