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Abstract

Spatially dense self-supervised learning is a rapidly
growing problem domain with promising applications for
unsupervised segmentation and pretraining for dense down-
stream tasks. Despite the abundance of temporal data in
the form of videos, this information-rich source has been
largely overlooked. Our paper aims to address this gap
by proposing a novel approach that incorporates temporal
consistency in dense self-supervised learning. While meth-
ods designed solely for images face difficulties in achieving
even the same performance on videos, our method improves
not only the representation quality for videos – but also im-
ages. Our approach, which we call time-tuning, starts from
image-pretrained models and fine-tunes them with a novel
self-supervised temporal-alignment clustering loss on unla-
beled videos. This effectively facilitates the transfer of high-
level information from videos to image representations.
Time-tuning improves the state-of-the-art by 8-10% for un-
supervised semantic segmentation on videos and matches it
for images. We believe this method paves the way for further
self-supervised scaling by leveraging the abundant avail-
ability of videos. The implementation can be found here :
https://github.com/SMSD75/Timetuning

1. Introduction
Dense self-supervised learning, whereby meaningful

deep features for each pixel or patch of input are learned

in an unsupervised manner, has recently received increas-

ing attention [74, 24, 57, 51]. By learning spatially con-

sistent features for different views of an input, strong gains

in unsupervised semantic segmentation have been achieved

using unlabeled images. However, so far, an even more

information-rich source for unsupervised training has been

largely overlooked: videos. With their additional time

dimension and being the most rapidly growing form of

digital content, they are well-suited to scaling dense self-

supervised learning even further.

Some efforts have already been made to learn from the

video domain by using different frames from a video as aug-

Figure 1: Time-tuning compared to previous methods.
Unlike existing methods that ignore or utilize expensive

3D models to implicitly model temporal information, the

proposed method explicitly incorporates temporal consis-

tency in dense feature representations using a temporal self-

supervised loss. The method starts with a 2D encoder pre-

trained on images and fine-tunes it using unlabeled videos.

This approach leads to improved performance not only for

videos but also for images.

mentations [18, 63, 49] or by involving temporal correspon-

dence [71, 58]; however, they mostly did it in a supervised

way [29, 73, 19, 40, 65, 38, 31, 28, 41, 37, 54, 44], which is

not scalable specifically for dense tasks where the number

of targets can increase significantly as the number of pix-

els grows. To this end, self-supervised learning approaches

offer a solution by reducing the need for supervision. How-

ever, these methods typically rely on the notion of “views”,

which involves learning similar features for corresponding

locations over time. This usually leads to a chicken-and-

egg problem, where the correspondences are required for

learning dense features – which in turn enable good corre-

spondences [30].

In images, the challenge is trivially solved by consider-

ing the correspondence function based on the augmentation

function. For instance, In the case of color augmentations,

this correspondence is simply given by the identity. How-

ever, shifts in time cannot be viewed as mere augmenta-
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tions. As we demonstrate through a new evaluation pro-

tocol, using image models on frames alone is not nearly

as effective. A similar finding has also been reported, al-

beit for non-dense works [20, 34], which assumed the pas-

sage of time as an image augmentation. These works have

generally reported reduced performances, even when com-

pared to simple image-based pretraining methods. Simi-

larly, video-level tasks [17, 18, 55] assume sufficiently sim-

ilar semantics between different frames. This is also not

true for dense tasks, as static features can only be assumed

where nothing is moving – which is rare due to possible ob-

ject, camera, and background motion between the frames.

To address this challenge, we propose to model the ad-

ditional time-dimension explicitly to identify which pixels

should retain similar embeddings and which should not. We

propose two separate modules to tackle the correspondence

and the dense learning, respectively. For the former, we in-

troduce the Feature-Forwarder (FF) module, which breaks

the mentioned chicken-and-egg loop by leveraging the good

tracking performance of pretrained image models, and al-

lows an approximate second “view” that can then be treated

as a target for the further dense self-supervised loss. On top

of this, we introduce a spatio-temporally dense clustering

module, which learns unsupervised clusters across samples,

locations and time. Using these two components and start-

ing from image-pretrained features, our proposed method

allows time-tuning (TIMET) the dense representation in a

self-supervised manner, see Figure 1.

Finally, we demonstrate that TIMET paves the way for

further scaling of self-supervised learning by leveraging the

abundant availability of video datasets and transferring their

knowledge to the image domain. This results in consistently

achieving state-of-the-art performances not only for the task

of unsupervised semantic segmentation of videos, but also

for unsupervised image semantic segmentation, a feat pre-

viously out of reach for methods trained on videos.

Overall, this paper makes the following contributions:

• We show that image-based unsupervised dense seg-

mentation models applied to videos exhibit degraded

performance and lack temporal consistency in their

segmentation maps.

• Building on this observation, we propose a novel dense

self-supervised learning method that utilizes temporal

consistency as a learning signal.

• We demonstrate that our method enables the scal-

ing of self-supervised learning by leveraging abun-

dant video datasets and effectively transferring knowl-

edge to the image domain. Our approach consistently

achieves state-of-the-art performance for both images

and videos, opening up new opportunities in the field.

2. Related Works

Dense self-supervised learning. These methods build

upon image-level self-supervised representation learning

by incorporating existing losses to enhance the spa-

tial features, demonstrating a commendable advancement.

DenseCL [61] works on spatial features by constructing

dense correspondences across views using the contrastive

objective given in MoCo [23], while PixPro [62] uti-

lizes the augmentation wrapper to get the spatial corre-

spondence of the pixel intersection between two views.

Similarly, MaskContrast [57], Leopart [74], DetCon [24]

and Odin [25] also ensure spatial feature similarities via

contrastive learning and spatial correspondences. Self-

Patch [67] treats the spatial neighbors of the patch as pos-

itive examples for learning more semantically meaning-

ful relations among patches. Inspired by SelfPatch, AD-

CLR [69] proposes patch-level contrasting via query crop

and cross-attention mechanism. Pursuing the same objec-

tive through none end-to-end approaches. Both [68] and

[59] propose an unsupervised salient object segmentation

pipeline that extracts noisy object masks from the inputs and

fine-tunes a specifically designed object segmentation head

with several self-training steps to make an unsupervised

semantic segmentation model. Unlike the existing image-

based approaches, we propose a method that improves the

dense prediction performance of a pretrained encoder by ex-

plicitly modeling the temporal dimension and learning from

diverse natural dynamics and variations found in videos.

Video to image knowledge transfer. Learning from

videos instead of images has recently received attention

since they contain far more information than still images

and hold the potential for learning rich representations of

the visual world. To this end, several non-dense works have

been released [46, 4, 27]. VITO [46] shows that naively

applying image domain self-supervised learning methods

on videos can lead to a performance drop coming from the

distribution shift, which by applying data processing tech-

niques is relieved but not fully solved. Following the same

way, [27] trains masked autoencoders [22] with contrastive

learning [10] on video datasets and shows a decent perfor-

mance on both image and video tasks. While video to im-

age knowledge transfer is the end goal of such methods and

our paper; our dense task is different and is as of yet unad-

dressed.

Unsupervised video object segmentation. Unsupervised

video object segmentation methods do not require any man-

ual annotations. However, they are only designed to tackle

a foreground/background segmentation task, which refers

to the segmentation of the most prominent, general objects

in video sequences [66, 43, 50, 1, 39]. For instance, [66]
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Figure 2: Time-Tuning overview. We conduct self-supervised video semantic segmentation by tuning image-pretrained

models with temporal information from videos. (a): Our general pipeline of adapting an image-pretrained ViT transformer

on video data using our dense clustering loss. The encoder is specified by Ψ and kept frozen except for the last two layers.

Also, zt shows the output of Sinkhorn-Knopp algorithm, which is forwarded to time-step T to be compared with the features

that are obtained using the last time-step. (b): Detailed view into our Feature-Forwarder module that is used for aligning

cluster-maps from past frames to logit-features of future ones.

uses an AutoEncoder-based architecture based on slot atten-

tion so that pixels that show the same motion flows based

on optical-flow are grouped together. In this way, domi-

nant moving objects can be detected and separated from the

background. In our experiments, we benchmark two rep-

resentative instances of this line of work, i.e., [66, 1], to

provide better insights into the differences of unsupervised

object detection methods and our proposed benchmark for

video semantic segmentation.

To conclude, we propose the first self-supervised video

semantic segmentation method, which tunes image-trained

models such as [9, 72] based on the temporal information

that exists in unlabeled videos to enhance their effectiveness

in dense prediction tasks.

3. Method
Our method works by densely clustering features in a

manner that is consistent with time. At a high level, it works

by transforming features from a past time t′=t to the cur-

rent frame t′=T and forcing these to be consistent with the

currently observed ones at t′=T . The overall learning sig-

nal comes from the dense temporal clustering of forwarded

features and allows “timetuning” image-pretrained models

to learn from videos. Figure 2 shows the proposed method’s

architecture. In the following, we describe each component

in detail.

3.1. Feature Forwarding

The goal of this component, the feature-forwarder (FF),

is to propagate the dense features in time as accurately as

possible, given some RGB input frames. More formally, let

f be the feature forwarding function, It be a frame at time

t for a given video, and zt the features corresponding to It,

then the task is to propagate zt to a future time T ,

f([It, . . . , IT ], zt) → ẑT . (1)

Note that ẑT and zT are not necessarily the same for T > t;
since ẑT represents an approximation of zT using the pre-

vious features. Obviously, the further T is from t, the more

variance is seen and therefore a better learning signal might

be provided; however, for such larger intervals, the idea of

feature forwarding encounters two main challenges: error

accumulation and object non-permanence.

Challenge 1: Error accumulation. While computing

how features have changed simply based on the start and

end frames is the most straight-forward (i.e., It and IT ), it

does not fully leverage the knowledge contained in the in-

termediate frames. Instead, it is common [30, 60, 36] to

forward features for every time-step δt, i.e.,

f([It, .., IT ], zt) = ©T
t′=t+δtf([It′−δt, It′ ], zt]), (2)

where © is a composition operator such as element-wise

multiplication. However, this results in the accumulation of

errors over time.

Challenge 2: Object non-permanence. One difficulty

that arises when using videos as training data is the fact

that objects sometimes simply disappear from the screen.

Compared to images, which carry a heavy photographer’s

bias, videos are more prone to natural variation due to cam-

era and object motion resulting in temporary object non-

permanence in a particular video clip. A method that sim-

ply assumes an object (or a feature) has to be present in any

given frame simply because it was present in the previous
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one might therefore easily fail when going towards videos

that exist in-the-wild. A case in point are simple occlusions

that arise from an object being fully- or partially-covered

by another one further in the background. Taking longer

training clips has been attempted to resolve the issue. How-

ever, this increases the training complexity, especially for

dense-tasks that necessitate a higher number of predictions

for each input.

We address these challenges using a novel, yet simple com-
ponent, which we call the Stabilizing Feature-Forwarder.
The first choice in designing this module is the function and

data used for composing information across time. For in-

stance, a simple approach would be to use pixel-wise opti-

cal flow and aggregate the flow at the feature level to predict

how the features change over time. However, as we also

show in our experiments, optical flow is prone to accumu-

lating error with time and also cannot easily recover from

occlusions [6]. Instead, we utilize the fact that we wish to

pretrain the visual encoder and recycle part of it for the pur-

pose of feature forwarding. This not only speeds up the

process, as no additional encoder/modality is required, but

also produces a positive feedback loop of better forwarding

and better feature learning.

Concretely, we first compute the L2-normalised dense

features of a pretrained visual encoder Φ to compute spatial

similarities across time (the ′ in t′ left out for clarity):

F t
ij = 〈Φ(It)i,Φ(IT )j〉/τ, (3)

which yields matrices F {t,...T−δt} ∈ RN×N with values

between [0,1] indicating semantic similarities between the

N spatial features that are sharpened by a temperature τ .

Note that because we compare each frame with the final

frame, the effect of object non-permanence can be mini-

mized: even if the object is only present in every other

frame, there is enough signal to forward its features.

Next to propagate from time t to T , these similarities are

stacked and normalised along time, as follows:

F̃ t
ij = exp(N (F t

ij))/
∑

i,t′
exp(N (F t′

ij )), (4)

where t ≤ t′ ≤ T and N is a neighborhood thresholding

method which forces short-term spatial-smoothness, i.e.,

N (F̃ t
ij)=0 if i is not within a local window around j with

the size k. Finally, the propagated feature are computed ẑT
as:

ẑT (j) =
∑

t′,i

F̃ t′
ij ẑt′(i), j ∈ {1, .., N}. (5)

This means that for arriving at the target feature ẑT , we not

only use the previous frame as the source, but instead use

the past (T − t)/δt frames and aggregate these.

Relation to mask-propagation methods. While previ-

ous methods such as DINO [9] and STC [30] have uti-

lized a similar technique for propagating ground-truth

masks for evaluating, for example on the DAVIS dataset,

there are three key differences to our forwarding method.

First, instead of propagating binary maps of foreground-vs-

background, our feature-forwarder has as inputs soft, noisy

and multi-label self-supervised segmentation maps, which

require the forwarder to tolerate overlapping of different

object probabilities throughout training. Second, previous

methods have used this approach mainly for inference; we,

however, use this module as a trainable component and

show how our loss improves this forwarder with training

time. Finally, we do not follow a typical re-normalizing step

across feature dimensions (typically done after Eq. (5)) as

this harms the scale of logits that are being propagated and

leads to heavily diluted target distributions.

3.2. Self-supervised dense clustering

While the Feature-Forwarder produces target features

that include information about the dynamics with time, its

computation utilizes Φ(IT ) and could lead to trivial solu-

tions, i.e., f([It, .., IT ], zt) = Φ(IT ). To counteract this,

we propose a self-supervised clustering task across views

in time. For this, we utilize the basic online clustering algo-

rithm based optimal-transport [12], utilized in works such

as SeLa [2], SwAV [8] and DINOv2 [45]. In particular, let

Ψ be a visual encoder with a clustering head g that yields a

K dimensional output, then the clustering loss is given by:

L(xi) = −ỹi log(g(Ψ(x)i)), (6)

which is a standard cross-entropy loss with regards to self-

supervised pseudo-label ỹi. These labels, in turn, are gen-

erated by solving an entropy-regularised optimal transport

problem on the batch B [2]:

min
ỹ

〈ỹ,− log g(Ψ(x))〉+ 1

λ
KL(ỹ‖rc�), (7)

with r =
1

K
· �, c =

1

|B| · �. (8)

Here λ controls the entropy regularisation and r, c are the

marginals for the prototypes and the batch, respectively.

Note that solving this problem can be done extremely

quickly on the GPU and yields soft pseudo-labels Ỹ , such

that argmax(Ỹ ) = ỹ.

n, these might yield sufficiently similar semantics [17]

this is not true for dense tasks, as static features can only be

assumed for videos where nothing is moving, which is rare.

3.3. Overall TIMET loss

We combine the previous two modules to arrive at our

full method (as shown in Fig. 2): First, self-supervised
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Sinkhorn-Knopp clustering is conducted on early features

g(Ψ(It)), yielding soft pseudo-labels SK(g(Ψ(It)))=Ỹt.

These are then forwarded in time using our Feature-

Forwarder to arrive at dense targets FF(Ỹt), which are used

in the final loss. Compactly:

LTIMET(IT ) = −
∑

i,j

FF(Ỹt) log(g(Ψ(IT ))). (9)

4. Experiments

4.1. Setup

Datasets. We train our method and baselines on

YTVOS [64], one of the largest video segmentation datasets

available, and evaluate on DAVIS17 [48] and YTVOS. For

YTVOS the ground truth masks are only available for the

first frames of the test and validation sets, and therefore, a

fixed random 20% of the training set is used for testing. For

transfer learning experiments, we use the validation set of

Pascal VOC 2012 [16], As the dataset has been commonly

used as a main reference for recent works in dense self-

supervised image segmentation [74, 57, 61]. For complete-

ness, we also report the performance on egocentric datasets

that have less object-centric bias and are prevalent in real-

world scenarios. For egocentric experiments, we train on

EPIC-KITCHENS-100 [13] and evaluate on VISOR [14].

Further details are provided in Appendix A.

Models and baselines. Currently, there is a lack of avail-

able unsupervised semantic video semantic segmentation

methods. Nevertheless, we have included a comprehensive

comparison of our method with state-of-the-art techniques

in both image and video domains for unsupervised image

semantic segmentation and unsupervised video object seg-

mentation. To evaluate the image-based models, we uti-

lized either official reported numbers or provided pretrained

models of STEGO [21] and Leopart [74]. We have taken

every measure to ensure fairness in our comparison. To do

so, all the used pretrained models have the same pretrain-

ing dataset (ImageNet-1k), and the number of their back-

bone parameters is roughly similar. For those models that

use extra datasets, for instance, Leopart, we select the pre-

trained backbones that closely match the specification of

YTVOS training dataset. Additionally, we trained image-

based models on the same video datasets, where we con-

verted video data into their corresponding image data and

reported their performance wherever possible. To ensure

comprehensive analysis, we have included the recent con-

current work Flowdino [71], which utilizes optical flow to

refine DINO features on unlabelled videos, in our compar-

ison benchmarks as well. This is done only in cases where

there is a shared experimental setup.

Evaluation procedure. Despite unsupervised object seg-

mentation being a well-established evaluation in the im-

age domain [57, 74], evaluating unsupervised video multi-

label object segmentation is challenging due to the absence

of an established evaluation protocol for video object se-

mantic segmentation without supervision. In this regard,

we propose a set of evaluation protocols for unsupervised

video multi-label object segmentation, which exploits ex-

isting video object segmentation datasets for evaluation pur-

poses (see details in Appendix B). In our experiments, we

discard any projection head used during training and eval-

uate ViT’s spatial tokens directly, similar to [57, 32, 61],

using four methods: classification with a linear head, clas-

sification with an FCN head, overclustering, and clustering

with as many clusters as the number of ground truth objects.

To fine-tune different heads on top of the frozen spatial to-

kens, we follow [57]. For unsupervised semantic segmen-

tation, we apply K-Means on all spatial tokens, where K
is chosen to be higher or equal to the ground-truth number

of classes, following the common protocol in image cluster-

ing [32, 56]. For grouping clusters to ground-truth classes,

we match them either by pixel-wise precision or Hungarian

matching on merged cluster maps [35]. For video datasets,

we allow the matching to be per-frame, per-video, and per-

dataset. The evaluation metric is permutation-invariant, fol-

lowing [32], and the results are averaged over five different

seeds. Clustering evaluations are preferred as they require

less supervision and fewer hyperparameters than training a

linear classifier and operate directly on the learned embed-

ding spaces. We report our results in mean Intersection over

Union (mIoU) unless otherwise specified.

Model training. We train a ViT-Small with patch size 16

and initialized from ImageNet-pretrained DINO weights [9]

using the proposed self-supervised loss function. For the

ablations and the main experiments, our models are trained

for 12 and 30 epochs respectively. Further training details

are provided in Appendix A. Code will be made available.

4.2. Ablations

We first examine the essential parameters of our method

by training TIMET on YTVOS and assessing its ability to

perform semantic segmentation on Pascal VOC. In addition

to presenting the results through clustering and overcluster-

ing, we also demonstrate linear classification outcomes.

Number of prototypes. We first ablate the influence of

the number of prototypes on downstream segmentation per-

formance. Results in Table 1a indicate a sharp increase in

performance with a rise in the number of prototypes, but

once a sufficiently large number is reached, performance

stabilizes. We observe peak performance with a moderate

number of 200 prototypes. The stability of our method over
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(a) Ablating # prototypes K.

P LC K=21 K=500

10 37.5 6.1 24.1

50 58.2 8.2 40.5

200 59.7 9.2 42.8
300 59.4 9.0 42.3

(b) Ablating time interval δT .

# frames δT LC K=21 K=500

1 0s 50.7 5.6 26.2

4 0.2s 56.5 7.4 36.5

4 0.5s 59.7 9.2 42.8
4 1.0s 57.1 8.3 38.1

(c) Ablating number of frames used.

# frames T LC K=21 K=500

1 0s 50.7 5.6 26.2

2 2.0s 52.6 6.2 37.1

4 2.0s 59.7 9.2 42.8
8 2.0s 59.7 9.0 42.3

Table 1: Ablations of the key parameters of our method. The model is trained for 12 epochs on Pascal VOC, and results

for unsupervised segmentation with clustering (K=21), overclustering (K=500), and linear pixel-wise classification (LC)

are shown. The stability of our method over a range of prototypes (50-300), inter-frame time intervals (δT ∈[0.5s-1.0s]), and

the number of training frames (4-8) at a fixed clip duration (T ) shows the robustness of the method.

a range of prototypes (50-300) suggests that our approach

is robust to the change of this parameter.

Understanding FF. Next, we ablate the temporal dimen-

sions that influence the working of the Feature-Forwarder.

In Table 1b, we vary the time interval δT between frames

whilst keeping a fixed number of four frames. We generally

find an increase in performance when increasing the time-

interval, with performance peaking at 0.5s. One of the most

critical observations is the clear difference in clustering per-

formance from 26.2% to 42.8% between training on single

frames (first row) vs. training with multiple frames. This

clearly indicates the significant benefit of utilizing temporal

information from the Feature-Forwarder during training.

Next, in Table 1c we vary the number of frames given

a fixed clip duration of 2s. Again, we find that a moder-

ate number of frames between the source and target time is

most favorable. While additional frames do not degrade the

performance much, they do add computational complexity,

so we prefer using 4 frames in our main method.

Choice of propagation feature. Finally, in Table 2, we

vary the type of feature that we forward to a future time. In

the first row, we report the performance when not using any

feature forwarding – thus solely training on single-frame in-

puts (i.e., the same as row 1 in Table 1c). In the second row,

“Identity” shows the performance that is obtained when the

feature map from the source frame is simply forwarded to

the future without any changes, which shows an increase in

the performance compared to the first row. This shows that

often, training videos are not very dynamic, and a static as-

sumption can already lead to some gains. However, com-

pared to forwarding the Sinkhorn-Knopp (SK) clustered

features, these gains are small (+4.6% vs. + 17%). Im-

portantly, our Feature-Forwarder relies on forwarding SK-

sharpened feature maps and does not work when simply

forwarding the network’s output logits Φ(x), followed by a

clustering step. The reason for obtaining considerably lower

numbers here can be traced back to using an un-entropy-

FF type LC K=21 K=500

None 50.7 5.6 26.2

Identity 55.3 7.4 36.1

Ψ(x) 53.1 6.6 35.5

SK(Ψ(x)) 59.7 9.2 42.8

Table 2: Propagating different features in FF on Pascal

VOC. We find that our Sinkhorn-Knopp (SK) based module

outperforms static training (‘None’ or ‘Identity’). More-

over, propagating logits Ψ(x) does not work as well as SK-

regularised features.

At Init +TIMET
Pretrain Backbone K=500 LC K=500 LC

MSN [3] ViT-S/16 26.0 55.4 48.3↑22.3 67.2↑11.8
iBOT [72] ViT-S/16 32.1 62.1 47.1↑15.0 67.1↑ 5.0

DINO [9] ViT-S/8 22.5 55.8 53.9↑31.4 69.5↑13.7
DINO [9] ViT-B/16 28.9 59.1 52.7↑23.8 70.2↑11.1

Table 3: Applying TIMET to different pretrainings on

Pascal VOC. TIMET can boost (↑) the performance of dif-

ferent backbones with different initialization by a consider-

able margin, showing the generality of our approach.

regularized clustering algorithm. In this case, the logits tend

to cause a few prototypes to dominate the cluster centers,

exacerbated after the propagation, resulting in highly noisy

and uninformative propagated logits. This shows that care-

ful design of the Feature-Forwarder is indeed required.

Applying TIMET to different models. As shown in Ta-

ble 3, our method is generalisable to different backbones

and self-supervised learning initializations, enabling it to be

an effective method to transfer the knowledge of the videos

to images in an unsupervised way, which reduces the cost

of labeling for different downstream tasks.
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Figure 3: TIMET unsupervised segmentations. As we regularize DINO’s backbone to be consistent across time on YTVOS,

it obtains strong performance on both image and video segmentation datasets, yielding high class consistencies (indicated by

the segmentation colors) and tight borders. We provide more qualitative results in Appendix D.

Clustering Overclustering
YTVOS DAVIS YTVOS DAVIS

F C D F C D F C D F C D
Trained on Images

Resnet50 44.0 43.4 1.7 39.3 37.4 4.2 55.6 52.8 3.1 46.6 44.2 8.4

SwAV [8] 39.5 38.2 3.2 32.0 29.6 7.3 59.8 58.1 5.8 50.5 50.1 25.7

DINO [9] 39.1 37.9 1.9 30.2 31.0 1.6 66.2 65.4 4.0 56.9 54.9 17.9

Leopart [74] 39.2 37.9 11.7 30.3 30.2 16.5 64.5 62.8 15.5 54.9 54.4 26.7

Trained on Videos
STEGO* 41.5 40.3 2.0 31.9 31.0 3.2 58.1 54.3 5.1 47.6 46.3 10.4

DINO* 37.2 36.1 1.2 29.3 29.2 2.4 53.1 50.9 1.3 45.4 44.0 8.6

Leopart* 41.5 40.5 7.7 37.5 36.5 12.6 60.8 59.8 6.8 53.7 53.1 16.8

TIMET(ours) 52.5 51.3 13.3 53.7 53.0 20.5 68.6 66.8 15.8 59.8 61.5 31.8

Table 4: Unsupervised video semantic segmentation results in mIoU for clustering (K=GT) and overclustering. TIMET not

only gets better numbers on YTVOS, but also achieves considerably better results on DAVIS. This shows the better quality

of the learned features at transferability to other video datasets. The clip-length is set to 16 and 4 for DAVIS and YTVOS,

respectively. For clustering, the Hungarian algorithm [35] matches the unsupervised segmentation clusters (K) with the

ground truth (GT) per frame (F), clip (C) or across the whole dataset (D). For overclustering, we use K=10 for the frame-

wise (F) and clip-wise (C) evaluations, and for dataset-wise (D) evaluation, K=200 for DAVIS and K=500 for YTVOS.
∗denotes finetuning pretrained models on the same video frames as input as our method. The matching protocol is greedy

many-to-one, see Appendix B for details.

4.3. Large-scale experiments

Unsupervised video semantic segmentation. In this sec-

tion, we train our TIMET method on the YTVOS dataset

and evaluate it for unsupervised video object segmentation

on both DAVIS and YTVOS. The results are shown in Ta-

ble 4. It should be noted that the number of prototypes we

analyzed in Table 1a is not the number of clusters used to

report accuracies for Table 4, as the actual number is usu-

ally unknown in the case of unsupervised learning. For the

clustering experiment, we set K to the number of ground

truth objects, which makes evaluation metrics easier to in-

terpret and is commonly done in image clustering and seg-

mentation. This evaluation is repeated but for larger num-

bers of clusters, in the “overclustering” scenario. Note that

in dense self-supervised learning, overclustering can be par-

ticularly important because the learned representations are

used as a feature extractor for downstream tasks such as

semantic segmentation or object detection. By using more

fine-grained representations, the network may be able to ex-

tract more discriminative features such as object parts [74],

which can lead to better performances.

From Table 4, we observe a clear trend: our method,

trained on YTVOS not only achieves superior performances

on YTVOS, but also beats existing image-trained models

on DAVIS by a large margin. In particular, the state-of-

the-art self-supervised clustering method, Leopart, has 4%

lower performance on per dataset DAVIS evaluation for

K=GT and 1.6% lower performance on YTVOS. The gap

even becomes larger when Leopart is trained on the same

video dataset with 8% to 16% lower numbers in per dataset

and per clip numbers across different datasets. This means

that when grouping objects of the same class over time and
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the whole dataset, the image-based self-supervised meth-

ods have trouble generalising to videos, where objects are

not centered in the frame, can appear in varying poses, and

are more difficult in general. A strong contender is Leopart,

which matches the performance of DINO for per frame and

per clip clustering, however, improves considerably with

the per dataset clustering. We attribute this to the fact that

their dense learning objective improves mainly the general-

isation capabilities of the learned representation, however

falling short of generalising to temporal variations. We

make similar observations for overclustering, improving the

DINO baseline which we utilize as initialisation by 12% to

14% across different datasets in the per dataset metric.

We conclude that the proposed method outperforms all

other methods in learning robust and discriminative repre-

sentations for dense video understanding, and image-based

self-supervised learning may not have sufficient generali-

sation capacity. This shows that if used right, time is a

particularly strong inductive bias for self-supervised learn-

ing. Figure 3 shows segmentations returned by the proposed

model trained on YTVOS and tested on YTVOS, DAVIS,

and VISOR respectively. The proposed method groups ob-

jects accurately, and importantly, the frame segmentations

are considerably consistent over time (see more examples

in Appendix D). This highlights the importance and rele-

vance of temporal fine-tuning, not just for higher accuracy,

but crucially for consistency and robustness.

Transfer from video training to images. Despite the

common belief that features learned from videos perform

worse when transferred to images [34, 20], the results

in Table 5 demonstrate our method achieves high perfor-

mance that match state-of-the-art methods directly trained

on images, specifically for the K=500, FCN, and LC met-

rics. We also compare our performance gains in videos

against models designed for unsupervised image segmen-

tation. The results show that models highly biased towards

image datasets cannot provide the same performance when

trained on videos, lagging behind our approach by 7% to

30%. Our results demonstrate that achieving high transfer

performance on challenging tasks through video-based self-

supervised learning is not only feasible but can also main-

tain high performance across modalities. These findings

suggest that our method can drive further advances in self-

supervised learning and inspire new directions for research

in this field. Figure 3 shows the qualitative results on Pascal

VOC. For more visualisations we refer to Appendix D.

Salient object segmentation. In Table 6, we compare

foreground masks obtained with various DINO ViT based

methods. We use the cluster-based foreground extraction

protocol from [74] (details provided in Appendix C). First,

we find that our method outperforms the original DINO at-

Pascal VOC

K=21 K=500 LC FCN

Trained on Images
ResNet-50 4.5 36.5 53.8 -

DINO [9] 5.5 17.4 50.6 60.6

SwAV [8] 11.6 35.7 50.7 -

MaskContrast [57] 35.0 45.4 49.2 -

DenseCL [61] - 43.6 49.0 69.4

STEGO [21] 7.0 19.5 59.1 63.5

CrOC [52] 20.6 - 61.6 -

Leopart [74] 36.6 50.5 68.0 70.1

Trained on Videos
STEGO* 4.0 15.5 51.1 55.5

Leopart* 14.9 21.2 53.2 63.2

Flowdino† [70] - - 59.4 -

TIMET (ours) 34.5 53.2 68.0 70.6

Table 5: Transfer from video training to images. Num-

bers taken from [74, 52, 70]. ∗: finetuning pretrained mod-

els on the same video frames as input as our method. †: uses

a 40% larger superset of our train data. Details on the dif-

ferent datasets and methods are provided in the Appendix.

Pascal VOC DAVIS YTVOS

DINO [9] 52.1 34.5 32.1

Leopart [74] 59.6 37.3 38.6

STEGO [21] 49.1 30.4 32.1

TIMET (ours) 63.9 44.5 43.5

Table 6: Salient object segmentation. We report perfor-

mance using the Jaccard score [9] and use the official pre-

trained models for evaluation.

tention maps consistently by 10-11%. We also surpass the

results of Leopart [74] and STEGO [21], works that rely

on the same pretrained backbone. Even for the evaluation

on Pascal VOC, our method achieves higher performances

despite the domain shift of having trained on videos.

Generalisation to egocentric datasets. We train our

method on EPIC-Kitchens-100 [13] and evaluate on VI-

SOR [14]. We use the official code to convert VISOR to

a DAVIS-like structure, in which we can report our num-

bers for per frame and per clip evaluation. Note that, after

conversion, the object IDs do not maintain global consis-

tency in the whole dataset; therefore, we cannot report the

per dataset number. As Table 7 shows, TIMET outperforms

image-based competitors on egocentric datasets as well.
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VISOR

F C
DINO [9] 24.8 18.7

Leopart [74] 24.1 18.5

TIMET (ours) 26.5 21.5

Table 7: Generalisation to egocentric datasets. Unsuper-

vised semantic segmentation results in mIoU for clustering

(K=GT) on VISOR [14] after training onn EPIC-Kitchens-

100 [13]. The clip-length is set to 4. Our method gets better

results on egocentric datasets as well.

Visual In-Context Learning evaluation. Here, we con-

trast our approach with a recently introduced benchmark,

which assesses the in-context reasoning capabilities of mod-

els within the vision domain. Unlike linear or FCN clas-

sification methods, visual in-context learning evaluation

obviates the need for fine-tuning or end-to-end training.

Instead, it constructs validation segmentation maps using

patch-level, feature-wise nearest neighbor similarities be-

tween validation images (referred to as ”queries”) and train-

ing samples (termed ”keys”). This approach mirrors strate-

gies in the NLP domain, aiming to evaluate the proficiency

of models in learning tasks from limited examples presented

as demonstrations. The results are shown by Table 8. Given

that the vast majority of extant models in the domain utilize

ViT-S16 as their backbone, we conducted a re-evaluation

of their checkpoints to furnish a consistent and directly

comparable evaluation table. Subsequently, we re-trained

our model employing ViT-B16 and benchmarked it against

other baselines as presented by [5]. The results, as depicted

in the table, indicate that even though our model was ex-

clusively trained on videos, it registers performance metrics

in line with Leopart [74]. Furthermore, it surpasses the re-

sults of the leading method, CrOC [52], which was trained

on images. Contrary to Hummingbird [5], TIMET is not

custom-fitted to the specific evaluation setup and boasts su-

perior computational efficiency. Notably, it requires only

a single GPU for training, in contrast to the 16 TPUs de-

manded by Hummingbird.

5. Conclusion

This paper has aimed to learn dense representations that

are learned from videos; yet can be generalised to the image

domain as well. As video content is growing rapidly and

contains more information compared to images, learning

generalisable knowledge from them facilitates further scal-

ing of self-supervised learning methods. To this effect, we

have proposed a self-supervised clustering loss to encour-

age temporally consistent features between different frames

of a video. To efficiently find corresponding views between

Encoder Params mIoU

Trained on Images
Supervised ViT-S16 21M 35.1

MoCo-v3* [11] ViT-S16 21M 19.5

DINO* [9] ViT-S16 21M 47.9

CrOC* [52] ViT-S16 21M 50.0

Leopart* [74] ViT-S16 21M 63.6

DINO [9] ViT-B16 86M 55.9

MoCo-v3 [11] ViT-B16 86M 37.2

MAE [22] ViT-B16 86M 6.6

LOCA [7] ViT-B16 86M 57.5

Hummingbird [5] ViT-B16 86M 70.5
Trained on Videos

TIMET (ours) ViT-S16 21M 61.6

TIMET (ours) ViT-B16 86M 65.5

Table 8: Visual In-Context Learning evaluation. Num-

bers are taken from [5]. ∗: numbers are produced by this

paper. This appeoach is equivalent to a non-parametric

nearest-neighbor based evaluation on Pascal VOC. The de-

tails of the evaluation benchmark can be found in the pro-

vided implementation codes.

clip frames, we have proposed to recycle pretrained trans-

former features to leverage their natural tracking ability at

each clip. Our empirical results indicate that this method

achieves significant gains on the challenging task of video

object segmentation across three different evaluation pro-

tocols and three datasets. Moreover, by transferring the

learned model to the image domain, we have demonstrated

the generalisability of the learned features by surpassing or

matching the state-of-the-art for unsupervised image seg-

mentation.
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