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Abstract

Pandemics have a major impact on society and
the economy. In the case of a new virus, such as
COVID-19, high-grade tests and vaccines might
be slow to develop and scarce in the crucial ini-
tial phase. With no time to waste and lockdowns
being expensive, contact tracing is thus an essen-
tial tool for policymakers. In theory, statistical
inference on a virus transmission model can pro-
vide an effective method for tracing infections.
However, in practice, such algorithms need to run
decentralized, rendering existing methods – that
require hundreds or even thousands of daily mes-
sages per person – infeasible. In this paper, we
develop an algorithm that (i) requires only a few
(2-5) daily messages, (ii) works with extremely
low bandwidths (3-5 bits) and (iii) enables quar-
antining and targeted testing that drastically re-
duces the peak and length of the pandemic. We
compare the effectiveness of our algorithm us-
ing two agent-based simulators of realistic con-
tact patterns and pandemic parameters and show
that it performs well even with low bandwidth,
imprecise tests, and incomplete population cov-
erage.

1 Introduction

Pandemics like COVID-19 are disastrous for society. With
the development of vaccines taking months, if not years, an
early understanding of virus spread is critical. Drastic in-
terventions like lockdowns can be successful but have dev-
astating economic and societal consequences (Kaye et al.,
2021; Boden et al., 2021; Vindegaard and Benros, 2020).
Contact tracing – whereby virus transmission among an in-
dividual’s contacts is traced – provides a more elegant al-
ternative to prevent, or at least monitor, the rise of a pan-
demic (Li and Saad, 2021).
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With incomplete and imperfect tests, statistical contact
tracing can provide a future- and action-oriented ap-
proach Baker et al. (2021) and enable effective mitigating
strategies, such as preventative testing, and research on the
virus spread dynamics (Carinci, 2020). However, the diffi-
culty lies in developing practical decentralized algorithms,
as the sensitive information of an individual’s disease status
should not be known to a central entity.

The two key factors to consider for such algorithms are
communication costs and privacy. While privacy also de-
pends heavily on implementation and encryption, here we
focus on reducing communication costs at a given model
performance. Previous works established that statistical
contact tracing can far outperform post-infection contact
tracing (Herbrich et al., 2020; Baker et al., 2021), but still
requires large amounts of communication. Decentralized
algorithms typically work in “rounds”, in each of which ev-
ery device sends update “messages” to the ones it has been
in contact with (e.g. measured via close-range bluetooth)
and subsequently computes internal updates. Since each
message between decentralized entities requires encryp-
tion and synchronization, the number of messaging rounds
should be low. However, the Gibbs sampling method
of Herbrich et al. (2020) requires up to thousands of daily
messages, and even existing belief propagation (BP) al-
gorithms require up to a hundred every day (Baker et al.,
2021).

This paper presents an algorithm that requires only five
messages per contact per day, given the same performance.
With each of our algorithm’s messages quantized to only
4 bits, it requires less than sending a one character ASCII
message to every contact each day. This aligns with exist-
ing contact tracing software that advocate for four or fewer
bits per update (Alsdurf et al., 2020; Apple and Google,
2020). However, because contact graphs can have loops (A
contact with B, B contact with C, C contact with A), infer-
ence is not easy, and we analyse the behavior of our infer-
ence algorithms on realistic human contact patterns, com-
paring with the Gibbs sampler of Herbrich et al. (2020) and
belief propagation (BP) Baker et al. (2021) and extensively
ablate its properties. Finally, we evaluate our algorithm
on the OpenABM-Covid19 simulator (Hinch et al., 2021).
This simulator has been developed to test various COVID-
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19 containment policies. It is an agent-based model (ABM)
that uses more than 150 parameters reflecting, among oth-
ers, information about different household, age and contact
characteristics. Deploying our method out-of-the-box on
this extensive simulation, we find the preventative effect is
even more pronounced, yielding two orders of magnitude
reduction in peak infection rate given the same amount of
communication.

Overall, this paper makes three contributions:

1. An inference algorithm that requires only up to five
daily messages per contact, while successfully pre-
dicting individual virus spread;

2. An analysis of the difficulty of statistical modeling of
the presented problem and why standard Gibbs sam-
pling has poor performance;

3. Comparison of our algorithm against two published
algorithms (Herbrich et al., 2020; Baker et al., 2021),
and demonstration of suppression of pandemic virus
spread at lower communication costs, established on
two realistic simulators.

Code is available at:
http://github.com/QUVA-Lab/nttw.

2 Related work

Our work develops novel inference algorithms for inferring
individual virus states in a pandemic. As such, related
work comprises two fields: virus spread modeling and
statistical inference.

Virus spread modeling We emphasize that we study
only decentralized algorithms in this paper. Nevertheless,
related work has also centralized approaches. For example,
(Biazzo et al., 2021) uses neural networks to sample infec-
tion histories, Lorch et al. (2004) uses Bayesian optimiza-
tion to infer and learn parameters. However, the analysis
is more aimed at post-hoc analysis rather than individual-
based prequential solutions. Finally, Wood et al. (2020) ad-
vocate the use of the probabilistic programming approach,
but currently the centralized probabilistic program has no
option for decentralization (smartphones). Worth mention-
ing are two other approaches that assume known infection
status and investigate the learning of parameters (which
could be an outer loop to our approach, and we defer to
future work) (Vineetha Warriyar et al., 2020; Myers and
Leskovec, 2010; Mathioudakis et al., 2011).

The decentralized setup avoids security questions of cen-
tralized storage, which are discussed in (Park et al., 2020;
Grantz et al., 2020; Troncoso et al., 2020; Raskar et al.,
2020). Moreover, we take example from the adoption

1Qualcomm AI Research is an initiative of Qualcomm Tech-
nologies, Inc. and/or its subsidiaries.

of other approaches to virus spread modeling (Bay et al.,
2020; Chan et al., 2020; Cho et al., 2020; Bestvina, 2020).

Other approaches for statistics-based individual virus
spread modeling are: Alsdurf et al. (2020) that provides
minimal detail and results but sketches a high level algo-
rithm; Bestvina (2020) that suggests a propagation model
of heuristic scores but provides no statistical derivation;
and finally Baker et al. (2021) that formulate a belief prop-
agation approach on a different graph that we will compare
to in Section 5.

Statistical inference Formulating virus spread as a
large probabilistic graphical model (PGM) (Pearl, 1989),
traditional inference algorithms are at our disposal.
We study two major families of inference algorithms:
sampling-based approaches, and deterministic approaches.
Sampling-based approaches such as Gibbs sampling draw
samples from the posterior. However, iterative sampling
algorithms often yield correlated samples and thus many
steps need to be made in order to reduce the posterior vari-
ance Robert and Casella (2004). We will argue later that the
required amount of messages to obtain posterior estimates
is unpractical for contact tracing. (Herbrich et al., 2020)
derives a blocked Gibbs sampler, where each block are the
random variables per timestep corresponding to one user.
However, even a blocked Gibbs sampler requires hundreds
or even thousands of messages for ‘good’ inference. We
will compare with the inference algorithm from this paper
and use their synthetic data simulator.

The second class of inference algorithms stems from be-
lief propagation (BP; c.f. Bishop (2007)). BP algorithms
will send messages in the form of beliefs about neighbor-
ing random variables. Two works on virus spread modeling
have proposed implementations of belief propagation (Her-
brich et al., 2020; Baker et al., 2021). However, Herbrich
et al. (2020) provided no experimental results on BP. The
approach in (Baker et al., 2021) shows improvement over
baselines of traditional contact tracing, but requires twenty
to a hundred messages, which we deem impractical. Fi-
nally, the algorithm prescribes messages over a domain that
is hard to quantize (studied in Section 5).

Generalizing the above, a key related work to ours
developed a new inference paradigm (Rosen-Zvi et al.,
2005). The authors of this work showed how both BP,
Gibbs sampling, and mean-field variational inference
all relate to a set of equations named DLR equations
(see (Rosen-Zvi et al., 2005) and definitions therein). From
this generalization, follows a new, deterministic inference
algorithm, Factorized Neighbors (FN; described in Section
2 of Rosen-Zvi et al. (2005)). While other improvements
of belief propagation are known, (Yuille, 2002; Welling
and Teh, 2001), we focus on the Factorized Neighbor
algorithm due to its simplicity and decentralized nature.

http://github.com/QUVA-Lab/nttw
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Figure 1: Example of a PGM with two users, z0 and z1 and
one observation, o0,2. User 0 has a directed contact with
user 1 on day 1. This contact could potentially transmit the
virus, causing user 1 to switch from S state to E state on
day 2.

3 Data and model

3.1 A probabilistic model for virus spread

This section discusses the model of virus spread and possi-
ble simulators to obtain realistic data. The states, Suscepti-
ble, Exposed, Infected, Recovered (SEIR) (Kermack and
McKendrick, 1927; Anderson and May, 1992), are con-
sidered in a model formulated according to Herbrich et al.
(2020). Each individual can be, on each given day, in one
of the four SEIR states.

Each individual on each day corresponds to a random vari-
able (being one of the SEIR states). Daily transitions and
virus transmissions will be modeled with conditional prob-
ability distributions. This collection of random variables
and conditional distributions can be drawn as a probabilis-
tic graphical model (PGM) (Pearl, 1989). The PGM will
have two types of edges, corresponding to the two types
of conditional distributions. The first corresponds to the
noisy tests, where we follow the same observation distri-
bution, p(ou,t|zu,t), as Herbrich et al. (2020) and use the
same false positive and false negative rates for the tests.
The other type of edges corresponds to the conditional dis-
tribution of daily transitions and the influence of contacts.
These require more attention as they will complicate the in-
ference procedure. Moreover, these edges may form loops
which cause optimization issues for some algorithms.

An example for one such model is in Figure 1, where user
0, z0, has contact with user 1 on day 1, and has a test on
the day after (observed variables are shaded by conven-
tion (Koller and Friedman, 2009)). Note that contacts are
directional in all our experiments.

The conditional probability distributions corresponding to
daily transitions follow Herbrich et al. (2020) and are re-
peated here briefly:

P (zu,t+1|Zt) =



f(u, t,Zt) if zt = S, zt+1 = S

1− f(u, t,Zt) if zt = S, zt+1 = E

1− g if zt = E, zt+1 = E

g if zt = E, zt+1 = I

1− h if zt = I, zt+1 = I

h if zt = I, zt+1 = R

1 if zt = R, zt+1 = R

0 otherwise.
(1)

Here, variables g and h are dynamics parameters obtained
from other studies. The function f is defined as

f(u, t,Zt) = (1− p0)(1− p1)
|{(v,u,t)∈D:zv,t=I}|. (2)

D is the set of all contacts, and {(v, u, t) ∈ D : zv,t =
I} is the set of infected contacts. Mind that contacts are
directional, so (v, u, t) exists in the set when user v has a
directive contact to u at timestep t (and thus influences the
SEIR status for user u on day t+1). Each infected contact
decreases the probability that user u stays in state S with a
factor 1 − p1. In our experiments, we set p1 at 0.3 to have
a realistic pandemic within the 50 days that a simulation
runs. p0 is the probability of external infection, which is
set at 0.001.

3.2 Data simulator

Experiments make use of two simulators for individual-
based virus spread data.

The CRISP simulator models society as a combination of
cliques, where more contacts happen within the clique than
between cliques (Herbrich et al., 2020). Contact patterns
follow either a uniform distribution (each individual has a
similar amount of contacts), or a power-law (roughly 20%
of individuals have 80% of the amount of contacts, roughly
80% of individuals have 20% of contacts). A virus trans-
mission can happen via a contact following the noisy-or
model in Equation (1). Further details can be found in (Her-
brich et al., 2020) and corresponding open-source code.

The OpenABM-Covid19 simulator uses more than 150 pa-
rameters, stratifying among age groups, households and
simulating eleven disease states (Hinch et al., 2021). The
default parameter set focuses on the United Kingdom,
modeling up to a million individuals. Parameters are based
on nine population surveys and other academic research.
We use the parameters as provided, similar to Baker et al.
(2021). Experiments run for 10,000 individuals and pa-
rameters are scaled appropriately (included in open-source
code). Further experimental details are in Appendix B.
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Other relevant simulators are (Alsdurf et al., 2020; Lorch
et al., 2004; Mehrjou et al., 2021; Deb et al., 2020), but
we believe the OpenABM simulator combines a well re-
searched parameter set, with a practical and fast open-
source implementation.

Both simulations run with a population of 10,000 people.
With the CRISP, 15% of the population could be (noisily)
tested, and at most 5% can be quarantined daily. Disease
dynamics are set p0 = 1

1000 and p1 = 1
10 , and the

simulation is run for 50 days, unless stated otherwise. With
the OpenABM simulator, the simulation runs for 100 days.
Tested individuals (at most 15%) are chosen as users with
highest infectiousness score on the previous day. At most
10% of people can be quarantined. This testing policy
follows the conditional testing of related literature (Baker
et al., 2021).

4 Inference

Four inference algorithms will be investigated: Gibbs sam-
pling, two variants of belief propagation (BP), and the Fac-
torized Neighbors (FN) algorithm. The goal of the infer-
ence algorithm constitutes calculating the posterior distri-
bution over {S,E, I,R} for a particular individual on a
particular day, given the test observations. In other words,
the sentence ‘What is the probability of infection for user
9 on day 13?’ translates to p(z9,13 = I|O). zu,t indicates
the random variable with domain {S,E, I,R} for user u
on time t. zu will be shorthand for the collection of ran-
dom variables among all time steps: {zu,t}T−1

t=0 . Finally, O
is the set of all observations.

4.1 Gibbs sampling and belief propagation

Gibbs sampling and Belief propagation follow the formu-
lations in Herbrich et al. (2020). The essential formulae
will be repeated here for clarity. Gibbs sampling utilizes
blocked Gibbs sampling, where each block comprises the
random variables of one particular user, zu. One Gibbs step
resamples the block for each user separately according to:

p(zu|ẑ¬u,O). (3)

ẑ¬u indicates the Gibbs sample for all users except user u,
and O is the set of all observations (e.g., COVID-19 tests).
Gibbs sampling is run with ten burn-in steps.

Whereas Gibbs sampling communicates samples among
users, BP (and later FN) communicate real-valued mes-
sages. Belief propagation can be thought of as a decentral-
ized way to implement sum-product inference (Koller and
Friedman, 2009) (when the graph is acyclic), or optimiz-
ing the Bethe free energy in a loopy graph (Yedidia et al.,
2000).

µfs)zu,t(zu,t) =
∑
zs

fs(zs, zu,t)
∏

k∈Nb(fs)\zu,t

µzk )fs (4)

µzu,t)fs(zu,t) =
∏

k∈Nb(zu,t)\fs

µfk )zu,t
(5)

In the above, fs are factors (conditional distributions).
Each factor corresponds to an instance of the transition dis-
tribution in Equation (1). zu,t are the SEIR states of user u
at time t, zs are random variables that share the scope of fs
and zk are all variables that send messages to fs. Finally,
the marginal posterior belief for a variable follows from:

βzu,t
=

∏
k∈Nb(zu,t)

µfk→zu,t
. (6)

Two previous works established implementations for the
actual messages (Baker et al., 2021; Herbrich et al., 2020),
and we will compare with both. For (Baker et al., 2021),
we will compare with the open-sourced code in Section 5.1
and refer to this formulation as SIB.

4.2 Factorized Neighbors

The discussed Gibbs sampling and Belief propagation have
two problems: a) Gibbs sampling is slow to mix and needs
thousands of daily messages which is unpractical (c.f. Sec-
tion 5.2), b) implementations for BP exist, but some still
require up to hundreds of daily messages (c.f. Section 5.1).
We establish a more practical algorithm from another view
of decentralized inference. Rosen-Zvi et al. (2005) gener-
alized Gibbs sampling, Belief Propagation, and mean-field
variational inference. From the generalization, the authors
deduce another algorithm, Factorized Neighbors (FN). Al-
though their paper only shows the FN algorithm on an undi-
rected model, an Ising model, we derive the update equa-
tions for the particular inference problem in our model (c.f.
Equation 1). The formulae yield a decentralized inference
algorithm with messages representing local beliefs of in-
fection.

At a high level, FN comprises a set of fixed point equations.
It is known that Belief Propagation and Gibbs sampling,
under specific circumstances, arrive at a fixed point of the
same set of equations. FN iterates by updating beliefs of
nodes by marginalizing conditional distributions with the
beliefs of neighboring nodes:

bu(zu) =
∑
zN(u)

P (zu|zN(u),O)BN(u)(zN(u))

= EBN(u)(zN(u))[P (zu|zN(u),O)]. (7)
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Here, BN(u)(zN(u)) is the belief over the neighboring
nodes of u. This belief factorizes into a product of the
neighboring beliefs BN(u)(zN(u)) =

∏
v∈N(u) bv(zv),

which yields the Factorized Neighbor algorithm its name.

Our main contribution is deriving efficient computation for
this update equation. A naive computation of the expected
value in Equation (7) grows exponentially in the num-
ber of neighboring nodes, because the neighborhood be-
lief, BN(u) has a domain of O(3T ·|N(u)|) sequences. The
amount of neighboring nodes, |N(u)|, can be quite signifi-
cant: some users can accrue tens or even hundreds of con-
tacts in a day by for example, visiting a sports game or
music concert. With a user having 100 contacts, a realistic
number in popular events (Rutten et al., 2022), the compu-
tation would take 4100 = 1.6·1060 flops, which is obviously
unfeasible. (A similar reasoning explains why variational
inference is infeasible, see Appendix A.2)

The central assumption in Factorized Neighbors inference,
to our advantage, is that beliefs over neighboring nodes are
modeled as a factored distribution. The expected value of
the noisy-or construction (Koller and Friedman, 2009), in
Equation 2 then turns into a product of expectations. For
clarity, the following derivation marks the product in green
and beliefs in blue:

EBN(u)(zN(u))

[
p(zv,τ+1 = S|zv,τ = S, {zvc,τ}C−1

c=0 )
]

= EBN(u)(zN(u))

[
(1− p0)

C−1∏
c=0

(1− p1)
1[zvc ,τ ]

]

= (1− p0)

C−1∏
c=0

Ebc(zvc,τ )

[
(1− p1)

1[zvc ,τ ]
]

(8)

Simplicity is the final advantage of the Factorized Neigh-
bor algorithm. The transitions in a SEIR system, formu-
lated by Herbrich et al. (2020), constitute a Markov transi-
tion, where each next node is independent of the past given
the present. The expected value in Equation (7) takes this
Markov transition under the expectations of (infected) con-
tacts. This also constitutes the main difference with BP
and might explain why FN is more robust to noisy tests and
stale updates (for example, from other smartphones with an
empty battery or temporarily lacking internet access).

4.3 Quantizing messages

The messages in a practical algorithm need to be quantized
and we use uniform mid-rise quantization. Specifically,
with ⌊.⌋ the floor function, c bits and κ = 2c quantization
levels, values are quantized to f(x) = 1

κ · ⌊x · κ+ 1
2⌋.

For both BP and FN, the backward messages comprise of

four real-valued numbers, which incur 4 · c bits for 2c lev-
els of quantization. However, we will find that backward
messages are superfluous, and only forward messages are
necessary (Results Section 5.3). These comprise one real
valued number and thus incur c bits for 2c levels of quan-
tization. For the iterative algorithms, communication load
is calculated as number of message rounds times the about
of bits per contact. In Gibbs sampling, both forward and
backward message have 1 bit (corresponding to Equations
26 and 29 in Section 4.2 of (Herbrich et al., 2020)). There-
fore, each Gibbs sample comprises two bits per contact.

5 Experimental Results

5.1 Pandemic mitigation

First, we compare various algorithms in terms of their com-
munication load and their potential for mitigating a pan-
demic. Figure 2 shows these results. Four inference algo-
rithms (Gibbs, BP, SIB, FN (ours)) are compared against
a random baseline whilst varying the communication load
involved. The x-axis indicates multiples of sending around
1 message of 1 bit for each day and each contact. In the
case of BP and FN, each algorithm sends five daily mes-
sages per contact, and the amount of quantization is var-
ied; in the case of Gibbs, each message is a Gibbs sample
(which is only 1 bit, see Subsection 4.3), and the number
of messages is varied. The y-axis indicates ‘peak infection
rate’, which is the highest daily proportion of infected users
throughout simulation – the most deleterious outcome for
economy and society given limited healthcare capacities.

Two observations follow from Figure 2: FN works best un-
der low communication, as can be seen by the strictly better
performance of the blue curve compared to the others for
the left side of the plot. We speculate that the expectations
in Equation 7 are more stable under lower communication
amounts than the message-based approach of Equation (4).
Figure 3 shows multiple algorithms at a communication
load of 20 bits, for 150 days. Note that multiple apps of the
COVID-19 pandemic advocate for low-bit messages (Als-
durf et al., 2020; Apple and Google, 2020; CoEpi, 2020)
and the improvements of FN in this low-bit regime show
its promising capabilities.

5.2 Analysing the mixing of Gibbs chains

Another stark observation from Figure 2 is that Gibbs sam-
pling does worse than either FN and BP – even in the high
communication load settings. To better understand this, we
next analyse the mixing of Gibbs chains and find that the
blocked Gibbs sampler mixes poorly. Therefore, one chain
might not reflect the entire posterior. Appendix A.5 shows
examples of estimated marginals from different chains and
how these reflect different modes. For example, a user
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Figure 2: Comparing epidemic mitigation at increasing communication budget. Both BP and FN send five daily messages
per contact, which we deem practically feasible. Communication load on the x-axis indicates multiples of an algorithm
that sends 1 message of 1 bit per day per contact. * the SIB algorithm is unquantized and thus plotted on the y-axis for
reference. Error bars are calculated over four random seeds and shown as the population mean ± one standard deviation.
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Figure 3: Infection rates on the CRISP simulator. BP and
FN send five messages of four bits each. Gibbs sampling
takes ten samples, which require two bits each, also corre-
sponding to a communication load of 20 bits.

can have two or more different contacts before an infec-
tion. Different Gibbs chains might have different estimates
for which contact ‘initiated the infection’. To quantita-
tively assess the mixing time of a Gibbs sampler, we run
two chains on a contact graph of 1000 users (following the
data generator of (Herbrich et al., 2020), c.f. Section 3).
Figure 4 shows the mean absolute error between marginals
estimated from two chains. Both axes have a logarithmic
scale and we observe a slope of − 1

3 , meaning that to be one
order of magnitude closer in divergence, one needs three
orders of magnitude more samples. However, more than a
thousand messages would be far to the right of Figure 2,

meaning a highly unpractical amount of message rounds.
In Appendix A.6 we provide further analysis as to why
Gibbs sampling mixes slowly and find that the spectral gap
of the Gibbs transition kernel decreases as the graph be-
comes more loopy.

5.3 Note on backward messages

Researching the inference methods for our model in the
context of realistic settings, we found that half of the mes-
sages in the decentralized BP and FN algorithm are unnec-
essary. Each contact in the model, visualized in the PGM
of Figure 1, expends two messages, a forward and a back-
ward message. For BP, the forward message goes from the
random variable of the ‘sending’ user to the factor of the
‘receiving’ user (c.f. eq. (4)), and the backward message
goes in the other direction (in the same round). For FN, the
forward message consists of the belief for infection of the
‘sending’ user at time of contact. The backward message
consists of the change of beliefs in the transition S → E
for the ‘receiving’ user (c.f. Appendix A.1).

However, empirically, the backward messages regress to
uniform distribution for most messages. More specifically,
the messages (that distribute over four states, {S,E, I,R}),
are equal to 0.25 in 99.9% of the backward messages. As
such, we set the backward message to the uniform distribu-
tion and do not calculate nor send it in any experiment to
save a significant portion of the communication budget.
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Figure 4: Error between Gibbs chains to show slow mix-
ing. Bringing estimates from Gibbs chains closer together
by almost an order of magnitude (in Mean Absolute Error
of estimated marginals) requires three orders of magnitude
more samples. Note that in reality, one can take only five or
ten samples due to synchronization and security overhead.

An explanation for why the backward messages are uni-
form is the following: a backward message informs the
sending user of its ‘belief of infectiousness’ (interpreta-
tion differs slightly between Gibbs, BP and FN). However,
only if a receiving user were sure to be uninfected before
the contact and sure to be infected after the contact would
the backward message be informative. This scenario is un-
likely as a) users typically have multiple contacts, which
dilutes the informativeness, b) tests have false positives
and false negatives, which dilutes the certainty of the lo-
cal states, and c) tests are rather scarce, so a user rarely
has a test right before and after a contact. We tested these
three factors and concluded that each factor regresses the
message to the uninformative uniform distribution.

5.4 Windowed inference

Running inference for contact tracing on longer time win-
dows requires more compute. Approaches like Gibbs sam-
pling from Herbrich et al. (2020) grow as O(T 3), where T
is the number of days in a simulation. Message based ap-
proaches like BP and FN will also grow linearly in the num-
ber of days. Therefore, we investigate a heuristic where in-
ference is only done over a short time window. For each
step, the marginals obtained from the posterior previously
are set as a prior for the window. Similar to Baker et al.
(2021), a window of 21 days is used. This corresponds to
setting the posterior of twenty days in the past as prior for
the next window.

Figure 5 shows the resulting peak infection rates when in-
ference is done over shorter windows. Even if computation
grows linear with the number of days, cumulative runtime
for a simulation grows quadratically. Therefore running
simulations using a 21-day window provides a significant
saving of compute at minimal performance reduction.
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Figure 5: Running statistical inference in a simulator when
making predictions using a limited number of days. The
simulation runs fifty days, so a window of 21 days provides
a significant saving of compute at a similar resulting peak
infection rate.

5.5 Robustness

Most computerized simulations happen in idealized cir-
cumstances. However, when a real pandemic hits, circum-
stances are far from ideal. In this Section, we compare
three algorithms on two robustness scenarios: noisy test
observations and stale updates from unavailable devices.

For the noisy tests, we consult European guidelines on test-
ing for the COVID-19 pandemic and find that some tests
had as high as a 25% false positive rate (for Disease pre-
vention and control, 2021; Stohr et al., 2022). Moreover,
the same guidelines stated that tests would be admissible
with false negative rates as high as 3%. As such, we seek to
simulate our inference algorithms under this noisy scenario
and change the observation model such that false positives
and false negatives are made. False positive rates (fpr) vary
from 1%, to 10%, up to 25%, and false negative rates (fnr)
vary from 0.1%, to 1%, up to 3%. (The first scenario of
noisiness, fpr 1% and fnr 0.1%, correspond to the same
values as Herbrich et al. (2020); further details are in Ap-
pendix and open-source code).

For the stale phones, we model a scenario where a group
of ‘stale phones’ only updates messages half the time. In
the experiment, the group of ‘stale phones’ increases from
10% to 20% up to 50%.

Results for the robustness experiments are displayed in
Table 1 for the CRISP simulator and Table 2 for the
OpenABM-Covid19 simulator. This result is obtained by
running inference with five daily messages per contact,
each with four bits (thus corresponding to a value of 20
on the x-axis of Figure 2). Both the ‘noisy test’ and ‘stale
phone’ scenarios result in higher peak infection rates.
However, compared to BP, FN has lower peak infection
rates in most scenarios where tests are noisy and phones
have stale updates.
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Robustness setup BP FN
Normal scenario

(fpr 0.1%; fnr 0.01%) 7.7±0.4 5.7±0.8

Noisy test scenario
(fpr 1%; fnr 0.1%) 8.2±0.4 5.9±0.8
(fpr 10%; fnr 1%) 8.8±0.4 8.4±0.4
(fpr 25%; fnr 3%) 9.1±0.4 8.2±0.6

Stale phone scenario
10% stale phones 8.0±0.4 6.1±0.4
20% stale phones 8.3±0.3 6.3±0.5
50% stale phones 8.2±0.3 6.9±0.3

Random policy 9.4±0.4

Table 1: Testing the robustness of inference algorithms in
the noisy circumstances of a new pandemic and society has
no time to waste. In the noisy testing scenario, false pos-
itive rate (fpr) and false negative rate (fnr) go up to 25%
and 3%, respectively. In the stale phone scenario, up to
50% of users might have stale updates in half of the time.
Numbers correspond to percentages, population mean ±
one standard deviation.

5.6 OpenABM-Covid19 simulator

Next, we ask the question Do these results translate to
a more realistic simulator? The simulator used so far,
(Herbrich et al., 2020), is quite simple, modeling society
only as a collection of stochastic blocks. In contrast, the
OpenABM-Covid19 simulator (Hinch et al., 2021) strat-
ifies dynamics in nine age categories, six household cat-
egories, and models up to eleven different disease states.
Our experiments follow the parameter settings of previous
literature (Baker et al., 2021). Both BP and FN are used in
this simulation with five 4-bit daily updates per contact (in
contrast to Baker et al. (2021) and Herbrich et al. (2020)
which use hundreds or thousands of daily updates per con-
tact).

Figure 6 shows the results for various inference algorithms
on the OpenABM-Covid19 simulator. We compare a sim-
ulation with random quarantining and simulations that use
one of four inference algorithms. Each light line indicates
an evaluation with a different random seed – thick lines
indicate averages among multiple random seeds. The three
inference algorithms use a similar communication budget:
Gibbs takes ten samples, where each contact requires two
bits, BP and FN each use five rounds of four bits each.
For comparison, the SIB approach of Baker et al. (2021)
is included, but note that this model is not quantized, thus
requires a significantly larger amount of bits and update
rounds, and has been optimized for a different testing and
quarantining policy.

All algorithms improve upon a simulation without quar-
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Figure 6: Infection rates on the OpenABM simulator. Pa-
rameters for the simulator follow population surveys in the
United Kingdom and other academic research. Compared
to BP or Gibbs sampling, FN results in lower infection
rate. Thin lines indicate single realizations, thick lines cor-
respond to population averages.

antine applied. Also, on average, all statistical inference
algorithms result in lower infection rates than a random
quarantine policy. This result seconds earlier work that
statistical inference provides value to pandemic monitor-
ing. While Gibbs, BP, and FN all use similar communi-
cation budgets, results show that FN obtains the lowest in-
fection rates. Combined with the simplicity of Equation 7,
we argue that FN is a practical inference algorithm for low-
communication contact tracing.

Robustness setup BP FN
Normal scenario

(fpr 0.1%; fnr 0.01%) 16.9 [13.8,17.4] 0.06 [0.05,0.1]

Noisy test scenario
(fpr 1%; fnr 0.1%) 23.7 [22.2,24.8] 19.8 [0.8,21.3]

(fpr 10%; fnr 1%) 23.1 [22.7,25.0] 22.0 [21.2,23.2]

(fpr 25%; fnr 3%) 22.8 [22.0,24.1] 25.1 [23.8,25.9]

Stale phone scenario
10% stale phones 20.6 [20.2,21.3] 0.08 [0.06,0.1]

20% stale phones 23.8 [23.3,24.1] 0.1 [0.09,0.9]

50% stale phones 26.2 [26.0,26.8] 6.3 [0.1,15.8]

Random 27.3 [26.7,27.6]

Table 2: Testing the robustness of inference algorithms in
the noisy circumstances. This table reproduces Table 1 for
the Open-ABM simulator. Reported are the median and
20-80th percentile of twenty random runs.
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6 Discussion

It is a curious human trait that they will only spring to ac-
tion on existential threats like climate change and deadly
pandemics when it is two minutes to twelve. We believe
that at the beginning of a new pandemic that is potentially
much more lethal than COVID-19, before the arrival of
vaccines, our first and most effective line of defense is in-
formation technology. A question we have to ask is “why
are we not preparing better for such an event through the
development of intelligent contact tracing technology?”.
This paper continues important work that was initiated at
the beginning of the COVID-19 pandemic but has lost mo-
mentum (Baker et al., 2021; Herbrich et al., 2020; Hinch
et al., 2021; Vindegaard and Benros, 2020). We think there
is no time to waste in developing this technology.

This work contributes to the literature by developing a prac-
tical algorithm that requires few daily messages. Requir-
ing only few messages enables all the necessary security
for such sensitive information. Moreover, a practical al-
gorithm that requires only a few bits does not burden the
communication network. Finally, its robustness enables in-
ference in many scenarios, such as noisy tests and stale up-
dates from unavailable phones. The proposed algorithm
has been shown effective with only five messages of fewer
than four bits, adhering to standards set by other contact
tracing apps (Alsdurf et al., 2020; Apple and Google, 2020)
and symptom-tracking apps (TCN, 2020; CoEpi, 2020).
Comparing this communication cost to conventional often-
used chat apps, our algorithm requires less communication
than sending five times one alphabetical character to each
contact of the recent three weeks.

Limitations Despite extensive evaluation, our research
has two limitations: Simulations run for a population of 10
thousand people. Though related literature (Herbrich et al.,
2020), also evaluates on 10 thousand people, experiments
at millions or more might reveal new patterns and insights.
Another limitation of our work is that contacts are assumed
to be given. In practice, contact datasets could have false
positives, and research is needed to see how this impacts
inference.

Future work This research is an important topic, and we
see two apparent avenues for future directions: conditional
testing and differential privacy. With conditional testing,
policies for test assignments could be improved or learned
from data. Current experiments follow established work
and rank users according to the posterior probability of in-
fection. However, with scarce tests, testing an already in-
fected person might provide less information compared to
another individual where the prediction is more uncertain.
Such a policy could be learned from data.

The final point addresses privacy concerns. Already, this
paper studies decentralized algorithms where no central en-
tity accrues information about individuals. However, also
on privacy aspects we see potential improvements. When
a user has few contacts, its disease score could be a di-
rect reflection of select other individuals, thus diminishing
their privacy. As such, the update function (e.g. Equation 4
or 7) could be made differentially private (Dwork and Roth,
2014), which we see as an important next step.
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A Additional results

This supplementary material discusses additional topics to our paper titled No time to waste: practical statistical contact
tracing with few low-bit messages. Sections A.1 and A.2 discuss derivations of the algorithms presented, Section A.3
presents additional results on low-update scenarios, and Sections A.4, A.5, and A.6 discuss three other analyses of Gibbs
sampling in the contact tracing problems.

A.1 A detailed derivation of the Factorized Neighbor algorithm

This section presents a detailed derivation of the FN update equations, focusing on the backward messages. It will turn out
that backward messages in both BP and FN follow a similar quadratic form for their calculation. These quadratic forms
are compared between BP and FN to provide insight into how these algorithms incorporate information from contacts.

A.1.1 Notation

We briefly summarize notation of the algorithm and update equations: Each user, u, at each timestep, t, is represented
with a random variable zu,t with domain {S,E, I,R}, indicating the Susceptible, Exposed, Infected and Recovered states.
Likewise, the random variable, ou,t, is the observation made of user u at timestep t. The indicator function 1[zu, τ ] yields
1 if user u is infected, in state I , at timestep τ , and 0 otherwise. Random variables for algorithms that operate on multiple
timesteps are summarized with the notation zu = {zu,t}T−1

t=0 . Thus random variable zu ∈ {S,E, I,R}T .

The beliefs of a single variable zu,t or zu are denoted with lower-case, e.g. bu(zu). The joint belief over a set is denoted with
upper-case, e.g. B{u,z}(zu, zv). Of special interest is the joint belief BN(u)(zN(u)). Here N(u) indicates the neighbouring
nodes of user u, also called the Markov blanket. Then the random variable zN(u) = {zv}v∈N(u).

A.1.2 Backward messages of FN

We start to write out the backward message in the contact on day 1 between user 0 and user 1. The derivation uses the
extended PGM in Figure 12. Note that zu is used as shorthand for the block of variables {zu,t}T−1

t=0 .

b0(z0) = EBN(0)

[
p(z0|zN(0),O)

]
(9)

= Ebv [p(z0|zv,O)]Eb1,bv

[
p(z1|z0, zv,O)

p(z1|zv,O)

]
(10)

= Ebv [p(z0|zv,O)]Eb1,bv

[
p(z1,2|z1,1, z0, zv,O)

p(z1,2|z1,1, zv,O)

]
(11)

= Ebv [p(z0|zv,O)]Eb1,bv

[ ∑
zc
p(z1,2, zc|z1,1, z0,O)∑

z,
0,z

,
c
p(z1,2, z

,
c|z1,1, z,0,O)p(z,0|zv,O)

]
(12)

≈ Ebv [p(z0|zv,O)]Eb1,bv,bc

 p(z1,2|zc, z1,1, z0,O)

Ebc(z
,
c)

[∑
z,
0
p(z1,2|z1,1, z,0, z

,
c,O)p(z,0|zv,O)

]


︸ ︷︷ ︸
Message from user 1 to user 0

(13)

≈ Ebv [p(z0|zv,O)]Eb1,bc

[
p(z1,2|z1,1, z0, zc,O)

Eb0(z
,
0),bc(z

,
c)p(z1,2|z1,1, z

,
0, z

,
c,O)

]
︸ ︷︷ ︸

Message from user 1 to user 0

. (14)

Here BN(0) are the beliefs over neigbors of user 0. Under the Factorized Neighbor assumptions, these are factored as
BN(0) = bv(zv)b1(z1).

From Equation 11 to 12, the user c is included as the factors for user 1 depend on user c (c.f. Figure 12). However, in
decentralized inference, neither does user c know about user 0, nor does user 1 know about user v, as they are not direct
neighbors. Therefore, both posteriors are approximated with beliefs, yielding a practical and tractable calculation. Note
that the authors of Rosen-Zvi et al. (2005) originally formulated FN for undirected factors in an Ising model, and thus did
not have this approximation.
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In Equation 14, the expectation over b1 can be computed as a quadratic form. The elements within square brackets form
a matrix and depend only on z1,1, z1,2, and bc,1. Therefore, by writing the beliefs of user 1 as vectors, b1,1 and b1,2, the
calculation becomes:

b0(z0) = Ebv [p(z0|zv,O)] bT1,1A(z0, b0, bc)b1,2. (15)

Table 3 compares the above matrix, A(z0, b0, bc), to a similar quadratic form used for backward messages in BP, derived
by Herbrich et al. (2020) and restated in A.1.3.

Transition A(z0, µ) in BP A(z0, b0, bc) in FN

Infeasible transition 0 0

S → E Eµzc,1 )f1,2
[p(z1,2 = E|z1,1 = S, z0,1, zc,1)]

Ebc(zc)[p(z1,2=E|z1,1=S,z0,zc)]

Eb0(z
,
0)[Ebc(zc)[p(z1,2|z1,1,z

,
0,zc)]]

S → S Eµzc,1 )f1,2
[p(z1,2 = S|z1,1 = S, z0,1, zc,1)]

Ebc(zc)[p(z1,2=S|z1,1=S,z0,zc)]

Eb0(z
,
0)[Ebc(zc)[p(z1,2|z1,1,z

,
0,zc)]]

E → E g 1

I → I h 1

R → R 1 1

Table 3: Elements of the quadratic products in Equations 14 and 19. The backward message for both BP and FN is propor-
tional to a quadratic form, whose elements this table compares. In shorthand, the BP message is proportional to µTAµ,
with µ message vectors; the FN message is proportional to bTAb, with b belief vectors. Details are in Appendix A.1. For
brevity, all conditioning on O is omitted.

A.1.3 Comparison to backward messages of BP

For comparison, we write the backward messages for BP in the same graph, depicted in Figure 1. The backward message
prescribed by BP also comprises a quadratic form. Note that these derivations were made by (Herbrich et al., 2020), and
we restate the equations here to highlight the connection with our newly derived FN equations.

We adhere to factor graph notation from (Koller and Friedman, 2009) and write forward messages from factor to variable.

µf1,0→z1,0(z1,0) = p(z1,0) (16)
µz1,0→f1,1(z1,0) = µf1,0→z1,0(z1,0) (17)

µf1,1→z1,1(z1,1) = ATµz1,0→f1,1 (18)
...

...

Here, p(z1,0) is the prior over user 0 for day 0; fu,t is the factor for user u on day t, i.e. p(zu,t|zu,t−1,O, {zc,t−1}); and A
is the transition matrix of the Markov chain.

Implementing Equation 4, the backward message prescribed by BP will be then:

µf1,2)z0,1(z0,1) =
∑
z1,1

∑
z1,2

∑
zc,1

p(z1,2|z1,1, z0,1, zc,1)µzc,1)f1,2(zc,1)µz1,1)f1,2(z1,1)µz1,2)f1,2(z1,2).

The summation over the messages from contacts can be written as an expectation. From this equation, the quadratic form
will arise as follows:
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µf1,2)z0,1(z0,1) =
∑
z1,1

∑
z1,2

Eµzc,1 )f1,2
[p(z1,2|z1,1, z0,1, zc,1)]µz1,1)f1,2(z1,1)µz1,2)f1,2(z1,2). (19)

We then write the messages as vectors, µz1,1)f1,2(z1,1) µz1,2)f1,2(z1,2), and the matrix will depend on µzc,1)f1,2 .

Connection between BP and FN messages Table 3 compares the elements in the quadratic form between BP and FN.
Both methods have a quadratic form of the shape xTAx. In BP, the vectors, x, are the messages, µzu)fs ; in FN, the vectors
are the beliefs, bu(zu). The most striking difference in Table 3 is the S → E transition. For any user, this transition could
happen by a virus transmission from another user. Sending a backward message to z0,1, the BP calculation ‘excludes’
that information by omitting the incoming message, prescribed by the backslash, \, in Equation (4). Correspondingly, FN
uses the forward message, but for normalization in the denominator. These are two different calculations for decentralized
inference. Other differences are the E → E and I → I transitions, where BP uses the model parameter and FN the value
1. However, that may simply be due to BP using messages and FN using beliefs.

A.2 Why not use variational inference?

Both Gibbs, BP, and FN require an expectation over neighbors’ states, due to Equation 2. The calculation of this expectation
could be prohibitively large. Most users might have few daily contacts, but some users could occasionally have many
contacts, for example, when visiting a music concert or sports game. As such, we highlight in this subsection how that
calculation in Gibbs, BP, and FN grows linearly, while in variational inference the calculation grows exponentially.

• Belief Propagation, linear:

β(zu) ∝ Eµzv0,tc→fs ,µzv1,tc→fs ···µzvC−1,tc→fs

[
1− (1− p0)

C−1∏
c=0

(1− p1)
1[zvc,tc==I]

]

• Factorized Neighbors, linear:

b(zu) ∝ Eb(zv0,tc )b(zv1,tc )···b(zvC−1,tc )

[
1− (1− p0)

C−1∏
c=0

(1− p1)
1[zvc,tc==I]

]

• Gibbs sampling, linear:

p(z(k+1)
u |z(k)¬u ) ∝

[
1− (1− p0)

C−1∏
c=0

(1− p1)
1[z

(k)
vc,tc

==I]

]

• Variational Inference, exponential:

q(zu) ∝ Eq(zv0 )q(zv1 )···q(zvC−1
)

[
log(1− (1− p0)

C−1∏
c=0

(1− p1)
1[zvc,tc==I])

]

The above itemization of equations shows that the expectation required for VI cannot be simplified from an exponential to
a linear computation due to the log(.)-operation.

A.3 Statistical inference with few updates

Driving home the point that FN works with few messages and thus is practical, we run the simulators using down to 1 daily
update round. Figure 7 shows results on the CRISP simulator; Figure 8 shows results on the Open ABM simulator. Both
results have lower than random peak infection rates with as low as two daily messages per contact. Such a low amount of
messages will enable all the necessary security layers for the sensitive information that is being communicated.
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Figure 7: Simulating FN algorithm on the
CRISP simulator with as low as zero or one
daily update. This simulation is five bits per
message.
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Figure 8: Simulating the FN algorithm on the OpenABM-
Covid19 simulator with as low as zero or one daily update. This simu-
lation is five bits per message.

A.4 Mixing of Gibbs chains: loopy graph

An additional analysis of the convergence of Gibbs sampling is made. The graphical model defined in Section 3 has loops,
and we ask the question How do these loops relate to the mixing of Gibbs chains and the convergence of the estimated
marginals? To this end, we calculate the Mean Absolute Error (MAE) between marginals estimated from two different
Gibbs chains(c.f. Figure 4). The MAE is plotted per node against the shortest cycle length that includes the node. Figure 9
shows the resulting correlation including the 20th and 80th percentile in shaded blue. We see that nodes involved in
shorter cycles (less than length 50) have a higher discrepancy and nodes involved in longer cycles have lower discrepancy.
Other research exists to address the problem of loopy graphs, such as cluster-graphs (Welling, 2004), other formulations of
blocked Gibbs (Herbrich et al., 2020), or hybrid approaches.

A.5 Examples of Gibbs chains

This section discusses the slow mixing of Gibbs chains. Figure 2 showed that inference with Gibbs sampling with as many
as thousands of samples does poorly in mitigating a high pandemic peak. Subsequently, Figure 4 showed that Gibbs chains
mix slowly in expectation. Here, we seek a more detailed answer and look at a particular user in a particular Gibbs chain.
We ask the question: how do posterior estimates differ per chain? Figure 10 shows one such example. Note that this
example is handpicked to demonstrate the behavior outlined in the following.

Figure 10 shows posterior estimates after 50 samples from five different Gibbs chains. The final row shows the FN
posterior obtained with five 5-bit messages per contact. The Gibbs estimates differ wildly per chain. The difference is most
pronounced in ‘the point of transmission’, the point where the state shifts from S to E. In the first chain of Figure 10, the
transmission is estimated at day seven, evidenced by a decrease of the blue line, representing state S. However, the second
chain estimates the transmission at day eight, and the third chain estimates the transmission as late as day 11. In other
words, these five chains have different posterior estimates when a virus transmission happens. This variance could explain
why Gibbs sampling with a low number of samples performs poorly in an experiment like Figure 2.

A.6 Analysing eigenvalues of the Gibbs transition

In this section, we seek to understand the mixing of Gibbs chains on the model given by Equation 1. The graph may be
loopy (A contact with B, B contact with C, C contact with A), which makes inference difficult (Koller and Friedman, 2009).
We will view Gibbs sampling through the lens of its states’ transition matrix. Here, the domain of states is discrete (either
in state S or not, either in state E or not, etc.). Thus (blocked) Gibbs sampling can be seen as a discrete random walk on
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Figure 10: Different poorly-mixing Gibbs chain. The fig-
ure shows the posterior marginal estimated from five different
Gibbs chains. Estimates differ wildly per Gibbs chain. For ex-
ample, the first chain estimates the state change from S to E at
day 7, the second chain estimates at day 8, and the third chain
estimates this as late as day 11. This analysis follows from
50 Gibbs samples, which explains why Gibbs sampling with a
low amount of samples performs badly in an experiment like
Figure 2.

the set of all states.

With thousands of Gibbs samples, the transition matrix is multiplied as many times. The largest eigenvalue of the transition
matrix has eigenvalue 1, as Gibbs sampling has a stationary distribution. Therefore, we analyze the ‘spectral gap’, which
is 1 minus the second largest eigenvalue. A large spectral gap will indicate fast mixing (Sakai and Hukushima, 2016; Liu,
1996).

Consider a graph with two users. The transition matrix between each possible state follows:

T

([
z,0
z,1

]
→

[
z,,0
z,,1

])
= p(z,,0 |z

,
1)p(z

,,
1 |z

,,
0 ) (20)

T

([
z,,0
z,,1

]
→

[
z,0
z,1

])
= p(z,0|z

,,
1 )p(z

,
1|z

,
0). (21)

This matrix can be written as the eigenvalue decomposition:

A = QΛQ−1 (22)

Therefore A(t) = QΛ(t)Q−1. Hence, as the largest eigenvalue is 1, the second largest eigenvalue will determine how
‘slow’ (in terms of t), transients decay to zero. Thus the spectral gap determines how ‘fast’ the Gibbs sampler reaches its
stationary distribution.

Figure 11 plots the second largest eigenvalue for the two user graph when gradually adding edges. The fifth edge forms
the first directed loop in the graph. Correspondingly, the spectral gap decreases at the fifth edge. This shows that directed
loops cause slower mixing of the Gibbs chain.
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Figure 11: The spectral gap of Gibbs transition determines
how ‘fast’ the chain mixes and how fast the expected poste-
rior marginals converge. The spectral gap is plotted on the
y-axis as more edges are added to a two-user graph, sim-
ilar to Figure 1. The fifth added edge introduces the first
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of the spectral gap decreases, indicating slower mixing of
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Figure 12: The PGM from 1, extended with two contacts.
This graph is used to clarify the derivation in Section A.1.
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Figure 13: This figure reproduces Figure 5 for the
OpenABM-Covid19 simulator. Inference with windows of
length 14 or 21 yield significant savings in required com-
pute, yet result in similar peak infection rates as inference
without window. Error bars indicate the 20th and 80th per-
centile.
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B Experimental settings

This section highlights experimental settings for the two main experiments. The code to reproduce the experimental results
can be found at http://github.com/QUVA-Lab/nttw.

This CRISP-simulator follows the simulation of Herbrich et al. (2020) and uses a stochastic block model. A population of
ten thousand users consists of a hundred blocks. Users are fourty times more likely to have a contact within a block than
between blocks. On a global level, the contacts have a pareto-distribution, where 20% of users make 80% of the contacts
and vice versa. A spontaneous infection occurs with probability 1

1000 , an infected contact, in I state, transmits the infection
with probability p1 = 1

10 . In contrast to ABM, the experiments on CRISP do not have model specification. Both the g and
h parameters in Equation 1 are set to g = 1

5 and h = 1
6 . The simulations for Figure 2 and Table 1 run for 50 days, when

most of the peaks in infection rates happen. Only Figure 3 displays 150 days to highlight the dynamics.

The OpenABM-Covid19 simulator has a parameter file comprising 150+ parameters. Our parameter file can be found in
the Github. We use the same simulator parameters as Baker et al. (2021), which we verified via email correspondence.
Note, however, that we follow the observation model of Herbrich et al. (2020), where individuals test positive only in the I
state. Due to time limit, we have not been able to fine-tune model parameters, and use values p0 = 1

1000 , p1 = 1
10 , g = 1

5
and h = 1

6 . All simulations with the OpenABM-Covid19 simulator run for 100 days. Both testing and quarantining are
assumed by highest posterior score of infection, and, like (Baker et al., 2021), a positive tested user is not tested again in
the same time window.

Unless otherwise stated, experiments are run with 4 bits quantization, i.e. 16 uniform quantization levels. The quantization
scheme is highlighted in Section 4.3.

http://github.com/QUVA-Lab/nttw
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