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ABSTRACT
We present a study of Tip-of-the-tongue (ToT) retrieval for music,
where a searcher is trying to find an existing music entity, but
is unable to succeed as they cannot accurately recall important
identifying information. ToT information needs are characterized
by complexity, verbosity, uncertainty, and possible false memories.
We make four contributions. (1) We collect a dataset—ToT𝑀𝑢𝑠𝑖𝑐—of
2,278 information needs and ground truth answers. (2)We introduce
a schema for these information needs and show that they often
involve multiple modalities encompassing several Music IR sub-
tasks such as lyric search, audio-based search, audio fingerprinting,
and text search. (3) We underscore the difficulty of this task by
benchmarking a standard text retrieval approach on this dataset.
(4) We investigate the efficacy of query reformulations generated
by a large language model (LLM), and show that they are not as
effective as simply employing the entire information need as a
query–leaving several open questions for future research.

CCS CONCEPTS
• Information systems→Music retrieval; Retrieval models
and ranking; Document filtering; Multimedia and multimodal
retrieval; Query reformulation; • Human-centered computing →
User studies.

KEYWORDS
Music Retrieval; Tip-of-the-Tongue Retrieval; CrossModal Retrieval
ACM Reference Format:
Samarth Bhargav, Anne Schuth, and Claudia Hauff. 2023. When the Music
Stops: Tip-of-the-Tongue Retrieval for Music. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3539618.3592086

1 INTRODUCTION
The Tip-of-the-tongue (ToT) retrieval task involves identifying a
previously encountered item for which a searcher was unable to
recall a reliable identifier. ToT information needs are characterized
by verbosity, use of hedging language, and false memories, making
retrieval challenging [1, 4]. As a consequence, searchers resort to
communities like r/TipOfMyTongue and WatzatSong, where they
can post descriptions of items that they know exist but cannot find,
∗Work done during an internship at Spotify.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3592086

relying on other users for help. Recent research of ToT informa-
tion needs explored how searchers pose these requests in specific
domains like movies [1, 4], or games [24]. Music-ToT, however, is
under-explored despite being frequent: it represents 18% of all posts
made in a five-year period in the r/TipOfMyTongue community (cf.
§3.1). Our work is motivated by the need to understand how such
requests are expressed in the music domain.

We examined the r/TipOfMyTongue community, focusing on
requests looking for musical entities like albums, artists or songs.
We show that these requests often refer to multiple modalities (cf.
§4) and thus encompass a broad set of retrieval tasks—audio finger-
printing, audio-as-a-query, lyric search, etc. In our work, we focus
on song search. We create ToT𝑀𝑢𝑠𝑖𝑐

1: the dataset consists of 2,278
solved information needs pertaining to a song, each of which is
linked to the corresponding correct answer in the publicly available
Wasabi Corpus [7]. Using ToT𝑀𝑢𝑠𝑖𝑐 , we develop a schema for Music-
ToT information needs to reveal what information is contained in
them (cf. §3.2). In addition, we are interested in the extent to which
standard text retrieval approaches are able to deal with ToT queries.
To this end, we benchmark a subset of ToT𝑀𝑢𝑠𝑖𝑐 information needs2
on the Wasabi corpus, as well as Spotify search. Across both set-
tings, the low effectiveness—compared to non-ToT queries—of our
evaluated retrieval methods underscores the necessity of novel
methods to tackle this task. Lastly, we conduct a preliminary study
on reformulating Music-ToT queries using GPT-3 [5]; we find that
the task remains very challenging.

2 BACKGROUND
Tip-of-the-tongue (ToT) retrieval is related to known-item re-
trieval (KIR) or item-re-finding [31], however ToT queries are typi-
cally issued only once—not multiple times—and importantly, lack
concrete identifiers, instead relying on verbose descriptions, fre-
quently expressed uncertainty and possible false memories [1, 4,
16, 24]. Approaches for simulating such queries [3, 13, 26] may lack
realistic phenomena like false memories [19, 20], necessitating the
collection of real world data. Data on a large scale is available for
only one domain, movies [4]; smaller scale datasets are available
for games [24] and movies [1]. Hagen et al. [16] collect a corpus
of general known-item queries, including music; however their
focus was on general known-item queries and false-memories, and
lacked retrieval experiments. Our focus is on the music domain,
examining modalities employed by searchers and how they express
Music-ToT queries. We build upon Arguello et al. [1] and Bhar-
gav et al. [4], with key differences in (1) the domain—music, (2)

1ToT𝑀𝑢𝑠𝑖𝑐 (along with annotations) will be made available here: https://github.com/
spotify-research/tot
2Concretely, 1.2K descriptive information needs not containing hyperlinks – we aimed
to exclude posts where important information is not encoded in the text of the post
itself.
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the corpus size—millions of items instead of thousands, and, (3)
reformulation experiments utilizing an LLM. Music-ToT relates to
several research areas in Music IR (MIR).
Lyric- and text-based retrieval involves retrieving a song using
lyrics or text [11, 28]. Techniques to handlemisheard lyrics are com-
mon [30, 35–37], including modeling speech sounds [22], which
may be insufficient, since ToT queries can contain descriptions of
lyrics, requiring semantic methods [32], or utilizing the audio itself
[38]. Apart from lyrics, Music-ToT queries are frequently free-form
natural language queries (cf. §4), requiring methods that can re-
trieve audio using text, as well as tags, genre or human-generated
descriptions [10, 12, 27, 29, 40].
Content-based audio retrieval [14] includes query-by-example
(QBE) [21], where the audio is being queried as-is, e.g. audio fin-
gerprinting [17]. Alternatively, users can imitate the wanted audio
by vocalizing it, termed query-by-vocal-imitation (QBV) [25, 39],
which includes query-by-humming (QBH) [15]. ToT queries fre-
quently contain references to user created audio-clips as well as
existing media like audio contained in videos (cf. §4).
Other modalities like videos may need to be handled as well,
necessitating multi-modal or cross-modal (retrieving one modality
using another) methods [33], e.g. retrieving audio using video [23,
34]. Approaches to solve Music-ToT have to account for multiple
modalities and free-form natural language including noise, e.g.,
uncertainty [1] and/or false memories [1, 24].

3 METHODOLOGY
3.1 Data Collection
Gathering ToT𝐴𝑙𝑙 . We gathered posts made across 2017-2021 in
the r/TipOfMyTongue community, yielding 503,770 posts (after
filtering out posts not marked Solved or Open), each containing two
fields: title and description. We extracted text categories from the
title, e.g. SONG from "[SONG] Slow dance song about the moon?". We
manually identified a set of 11 overarchingmusic-focused categories
(e.g.Music Video, Band, RapMusic).We discarded the remaining non-
music posts, resulting in ToT𝐴𝑙𝑙 : 94,363 (60,870 solved and 33,493
unsolved) Music-ToT posts. These posts form a large proportion—
18.73%—of the 503K posts we started out with.
Extracting ToT𝑀𝑢𝑠𝑖𝑐 . We extracted answers from Solved posts fol-
lowing Bhargav et al. [4], retaining Solved posts which have a URL
as an answer. If the URL points to a track on Spotify, obtaining the
answer was trivial. Otherwise, the title portion of the markdown
inline URLs, formatted as [title](url) (with title often formatted
as ‘Artist-Song’) was used as a query to the Spotify search API.
Since the API returns multiple results, we created a classifier3 with
31 features based on the scores of the retriever, the edit distances
between title and artist name, song title, etc. We used the clas-
sifier to predict if a title matches the track and artist, scoring
100% on precision on a held out set of 100 samples. Low-confidence
candidates were filtered out. This left us with a set of 4,342 posts
with Spotify tracks as answers. Lastly, we only retained those posts

3Random Forest classifier, parameters selected with grid search on {10, 20, 30, 40, 50}
estimators, max depth {2, 3, 4} and min/max scaled features.

where the ISRC4 of the answer track is also present in the Wasabi
Corpus [7]: a total of 2,278 posts. We call this collection ToT𝑀𝑢𝑠𝑖𝑐 .
Gathering reformulations.We gathered reformulations for all
posts in ToT𝑀𝑢𝑠𝑖𝑐 by prompting GPT-3 [5]5 with the respective post
description and a word count limit: <description> Summarize the
query above to <N> words, focusing on musical elements. We used
𝑁 = {10, 25, 50}.6 We also employed a prompt without a specific
word limit: <post description> Shorten the query above, focusing
on musical elements.

3.2 Music-ToT Schema
Our annotation process involved three steps.We first developed and
then refined a schema to describe Music-ToT information needs; in
the final step, we annotated 100 samples from ToT𝑀𝑢𝑠𝑖𝑐 .
Developing the schema in 2 steps. A preliminary study con-
ducted with one author (self-rated music expertise 7 out of 10)
and two volunteers (music expertise 8/10 and 7/10 respectively)
involved assigning one or more labels to 78 sentences from 25 ran-
domly sampled posts from ToT𝑀𝑢𝑠𝑖𝑐 . We focused on developing
new labels specific to Music-ToT, while also re-using labels from
Arguello et al. [1]: specifically the Context labels, pertaining to
the context an item was encountered in (Temporal Context, Phys-
ical Medium, Cross Media, Contextual Witness, Physical Location,
Concurrent Events), and Other annotations (Previous Search, Social,
Opinion, Emotion, Relative Comparison). The latter are generally
applicable across ToT information needs. This preliminary study
revealed 25 new music labels, in addition to 11 labels from prior
work (6 × Context and 5 × Other). In the second step, the three
authors (self-rated musical expertise 7, 6 and 5 respectively) of this
paper labeled 110 sentences (20 posts from ToT𝑀𝑢𝑠𝑖𝑐 ) to validate
the schema. Based on our results and discussions, we combined a
few finer-grained categories with low support into more general
categories, e.g. specific musical elements like Rhythm / Repetition,
Melody, Tempo, etc., were combined to Composition, resulting in 28
labels in total.
Annotating. Lastly, in step 3, two authors employed the final
schema to annotate 536 sentences corresponding to 100 posts. The
resulting labels, their frequency, category, inter-rater agreement
(Cohen’s 𝜅 [2, 9]) along with their description and an example, are
presented in Table 1.

4 DATA ANALYSIS
We now first discuss Table 1, followed by a brief discussion about
the modalities present in the whole collection, ToT𝐴𝑙𝑙 .
Annotation results. Among the music-focused annotations, Genre
and Composition, a description of musical elements and how they
fit together, are the two most frequent labels. This is followed by
Music Video Description, and either direct quotes (Lyric Quote) or a
description of the lyrics (Story/Lyric Description) further highlight-
ing the different information needs that need to be addressed i.e.,

4The international standard recording code (ISRC) is a standardized code for uniquely
identifying recordings.
5Model: text-davinci-003, with temperature 0.7
6Based on manual inspection, we discarded𝑁 = 5 (too few words for a cohesive query,
leading to crucial information being left out) and 𝑁 = 100 (model hallucinations).
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Table 1: Annotation Schema: Label, frequency of occurrence in 100 submissions / 536 sentences (F), annotator agreement (𝜅)
and description of label, along with an example for each label.

Label F 𝜅 Description Example

M
U
SI
C
A
N
N
O
TA

T
IO

N
S

Composition 87 0.74 Describes (part of) the composition of a piece of music including
rhythm, melody, tempo, pitch, chords, notes, and keys; or how
they are composed into a cohesive piece of music.

. . . playing the same major-key pattern over each chord in a
fairly simple repeating loop.

Genre 77 0.92 References a genre. It sounded like a reggae/ska type beat
Music Video Description 75 0.89 Describes a music video associated with a song. However, once the music starts, the store is lit up and the tone

shifts completely as everything in that store has a pastel colour
scheme.

Lyric Quote 65 0.89 Directly quotes lyrics that the user overheard, not including sounds
/ vocalizations

. . . it wasn’t until he said something about the “just somebody
that I used to know” song that I . . .

Story/Lyric Description 60 0.71 Describes either the story conveyed by the lyrics, or the gist of the
lyrics instead of directly quoting it.

The song is a woman singing to/about a man that she was in
love with and died, I think he was in the military and got killed
and she had a baby at home?

Artist Description 54 0.92 Describes the artist. He was maybe a tad overweight, shaggy hair, maybe curly.
Time Period / Recency 49 0.89 References the time period the user thought the music was pro-

duced.
Late 90s-early 2000s hip hop song that sounds similar to clip

Instrument 30 0.86 Mentions instruments that were overheard. The guy performing was at a keyboard/piano . . .
Vocals 28 0.69 Describes the voice or vocal type. High pitched but kind of floaty female vocals, a bit . . .
Name 23 0.81 Describes a song/artist/album name, what it resembles/contains,

or what the searcher remembers of it.
. . . the name of the song was brief, one nordic word.

Popularity 18 0.83 Describes the popularity of the music, artist, album or music video. I’m surprised I can’t find it since I can remembermany specific
lyrics, I guess it’s more obscure

Recording 15 0.80 A description or reference to user-created content I did a vocaroo of the tune, sorry aboutmy voice and any possible
background guinea pig noises: URL

Language / Region 14 0.92 Either mentions the language of the piece of music and/or refer-
ences a particular region like state, country, etc.

A Japanese song that I don’t remember any words to or how
the tune goes at all,

Album Cover 5 1.00 Describes the album cover. On the cover there was also a cyan teal line going along the
bottom with white text in it.

Song Quality / Type 4 0.00 Describes the type of music (original/cover, live/recorded) or the
production quality (professional, amateur, etc.)

Live Cover of All Along the Watchtower where . . .

C
O
N
T
EX

T
et

al
.A

N
N
O
TA

T
IO

N
S

Uncertainty 162 0.79 Conveys uncertainty about information described. I don’t know what genre the song was, it was fairly calming
and I feel like it couldve been on tiktok but I don’t really know.

Social 54 0.77 Communicates a social nicety. Any help appreciated!
Opinion 43 0.44 Conveys an opinion or judgment about some aspect of the music. I don’t remember the lyrics or title, only that it was a kind of

angsty teen “I want to set the world on fire”
Temporal Context 36 0.87 Describes when the music was heard, either in absolute terms or

relative terms.
. . . I heard like in a billion videos 6 years ago.

Listening Medium 26 0.75 References the medium associated with the item. (e.g., radio,
streaming service, etc)

I heard it on the radio a couple of times in . . .

Embedded Music 26 0.58 References or describes extant media (e.g., Youtube / Twitch URL),
including timestamps.

I do have a video with the song (this video at around minute
4:21: URL)

Other Cross Media 26 0.19 Describes exposure to the piece of music through different media,
excluding other Cross Modal labels

. . . I’m pretty sure was performed on one of the early seasons
of Glee or maybe Smash.

Previous Search 25 0.67 Describes a previous attempt to find the item, including negative
results (i.e., it is not song X).

I’ve tried humming it into shazam and other sites, looking up
the two generic lyrics I remember, even doing those rhythm
tapping things and nada

Relative Comparison 25 0.77 Describes a characteristic of the music in relative (vs. absolute)
terms, by explicitly comparing it with another song / artist / album.

The melody I remember resembles the beginning of the song
"Run to the hills" by Metallica

Emotion 25 0.05 Conveys or describes how a piece of music made the viewer feel Even talking about it makes me tear up.
Concurrent Events 18 0.09 Describes events relevant to the time period when music was

encountered, but excluding descriptions of the music itself.
. . .when I was driving down the country but for the life of me
can’t remember the name.

Physical Location 9 0.61 Describes physical location where music was encountered. . . . record a 9 second portion of this song at a Marriott hotel
bar in downtown Chicago . . .

Contextual Witness 9 0.49 Describes other people involved in the listening experience. A few years back, a friend of mine showed me an . . .

lyric search, text search and multi-modal search. However, a sim-
ple extraction of Genre and metadata such as Time Period/Recency,
Instrument, etc., may not be useful without considering the most
frequent label, Uncertainty. Search systems therefore would have
to handle these elements, as well as consider potential false memo-
ries. Furthermore, annotations like Social, Opinion are also fairly
common occurrences in our data, which may have limited utility
for retrieval [1], motivating reformulations (cf. §3.1). Searchers also
express their queries in terms of other music entities in a Relative
Comparison, and describe Previous Search attempts, explicitly rul-
ing out certain candidates. References to other modalities like user

created clips (Recording) or existing media (Embedded Music) also
pose a challenge. We now explore this challenge with a brief study
of references to external content in the entire collection, ToT𝐴𝑙𝑙 .
Cross-modal referencesMusic-ToT, like other ToT domains, con-
tains cross-modal and media references [1], where a searcher refers
to external content. We here show that Music-ToT posts in particu-
lar contain such references frequently. To this end, we gathered fre-
quent websites that appear in ToT𝐴𝑙𝑙 . One author manually labeled
these as one of: (1) User Created: a clip uploaded by a user, e.g., Vo-
caroo, Clyp.it, Google Drive, Dropbox, Instaudio, musiclab, Online-
sequencer, Streamable, Speakpipe. (2) Extant Media: a clip unlikely
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to be uploaded by a user, e.g. an existing clip, corresponding to con-
tent/social media websites like Spotify, Twitch, Tiktok, or YouTube.
(3) Other URL: Not belonging to the previous two categories. We
find that Extant Media forms a larger proportion of queries (19K,
20.9%) compared to User Created queries (14K, 15.3%), with a small
number of posts containing references to both types (1.1%). There-
fore, Music-ToT information needs are inherently multi-modal. We
characterize the remaining 57.7% of queries as descriptive queries,
which include references to lyrics, or story descriptions (cf. §3.2).
In summary, Music-ToT information needs are characterized by
uncertainty and multi-modality, requiring methods like text-based
audio retrieval, content based audio retrieval/fingerprinting and
multi- or cross-modal retrieval.

5 BENCHMARKS
5.1 Experimental Setup
Corpora. We run experiments on two corpora. The first is the
Wasabi 2.0 Corpus [6, 7]. It consists of 2M commercial songs from
77K artists and 200K albums. Crucially, (1) songs have the ISRC
linked, enabling linking to data in Spotify; (2) it is an open dataset,
consisting of rich information that includes lyrics, extensive meta-
data, and music snippets. We index the Song Name, Artist Name and
Lyrics7 of all songs using Elasticsearch (BM25 with default param-
eters). The second corpus corresponds to the Spotify US catalog,
consisting of hundreds of millions of tracks. The Spotify search
system [18] utilizes multiple retrieval stages (including lexical- and
semantic search) and incorporates historic log data for retrieval
purposes.
Queries.We conducted experiments on the 1,256 posts (849 train,
191 validation, and 216 test) from ToT𝑀𝑢𝑠𝑖𝑐 that contain no URLs in
the post title or post text; wemake this choice as in themost extreme
case, the entire post may contain just a URL, requiring audio-based
search while we focus on text-based methods. From each post, we
create different queries and label them as follows: (1) Title: us-
ing the post title only; (2) Text: post text; (3) Title+Text: title &
text concatenated; and finally, (4) Keywords: extracting up to ten
keywords from the post text8 with Yake [8]; (5) Reform𝑁 : reformu-
lations with 𝑁 = {10, 25, 50,∞}.
Evaluation. We report Recall@K, equivalent to Success@K (i.e.,
one correct answer) for 𝐾 = {10, 100, 1000} on Wasabi. All reported
results are on the test set. For Spotify search we describe the ob-
served trends (due to the proprietary nature of the system).

5.2 Results
Table 2 provides an overview of our Wasabi results.
Post parts as query. The low success across queries and 𝐾 un-
derscores the difficulty of the task. On Wasabi, Title queries are
more effective than Text queries—increased verbosity leads to re-
trieval failure. However, the text may indeed contain data useful
in retrieval, with comparable or higher effectiveness scores for
Title+Text over Title at 𝐾 = {100, 1000}, motivating keyword
extraction: crucial details might be present in the text, but including
7We also experimented with other fields like Album Title, but saw no improvement in
retrieval effectiveness.
8Keywords were deduplicated with threshold = 0.2 and algorithm =seqm.

Table 2: Overview of retrieval experiments on Wasabi, using
Elasticsearch (BM25).

Query S@10 S@100 S@1000

Title 0.0370 0.0833 0.1389
Keywords 0.0231 0.0463 0.0787

Text 0.0139 0.0648 0.0926
Title+Text 0.0324 0.0833 0.1713

Reform10 0.0139 0.0509 0.1204
Reform25 0.0278 0.0602 0.1389
Reform50 0.0185 0.0741 0.1389
Reform∞ 0.0139 0.0741 0.1574

the entire need as a query might harm effectiveness. Our keyword
selection method though fails to outperform other queries except
for Text on S@10.

On Spotify search we observe a different trend: Title+Text is
the most effective query followed by Title.
LLM reformulations as query. Examining Table 2, reformula-
tions have limited success compared to Title queries. Reform25
and Reform50 perform as well as Title on S@1000, with Reform∞
outperforming it. While Keywords beat all but Reform25 on S@10,
it is outperformed by reformulations on S@100 and S@1000. On
Spotify search, we find that reformulations fare worse than Title
queries for S@10, but see limited success on S@100, with Reform25
and Reform50 achieving higher effectiveness. Most importantly,
there is no ideal 𝑁 on either index, with varying success across
metrics. We thus conclude that in our study, reformulations gener-
ated using state-of-the-art LLMs have only mixed success.

6 CONCLUSIONS
We explored Tip-of-the-Tongue retrieval for music. Of the 94K posts
corresponding to Music-ToT information needs from an online com-
munity for ToT requests, we linked 2,278 posts to the corresponding
answers in the Wasabi corpus, resulting in ToT𝑀𝑢𝑠𝑖𝑐 , thus enabling
further research for this challenging task.

We iteratively developed and refined a Music-ToT schema that
contains 28 fine-grained labels as shown in Table 1. Labeling 100
posts using this schema, we showed that users express uncertainty
frequently, and almost as often refer to other modalities. We bench-
marked a subset of 1.2K descriptive queries from ToT𝑀𝑢𝑠𝑖𝑐 , and
highlight the difficulty of the task. Future work should leverage
cross- and multi-modal retrieval as well as better approaches for
reformulations.
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