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ABSTRACT
One key question about transport of active polymers within crowded environments is how spatial order of obstacles influences their confor-
mation and dynamics when compared to disordered media. To this end, we computationally investigate the active transport of tangentially
driven polymers with varying degrees of flexibility and activity in two-dimensional square lattices of obstacles. Tight periodic confinement
induces notable conformational changes and distinct modes of transport for flexible and stiff active filaments. It leads to caging of low activity
flexible polymers inside the inter-obstacle pores while promoting more elongated conformations and enhanced diffusion for stiff polymers
at low to moderate activity levels. The migration of flexible active polymers occurs via hopping events, where they unfold to move from one
cage to another, similar to their transport in disordered media. However, in ordered media, polymers are more compact and their long-time
dynamics is significantly slower. In contrast, stiff chains travel mainly in straight paths within periodic inter-obstacle channels while occasion-
ally changing their direction of motion. This mode of transport is unique to periodic environment and leads to more extended conformation
and substantially enhanced long-time dynamics of stiff filaments with low to moderate activity levels compared to disordered media. At high
active forces, polymers overcome confinement effects and move through inter-obstacle pores just as swiftly as in open spaces, regardless of
the spatial arrangement of obstacles. We explain the center of mass dynamics of semiflexible polymers in terms of active force and obstacle
packing fraction by developing an approximate analytical theory.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0180170

I. INTRODUCTION

Understanding the dynamics of active particles within hetero-
geneous media, subjected to intricate geometric constraints, has
become an increasingly important research focus.1 This elevated
interest arises due to the omnipresence of porous media in both
natural settings, such as gels, tissues, and soils, and man-designed
devices, such as array of micro-pillars in bio-technological applica-
tions. Gaining such insight is of relevance from both fundamental
and applied perspectives. From a fundamental viewpoint, we are
interested in understanding the impact of the heterogeneity of
environments on the stochastic transport of active particles within
complex media. From a practical standpoint, it helps us to unveil
the movement and search strategies employed by living organisms
in real-world environments. Furthermore, the knowledge acquired

can be harnessed to pioneer innovative technological applications
for controlling the motion of active agents within complex media.
For example, smart self-propelled carriers can be used for cargo or
drug delivery in heterogeneous media or contamination removal in
porous soil.

In the last decade, both experimental and theoretical research
efforts1–17 have been directed at understanding the motion of
active particles in heterogeneous porous media. The majority of
studies so far have focused on the migration of active particles
in disordered media1–9 as most of movement environments for
active particles in the nature are disordered. However, patterned
structures with periodic lattices are also found in the nature, for
instance, in antibiofouling surfaces, such as cicada wings18 and shark
skins.19 Moreover, a first approach to control the dynamics of active
agents for technological applications relies on designing ordered
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heterogeneous media by placing obstacles on a substrate in periodic
arrangements.17,20

Research in this direction includes studies of the motion of
active particles and bacteria12–17 in periodic array of obstacles. These
studies revealed that the periodic arrangement can enhance the per-
sistent motion of active particles at high enough activity levels15

and more generally affect the transport efficiency of active parti-
cles, depending on the size of active particles and the nature of their
interactions with the structured medium.16,17 While the previous
studies of active particles in periodic array of obstacles focused on
rigid or spherical swimmers, not much is known about the motion
of flexible elongated self-propelled particles, such as active filaments
in periodic environments. To make a headway in this direction,
we investigate the motion of active polymers of varying degrees of
flexibility and activity in a square lattice of obstacles. We note that
although there have been several studies of active polymers in dis-
ordered porous media,9,10,21 effects of a periodic arrangement of
obstacles on conformation and dynamics of active filaments remain
largely unexplored.32 We choose to focus on tangentially driven
active polymers in a 2D square lattice, which are relevant for exper-
iments of T. Tubifex20 worms or E-coli bacteria17 in ordered two
dimensional array of pillars.

The key questions that arise are as follows: (i) Can the peri-
odic structure of obstacle arrangement give rise to new modes of
transport of active polymers? (ii) Under what conditions, does the
regularity of obstacle arrangement result in markedly distinct con-
formations and dynamics of active filaments compared to those
observed in disordered media9? To address these questions, we
study the conformational and dynamical features of polymers while
varying their degree of flexibility, activity level, and the porosity
of the ordered medium via changing packing fraction of obsta-
cles. We find that the effect of periodic confinement becomes
significant at high obstacle packing, where the pore size becomes
smaller than the gyration radius of flexible polymers or persistence
length of semiflexible polymers. Therefore, for high packing fraction
of obstacles, we also study motion of active polymers in disor-
dered array of obstacles and compare the mean conformation and
long-time dynamics of active filaments with those in the ordered
environment.

Under tight confinement, flexible active polymers exhibit
shrunken conformations, which are predominantly caged in inter-
obstacle pores, and their transport occurs via rare events where they
unfold and hop to an adjacent cage. In contrast, tight periodic con-
finement constrains stiff active filaments to travel in straight paths
inside the periodic channels while occasionally bending and chang-
ing their directions. Hence, periodic arrangement of obstacles gives
rise to a new mode of transport for stiff active filaments, which does
not occur in disordered media. The two distinct modes of trans-
port for flexible and stiff polymers in ordered environments lead
to different trends for the long-time diffusion of active polymers
at low to moderate activity levels, which are also notably differ-
ent from their behavior in disordered media. At low activities, tight
periodic confinement decreases the long-time diffusion of flexible
polymers, whereas for very stiff polymers, it leads to enhancement
of the long-time diffusion. Remarkably, for all the cases, at high
activity levels, polymers exhibit a similar dynamics to those in free
space, hence overcoming the effects imposed by tight geometrical
constraints.

The remainder of this article is organized as follows: First, we
introduce our simulation setup and the relevant set of dimensionless
group of parameters. In Sec. III, we investigate the effects of periodic
arrays of obstacles on the conformation of active polymers under
different situations. In Sec. IV, we discuss distinct modes of trans-
port for flexible and stiff polymers under strong confinement. We
characterize the statistical features of caging events for flexible poly-
mers and the channel switching events for stiff ones. In Sec. V, we
examine the effect of periodic confinement on dynamical proper-
ties of active polymers of varying degrees of activity and flexibility.
Additionally, we propose an analytical approach to rationalize the
dynamics of the center of the mass of active chains under periodic
confinement using suitable approximations. In Sec. VI, we compare
the mean conformation and long-time diffusion of flexible and stiff
active filaments with identical degree of flexibility and activity in
dense ordered and disordered array of obstacles. Finally, we sum-
marize our most important findings and our concluding remarks in
Sec. VI.

II. SIMULATIONS DETAILS
A. Simulation model for active polymers and their
interactions with obstacles

In order to study the motion of semiflexible active polymers in
ordered heterogeneous media, we implement the tangentially driven
polymer model22 in a 2D square lattice of circular obstacles (see
Fig. 1). In experiments,17,20 2D projection of 3D active filaments
around cylindrical pillars is observed, which implies that poly-
mer can cross itself. To mimic this situation, we discard excluded
volume interactions between monomers, and we consider a phan-
tom active polymer model of N monomers. The motion of each
monomer is governed by the overdamped Langevin dynamics and is
given by

γ˙⃗ri = −∑
j
∇r⃗i U + f⃗ a

i + f⃗ r
i , (1)

FIG. 1. Schematic of the active tangentially driven polymer in the ordered array of
obstacles, showing the end-to-end vector R⃗e = r⃗N − r⃗1, the radius of obstacles ro,
the pore size dcage, and the horizontal/vertical channels of width ξ.
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where r⃗i is the position of the ith monomer, the dot denotes the
derivative with respect to time, and γ is the friction coefficient
between the bead and its surrounding medium.

The potential energy U of each monomer includes three dif-
ferent contributions. The first one is the harmonic spring potential
Uharmonic(r) = (ks/2)(r − ℓ)2, with equilibrium length ℓ and spring
stiffness ks between adjacent monomers. The second part is the
bending potential between each two neighboring bonds Ubend(θi)
= κ(1 − cos θi), where θi denotes the angle between two conse-
quent bonds intersecting at bead i defined as θi = cos−1(̂t⃗i,i+1 ⋅̂⃗ti−1,i),
with ̂⃗ti,i+1 = r⃗i,i+1/∣r⃗i,i+1∣ and r⃗i,i+1 = r⃗i+1 − r⃗i. Here, κ is the bending
stiffness and determines the intrinsic degree of flexibility of a poly-
mer. Finally, the third contribution accounts for the excluded vol-
ume interactions between each bead and its surrounding obstacles.
They are modelled by the short-ranged Weeks–Chandler–Andersen
(WCA) potential23 Uexcl(r) = 4ε[( σ/2+ro

r )12 − ( σ/2+ro
r )6 + 1

4 ] for

r < rc = 21/6(σ/2 + ro), where ε is the strength of the potential and
has unit of energy, σ is the diameter of the beads, and ro is the radius
of obstacles. The WCA potential is zero for interaction distances
larger than the cutoff length rc.

The active force on each bead, except for the end monomers,
is given by f⃗ a

i = f a

2ℓ (r⃗i−1,i + r⃗i,i+1). The active force on the tail
monomer is given by f⃗ a

1 = f a

2ℓ r⃗1,2, and for the head monomer, it is
f⃗ a

N = f a

2ℓ r⃗N−1,N . For this model, the total active force on each poly-
mer is proportional to its end-to-end vector F⃗ a(t) = f aR⃗e(t)/ℓ. The
random force is chosen as a white noise of zero mean and has the
correlation ⟨f⃗ r

i (t) ⋅ f⃗ r
j(t′)⟩ = 4D0γ2δi jδ(t − t′). To keep our formu-

lation general, we do not associate random force necessarily with
thermal fluctuations, but it can also be of biological origin. The
persistence length of a 2D passive ideal polymer in free space can
be determined in terms of its bending stiffness and the strength of
random force correlation as ℓ0

p = 2κσ/D0γ.24

We use a fixed number of No obstacles arranged in a square lat-
tice in an L × L simulation box with periodic boundary conditions.
To change the degree of confinement, we vary the packing fraction
of the medium defined as the fraction of the surface occupied by
the obstacles to the total area of the box ϕ = Noπr2

o/L2. The width
of horizontal/vertical channels ξ is given by the free space between
two neighboring obstacles, as shown in Fig. 1, and it is obtained as
ξ = ro(

√
π/ϕ − 2). We also define the approximate cage diameter

(pore size) as dcage = ro(
√

2π/ϕ − 2) (see Fig. 1). For flexible poly-
mers, we can use the ratio of mean polymer size to the cage diameter
as a measure of confinement strength, whereas for semiflexible poly-
mers with κ≫ 1, the ratio of the persistence length to the channel
width ℓ0

p/ξ provides a good measure of confinement degree.

B. Simulation parameters
We choose lu = σ, Eu = ε, and τu = γσ2/ε, with γ = 1 as the units

of length, energy, and time. From here on, we express quantities in
dimensionless units. We subsequently fix ℓ = 1, ro = 8.7, and the dif-
fusion coefficient D0 = 1. The spring constants are chosen very stiff
ks ≫ f a/ℓ to ensure that the mean bond-length and polymer contour
length remain almost constant during simulations. We focus on the
chain length N = 100 and investigate the effects of periodic confine-
ment on the conformational and the dynamical properties of active

polymers of varying activity strengths 0.001 ≤ f a ≤ 10 and bending
rigidity values κ ∈ {1, 10, 100}ε. We examine the conformation and
dynamics of active polymers under moderate (ϕ = 0.2) and strong
(ϕ = 0.6) confinement, leading to channel widths ξ ∈ {17, 2.5}σ,
respectively, and compare them with those of active polymers in
free space (ϕ = 0.0). To analyze the effects of periodic arrays of
obstacles on conformation and dynamics of the polymers, we stud-
ied ensemble-averaged conformational and dynamical properties of
active filaments, where ⟨⋅ ⋅ ⋅⟩ indicates the ensemble average over 120
independent simulation runs carried over a time span at least five
times larger than the relaxation time of the end-to-end vector; for
details, see the supplementary material, Sec. I.

To assess how ordered arrangement of obstacles influences
the conformational and dynamical characteristics of active poly-
mers under tight confinement in comparison to those in disordered
environments, we additionally conduct simulations of the flexible
(κ = 1) and stiff (κ = 100) chains in disordered media with ϕ = 0.6.
To prepare the disordered media, we first randomly distribute the
obstacles within the simulation box. Next, in order to eliminate any
overlaps, we employ Brownian dynamics with a WCA potential with
σo = 2ro + 0.5σ to adjust the obstacle positions until a minimum
inter-obstacle gap of ∼2.5σ is achieved.

III. CONFORMATIONAL PROPERTIES
We begin by visually inspecting the effect of confinement

degree on chain conformation. In Fig. 2, we present snapshots of
active polymers with f a = 1.0 for various combinations of bend-
ing stiffness and packing fraction values. The overall trend that we
observe for flexible chains (κ = 1) is that by increasing the degree of
confinement, at the highest studied packing fraction (ϕ = 0.6), the
polymers become localized in the cages of their adjacent obstacles for
the majority of time. As a result, their mean size shrinks. In contrast,
for stiffer chains with κ ≥ 10, under strong confinement at ϕ = 0.6,

FIG. 2. Snapshots of an active chain with f a
= 1 in various combination of ϕ and

κ. See videos S1–S9 at the supplementary material for temporal evolution of an
active polymer conformation moving through the obstacles.
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the chains conformation becomes more extended and anisotropic as
the persistence length becomes larger than the channel width.

A. End-to-end distance
To quantify the effect of confinement degree on mean confor-

mation of active polymers, we examine the root of mean-squared

end-to-end distance
√
⟨R2

e⟩ =
√
⟨∣r⃗N − r⃗1∣2⟩. Figure 3 shows

√
⟨R2

e⟩
against activity for different bending stiffness values and packing

fractions. We first note that in free space,
√
⟨R2

e⟩ has a weak depen-
dence on active force for all degrees of flexibility. It decreases very
little upon an increase in f a. Upon introducing periodic obstacles,

for low density of obstacles at ϕ = 0.2,
√
⟨R2

e⟩ decreases only slightly
for all κ values, the exact amount of which depends on the degree of
activity and flexibility. However, for tight confinement at ϕ = 0.6, we

observe a remarkable change of
√
⟨R2

e⟩ for all degrees of flexibility,
albeit in contrasting trends for flexible and stiff polymers.

For flexible chains with κ = 1, at ϕ = 0.6, chains of low activity
f a ≤ 0.1 have significantly smaller mean end-to-end distance than
the free polymers with identical active force, whereas for f a > 0.1,

we observe a rather sharp increase in
√
⟨R2

e⟩, reaching a maximum
at f a = 1 beyond which its values become almost constant being

only a little smaller than the
√
⟨R2

e⟩ of free polymers. Visual inspec-
tion of movement of flexible polymers with low levels of activity
through the obstacles (see Fig. 2 and video S10 in the supplementary
material) reveals that in tight confinement, they remain localized
within inter-obstacle pores, referred to as cages, most of the time
and only occasionally unwind and hop to one of their adjacent cages.
Figures 4(a) and 4(b) depict temporal evolution of the end-to-end
distance of an individual active polymer with f a = 0.1 and 1. When a
chain is caged, its end-to-end distances is small, but while hopping,
it has a more extended conformation and its end-to-end distance
is larger. We note that by increasing the activity level, the chains
become enabled to escape their cages and travel a short distance
to one of their four neighboring cages, increasing the frequency of
the hopping events. For instance, at f a = 1, the chains hop more
frequently from one cage to another [compare Figs. 4(a) and 4(b)
and see video S11 in the supplementary material]. As a result of
their increased hopping frequency, the average end-to-end distance
of highly active chains increases.

As mentioned earlier, we observe a remarkably different trend

for
√
⟨R2

e⟩ of stiffer chains. As presented in Figs. 3(b) and 3(c),
for κ = 10 and 100, tight confinement results in a larger end-to-
end distance at all levels of activity. However, degree of extension
of polymers decreases with an increase in the activity level. At a
packing fraction of ϕ = 0.6, semiflexible active chains with ℓ0

p = 20
and 200 (κ = 10 and 100) tend to travel through inter-obstacle hori-
zontal/vertical channels as their persistence lengths are much larger
than the channel width ξ = 2.5. Nonetheless, active polymers occa-
sionally bend and turn into an adjacent perpendicular channel (see
Fig. 2 and video S9 in the supplementary material). We refer to this
behavior as channel switching. During a channel switching event, a
polymer bends and its end-to-end distance decreases [see Figs. 4(c)
and 4(d)], showing the end-to-end distance of a stiff active polymer
with κ = 100 for f a = 0.1 and 1 vs time. The folding of backbone of
a polymer during a channel switching event results in higher bend-
ing energy compared to straight conformation, which is more costly
for stiffer chains. However, sufficiently large active forces can over-
come the bending energy barriers for a channel switching event. As a
result, upon an increase in f a, stiff chains switch their channels more

frequently [see Figs. 4(c) and 4(d) explaining the decline of
√
⟨R2

e⟩ of
confined polymers with active force]. An increase in the end-to-end
distance in tight confinement is more pronounced for stiffer chains,
for which channel switching events occur less frequently due to the
higher costs of bending.

To quantify our observation of different modes of chain con-
formation resulting from interaction with obstacles, we extract the
probability distribution function (PDF) of the end-to-end distance
P(Re) presented in Fig. 5. For active chains in free space [see
Figs. 5(a) and 5(b)], P(Re) displays only a single peak, the value of
which is primarily determined by the stiffness of the polymers and
weakly depends on the active force. In contrast, under strong con-
finement at ϕ = 0.6, the PDFs of the end-to-end distance becomes
broader. At sufficiently high activity levels, we distinguish two dis-
tinct peaks in the PDFs for both flexible and stiff polymers, verifying
two different conformational modes of active chains confined within
periodic channels. For active flexible chains with f a ≥ 0.1, the two
peaks correspond to conformations in caged and hopping modes,
respectively. For stiff chains with f a ≥ 0.1, the sharp peaks at large Re
correspond to elongated polymer conformations traveling straight
within the inter-obstacle channels, whereas the broader peaks at

FIG. 3. The root of mean-squared end-to-end distance ⟨Re⟩ vs active force f a at packing fractions ϕ = 0, 0.2, and 0.6 plotted for bending rigidity values (a) κ = 1, (b) κ = 10,
and (c) κ = 100.
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FIG. 4. End-to-end distance of a single polymer under strong confinement ϕ = 0.6, with (a) κ = 1 and f a
= 0.1, (b) κ = 1 and f a

= 1.0, (c) κ = 100 and f a
= 0.1, and (d)

κ = 100 and f a
= 1.0. The dashed lines show the threshold on R∗e , above which chains are hopping or having straight motion depending on their stiffness. (a) and (b) show

the characterization of hopping and caging events for flexible polymers. (c) and (d) show the characterization of straight motion through inter-obstacle channels and channel
switching events for stiffer chains.

smaller Re represent the chain conformations in channel switching
mode.

B. Effect of periodic confinement on persistence
length

Having investigated the effects of periodic confinement on the
end-to-end distance statistical features, next we look into its effect
on the shape of polymers. To this end, we compute the bond–bond
correlation function defined as ⟨cos(θ(s))⟩, where θ(s) is the angle
between two bond vectors with a curvilinear distance s. Figure 6
shows the bond-bond correlation functions for different activity
levels and bending rigidity values in free space and under strong
confinement at ϕ = 0.6.

For flexible polymers (κ = 1), regardless of the degree of con-
finement and activity, bond–bond correlations drop to zero at short

FIG. 5. The probability distribution function of end-to-end distance at different
activity levels for polymers moving in free space, i.e., ϕ = 0, (a) κ = 1 and (b)
κ = 100, and for polymers under strong confinement with ϕ = 0.6, (c) κ = 1 and
(d) κ = 100.

curvilinear distances (s < 5). The only notable effect at strong con-
finement (ϕ = 0.6) is the appearance of a weak negative dip in
⟨cos(θ(s))⟩ before decaying to zero, reflecting the more shrunken
conformation of polymers in caged state relative to the freely moving
polymers.

For stiff chains (κ = 100), strong confinement visibly leads to
a slower decay of bond–bond correlation functions with curvilinear
distance s [see Figs. 6(c) and 6(d)], the pace of which depends on the
active force. To quantify this effect, we obtain the effective persis-
tence lengths ℓp with the following protocol. First, we define se as the
curvilinear distance at which the correlation becomes equal to e−1,
i.e., ⟨cos(θ(se))⟩ ≤ e−1. For the cases where the correlations never
reach e−1, we choose se = N − 1. We then fit the bond correlation
data in the range 0 ≤ s ≤ se by an exponential function ⟨cos(θ(s))⟩
= exp(−s/ℓp) and evaluate the persistence length. Figure 7 shows

FIG. 6. The bond–bond correlation functions cos θ(s) for various bending rigidity
κ values for free chains with active force (a) f a

= 0.1 and (b) f a
= 1 and at a

packing fraction of ϕ = 0.6 for active force (c) f a
= 0.1 and (d) f a

= 1. The solid
lines show the exponential fits to the data in the range 1 ≤ ⟨cos(θ(s))⟩ ≤ e−1.
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FIG. 7. The effective persistence length normalized by the persistence length of
passive chains in free surface ℓp/ℓ0

p against active force f a for various packing
fractions ϕ and a bending rigidity of κ = 100.

the effective persistence length ℓp of stiff polymers with κ = 100 nor-
malized by the bare persistence length of passive free polymers, i.e.,
ℓ0

p = 2κ vs active force at three packing fractions. At ϕ = 0.0 and
ϕ = 0.2, we observe no significant changes of ℓp with activity level.
However, for the stronger confinement at ϕ = 0.6, marked changes
in the effective persistence length emerge. As discussed earlier, the
transport of stiff active chains within a dense periodic array of
obstacles at ϕ = 0.6 consists of a sequence of straight paths within
horizontal or vertical channels and channel switching events, the fre-
quency of which increases with active force. A slightly active stiff
polymer with f a = 10−3 and κ = 100 almost always travels in the
same channel and barely switches to another one. Thus, its back-
bone stays straight most of the time, resulting effectively in larger
persistence length (almost 20 times larger than the chains moving in
free space. However, by increasing the active force and thereby the
frequency of channel switching events, polymers bend more often.
Hence, their effective persistence length decreases.

IV. FLEXIBILITY-DEPENDENT MODES OF TRANSPORT
In Sec. III, we demonstrated that strong periodic confinement

ϕ = 0.6 affects the conformation of flexible and stiff active polymers
differently. Increased confinement promotes greater contraction of
flexible polymers, whereas it results in more elongated polymer
conformations for stiffer polymers. This difference leads to dis-
tinct modes of transport for flexible and stiff polymers within tight
inter-obstacle pores. The motion of active flexible polymers in the
periodic lattice of obstacles consists of a sequence of caging and hop-
ping events, whereas the motion of stiff chains consists of travelling
straight in the tight channels and occasional bending of polymers
to switch to an adjacent perpendicular channel. In this section, we
examine the dynamics of individual active polymers as they navigate
through the inter-obstacle space by obtaining the distribution of the
duration of caging events and the time span of the directed motion
in channels.

We first focus on flexible active polymers with κ = 1. To be
able to quantify the duration of caging events, we define a caged
state when the end-to-end distance of a polymer is smaller than a

FIG. 8. (a) The probability distribution function of caging time τcage for flexible
chains with κ = 1 in tight confinement with ϕ = 0.6 and for different activities. (b)
The mean values of ⟨τcage⟩.

threshold value R∗, which we choose to be the diameter of inter-
obstacle pore dcage [see Figs. 4(a) and 4(b)]. For tight confinement
with ξ = 2.5, we have dcage ≈ 10 and time intervals with Re < R∗

(Re > R∗) characterizing caging (hopping) events [see Figs. 4(a) and
4(b)]. Figure 8(a) shows the distribution of caging time τcage for
different active forces. We note that the caging times span several
orders of magnitude. The maximum caging time observed within
our simulation time depends on the activity level and is largest for
the lowest active force. We do not recognize a power law behavior
for distribution of caging time. From these distribution functions,
we extract the mean duration of caging events ⟨τcage⟩ as functions of
active force as presented in Fig. 8(b). We find that the mean caging
time is roughly constant up to f a = 0.2, and afterward, it decreases
with f a.

For stiffer chains with κ = 100 in tight confinement, inter-
actions of a polymer with periodic array of obstacles result in a
sequence of directed motion through channels and channel switch-
ing events. Similar to the case of caging-hopping events, the distinc-
tion between unidirectional traveling and channel switching states
can be made by monitoring the instantaneous value of Re of indi-
vidual polymers. While travelling in a channel, Re is comparable
to the chain length N. However, during a channel switching event
where a polymer bends, its Re decreases [see Figs. 4(c) and 4(d)]. To
find the threshold, we refer to P(Re) presented in Fig. 5(d), where
the probability distribution functions have a sharp peak at large Re
corresponding to travelling within inter-obstacle channels. Among
different activities, the sharp peak of f a = 10 is broader and includes
a minimum value of Re ≈ 90. We therefore set the channel switching
condition as Re ≤ 90 and find the time duration of straight travel in
channels τstraight as the time interval for which Re > 90. Figures 4(c)
and 4(d) demonstrate how we distinguish between events of chan-
nel switching and straight motion for stiff chains with κ = 100. In
Fig. 9(a), we present the PDF of τstraight for stiff chains with κ = 100

FIG. 9. (a) The probability distribution function of straight traveling time τstraight for
polymers with κ = 100 in tight confinement with ϕ = 0.6 and for different activities.
(b) The mean values of ⟨τstraight⟩.
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FIG. 10. Snapshots of a chain with κ = 100 and f a
= 1.0 traveling in a periodic

medium with ϕ = 0.6. The polymer enters the crossing area at point A. It actively
changes the backbone orientation of its head segment toward point B. The chain
leaves the crossing in a new channel.

at ϕ = 0.6. The typical time span of straight motion through the
channels depends strongly on the activity level. The extracted mean
values ⟨τstraight⟩ are presented in Fig. 9(b), which decrease with active
force, scaling as 1/ f a for f a ≳ 0.1.

This emergence of two different scaling regimes in ⟨τstraight⟩
against active force can be understood in terms of competition
between two time scales. The first one is the timescale of advection
by active force for the frontal segment of active polar polymer and
the second one is the timescale of the relaxation of bending fluctu-
ations. A channel switching event involves traveling of a minimal
segment of length S of the polymer. S represents the frontal segment
of a polymer that is involved during the turning of the polymer, as
shown in Fig. 10, when the head monomer moves from point A to
B. It can be approximated as S ≈ π/2(ro + ξ/2). The time required
for the head bead to travel a curvilinear distance S is simply the
advection time by active force τadv

a = S/ f a. On the other hand, the
timescale for passive relaxation of bending fluctuation of a segment
of curvilinear length S of a semiflexible polymer, according to the
wormlike chain model (WLC), is given by τbend = S4/(2κ).25 A chan-
nel switching event entails that τadv

a < τbend such that by increasing
activity, a chain can switch its channel before the bending fluctua-
tions on the scale of S can relax. A quick calculation using ξ = 2.5
for ϕ = 0.6 and κ = 100 shows that S ≈ 15 and the threshold activity
(where τadv

a = τbend) is f a = 0.06. As can be seen for f a > 0.1, ⟨τstraight⟩
enters the 1/ f a scaling regime.

V. DYNAMICAL PROPERTIES
Having discussed the effects of periodic confinement on con-

formational properties of active polymers and their modes of trans-
port under tight confinement, we subsequently investigate the effects
of periodic confinement on their dynamical properties.

A. Orientational dynamics
We start by examining the effects of periodic confinement

on orientational dynamics of active polymers. Since a tangen-
tially driven polymer is polar (head-tail asymmetry), we define

FIG. 11. The TACF of end-to-end unit vector, Cor , for different bending rigidity
values κ = 1, 10, and 100 for free chains with active force (a) f a

= 0.1 and (b)
f a
= 1 and in periodic lattice of obstacles with a packing fraction of ϕ = 0.6 for

active force (c) f a
= 0.1 and (d) f a

= 1. The lines depict exponential fits to the
data for the time interval where 1 ≤ Ce(t) ≤ e−1.

the end-to-end vector as R⃗e(t) = r⃗N(t) − r⃗1(t). Thus, we character-
ize polymers’ orientational dynamics by the time auto-correlation
function (TACF) of their end-to-end unit vector,

Cor(t) = ⟨ ⃗̂Re(0). ⃗̂Re(t)⟩. (2)

In Fig. 11, we present the orientational TACFs of active polymers
in free space and in tight confinement ϕ = 0.6 as functions of lag
time for different bending rigidity values and at two active forces
f a = 0.1 and 1.0. In free space, for a given active force upon an
increase in bending stiffness, the orientational correlation func-
tions decay slower, whereas by increasing the active force, they
decay faster, which is in agreement with prior reports for flexi-
ble active polymers.26–28 When introducing obstacles with ϕ = 0.6,
the periodic confinement can accelerate or slow down orientational
dynamics depending on the bending stiffness and activity level. At
f a = 0.1 and ϕ = 0.6, we observe a much slower decay of the orien-
tational TACF for stiff chains with κ = 100 compared to the freely
moving chains with the same active force and bending stiffness,
whereas the orientational dynamics of flexible polymers becomes
accelerated. At a higher active force of f a = 1.0, the orientational
dynamics of flexible active polymers in tight periodic confinement
is again faster than those of chains in free space. On the other hand,
for very stiff polymers with κ = 100, the orientational dynamics of
active polymers in free space and tight periodic confinement become
similar.

In order to quantify the effect of periodic confinement on the
decay of orientational dynamics, we define a characteristic reori-
entational relaxation time τr with the following protocol. First, we
define te as the shortest lag time at which the normalized correla-
tion becomes less than e−1, i.e., Cor ≤ e−1. We then fit the data in
the range 0 ≤ t ≤ te with an exponential function Cor = exp(−t/τr)
from which we determine the reorientational relaxation time τr . The
extracted orientational relaxation times as functions of active force
are shown with open symbols in Fig. 12 for different values of bend-
ing rigidity κ and ϕ. First, we focus on the flexible polymer limit with

J. Chem. Phys. 159, 224903 (2023); doi: 10.1063/5.0180170 159, 224903-7

© Author(s) 2023

 05 February 2024 12:43:05

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 12. The end-to-end unit vector relaxation time τr (open symbols) vs active force f a for various packing fractions ϕ and bending rigidity of (a) κ = 1, (b) κ = 10, and c)
κ = 100. The closed symbols show the relaxation time of the end-to-end vector τe for κ = 10 and κ = 100, respectively.

κ = 1 shown in Fig. 12(a). For free chains and those in moderate con-
finement with ϕ = 0.2, τe scales as 1/ f a for f a ≥ 0.1, similar to the
findings of prior research on isolated active polymers.26,28 However,
in tight confinement ϕ = 0.6, chains with low and moderate active
forces ( f a ≤ 1) have a much faster orientational dynamics and, thus,
shorter relaxation times as a result of being caged between neighbor-
ing obstacles. However, at higher activities f a ≥ 2, where the chains
more frequently hop to adjacent cages, the orientational relaxation
time becomes equal to that of freely moving active polymers.

For intermediate stiffness with κ = 10, the orientational relax-
ation times are shown in Fig. 12(b). For f a ≥ 0.05, τr perfectly
follows the 1/ f a scaling behavior similar to isolated active flexible
polymers,26,28 suggesting the dominance of activity over confine-
ment in this case. For stiff chains with κ = 100, free chains and
those in moderate confinement with ϕ = 0.2 have identical relax-
ation times following the 1/ f a scaling for f a ≥ 0.05. In contrast,
at ϕ = 0.6, we observe two different regimes. At higher activities
( f a ≥ 0.2), the orientational relaxation times of strongly confined
polymers are of the same order of magnitude as τr of isolated chains,
while less active polymers have notably larger τr . These results can
be understood in view of confinement degree defined as the ratio
of intrinsic persistence length of a polymer ℓ0

p to the channel width
of the medium ξ. For strong confinement (2κ/ξ = 200/2.5≫ 1), the
polymer is forced to keep travelling within one channel in a rather
elongated conformation [see Fig. 2]. Hence, orientational dynamics
is very slow as it entails overcoming the bending energy of very stiff
polymers for switching to another channel. At sufficiently high activ-
ities, the active force can overcome the bending energy barriers for
channel switching, and the 1/ f a scaling behavior re-emerges similar
to the motion of active polymers in free space and in entangled net-
work of polymers.26,28,29 However, less active chain can barely switch
their channels, resulting in orientational relaxation times almost one
order of magnitude larger than that of isolated chains at f a = 0.05.

B. Translational dynamics
Next, we explore the translational dynamics of active polymers

under periodic confinement by computing the mean squared dis-
placement (MSD) of the center of mass. Defining the position of the
center of mass at any time as R⃗cm(t) = 1

N ∑ r⃗i(t), the MSD is com-
puted as ⟨ΔR⃗2

cm(t)⟩ = ⟨∣R⃗cm(t) − R⃗cm(0)∣2⟩. Figure 13 presents MSD
curves as functions of lag time in free space and strong confinement

ϕ = 0.6 for different bending rigidity values and at two active forces
f a = 0.1 and 1. Regardless of defining parameters of chains and their
surrounding media ( f a, κ and ϕ), in all the MSD curves, we observe
three distinct scaling regimes. At very short lag times, where the
MSD values are initially proportional to t, the fluctuations of ran-
dom forces are more dominant over active force and interactions
with obstacles; hence, the translational motion is governed by ther-
mal diffusion and the MSD has the form ⟨ΔR⃗2

cm⟩ = 4DFree
Passivet, where

DFree
Passive = D0/N = 0.01 is the diffusion coefficient of a passive chain

consisted of N = 100 monomers moving in free space. At longer lag
times, active forces and interactions with obstacles come into play
and the chains enter an intermediate regime.

At intermediate timescales, for chains in free space, this motion
is ballistic ⟨ΔR⃗2

cm⟩ ∼ t2 and is associated with the total active force
on the center of mass of polymers.26,28,30 At this range of lag times,
the motion of the center of mass of freely moving active poly-
mers can roughly be interpreted as moving straight with a constant
speed in the direction of total active force. The net active force
on center of mass for a tangentially driven active polymer is given
by F⃗ a(t) = ∑N

i=1 f⃗ a
i (t) = f aR⃗e(t)/ℓ, being parallel to the end-to-end

vector. Therefore, we expect that the timescale for departure from

FIG. 13. The MSD ΔR⃗2
cm for various bending rigidity values for free chains with

active force (a) f a
= 0.1 and (b) f a

= 1 and at a packing fraction of ϕ = 0.6 for
active force (c) f a

= 0.1 and (d) f a
= 1.
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straight motion is set by τr , i.e., the relaxation time of the end-
to-end vector TACF. The observed ballistic regime at intermediate
timescales remains intact even in the presence of obstacles for all
the cases apart from low activity flexible chains with active force
f a = 0.1 and under tight confinement ϕ = 0.6, which exhibit a sub-
diffusive behavior with an MSD growing as t0.4 [see Fig. 13(c)]. The
observed subdiffusive regime is a consequence of transient caging
dynamics of flexible active polymers, which are trapped in the inter-
obstacle pores and from time to time hop to one of their adjacent
cages.

At longer lag times when t ≫ τr , after active chains have lost the
memory of their initial end-to-end vector direction, a final diffusive
regime with enhanced long-time diffusion coefficient DL emerges,
i.e., ⟨ΔR⃗2

cm(t ≫ τe)⟩ = 4DLt. We extract the values of DL from linear
fits of the MSD curves at large lag times and normalize them with
the κ-independent diffusion coefficient of center of mass of passive
free chains DFree

Passive = D0/N. The values of DL/DFree
Passive against activity

are presented in Fig. 14 for ϕ = 0, 0.2, and 0.6 and different κ values.
For ϕ = 0.6, κ = 1 and 100, and f a ≤ 0.05, we did not observe a final
diffusive regime within our simulation run time; therefore, we can-
not report DL values for these cases. For active chains in free space
with f a > 0.05, DL increases linearly with active force in agreement
with theoretical predictions27 and previous simulations.26,28

A moderate periodic confinement with ϕ = 0.2 does not sig-
nificantly affect the long-time diffusion coefficient for all values of
κ, and the linear scaling with f a remains intact. However, effect of
tight confinement on DL very much depends on the bending rigid-
ity. Interestingly, the DL of active chains with moderate bending
stiffness κ = 10 [see Fig. 14(b)] is not much affected by strong con-
finement, and it increases linearly with activity. At ϕ = 0.6, the DL
of flexible active polymers κ = 1 for active forces f a < 0.5 is lower
than those of free chains, whereas DL of very stiff chains κ = 100
for active forces 0.05 ≤ f a ≤ 0.5 is remarkably enhanced. These con-
trasting trends reflect the different modes of transport for flexible
and stiff polymers. For flexible polymers, caging of polymers with
low active forces slows down the diffusion as diffusion only occurs
via occasional hopping events. In contrast, for stiff active polymers,
the persistent unidirectional transport in the inter-obstacle channels
helps them to diffuse through larger distances, thereby enhancing
diffusion. Nonetheless, at sufficiently high activity levels, the long-
time diffusion coefficients under tight confinement approach the

DL of active polymers in free space, regardless of their degree of
flexibility.

C. Analytical calculations of center of mass dynamics
To rationalize the observed trends for the long-time diffusion

coefficient of the center of mass, we derive the equation of center of
mass velocity V⃗cm(t) explicitly. By summing over all the monomers
velocities described by Eq. (1), we obtain

γV⃗cm =
1
N
(F⃗ a(t) + F⃗ r(t) + F⃗ o(t)), (3)

where F⃗ a = ∑N
i=1 f⃗ a

i (t) is the total active force, F⃗ r = ∑N
i=1 f⃗ r

i (t) is
the sum of all the random forces with a zero mean, and ⟨F⃗ r(t)
⋅ F⃗ r(t′)⟩ = 4ND0γ2 δ(t − t′) and F⃗ o(t) = ∑N

i=1∇Uexcl(r⃗i) is the total
force resulting from interactions with obstacles. As previously men-
tioned, for a tangentially driven polymer, the total active force is
proportional to end-to-end vector F⃗ a(t) = f aR⃗e(t)/ℓ.

In order to obtain the long-time diffusion, we need to compute
the TACF of center of mass velocity. Taking into account that corre-
lations of other forces with the total random force vanish, the TACF
of the center of mass velocity is given by

Cv(t) = ⟨V⃗cm(t).V⃗cm(0)⟩

= ( f a

Nℓγ
)

2

⟨R⃗e(t) ⋅ R⃗e(0)⟩

+ f a

Nℓγ
[⟨R⃗e(t) ⋅ F⃗ o(0) + ⟨F⃗ o(t) ⋅ R⃗e(0)⟩]

+ 1
Nγ
⟨F⃗ o(t) ⋅ F⃗ o(0)⟩ + ( 1

Nγ
)2⟨F⃗ r(t) ⋅ F⃗ r(0)⟩. (4)

We can simplify the above equation for semiflexible polymers
with κ ≥ 10, taking into account the following considerations. For
κ ≥ 10 and sufficiently large activities f a ≥ 0.05, the periodic con-
finement constrains active polymers to move in the inter-obstacle
channels, so the frequency of collisions is low and interactions with
obstacles are somewhat random. Hence, we argue that the contribu-
tions from correlations of end-to-end vector and collisional forces,
i.e., the third line of Eq. (4), are negligible. We emphasize that even
though we have neglected these contributions, the effects of colli-
sions with obstacles are reflected in the dynamics of the end-to-end

FIG. 14. The normalized long time diffusion coefficient DL/DFree
Passive, where DFree

Passive = D0/N is the κ-independent diffusion coefficient of the center of mass of passive free
polymers vs active force f a for packing fractions of ϕ = 0, 0.2, and 0.6 and bending rigidity of (a) κ = 1, (b) κ = 10, and (c) κ = 100. In panel (a), for ϕ = 0.6, the chains with
f a
= 0.001 and f a

= 0.05 never entered the final diffusive regime within our simulation time; therefore, we cannot report DL values for them.
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vector. Collision events change the mean end-to-end distance (see
Fig. 3) as well as orientational dynamics, see (Sec. V A). In particular,
increasing the degree of confinement (2κ/ξ) significantly increases
the orientational relaxation time for κ = 100 and moderate active
forces [see Fig. 12(c)].

Assuming that the fluctuations of end-to-end distance are neg-
ligible, justified for stiff active polymers [see Figs. 5(b) and 5(d)]
and the TACF of end-to-end vector decays exponentially, we can
approximate it as

⟨R⃗e(t) ⋅ R⃗e(0)⟩ ≈ ⟨R⃗e(t)2⟩e
−t
τe , (5)

where the decay time τe depends on activity, bending stiffness, and
packing fraction. We have also presented τe as a function of active
force for different values of κ and ϕ in Fig. 12 as closed symbols. For
κ ≥ 10, τe and τr (open symbols) values are in good agreement. In
contrast for flexible polymers at ϕ = 0.6, where the polymers shrink
in cages and extend during hopping, τe and τr are different at inter-
mediate active forces. Hence, our proposed approximation for them
is not valid.

Taking into account the above considerations, we obtain the
following approximation for TACF of V⃗cm of semiflexible polymers:

Cv(t > 0) ≈ f a2

N2ℓ2γ2 ⟨R
2
e⟩ e

−t
τe + 1

Nγ
⟨F⃗ o(t) ⋅ F⃗ o(0)⟩

+ ( 1
Nγ
)2⟨F⃗ r(t) ⋅ F⃗ r(0)⟩. (6)

Integrating this approximate Cv, we can obtain the long time diffu-
sion coefficient as DL = 1

2∫
∞

0 dtCv(t). The terms in the second line
of Eq. (6) includes contributions from TACFs of collisional and ran-
dom forces, which do not depend on the active force. Hence, their
contributions to the integral can be represented as a packing fraction

FIG. 15. Long-time diffusion coefficient DL vs active force f a for different packing
fractions for semiflexible polymers of bending stiffness κ = 1, 10, and 100. The
closed symbols (with the lines as guides) show DL values extracted from MSD
curves. The open symbols show the results of Eq. (7). For the case of κ = 1 and
ϕ = 0.6, the results of Eq. (7) are not presented as our assumptions are not valid
in this case.

and bending stiffness dependent diffusion coefficient of a passive
polymer Dϕ,κ

Passive. Consequently, DL can be approximated as

DL ≈ Dϕ,κ
Passive +

f a2⟨R2
e⟩τe

2N2ℓ2γ2 . (7)

Passive stiff chains in high packing fraction media are confined to
travel in inter-obstacle channels. Therefore, their motion is effec-
tively one dimensional with a diffusion coefficient of DFree

Passive/2.31 By
decreasing the degree of confinement, the passive diffusion coeffi-
cient gradually increases until the DL of free chains is recovered. We
calculate the predictions of Eq. (7) using ⟨R2

e⟩ and τe from simula-
tions. Comparison of DL extracted from MSD curves with results of
Eq. (7) for semiflexible polymers, presented in Fig. 15, shows good
agreement.

VI. COMPARISON TO THE MOTION OF ACTIVE
FILAMENTS IN DISORDERED MEDIA

To evaluate the impact of ordered arrangement of obstacles,
in this section, we compare mean conformational and dynamical
properties of flexible and stiff active chains in ordered and disor-
dered media at ϕ = 0.6. We begin by presenting snapshots of active
chains in disordered media at ϕ = 0.6 in Fig. 16. In agreement with
prior work, we find that flexible chains in disordered media become
localized in inter-obstacle pores similar to ordered media. As can be
seen from videos S12 and S13, the mean duration of caging events
depends on the activity level, decreasing with f a. However, the con-
formation of stiff chains with κ = 100 in disordered media distinctly
differs, lacking the persistence observed in ordered environments.
In general, the chains appear more pliable as they are compelled to
conform to the shape of the free space between randomly positioned
obstacles.

To quantify the effects of distribution of obstacles on the over-

all conformation of active polymers, we compare
√
⟨R2

e⟩ of chains
in ordered and disordered media, see Fig. 17. We find that for flex-
ible chains with κ = 1, at lower activity levels ( f a ≤ 0.2), the mean

FIG. 16. Snapshots of an active flexible κ = 1 and stiff κ = 100 chain in disordered
media with ϕ = 0.6 at f a

= 0.1 and 10. See videos S12–S15 at the supplementary
material for temporal evolution of an active polymer conformation moving through
the disordered media.
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FIG. 17. Root mean-squared end-to-end distance for chains with (a) κ = 1 and (b)
κ = 100 in tight confinement with ϕ = 0.6.

end-to-end distance is larger in disordered media. The larger
√
⟨R2

e⟩
of flexible chains in disordered media results from the increased
probability of finding them in extended conformations when com-
pared to ordered media as evidenced by probability the distribution
function of Re presented in Fig. S1. In contrast, stiff active polymers
with κ = 100 in disordered media have shorter mean end-to-end
distance than in the ordered environments since they cannot find
straight channels to travel in. The stiff active chains have to adapt
their conformation to the curved inter-obstacle paths, whereas peri-
odic channels of square lattice constrain active chains to move in
straight paths. The effects of disorder in obstacle arrangement is also
reflected on the effective persistence length of stiff active filaments
extracted from bond–bond correlations. Figure 18 presents the effec-
tive persistence length normalized to the persistence length in free
space ℓp/ℓ0

p of active chains with κ = 100 in tight confinement (ϕ
= 0.6) for both ordered and disordered media. This figure demon-
strates that the periodic structure of environment enhances the
stiffness of active filaments, whereas a disordered medium reduces
their effective stiffness, reflecting the importance of structure of
obstacle arrays on conformational properties of active filaments.

In addition, the asphericity and mean transverse undulation of
stiff active filaments (see Figs. S2 and S3 in supplementary material)
show marked differences between ordered and disordered media.
The asphericity of the stiff chains in ordered media is much closer to

FIG. 18. The persistence length of stiff chains with κ = 100 normalized to their
bare persistence length ℓ0

p in free space in ordered and disordered media.

FIG. 19. The long time diffusion coefficients of active chains with (a) κ = 1 and (b)
κ = 100 normalized to the diffusion coefficient of passive chains in free space, i.e.,
DFree

passive = D0/N.

unity compared to the chains in disordered media, verifying that in
ordered media, stiff chains have a more rod-like conformation. Sim-
ilarly, the mean transverse fluctuations of stiff chains in disordered
media are significantly larger.

Finally, in Fig. 19, we compare the long-time diffusion coef-
ficients of center mass DL normalized to DFree

passive = D0/N of active
chains with κ = 1 and 100 in ordered and disordered media
with ϕ = 0.6. For flexible chains with κ = 1, at low activity levels
( f a < 0.5), the polymers in disordered media tend to hop more fre-
quently, resulting in higher diffusion coefficients up to almost ten
times greater than the DL of ordered media at f a = 0.1. Nonetheless,
by increasing the activity level beyond f a ≥ 0.5, the diffusion coeffi-
cients become identical to the values of free flexible chains for both
types of environments [see Fig. 14(a)]. For stiff chains with κ = 100,
in Fig. 19(b), we observe smaller DL in the disordered medium at all
activity levels. Stiff chains in ordered media travel in more persistent
straight paths, while chains in disordered media have to constantly
change their conformation due to collisions with disordered array of
obstacles. This effect, in turn, results in smaller long-time diffusion
coefficients in disordered media.

VII. CONCLUSION AND OUTLOOK
We have computationally studied the effects of periodic con-

finement, created by a square lattice of circular obstacles, on con-
formational and dynamical properties of semiflexible tangentially
driven active polymers. We considered two packing fractions of
obstacles, ϕ = 0.2 and 0.6. We find that effects of periodic con-
finement become significant only at the higher packing fraction
ϕ = 0.6. In the latter case, the impact on conformation and dynam-
ics strongly depends on the degree of flexibility and the activity level.
For flexible polymers, notable changes arise when polymer gyration
radius becomes comparable or larger than the pore size, whereas for
semiflexible polymers, confinement effects predominate when the
persistence length is much larger than the pore size. Strong peri-
odic confinement (ϕ = 0.6) affects conformation of flexible and stiff
active polymers in distinct ways.

Flexible polymers in tight confinement become predominantly
localized inside the inter-obstacle cages, resulting in shrunken con-
formations. However, active polymers occasionally succeed to hop
from one cage to another via activity-induced conformational fluc-
tuations, enabling them to pass through the narrow channels in
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elongated conformations. This localization phenomenon is simi-
lar to what is found for transport of active polymers in disordered
meida.9 Upon an increase in active force, the time spent in cages
decreases and the frequency of hopping events increases, leading
to more extended polymer conformations and larger mean end-to-
end distances. As a result, we observe a relatively sharp transition
from a localized conformation to extended conformation as a func-
tion of active force. At low activity levels, the orientational relaxation
time of active flexible polymers is two orders of magnitudes smaller
as the caged polymers rattle quickly inside the confinement pores.
The long-time diffusion coefficient of center of mass is also sub-
stantially reduced. On the contrary, at high active forces, polymers
frequently hop from one cage to another. Interestingly, both orien-
tational relaxation time and the long-time diffusion coefficient of
highly active polymers approach those in free space.

In the other limit of κ = 100, strong confinement suppresses
transverse fluctuations of stiff semiflexible polymers and enables
them to migrate ballistically in elongated conformations within
inter-obstacle channels. As a result, at low activity levels, we observe
a notable increase in orientational relaxation time, which, in turn,
leads to enhancement of long-time diffusion of center of mass due
to enhancement of persistent motion. On the other hand, high active
forces can overcome the energetic costs associated with bending
and enable active polymers to fold more frequently and to switch
from one channel to another. This, in turn, results in a decrease
in orientational relaxation time and increase in long-time diffusion
of center of mass such that polymers at high active forces navi-
gate in tightly confined periodic environment as quick as free active
polymers.

It is worth mentioning that despite the different modes of
transport for flexible and stiff active polymers under tight confine-
ment, at sufficiently large activity levels, we observe a robust scaling
for the orientational relaxation time with active force decreasing
as 1/ f a. Moreover, the mean end-to-end distance at high activi-
ties also approaches to that of free polymers regardless of degree
of flexibility. We also presented an analytical approach for the
long-time diffusion coefficient of the center of the mass of stiffer
polymers (κ ≥ 10) using justified approximations. Our theoretical
estimate is in good agreement with the direct results of the sim-
ulations, providing insights into roles of orientational relaxation
time and mean end-to-end distance on the long-time diffusion
coefficient.

Comparing the conformation and dynamics of active polymers
in ordered and disordered array of obstacles, we identify significant
differences. In the case of flexible active polymers, while both disor-
dered and ordered media result in their localization, a regular array
of obstacles induces more compact conformations at low to mod-
erate activity levels. However, the most notable observation is that
the long-time diffusion of low-activity flexible polymers in disor-
dered media is an order of magnitude larger than those in periodic
environments. For stiff polymers, as mentioned earlier, the period-
icity of the environment introduces a new transport mode at low
to moderate activity levels, which is not achievable in disordered
media. Through directed motion within periodic channels, active
polymers adopt more extended conformations, leading to a sub-
stantial enhancement in diffusion within periodic arrays, up to two
orders of magnitude at low activity levels when compared to their
motion in disordered media.

In summary, the general emerging pattern observed in the
dynamics of active chains with varying degrees of flexibility is that
the transport of highly active chains remains unaffected by the level
of confinement. On the contrary, at low activity levels, the flexi-
bility degree of active polymers and the spatial order of obstacles
play significant roles for their transport through porous media. This
study suggests an optimal degree of flexibility for migration of active
deformable particles in tight periodic confinement. Our work is
only the first step in understanding the motion of semiflexible tan-
gentially driven polymers in heterogeneous ordered media, and it
calls for further investigations on the role of chain length, type
of periodic lattice, and generalization to periodic and disordered
three-dimensional media in the future.

SUPPLEMENTARY MATERIAL

The supplementary material supports the results presented in
the main text and contains movie files.

See the supplementary material for sample videos, simulation
parameters, and additional graphs.
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