
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Learning Hierarchical Planning-Based Policies from Offline Data

Wöhlke, J.; Schmitt, F.; van Hoof, H.
DOI
10.1007/978-3-031-43421-1_29
Publication date
2023
Document Version
Final published version
Published in
Machine Learning and Knowledge Discovery in Databases: Research Track
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
Wöhlke, J., Schmitt, F., & van Hoof, H. (2023). Learning Hierarchical Planning-Based Policies
from Offline Data. In D. Koutra, C. Plant, M. Gomes Rodriguez, E. Baralis, & F. Bonchi (Eds.),
Machine Learning and Knowledge Discovery in Databases: Research Track : European
Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023 : proceedings (Vol. IV,
pp. 489–505). (Lecture Notes in Computer Science; Vol. 14172), (Lecture Notes in Artificial
Intelligence). Springer. https://doi.org/10.1007/978-3-031-43421-1_29

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 May 2024

https://doi.org/10.1007/978-3-031-43421-1_29
https://dare.uva.nl/personal/pure/en/publications/learning-hierarchical-planningbased-policies-from-offline-data(6fe14c09-59d1-450d-af08-605ef60bb7f8).html
https://doi.org/10.1007/978-3-031-43421-1_29

Learning Hierarchical Planning-Based
Policies from Offline Data

Jan Wöhlke1,2(B) , Felix Schmitt3 , and Herke van Hoof4

1 Bosch Center for Artificial Intelligence, 71272 Renningen, Germany
JanGuenter.Woehlke@de.bosch.com

2 UvA-Bosch DELTA Lab, University of Amsterdam, Amsterdam, The Netherlands
3 Robert Bosch GmbH, 70469 Stuttgart, Germany

Felix.Schmitt@de.bosch.com
4 AmLab, University of Amsterdam, Amsterdam, The Netherlands

h.c.vanhoof@uva.nl

Abstract. Hierarchical policy architectures incorporating some plan-
ning component into the top-level have shown superior performance and
generalization in agent navigation tasks. Cost or safety reasons may, how-
ever, prevent training in an online (RL) fashion with continuous environ-
ment interaction. We therefore propose HORIBLe-VRN, an algorithm to
learn a hierarchical policy with a top-level planning-based module from
pre-collected data. A key challenge is to deal with the unknown, latent
high-level (HL) actions. Our algorithm features an EM-style hierarchical
imitation learning stage, incorporating HL action inference, and a subse-
quent offline RL refinement stage for the top-level policy. We empirically
evaluate HORIBLe-VRN in a long horizon, sparse reward agent navi-
gation task, investigating performance, generalization capabilities, and
robustness with respect to sub-optimal demonstration data.

Keywords: Learning from Demonstrations · Imitation Learning ·
Reinforcement Learning · Hierarchical RL

1 Introduction

Reinforcement learning (RL) is a popular paradigm to learn control policies from
interaction with the environment or a good simulation thereof. So far, much RL
research went towards this online learning setting, which led to remarkable suc-
cess in mastering video games from visual inputs [27] or solving sparse reward
robotic manipulation tasks [1]. However, especially in industrial settings, con-
tinuous online training may not be possible for availability (of test benches) or
safety reasons. Furthermore, sufficiently accurate simulations may not be readily
available or too expensive to create for very specific use cases.

A solution to this dilemma might be to collect a limited dataset of demon-
strations and use it for offline policy learning. For this objective, the literature
presents a variety of solutions ranging from basic behavioral cloning (BC) [3] imi-
tation learning (IL) to offline RL algorithms [13,14,23]. Despite their differences,
these methods are commonly designed to learn a “flat” policy from data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14172, pp. 489–505, 2023.
https://doi.org/10.1007/978-3-031-43421-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43421-1_29&domain=pdf
http://orcid.org/0000-0003-4702-1768
http://orcid.org/0000-0001-5451-8233
http://orcid.org/0000-0002-1583-3692
https://doi.org/10.1007/978-3-031-43421-1_29

490 J. Wöhlke et al.

For long horizon robot/vehicle navigation problems, Wöhlke et al. [38] showed
that a hierarchical policy architecture with a top-level Value Refinement Net-
work (VRN) policy that learns to refine a coarse prior plan shows superior per-
formance. The planning component especially allows for better generalization
towards new layouts, unseen during training. Fox et al. present in [10] a hierar-
chical imitation learning scheme, based on the options framework [32].

In this work, we combine the advantages of offline learning from data, not
requiring environment interaction during training, with aforementioned effective
hierarchical planning-based policy containing a VRN. Hence, we newly present
the Hierarchical Offline Reinforcement and Imitation Batch Learning of VRN
policies (HORIBLe-VRN) algorithm. It addresses the key challenge of latent
high-level (HL) actions, which are the interface between policy levels but not
part of the data (potentially collected with a flat policy), by performing hierar-
chical IL including HL action inference tailored to our architecture with a VRN.
Furthermore, we add a novel offline RL refinement stage for the top-level VRN.
In our empirical evaluation we investigate the following research hypotheses:

– H.1 : Using a planning-based policy containing a VRN improves generalization
(to unseen layouts) in the offline learning setting (as well).

– H.2 : Learning a hierarchical policy architecture with temporal abstraction
from offline data can further improve performance.

– H.3 : Adding our offline RL refinement stage for the HL policy improves per-
formance/robustness when the data is collected by sub-optimal policies.

2 Related Work

Our work combines aspects of imitation learning (IL), hierarchical (HRL), and
offline RL. All of these are broad research fields in themselves. Hence, we refer
the interested reader to recent surveys on IL [40], HRL [19], and offline RL [29].

We are particularly interested in hierarchical policy architectures that com-
bine planning with RL. For robotic (navigation) tasks, these are commonly
designed in a manager-worker “Feudal”-style [7,36], where a top-level planning
policy sets sub-goals for some low-level, sub-goal-conditioned control policy: For
the top-level planning, a sampling-based PRM planner [12], a differentiable
((M)VProp [28]) planning module [5], or value iteration (VI) with a learned
transition model [37] have been used. In [38] VI is performed in a simpler state
space abstraction, yielding a prior plan that is locally refined by a Value Refine-
ment Network (VRN) using recent state information. The PAHRL approach [16]
performs sub-goal planning on a graph of replay buffer states (like SoRB [9]).
For the distance estimation, an (HAC-style [25]) Q-function hierarchy is trained
via distributional RL, which is then also used for navigating the sub-goals.

Another related body of work focuses on learning hierarchical policy archi-
tectures from demonstrations. In [24] the algorithmic framework of “hierarchi-
cal guidance” is proposed, which allows utilizing different qualities of expert
feedback to learn hierarchies of different combinations of IL and RL. Notably,
hierarchical behavioral cloning (h-BC) is proposed. In contrast to our setting,

Learning Hierarchical Planning-Based Policies from Offline Data 491

where a static, pre-collected dataset is assumed, expert/environment interac-
tion is possible during the policy learning. For h-BC, hierarchical demonstra-
tions are assumed, which are generally not available. The HPIL approach [26]
requires environment interaction as well. It performs an object-centric segmen-
tation of demonstrations to then learn sub-policies for the segmented sub-tasks,
in parallel, while simultaneously learning the meta-policy, leveraging the demon-
strations for modified DDPG from Demonstrations [35]. For imitation learning
parametrized hierarchical procedures (PHP), program-like structures that can
invoke sub-procedures, variational inference methods are used in [11] to approx-
imate a posterior distribution over the latent sequence of calls and terminations.

A line of research particularly relevant for our work investigates the hierar-
chical IL setting within the options framework [2,32], assuming the options to
be latent variables. Modeling the data generation by an HMM, these approaches
employ some EM-style [8] option inference. An early work [6], focusing on linear
feature policies, employs a variant of the Baum-Welch (BW) algorithm [4] for
the E-step to then perform a complete optimization in the M-step. Convergence
guarantees for such an approach are investigated in [39]. An online BW algo-
rithm, to process incoming data on the fly, is proposed in [15]. To allow for deep
neural network policies, the DDO method in [10] uses an expectation gradient
algorithm, similar to the ECG method in [30], to perform a gradient step on the
policy parameters in the M-step. DDCO [22] extends DDO to continuous con-
trol settings and relaxes the pre-specification on the number of options. Option-
GAIL [20] employs for the M-step option occupancy measurement matching,
making use of adversarial learning to estimate the discrepancy between (inferred)
expert and agent. A related online HRL approach is IOPG [31]: A policy gradi-
ent algorithm for the options framework assuming the options as latent variables
and therefore containing a differentiable option inference procedure.

Offline learning of hierarchical planning-based policies has not been investi-
gated, yet.

3 Technical Background and Problem Statement

3.1 Offline Learning Setting

Sequential decision-making problems can be modeled as Markov Decision Pro-
cesses (MDPs). In this work, we look at goal-based MDPs, which we can denote
as the tuple M = (S,A,P, r,S0,Sg, γ, T), where S is the state space, A is the
action space, and P (s′|s, a) are the dynamics of transitioning from a state s to
a next state s′ as a result of taking action a. Start states s0 and goal states g
are sampled from start and goal distributions S0 ⊆ S and Sg ⊆ S. The goal-
dependent reward function r (s, g) provides feedback and γ is the discount factor.
The time horizon T determines the maximum number of steps to reach the goal.

In order to solve an MDP, we need to find a policy π (a|s, g) that selects
suitable actions a given the current state s and the goal state of the MDP g. Since
we are in an offline learning setting, we cannot interact with the environment,
hence have no access to P during training time. Instead, we need to learn π

492 J. Wöhlke et al.

from a dataset of collected demonstrations D. We assume D to be a sequence
of transition tuples from different demonstration episodes e. The tuples consist
of state, action, next state, reward, termination flag, and goal state. With |D|
being the size of the dataset (number of transition tuples), we can denote D as

D =
(
(s0, a0, s1, r0, d0, g0) . . .

(
s|D|−1, a|D|−1, s|D|, r|D|−1, d|D|−1, g|D|−1

))

= ((st, at, st+1, rt, dt, gt))
|D|−1
t=0 . (1)

3.2 Hierarchical Policy Architecture

We make use of a hierarchical policy architecture which is similar to the one
presented in [37]. Figure 1 depicts the two-level hierarchy. It consists of a goal-
conditioned high-level (HL) policy ω (o|z, g) that operates in a (discrete) state
space abstraction with finite HL state space Z and finite HL action space O.
Transformations fZ (s) and fS (z), that are assumed known, transform low-level
(LL) states s into HL states z and vice versa.

Fig. 1. Hierarchical policy architecture with “Soft” VRN.

The sub-goal conditioned low-level policy π (a|s, o) directly interacts with the
original MDP with state and action spaces S and A. Please note that the LL
policy receives a local sub-goal (tile) zsg derived from the current HL state z and
the chosen HL action o (reflecting a relative direction in navigation so that zsg

is the neighboring HL state z in that direction). So, we have π (a|s, zsg). Since
zsg is a function of s and o, we denote the LL policy, for simplicity, as π (a|s, o).

Furthermore, the HL policy operates on a different timescale than the LL
policy. A new HL action o is selected when the HL state z changes or the sub-
goal horizon H runs out. As a result, the LL policy experiences sub-episodes of
maximum length H until the horizon T runs out or the MDP goal g is achieved.

We denote the parameters of the HL and LL policies as φ and θ, respectively.

Learning Hierarchical Planning-Based Policies from Offline Data 493

3.3 Value Refinement Network

For improved generalization across different environments, we employ a specific
Value Refinement Network (VRN) [38] for the HL policy ω. In short, the VRN is
a specific convolutional neural network (CNN) architecture that locally refines
a coarse prior plan Ṽ Z

p . See top right of Fig. 1 for a depiction. The prior plan
is obtained through value iteration (VI) in the HL abstraction, assuming HL
transitions to be always successful, which results in a shortest path plan.

The VRN locally refines these prior values. Therefore, it receives a specific
input representation zI = fI (s, (z = fZ (s)), g,Φ) based on the current LL (and
HL) state, the goal, and the environment layout Φ so that we have ωVRN

(
o|zI)

.
In the depicted robot navigation example, this input representation is composed
as follows: The first input channel contains a local (k × k) crop of the value
prior V̂ z

p , centered on the current HL state z. A local map crop Φ̂z forms the
second channel. Additional channels contain the continuous state information for
refinement, broadcasting the numerical value of a state component (for example
a velocity or orientation) across all entries of the corresponding channel. During
data collection, the layouts Φe per episode are stored with the dataset D.

In contrast to the original work, we employ a SoftMax output layer instead of
an argmax to the refined values. This way, the “Soft-VRN” outputs probabilities
for all HL actions o, which allows computing likelihoods of HL state-action pairs.

3.4 Problem Statement

In this work, we investigate the problem of learning a policy in an offline setting,
using a dataset D, such that it performs well on a distribution M of goal-based
MDPs. Each MDP m has the same S and A but may have different dynamics Pm

(e.g. due to varying environment layout) as well as start and goal state distribu-
tions S0,m and Sg,m. The data D may only be collected on some of the MDPs and
limited start-goal combinations. In summary, the objective is to learn a (hierarchi-
cal) policy that maximizes returns across all MDPs as well as starts and goals:

max
ω,π

Em∼M,s0∼S0,m,g∼Sg,m,Pm

[
T−1∑

t=0

γtr (st+1, g)

]

. (2)

The key challenge lies in inferring the latent HL actions o of the HL policy ω.
Since they are the interface between the HL and LL policies, they need to be
aligned between both for good performance.

4 HORIBLe-VRN Offline Learning Algorithm

This section presents our two-stage hierarchical offline learning scheme. We first
take a look at the graphical model of our hierarchical policy in Sect. 4.1. Then
Sect. 4.2 describes the pre-processing of the collected data. Sect. 4.3 presents the
hierarchical IL stage of our algorithm, which is followed up by an offline RL refine-
ment stage for the HL policy as described in Sect. 4.4. An overview over our algo-
rithm HORIBLe-VRN is presented in Algorithm 2, at the end of the paper.

494 J. Wöhlke et al.

4.1 Graphical Model

We first need to understand how our hierarchical policy would have generated the
data D. Figure 2 depicts an exemplary state-action sequence, where LL states st

and LL actions at are observed in the data. Please note the temporal abstraction,
where the hi are the time stamps when new HL actions ohi

are selected based on
the VRN inputs zI

hi
at that time. As the VRN inputs deterministically depend

on observed quantities like the state shi
, goal state ge, and layout Φe, they are

also marked observed. In the example, h0 = 0 and h1 = 2. This means that the
first (latent) HL action oh0 , selected based on zI

h0
, results in two LL transitions.

Fig. 2. Graphical model of the data generation process with our hierarchical policy
architecture. Gray variables are observed from the data D or can be readily inferred
from them, whereas white circles represent latent variables. (Color figure online)

Based on the graphical model, we can derive the probability of a latent HL
action ohi

in the sequence taking a specific value o given the data D as follows:

p (ohi
= o|D) = p (ohi

= o|Dhi
) =

p
(
ohi

= o|zI
hi

) ∏
t∈[hi,hi+1−1] p (at|st, o)

∑
o′∈O

(
p

(
ohi

= o′|zI
hi

) ∏
t∈[hi,hi+1−1] p (at|st, o′)

) . (3)

We notice from Fig. 2 that HL action ohi
only affects the LL transitions from hi

to hi+1, until the next HL action is selected in time step hi+1. The probabilities
can be replaced by the (hypothetically) data generating policies ωD and πD

with parameters φD and θD, respectively. For improved numerical stability of
our implementation, we furthermore apply an exp (log (...)) transform, which
results in

p
(
ohi

= o|Dhi
, φD, θD)

=

exp

⎛

⎝log ωD
φD +

∑

t∈[...]

log πD
θD − log

⎛

⎝
∑

o′∈O
exp

⎛

⎝log ωD
φD +

∑

t∈[...]

log πD
θD

⎞

⎠

⎞

⎠

⎞

⎠ ,

(4)

dropping some notation for improved readability.

Learning Hierarchical Planning-Based Policies from Offline Data 495

4.2 Dataset Pre-Processing

In a first pre-processing step, we need to determine the time stamps hi, forming
the set H, at which new HL actions are selected. For that, we make use of our
assumptions on the HL action selection process (Sect. 3.2): New o are selected
when the HL state z changes, the sub-episode horizon H runs out, or the episode
terminates (episode termination flag d = 1). See Algorithm 1.

Algorithm 1: Computation of HL time stamps
1 t ← 0, k ← 0, h0 ← 0, H ← {h0}, i ← 1
2 while t < |D| do
3 if fZ

(
shi−1+k

) �= fZ
(
shi−1

)
then hi ← hi−1 + k // HL state change

4 else if dhi−1+k then hi ← hi−1 + k + 1 // episode end
5 else if k = H − 1 then hi ← hi−1 + H // sub-episode end
6 if hi was assigned above then H ← H∪{hi}, i ← i+1, k ← 0, and t ← t+1
7 else k ← k + 1 and t ← t + 1

8 end
9 return H

In the next step, the VRN inputs zI
hi

at the time stamps hi are determined.
For that, first, for every episode e in the data the prior (shortest path) plan
Ṽ Z

p,e is determined via value iteration (VI) using layout Φe and goal state ge

from the data, as detailed in [38]. Finally, the accumulated HL rewards within
a sub-episode and corresponding accumulated discount factors are calculated as

rZ
hi

= frZ (hi,D) =
∑

t∈[hi:hi+1−1]

γt−hirt and γZ
hi

= γhi+1−hi . (5)

As a result, the dataset D will have the following form after the pre-processing

D = (Dhi
)hi∈H =

((
zI
hi

, rZ
hi

, γZ
hi

, dhi
, zI

hi+1, ((st, at, st+1))
hi−1
t=hi

))

hi∈H
(6)

containing tuples Dhi
of HL VRN input transitions and corresponding sub-

sequences of LL state-action transitions.

4.3 Stage 1: Hierarchical IL via EM Procedure

As a first step, we want to imitate the data D by finding parameters ΘD =
{φD, θD} that maximize the likelihood. Since the HL action sequence o =
{oh0 , oh1 , . . . } is unknown, we employ an iterative Expectation-Maximization
(EM) [8] scheme.

496 J. Wöhlke et al.

Expectation (E-Step). Following the EM scheme, we establish a lower bound

Q (
ΘD|Θold) = Eo|D,Θold log p

(D,o|ΘD)

= Eo|D,Θold

∑

i∈[0,|H|−1]

⎛

⎝log ωD
φD

(
ohi

|zI
hi

)
+

∑

t∈[hi,hi+1−1]

log πD
θD (at|st, o)

⎞

⎠

=
∑

i∈[0,|H|−1]

∑

o∈O
p

(
ohi

= o|Dhi
, Θold) log ωD

φD
(
o|zI

hi

)
+

∑

i∈[0,|H|−1]

∑

o∈O
p

(
ohi

= o|Dhi
, Θold) ∑

t∈[hi,hi+1−1]

πD
θD (at|st, o) (7)

where the p
(
ohi

= o|D, Θold
)

are obtained using Eq. (4) with the “old” parame-
ters Θold.

Maximization (M-Step). In the maximization step, we obtain new model
parameters Θnew. Since the terms for the HL and LL parameters are separated
from each other in Eq. (7), we can optimize these parameters separately with

φD,new = arg max
φD

Eo|D,Θold log p
(D,o|φD)

(8)

and
θD,new = arg max

θD
Eo|D,Θold log p

(D,o|θD)
. (9)

We approximate the M-step, similar to [30], as a single gradient step, utilizing
the Adam [21] optimizer. See Algorithm 2 for the parameter update formulas.

4.4 Stage 2: Offline RL HL Policy Refinement

In case the data D was collected by some non-optimal policy, the algorithm in the
previous stage learns to imitate sub-optimal behavior. Therefore, we propose an
offline RL refinement stage for the HL VRN policy, based on Batch-Constrained
deep Q-learning (BCQ) [13]. BCQ is an offline DQN algorithm that at the core
learns a state-action value function Q. Simultaneously, a state-conditioned gen-
erative model G : S → A of the data is learned, which is used to exclude actions
from the action selection, which are unlikely under the data generating policy.

Our modified BCQ algorithm operates in the (Z,O,H) HL problem abstrac-
tion. The generative model is readily available from stage 1 as G := ωφD

(
o|zI)

and, therefore, does not need to be learned separately, which is our first modifi-
cation. As a result, the constrained action selection can be written as

o = arg max
õ∈Õ(zI)

Qφ(target)

(
zI , õ

)
(10)

with

Õ (
zI)

=

{

o ∈ O
∣
∣
∣
∣
∣

ωφD
(
o|zI)

maxô ωφD (ô|zI)
> τBCQ

}

. (11)

Learning Hierarchical Planning-Based Policies from Offline Data 497

Our second modification affects the Q-function learning. While the VRN
inputs zI

hi
and zI

hi+1
are part of the HL transition tuples Dhi

in our pre-processed
dataset, the corresponding (latent) HL actions ohi

are, again, unknown. There-
fore, we re-write the Q-learning update replacing the latent ohi

by their expec-
tation with respect to the data generating policy parameters ΘD, making use of
our ability to compute p (ohi

= o|Dhi
) according to Eq. (4), resulting in

arg min
φ

EzI
hi

,ohi
,rZ

hi
,γZ

hi
,dhi

,zI
hi+1

|D [LTD (hi, o = ohi
|φ, φtarget)] =

arg min
φ

EzI
hi

,rZ
hi

,γZ
hi

,dhi
,zI

hi+1
|D

[
∑

o∈O
p

(
ohi

= o|Dhi
, ΘD) LTD (hi, o|φ, φtarget)

]

(12)

with the temporal-difference (TD) loss for the Q-function (network) denoting as

LTD (hi, o|φ, φtarget) =

lκ

(
rZ
hi

+ (1 − dhi
) γZ

hi
Qφtarget

(
zI
hi+1

, o′
)

− Qφ

(
zI
hi

, o
))

(13)

with
o′ = arg max

õ′∈Õ
(

zI
hi+1

) Qφ

(
zI
hi+1

, õ′
)

(14)

and lκ being the Huber loss [18].

5 Empirical Evaluation

We will now empirically evaluate HORIBLe-VRN on a long-horizon agent navi-
gation task, investigating the research hypotheses H.1-3 from the introduction.

5.1 Environment

To investigate our research hypotheses, we need an environment with certain
properties: Inherent task hierarchy, multiple layouts with different starts and
goals requiring generalization, and agent dynamics that make simple HL shortest
path planning insufficient. As a result, we implement, using MuJoCo [33], a point
mass agent with an orientation influencing the motion that navigates different
environment layouts. An example layout is shown in the bottom left of Fig. 1.

The continuous 6D state space S consists of the x and y position, orientation
ϑ, as well as the corresponding velocities (ẋ, ẏ, ϑ̇). The action space consists of
a linear acceleration av in orientation direction and the rotational acceleration
aϑ = ϑ̈. The time horizon is T = 500 and the sparse reward signal results
in −1 per step until the goal is reached (0). For the 2D (HL) abstraction Z,
the environment is tiled into 25 × 25 cells with x̄ and ȳ index. The HL VRN
policy receives a 6×7×7 input consisting of 7×7 (binary occupancy) layout and
shortest path prior plan (value map) crops as well as ϑ, ẋ, ẏ, ϑ̇ broadcasted across

498 J. Wöhlke et al.

the remaining four channels, respectively (see Sect. 3.3 and [38]). The HL action
space O contains four HL actions o corresponding to the sub-task of moving to
the neighboring HL state (tile) z in direction ‘North’, ‘East’, ‘South’, or ‘West’,
respectively. To address these sub-tasks, the low-level MLP policy receives as
input the state s alongside the tile representing the sub-goal, and an 8D binary
occupancy vector for the neighboring tiles. The sub-goal horizon is H = 10.

Regarding the layouts as well as starts and goals, we distinguish 3 settings:

1. We have a first set of 12 layouts (also used for data collection) with 25 different
pairs of start and goal tiles, each. The continuous start s0 arises by uniformly
sampling x and y from the start tile alongside an initial orientation ∈ [−π, π].

2. To investigate generalization towards other starts and goals, we additionally
allow start tiles being goal tiles and vice versa for the aforementioned setting.

3. To investigate generalization towards other layouts, we have a second set of
12 different layouts with 50 pairs of start and goal tiles, each.

5.2 Data Collection

For the purpose of data collection, we, first, train a hierarchical policy similar
to the one described in Sect. 3.2 online, interacting with the environment (first
layout setting): The HL VRN is trained (as in [38]) via double DQN [34] with
HER [1] (featuring argmax action selection). The LL MLP policy is trained via
SAC [17]. We use a hierarchical architecture for data collection because no flat
policy was able to solve the multi layout navigation. Furthermore, this ensures
that our HORIBLe-VRN conforms to the assumptions about the generative pro-
cess. Using the obtained policy weights, we collect two different sets of data:

1. An “optimal” set of data, using the weights of the converged policy, which
achieved 100 % success in reaching the goal tiles.

2. A “mediocre” dataset, using weights of an intermediate policy, which only
achieved 70 % successful goal-reaching.

For each of these, we collect 20 rollouts for each start-goal tile combination (25)
for each of the 12 layouts of the first layout setting (see previous section).

5.3 Baselines

Flat Offline Learning Baselines. We compare to two different flat behavioral
cloning [3] baselines: The first (BC) uses the MLP architecture used as LL policy
in our approach. The second (BC VRN) uses the VRN architecture used as HL
policy in our approach, with two small modifications: 1) The number and size
of the fully-connected layers is increased to match the LL MLP policy of our
approach. 2) The SoftMax layer is replaced by a linear layer to output means
and standard deviations for the 2D continuous actions. Besides that, we train the
MLP architecture via TD3-BC [14] offline RL (ORL), as an additional baseline.

Learning Hierarchical Planning-Based Policies from Offline Data 499

Heuristic Hierarchical Imitation Learning (HHIM). We compare the
first stage of our approach (Sect. 4.3) to a hierarchical IL baseline, similar to
h-BC [24]. We, however, first, need to infer the values of the latent HL actions
ohi

. For this, we use a simple heuristic that makes use of the (semantic) meaning
the HL actions have in our navigation task: Requesting a HL state change in
a certain direction (e.g. ‘North’) from the LL policy, which may or may not
succeed at this sub-task. For this simple baseline, we assume that the HL state
change from zhi

to zhi+1 , seen in the data D, is intentional, and choose ohi

accordingly. This may decently hold true for data collected with optimal policies.
Using these approximate HL actions ōhi

allows to individually perform BC for
both, the HL and the LL policy denoting as (with fhi

returning the HL time
stamp corresponding to t)

max
φ

EzI
hi

,ōhi
|D[log ωφ

(
ōhi

|zI
hi

)
] (15)

and
max

θ
Est,at,ōfhi

(t)|D

[
log πθ

(
at|st, ōfhi

(t)

)]
. (16)

Heuristic HL BCQ Baseline (HBCQ). We compare the second (HL refine-
ment) stage of our approach (Sect. 4.4) to directly learning the HL policy via
BCQ [13] offline RL, without using ωφD

(
o|zI)

as generative model. Again, we
first need to infer the values of the latent HL actions ohi

, using the same heuristic
as for HHIM. With these approximate HL actions ōhi

, Eq. 12 denotes as

arg min
φ

EzI
hi

,ōhi
,rZ

hi
,γZ

hi
,dhi

,zI
hi+1

|D [LTD (hi, ōhi
|φ, φtarget)] , (17)

without the necessity of doing an expectation over all possible HL actions o. We
use the same LL policy πθD , from the previous step, as for our approach.

5.4 Results and Discussion

The results of evaluating the offline trained policies in the environment are pre-
sented in Table 1. We report results for both datasets (“optimal”, “mediocre”) and
all three settings of layouts and starts/goals (as detailed in 5.1), each. The numer-
ical values in the table reflect success rates of reaching the goal tile, reported as
mean ± standard error across the best performing policies of 10 individual runs
(seeds) of the respective algorithm. A success rate is determined by performing
10 rollouts each, with sampled start-goal pairs, for any of the 12 layouts. In the
following, we will interpret these results in the light of our research hypotheses.

H.1: Using a Planning-Based Policy Containing a VRN Improves Gen-
eralization in the Offline Learning Setting. We, first, focus the discussion
of the results on the (stage 1) imitation learning (IL) setting. Comparing the
flat baselines BC, ORL, and BC VRN, it turns out that BC VRN incorporating

500 J. Wöhlke et al.

Table 1. Mean ± standard error across 10 seeds of success rates of best policies.

Optimal Data Mediocre Data
1)
collect

2) add.
s0/g

3) other
lay.

1)
collect

2) add.
s0/g

3) other
lay.

BC 0.744 ±
0.006

0.614 ±
0.010

0.468 ±
0.006

0.457 ±
0.009

0.370 ±
0.005

0.270 ±
0.006

BC VRN 0.984 ±
0.003

0.880 ±
0.014

0.877 ±
0.012

0.633 ±
0.007

0.478 ±
0.012

0.422 ±
0.012

ORL 0.740 ±
0.009

0.602 ±
0.006

0.478 ±
0.011

0.443 ±
0.009

0.348 ±
0.011

0.203 ±
0.006

HHIM 0.744 ±
0.011

0.647 ±
0.014

0.638 ±
0.015

0.501 ±
0.007

0.419 ±
0.012

0.391 ±
0.009

Stage 1 (Sect. 4.3) 0.564 ±
0.019

0.428 ±
0.019

0.389 ±
0.017

0.520 ±
0.019

0.394 ±
0.015

0.344 ±
0.019

Stage 1, w init 1.000±
0.000

0.945 ±
0.004

0.959 ±
0.004

0.746 ±
0.003

0.665 ±
0.004

0.630 ±
0.008

HORIBLe-VRN(Ours) 1.000±
0.000

0.963±
0.002

0.983±
0.002

0.808±
0.003

0.744±
0.005

0.717±
0.010

HBCQ 0.439 ±
0.014

0.373 ±
0.007

0.370 ±
0.013

0.413 ±
0.008

0.323 ±
0.012

0.286 ±
0.009

planning clearly performs best while also generalizing better, dropping the least
in success rate on the (unseen) other layouts 3). So, integrating planning in the
form of a VRN into the policy improves performance and generalization.

H.2: Learning a Hierarchical Policy with Temporal Abstraction
from Offline Data Can Further Improve Performance. With our stage
1 hierarchical IL scheme from Sect. 4.3 we add the aspects of hierarchy and
temporal abstraction compared to the also planning-based BC VRN. Using the
EM procedure from Sect. 4.3 for the necessary inference of unknown, latent HL
actions, our stage 1 (with HHIM weight initialization) clearly outperforms the
hierarchical HHIM baseline of similar architecture that only uses heuristic HL
action inference1. Trained with optimal data, our stage 1 (w init) recovers the
performance of the data collecting policy on the corresponding layouts 1). Incor-
porating the VRN planning, it furthermore generalizes well to different starts,
goals, and layouts. Compared to the flat BC VRN, our stage 1 (w init) general-
izes better to the settings 2) and 3), especially in case of the mediocre dataset,
where it performs 0.266 to 0.295 better, despite the necessary HL action (o)
inference.

1 This is not due to additional optimization steps for initialization. The success rates
of our approach and HHIM stop to significantly improve long before Niter = 10000.

Learning Hierarchical Planning-Based Policies from Offline Data 501

Effect of Initialization. For our stage 1 hierarchical IL from Sect. 4.3 to
perform well, initializing the weights Θ is crucial. We do this by first running
HHIM for Niter = 25002. Afterwards, we initialize the first stage of our algorithm
(Sect. 4.3) with these weights and run it for Niter = 10000. Figure 3 shows
the effect of the initialization on the (LL) policy behavior. We evaluate how it
behaves for different HL actions o, in an empty environment, starting in the
middle. With the initialization (Fig. 3a), the agent moves “North”, “East”, ...
when the corresponding o is selected. Without initialization (Fig. 3b), the stage
1 hierarchical IL from Sect. 4.3 can freely assign behaviors to the various o, which
not only leads to different permutations (o = 3: “North” instead of “West”), but
also to not any o being clearly assigned to “West”, in the example. The reasonable
o assignment in Fig. 3a might be explained by the weight initialization acting as a
prior on the assignment. The HHIM algorithm used for initialization assigns an o
to its semantic meaning as a result of the heuristic rules used for the o-inference.

Fig. 3. LL policy behavior in empty maze for HL action o ∈ {0 : “North”, 1 : “East”, 2 :
“South”, 3 : “West”}; colored blue, red, green, and orange, respectively. We did 4 rollouts
with initial orientation ϑ ∈ {0, π

2
, π, −π

2
}, for each o. (Color figure online)

H.3: Adding our Offline RL Refinement Stage for the HL Pol-
icy Improves Performance/Robustness When the Data is Collected
by Sub-Optimal Policies. Our full HORIBLe-VRN algorithm adds our (stage
2) modified BCQ offline RL refinement (Sect. 4.4) for the HL VRN on top of
the hierarchical IL (stage 1). The results in Table 1 show a further success rate
improvement, especially for the mediocre dataset, where the imitation learned
policy is not already close to optimal. The HBCQ baseline that learns the HL pol-
icy via offline RL from scratch, using heuristically inferred o-s, performs clearly
worse.

2 This is less than for a full training (Niter = 10000 for BC (VRN), HHIM, stage 1).

502 J. Wöhlke et al.

Algorithm 2: Our HORIBLe-VRN Algorithm
Input : Dataset D, initial parameters Θinit = {φinit, θinit}
Output: Optimized policy parameters Θfinal = {φfinal, θfinal}
/* Stage 0: Dataset pre-processing as outlined in Sect.4.2 */
/* Stage 0.5: Optionally obtain initial parameters Θinit using the

HHIM algorithm described in Sect. 5.3 */
/* Stage 1: Hierarchical Imitation Learning (Sect.4.3) */

1 Θold ← Θinit, ΘD ← Θinit

2 for n = 1 : Niter do
3 Sample batch B of time stamps hi (�= |H|), obtain tuples Dhi , and calculate,

using Eq. (4), p
(
ohi = o|Dhi , Θ

old) ∀o ∈ O and ∀hi ∈ B.
4 if (n mod kHL) = 0 then

/* HL param. gradient step to optim. Eq. (8) on B */
5 φD ← φD + αHL∇φ

∑

o∈O

∑

hi∈B
p

(
ohi = o|Dhi , Θ

old)
logωφ

(
o|zI

hi

)

6 end
7 if (n mod kLL) = 0 then

/* LL param. gradient step to optim. Eq. (9) on B: */
8 πD ←

πD + αLL∇θ

∑

o∈O

∑

hi∈B
p

(
ohi = o|Dhi , Θ

old) ∑

t∈[hi,hi+1−1]
log πθ (at|st, o)

9 end
10 Θold ← ΘD

11 end
12 φ = φtarget ← φD, θfinal ← θD

/* Stage 2: Offline RL HL Policy Refinement (Sect.4.4) */
13 Calculate, using Eq. (4), p

(
ohi = o|Dhi , Θ

D) ∀hi ∈ H \ |H| and ∀o ∈ O.
14 for m = 1 : Miter do
15 Sample batch B of HL time stamps hi (�= |H|)

/* Gradient step to optim. Eq. (12) on B; LTD: Eq. (13) */
16 φ ← φ − αBCQ∇φ

[∑
o∈O p (ohi = o|Dhi)LTD (ohi = o, hi|φ, φtarget)

]

17 φtarget ← τ · φ + (1 − τ) · φtarget // Polyak target network update
18 end
19 φfinal ← φ

20 return Θfinal = {φfinal, θfinal}

6 Conclusion

In this work, we propose HORIBLe-VRN, a two-stage algorithm to learn a hier-
archical policy architecture containing a top-level Value Refinement Network
purely from (offline) demonstration data: First, a hierarchical imitation learn-
ing stage incorporates inference of the unknown, latent HL actions and policy
updates into an iterative EM-style algorithm tailored to our architecture. Sub-
sequently, we use our proposed modified version of the offline RL BCQ algo-
rithm to further refine the HL VRN policy. We empirically investigated several
research hypotheses in long horizon, sparse reward agent navigation finding out

Learning Hierarchical Planning-Based Policies from Offline Data 503

that the planning-based VRN policy enables generalization (H.1), also in the
offline setting, the hierarchical policy architecture with temporal abstraction fur-
ther improves performance (H.2), and that our HL policy refinement improves
robustness when demonstrations originate from sub-optimal policies (H.3).

An interesting direction for future work could be to scale up the approach to
more complex problem settings by, for example, allowing for more flexible HL
state space abstractions or even learning them as well.

Ethical Statement. We did not collect or process any personal data, for this work. All
data was collected using a physics simulation of a point mass agent. There are several
possible future applications for our research, like, for example, in autonomous vehicles
or robotics, which hopefully have a positive impact on society. There are, however, also
risks of negative societal impact, through the form of application itself, the impact on
the job market, or real-world application without proper verification and validation.
Such factors should be taken into consideration when designing applications.

References

1. Andrychowicz, M., et al.: Hindsight experience replay. In: Advances in Neural
Information Processing Systems (NeurIPS), pp. 5048–5058 (2017)

2. Bacon, P.L., Harb, J., Precup, D.: The option-critic architecture. In: AAAI Con-
ference on Artificial Intelligence (2017)

3. Bain, M., Sammut, C.: A framework for behavioural cloning. In: Machine Intelli-
gence, vol. 15, pp. 103–129 (1995)

4. Baum, L.E.: An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes. Inequalities 3(1), 1–8
(1972)

5. Christen, S., Jendele, L., Aksan, E., Hilliges, O.: Learning functionally decomposed
hierarchies for continuous control tasks with path planning. IEEE Robot. Autom.
Lett. 6(2), 3623–3630 (2021)

6. Daniel, C., Van Hoof, H., Peters, J., Neumann, G.: Probabilistic inference for
determining options in reinforcement learning. Mach. Learn. 104, 337–357 (2016)

7. Dayan, P., Hinton, G.E.: Feudal reinforcement learning. Adv. Neural Inf. Process.
Syst. (NeurIPS) 5, 271–278 (1992)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Stat. Soc.: Ser. B (Methodological) 39(1),
1–22 (1977)

9. Eysenbach, B., Salakhutdinov, R., Levine, S.: Search on the replay buffer: bridging
planning and reinforcement learning. In: Advances in Neural Information Process-
ing Systems (NeurIPS), vol. 32 (2019)

10. Fox, R., Krishnan, S., Stoica, I., Goldberg, K.: Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294 (2017)

11. Fox, R., et al.: Hierarchical variational imitation learning of control programs.
arXiv preprint arXiv:1912.12612 (2019)

12. Francis, A., et al.: Long-range indoor navigation with PRM-RL. IEEE Trans.
Robot. (2020)

13. Fujimoto, S., Conti, E., Ghavamzadeh, M., Pineau, J.: Benchmarking batch deep
reinforcement learning algorithms. arXiv preprint arXiv:1910.01708 (2019)

http://arxiv.org/abs/1703.08294
http://arxiv.org/abs/1912.12612
http://arxiv.org/abs/1910.01708

504 J. Wöhlke et al.

14. Fujimoto, S., Gu, S.: A minimalist approach to offline reinforcement learning. Adv.
Neural Inf. Process. Syst. (NeurIPS) 34, 20132–20145 (2021)

15. Giammarino, V., Paschalidis, I.: Online Baum-Welch algorithm for hierarchical
imitation learning. In: Conference on Decision and Control (CDC), pp. 3717–3722.
IEEE (2021)

16. Gieselmann, R., Pokorny, F.T.: Planning-augmented hierarchical reinforcement
learning. IEEE Robot. Autom. Lett. 6(3), 5097–5104 (2021)

17. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
Conference on Machine Learning (ICML), pp. 1861–1870 (2018)

18. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat., 73–101
(1964)

19. Hutsebaut-Buysse, M., Mets, K., Latré, S.: Hierarchical reinforcement learning: a
survey and open research challenges. Mach. Learn. Knowl. Extract. 4(1), 172–221
(2022)

20. Jing, M., et al.: Adversarial option-aware hierarchical imitation learning. In: Inter-
national Conference on Machine Learning (ICML), pp. 5097–5106 (2021)

21. Kingma, D.P., Ba, J.: ADAM: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Krishnan, S., Fox, R., Stoica, I., Goldberg, K.: DDCO: discovery of deep continuous
options for robot learning from demonstrations. In: Conference on Robot Learning
(CoRL), pp. 418–437 (2017)

23. Kumar, A., Zhou, A., Tucker, G., Levine, S.: Conservative Q-learning for offline
reinforcement learning. Adv. Neural Inf. Process. Syst. (NeurIPS) 33, 1179–1191
(2020)

24. Le, H., Jiang, N., Agarwal, A., Dudík, M., Yue, Y., Daumé III, H.: Hierarchical
imitation and reinforcement learning. In: International Conference on Machine
Learning (ICML), pp. 2917–2926 (2018)

25. Levy, A., Konidaris, G., Platt, R., Saenko, K.: Learning multi-level hierarchies
with hindsight. In: International Conference on Learning Representations (ICLR)
(2019)

26. Li, B., Li, J., Lu, T., Cai, Y., Wang, S.: Hierarchical learning from demonstrations
for long-horizon tasks. In: International Conference on Robotics and Automation
(ICRA), pp. 4545–4551. IEEE (2021)

27. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

28. Nardelli, N., Synnaeve, G., Lin, Z., Kohli, P., Torr, P.H., Usunier, N.: Value propa-
gation networks. In: International Conference on Learning Representations (ICLR)
(2019)

29. Prudencio, R.F., Maximo, M.R., Colombini, E.L.: A survey on offline reinforcement
learning: taxonomy, review, and open problems. IEEE Trans. Neural Netw. Learn.
Syst. (2023)

30. Salakhutdinov, R., Roweis, S.T., Ghahramani, Z.: Optimization with EM and
expectation-conjugate-gradient. In: International Conference on Machine Learn-
ing (ICML), pp. 672–679 (2003)

31. Smith, M., Van Hoof, H., Pineau, J.: An inference-based policy gradient method
for learning options. In: International Conference on Machine Learning (ICML),
pp. 4703–4712. PMLR (2018)

32. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework
for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211
(1999)

http://arxiv.org/abs/1412.6980

Learning Hierarchical Planning-Based Policies from Offline Data 505

33. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
In: International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE (2012)

34. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: AAAI Conference on Artificial Intelligence, vol. 30 (2016)

35. Vecerik, M., et al.: Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817 (2017)

36. Vezhnevets, A.S., et al.: FeUdal networks for hierarchical reinforcement learning.
In: International Conference on Machine Learning (ICML), pp. 3540–3549 (2017)

37. Wöhlke, J., Schmitt, F., Van Hoof, H.: Hierarchies of planning and reinforce-
ment learning for robot navigation. In: International Conference on Robotics and
Automation (ICRA), pp. 10682–10688. IEEE (2021)

38. Wöhlke, J., Schmitt, F., Van Hoof, H.: Value refinement network (VRN). In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 3558–3565 (2022)

39. Zhang, Z., Paschalidis, I.: Provable hierarchical imitation learning via EM. In:
International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
883–891 (2021)

40. Zheng, B., Verma, S., Zhou, J., Tsang, I.W., Chen, F.: Imitation learning: progress,
taxonomies and challenges. IEEE Trans. Neural Netw. Learn. Syst., 1–16 (2022)

http://arxiv.org/abs/1707.08817

	Learning Hierarchical Planning-Based Policies from Offline Data
	1 Introduction
	2 Related Work
	3 Technical Background and Problem Statement
	3.1 Offline Learning Setting
	3.2 Hierarchical Policy Architecture
	3.3 Value Refinement Network
	3.4 Problem Statement

	4 HORIBLe-VRN Offline Learning Algorithm
	4.1 Graphical Model
	4.2 Dataset Pre-Processing
	4.3 Stage 1: Hierarchical IL via EM Procedure
	4.4 Stage 2: Offline RL HL Policy Refinement

	5 Empirical Evaluation
	5.1 Environment
	5.2 Data Collection
	5.3 Baselines
	5.4 Results and Discussion

	6 Conclusion
	References

