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Abstract

Young supernova remnant (SNR) shocks are believed to be the main sites of galactic cosmic-ray production,
showing X-ray synchrotron-dominated spectra in the vicinity of their shock. While a faint thermal signature left by
the shocked interstellar medium (ISM) should also be found in the spectra, proofs for such an emission in Tycho’s
SNR have been lacking. We perform an extended statistical analysis of the X-ray spectra of five regions behind the
blast wave of Tycho’s SNR using Chandra archival data. We use Bayesian inference to perform extended
parameter space exploration and sample the posterior distributions of a variety of models of interest. According to
Bayes factors, spectra of all five regions of analysis are best described by composite three-component models
taking nonthermal emission, ejecta emission, and shocked ISM emission into account. The shocked ISM stands out
the most in the northern limb of the SNR. We find for the shocked ISM a mean electron temperature
kT 0.96e 0.51

1.33= -
+ keV for all regions and a mean ionization timescale n t 2.55 10e 1.22

0.5 9= ´-
+ cm−3 s resulting in a

mean ambient density n 0.32e 0.15
0.23= -

+ cm−3 around the remnant. We performed an extended analysis of the
northern limb and show that the measured synchrotron cutoff energy is not well constrained in the presence of a
shocked ISM component. Such results cannot currently be further investigated by analyzing emission lines in the
0.5–1 keV range, because of the low Chandra spectral resolution in this band. We show with simulated spectra that
Athena X-ray Integral Field Unit future performances will be crucial to address this point.

Unified Astronomy Thesaurus concepts: Supernova remnants (1667); Interstellar medium (847); Bayesian statistics
(1900); Posterior distribution (1926); Spectroscopy (1558)

1. Introduction

Observational results obtained over the last two decades
have greatly expanded our knowledge of cosmic-ray accelera-
tion by supernova remnants (SNRs; see Reynolds 2008; Helder
et al. 2012; Vink 2020, for reviews). Apart from gamma-ray
observations of SNRs, an important source of information on
the cosmic-ray acceleration of properties of SNR shocks has
been the detection of X-ray synchrotron emission from near the
SNR shocks, which are caused by electrons with energies
10 TeV.

The evidence for synchrotron emission consist of the nearly
featureless X-ray spectra from regions close to the shock fronts,
first established for SN 1006 (Koyama et al. 1995), but now
firmly established for nearly all SNRs younger than
1000–3000 yr (Helder et al. 2012). In addition, for several
young SNRs X-ray emission up to ∼100 keV has been
established, in particular for Cas A and Tycho’s SNR (The
et al. 1996; Allen et al. 1997; Favata et al. 1997; Vink 2008;
Grefenstette et al. 2015).

Apart from nonthermal X-ray emission, young SNRs are in
general also emitting thermal emission from the hot, shock-
heated plasma. The thermal emission provides useful diag-
nostics about the electron ne or ion nH density, the electron
temperature kTe, and how the ionization is out of equilibrium,
characterized by the so-called ionization age net, which itself
provides a measure of how long the plasma has been hot.

The combination of thermal and nonthermal X-ray emission
provides us with information on both the post-shock plasma
properties as well as about the highest energy of the accelerated
electrons. This is important as SNR shocks are collisionless
shocks, in which the thermodynamic properties in the plasma at
the shock are not established by particle–particle collisions, like
in the Earth atmosphere, but due to collective interactions, such
as fluctuating electric and magnetic fields. One likely outcome
of collisionless shocks is that the electron temperature may be
much lower than the proton/ion temperature kTp. They may
even have a ratio as low as the ratio of the particle masses for
Mach numbers 40, i.e., kTe/kTp=me/mp (Ghavamian et al.
2013; Vink et al. 2015). Measuring the ion temperature is
difficult but can be done in X-rays under certain circumstances
(e.g., Broersen et al. 2013; Miceli et al. 2019), or using shocks
moving through partially neutral gas using Balmer-line
diagnostics (e.g., Heng 2010, for a review).
Ideally one would like to establish both the X-ray

synchrotron and thermal X-ray emission properties from
regions near the shock front in SNRs. However, in practice
this is hampered by the fact that many of the more prominent
X-ray synchrotron filaments have spectra that seem almost
devoid of thermal X-ray emission, which is true for virtually all
young SNRs, but an extreme example is RX J1713-3946,
whose X-ray emission is totally dominated by synchrotron
emission with hardly any thermal X-ray emission at all
(Katsuda et al. 2017).
The question is now why there appears to be an antic-

orrelation between thermal and nonthermal X-ray emission. On
the one hand, one could reason that the X-ray synchrotron
emitting plasma is in general associated with low density
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plasma, suppressing thermal emission as this emission scales
with nH

2. In some of the extreme cases like RCW 86 (Vink et al.
2006), RX J1713-3946 (Ellison et al. 2012), and G266.2–1.2
(“Vela Jr,” e.g., Allen et al. 2015) it could be that the low
density also resulted in a high shock velocity even at an SNR
age of 1500–3000 yr, a prerequisite for X-ray synchrotron
emission, which requires shock velocities Vs 3000
km s−1 (Aharonian & Atoyan 1999; Zirakashvili & Aharo-
nian 2007). However, this explanation does not fit well the case
for young bright SNRs like Cas A, Kepler’s SNR, and Tycho’s
SNR, as these are known to evolve in relatively high-density
ambient media, and they are young enough to have high shock
velocities despite these high densities.

Another explanation is that the electron temperature in the
post-shock plasma of these young SNRs is very low, which
could be either due to an extremely low ratio kTe/kTp, or even
due to extremely nonlinear diffusive shock acceleration(DSA),
in which most shock energy is diverted to cosmic-ray (CR)
acceleration rather than the thermal energy of the post-shock
plasma (Giuffrida et al. 2022). For example, Drury et al. (2009)
suggested that plasma temperatures may be as low as ∼6 times
the upstream temperature, suggesting a temperature that could
be as low as 30,000–60,000 K (2.6–5.2 eV). However, taking
all thermodynamic relations into account does not allow for
such low plasma temperatures, and for a CR efficiency of
w= 25% a reduction in the plasma temperature of ∼30% is
more reasonable (Vink et al. 2010).

Here we report on a study of these regions in Tycho’s SNR
(the remnant of the Type Ia supernova of 1572) whose X-ray
emission seem to be completely dominated by synchrotron
radiation (e.g., Warren et al. 2005; Cassam-Chenaï et al. 2007).
We setup this study with the goal of detecting (hints of) thermal
emission and to determine what this implies for the local
conditions of the plasma and for the ambient medium of the
remnant. The study itself was carried out using archival
Chandra X-ray data. In addition, we want to reassess whether
the putative thermal emission can be measured with the future
high-spectral-resolution X-ray spectrometer X-IFU on board
Athena (Barret et al. 2018), to not only measure local densities
and electron temperatures, but also the ion temperature through
Doppler broadening. The latter can be used to also put limits on
the electron-to-ion temperature ratio, as well as on the
temperature reduction that might be expected if shock
acceleration is very efficient.

In Section 2, we describe the data set we use for the study
and the reduction procedure we followed to obtain our spectra.
In Section 3, we give some context on Bayesian analysis
contrasted with previous studies on SNR shocks and describe
the different models of interest we use for the analysis. In
Section 4, we use maximum posterior parameters of the best
Bayesian-selected model to produce simulated spectra of
X-IFU. We then test the detectability of Doppler broadening
on emission lines in these simulations. In Section 5 we present
our conclusions.

2. Observations and Data Reduction

We use archival Chandra data for our analysis and pick the
longest single observation available for Tycho’s SNR (ObsId
10095, PI: J. P. Hughes). This observation was made in 2009
April with the Advanced CCD Imaging Spectrometer (ACIS)
using the four ACIS-I front illuminated chips. The field of view
(FoV) allows to cover the full remnant, with a total integration

time of 173.37 ks. We use the Chandra Interactive Analysis of
Observations (CIAO, version 4.12) and the Calibration
Database (CALDB, version 4.9.3) to reprocess the data
following the standard Chandra procedure through the task
chandra_repro. We also use the blanksky command
line, which takes CALDB blank sky exposures matching our
current data set to produce the background file for our study.
This gives a larger area to extract the background spectrum for
our spectral analysis than a local background estimation, as
Tycho’s SNR occupies most of the FoV. The fluximage
command line is used to create a broadband flux image as well
as 1.7–1.95 keV and 4.0–6.0 keV images. The 1.7–1.95 keV
band covers the Si lines, therefore tracking the bulk of the
ejecta emission. The 4.0–6.0 keV band is on the other hand a
continuum band without any dominant emission line, typically
used to track the synchrotron emission.
To proceed to the study of Tycho’s blast wave, we select

spatial regions very close to the shock front. These regions
must be large enough to provide enough counts for the
analysis, while still avoiding ejecta emission as much as
possible. To do so we normalize to unity the 1.7–1.95 keV and
4.0–6.0 keV images, and subtract them from each other to
create a contrast image. This allows us to exacerbate the
strongly continuum-dominated spatial regions with minimum
contamination from the ejecta. We use this information as well
as the broadband image to draw by hand five thin boxes of size
90″× 6″ over spatial areas of interest. The broadband images
as well as the regions on top of contrast contours are displayed
in Figure 1. Despite this procedure, we still expect a small
amount of ejecta to be covered by our regions and slightly
contaminating our data. As the size of the regions considered is
significantly higher than the nominal Chandra/High Resolution
Mirror Assembly (HRMA) point-spread function (PSF), on the
order of 0 53, we can ignore any PSF effect in our analysis.
We extract the spectra in each region using the specex-

tract command line and the blank sky background file, with
a binning of at least 30 counts per bin. The spectra are
displayed in Figure 2 and their properties in Table 1. Note that
the spectra of all regions except Region 2 display visible signs
of Si emission lines, likely due to ejecta emission. Given the
purpose of this paper, Region 2 is chosen to be our main
analysis region as it provides the cleanest case for a
synchrotron-dominated X-ray spectrum, while the others are
kept as supplementary information sources.

3. Statistical Analysis

3.1. Context

The successful (or not) detection of a thermal component in
the SNR shock wave spectra is diagnosed by model
comparison. A nonthermal model giving a statistically better
fit than a thermal one would strongly point toward a
nonthermal origin for the spectrum. This is the case for
numbers of SNRs, where the featureless shock spectra are
better represented by power-law distributions or models that
take the curvature expected for hard X-ray synchrotron
radiation into account (Bamba et al. 2005; Helder &
Vink 2008). In the same manner, a composite model with
two components (thermal plus nonthermal), providing a
significantly better fit than a single nonthermal component

3 Table 4.1 in the Chandra OG website.
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model, would imply that a thermal feature is detected in
addition to the dominating nonthermal component.

However some caveats must be underlined when using such
procedures. The statistic mostly used to estimate the quality of
a fit has been the χ2-statistic, a Gaussian approximation of
X-ray emission processes following Poisson distributions. This
approximation is applicable in a very high count number
regime, which is usually not the case in X-ray astronomy.
Studies of SNR shocks have not been short of using this
approximation in a variety of works. Another statistic is the C-
statistic (Cash 1979), also called C-stat. C-stat is based on a
Poisson likelihood and therefore is more appropriate for X-ray
spectral analysis.

Aside from the statistic used to diagnose the fit quality, the
way comparisons have been done to discriminate between
different models is also problematic. At best no statistical

comparison is done between fits using two different models and
conclusions are drawn independently in both cases. Often the
difference in the reduced χ2-statistic or C-stat is used as a
metric to qualify which model is the best one to represent the
spectrum. It has been shown than such statistical tests were
only adequate for embedded models with parameter values far
from boundaries (Protassov et al. 2002). This is not the case
when comparing thermal and nonthermal models or combina-
tions of both. Using another metric for model comparison is
therefore an important matter to correctly assess the detection
or not of a thermal component.
Last but not least, fitting algorithms are local optimization

algorithms. When fed starting parameter values, these algo-
rithms will iterate over the parameter space trying to minimize
(maximize) the statistic (likelihood). After iterating, they give
the single set of parameter values corresponding to the
likelihood maximum over the given parameter bounds. Such
algorithms perform well in simple cases when the likelihood
distribution of the model over the data is monomodal.
However, they cannot account for complex parameter spaces
with multiple likelihood peaks, for instance. Therefore, is it
possible to ensure that the parameter space of our model over
the data has been correctly explored? One cannot just manually
explore highly dimensional parameter spaces due to the curse
of dimensionality and computation time. These and other
similar issues are limits to our comprehension of the underlying
physics and can be addressed by using more robust statistical
tools.

3.2. Bayesian X-Ray Analysis

The problems highlighted in the previous section are well
known nowadays and are not limited to the study of SNR
shocks. Dubbed as frequentist inference, this procedure has
been contrasted many times with another class of methods
denoted as Bayesian inference (van Dyk et al. 2001). In the
Bayesian framework, the parameter space is still explored using
the likelihood distribution. However rather than trying to find
likelihood maxima, this approach consists of evaluating the
posterior probability distribution of the model over the data.

Figure 1. Left: broadband Chandra image of Tycho’s SNR. Right: schematic view of Tycho’s SNR. The five black boxes are the regions over which our shock spectra
were extracted and analyzed (see Section 2). The contours are drawn from the contrast image computed from the normalized 1.7–1.95 keV and 4.0–6.0 keV images.
Note that the contrast image has been smoothed with a 1σ Gaussian kernel before drawing the contours.

Figure 2. Spectra in the 0.5–7.0 keV band of the five regions. Region 1 has
native normalization, but every other spectra are renormalized by a factor 10
for display purposes.
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This is done by deforming the parameter space with priors and
identifying regions of it enclosing most of the information, e.g.,
regions of the parameter space in which most of the likelihood
resides. It is insensible to whether the likelihood distribution is
mono or multimodal and allows us to estimate the parameter
values and their uncertainties at the same time.

In addition to parameter estimation, Bayesian inference
allows model comparison. Instead of comparing goodness-of-
fit statistics as in frequentist model comparisons, this approach
integrates the likelihood over the parameter space to compute
the marginalized likelihood, also called Bayesian evidence. The
ratio of evidences of two different models is the Bayes factor
(Kass & Raftery 1995; Trotta 2008), which is an efficient
metric to estimate which model better represents the data. The
most common scale used to estimate the significance of a
Bayes factor is Jeffrey’s scale (Jeffreys 1961), which we
describe in Section 3.3.

In comparison to frequentist approaches, Bayesian methods
are even more prone to computing time issues as the likelihood
cannot be estimated on a grid over the whole parameter space.
An approximation must be computed, a procedure denoted as
sampling. To do so efficient methods have been proposed, such
as nested sampling (Skilling 2004; Buchner 2021). We will not
go into details about this method and only highlight the fact
that it allows us to produce posterior samples containing most
of the information of the true (multimodal or not) likelihood
distribution and to compute the Bayesian evidence with an
error estimate. An efficient and robust implementation of
nested samplings has been done with the Ultranest
algorithm (Feroz et al. 2009). More recently, Ultranest
has been linked to the classic X-rays analysis package XSPEC
(Arnaud 1996) through the user-friendly Python package BXA
(Buchner et al. 2014). A complete X-ray spectral analysis in a
Bayesian framework is therefore made possible using the
standard XSPEC models. The versions used in this work were
XSPEC v12.11.1 and BXA v4.0.2.

3.3. Metrics

The Bayesian evidence computed by BXA is an approx-
imation of the true, continuous Bayesian evidence. Therefore it
comes with a budget error for each model, which is around
∼0.5 for log(z) in the case of our spectra and models. This error
propagates to the Bayes factor and results in an error ranging
from 0 to ∼1, which is of the same order as the threshold Δlog
(z)∼2 and could in some cases strongly impact the interpreta-
tion. These uncertainties must be kept in mind when comparing
and assessing the models, and we usually considered greater
threshold values for Δlog(z) for the Bayes factor to signifi-
cantly discriminate between two models.

Additionally, while Jeffrey’s scale is a good first-order
estimation of the significance of the Bayes factor, one must

remember that it is an arbitrary set of values for such purpose.
In order to truly estimate the significance of the Bayes factor,
one would need to compute its distribution over each specific
data set using Monte Carlo realizations of mock spectra
(Keeley & Shafieloo 2022). However this is far outside of the
bounds of what is realistically possible in our case, as it took
weeks to sample the posteriors for some of our models, even
when parallelized on several dozens of computing cores.
Regarding these technical constraints and for simplicity, we
still resorted to Jeffrey’s scale to make sense of our Bayes
factors and evaluate the associated models.
In this work we used a series of complementary metrics to (i)

assess a model’s capacity to accurately reproduce the observed
spectra and (ii) perform model selection. For case (i) we used
the C-stat metric (and its reduced version denoted Cr), as it has
been traditionally used for this purpose in the literature. In our
case, Cr acted as a safeguard metric, which allowed us to make
connections between our newly used Bayesian inference
metrics and more frequently used frequentist properties. For
case (ii) we used the Bayes factor as the main metric for each
pair of models A and B, denoted Δlog(z) such that Δlog(z)=
log(z)A - log(z)B. Both log(z)A and log(z)B are outputs of BXA.
To interpret these values, we used Jeffreys’s scale (Jef-
freys 1961), which states that |Δlog(z)| �2 is “decisive”
(e.g., that the model with the highest evidence is decisively
better at representing the data). On the other hand, a Bayes
factor |Δlog(z)|< 2 signifies that the two models cannot be
significantly distinguished.
In order to double-check our results and add robustness to

our model selection, we also computed three additional metrics
based on C-stat, similarly to what was done in Buchner et al.
(2014). The first one is the Akaike information criterion (AIC;
Akaike 1974). The AIC is given by AIC=C-stat− 2m with m
the number of model parameters. Such a metric measures the
loss of information when using a model. The model with the
lowest AIC is therefore the best model to describe the data. The
second metric is the Bayesian information criterion (BIC;
Schwarz 1978), given by BIC= C-stat−mln(n), with n the
number of degrees of freedom. The BIC is an approximation of
Bayesian model selection and assumes a very peaked like-
lihood maximum, making the priors negligible. Therefore it
only uses the likelihood maximum to assess which model better
reproduces the data. The model with the lowest BIC should be
preferred over the others. The last metric we used is the
difference in C-stat of two models, denoted ΔC=
C-statA− C-statB. We would like to stress once more that the
use of these three metrics makes sense only as additional
supports for the Bayes factor, as they are all based on strong
(and not necessarily true) assumptions about the likelihood
distribution and the models.

Table 1
Properties of Analysis Regions

Name R.A. decl. Length Width Angle Number of Counts
(J2000) (J2000) (″) (″) (°) (counts )

Region 1 0:25:33.8304 +64:12:02.980 90 6 25 14344
Region 2 0:24:50.6890 +64:10:48.254 90 6 320 24338
Region 3 0:24:42.9364 +64:06:47.149 90 6 70 21082
Region 4 0:24:56.0738 +64:04:58.050 90 6 30 20243
Region 5 0:25:21.5883 +64:04:14.491 90 6 170 14494
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3.4. Single-component Models

The first part of our spectral analysis was concentrated on
single-component models in order to check the consistency
between the results we get in this paper with the BXA package
with those reported in previous works. In the following, all
models were coupled to a Tuebingen–Boulder interstellar
medium (ISM) absorption model (Wilms et al. 2000; defined in
XSPEC as TBabs). Hydrogen column density values of
∼0.7× 1022 cm−2 were reported by Cassam-Chenaï et al.
(2007), and to keep the analysis more general we set the
boundaries between 0 and 2× 1022 cm−2 with linear priors for
all models.

3.4.1. Synchrotron Emission

The nonthermal radiation is emitted by relativistic electrons
with a power-law distribution with a high-energy exponential
term E Eexp cut[ ( ) ]- a . Such electron spectra result in
synchrotron emission following a power law with an
exponential cutoff E Eexp cut[ ( ) ]- b . Depending on whether
the electron distribution is radiative loss-limited (α= 2, giving
the so-called power law with exponential cutoff electron
spectrum; Zirakashvili & Aharonian 2007) or age-limited
(α= 1; Reynolds & Keohane 1999) directly influences para-
meter β and the steepness of the cutoff. For example,
Zirakashvili & Aharonian (2007) performed an analytical

treatment of the shock-accelerated electron spectrum and
showed that β= 1/2 in the case of Bohm diffusion and
β= 1/3 in the idealized case of energy-independent diffusion.
The most-used XSPEC model for synchrotron spectra, srcut
(Reynolds & Keohane 1999), assumes an electron spectrum
with an exponential cutoff and uses approximations to derive
the associated photon spectrum. This also results in β= 1/2,
although the starting electron distribution hypothesis is
different and incompatible with results from Zirakashvili &
Aharonian (2007). Nevertheless srcut has been used to
derive the relevant cutoff photon energy of synchrotron spectra
(Bamba et al. 2005; Lopez et al. 2015).
We considered a srcut model as well as a cutoffpl

model, namely, a power law with an exponential cutoff given
by E Eexp cut( )- . The latter results in a steeper spectrum than
the regular power law at high energies. We also included a
custom modified cutoff model, which we named sqrtcu-
toffpl. This is the exact same as the cutoffpl model, but
the exponential cutoff is given by E Eexp cut( )- . The
sqrtcutoffpl model is modeling solutions from Zirakash-
vili & Aharonian (2007, 2010) and gives a more gradual break
at high energies. These three models, in addition to the power
law, allow us to extensively probe the effect of various cutoffs
on the description of the spectrum. We refer to these as
“nonthermal” models or components for the rest of this work.

Figure 3. Best Bayesian parameter values with 1σ-equivalent quantile error bars for single-component models in each of the five regions. Only the main parameters
and the C-stat are shown. The physical component of each model is indicated in the legend (NT stands for nonthermal). Some error bars are smaller than the
corresponding data points and are therefore not visible. The npshock data points are not visible because they largely overlap with the pshock data points.
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The parameters of nonthermal models were allowed to vary
over the whole parameter space set by XSPEC boundaries, with
the exception of the cutoff energy that was set in the range
10 , 101[ ]- keV. Log-uniform priors were given to all normal-
ization parameters, as well as to the break frequency νrolloff for
the TBabs(srcut) model and to the cutoff energy for the
cutoffpl and sqrtcutoffpl models. For every other
parameter, uniform priors in linear space were assumed.

The resulting photon indexes and normalizations for the
power law and its variants for all regions are displayed in
Figure 3. For the simple power-law model, we find Γ∼ 2.7–2.9
which is similar to what was found in the vicinity of the shock
by Cassam-Chenaï et al. (2007). Note that the photon index
value strongly varies depending on the model, with
Γ∼ 0.7–1.9 for the TBabs(cutoffpl) model and
Γ∼ 0.15–0.4 for the TBabs(sqrtcutoffpl) model. The
same can be said about the normalization of these models with
TBabs(cutoffpl) values higher than the other two by 1
order of magnitude. The srcut break energy and its
normalization are also displayed in two separate frames. The
values are consistent with values found in the literature (Bamba
et al. 2005).

The NH values of all nonthermal models are shown in
Figure 4. The values for the TBabs(powerlaw) and TBabs
(srcut) are once again consistent with values from Bamba
et al. (2005) and Cassam-Chenaï et al. (2007). This is not the
case for cutoff models showing lower NH values
(∼0.3–0.5× 1022 cm−2) than the power law (∼0.6–0.75×
1022 cm−2).

The Bayesian factors are displayed in Table 2. The simple
power law gives the worst representation, as all other
nonthermal models have better Bayes factors for all regions.
This is consistent with the cutoff expected from synchrotron
emission (Zirakashvili & Aharonian 2007).

3.4.2. Shocked Interstellar Medium Emission

In the literature, shocked ISM emission is usually described
with the nonequilibrium of ionization (nei) models (Hwang
et al. 2002; Bamba et al. 2005) with a few exceptions such as
the cosmic-ray modified model from Cassam-Chenaï et al.
(2007). In addition to the nei model, we also perform the
analysis with plane-parallel shock models, both with single
temperature (pshock) and with separate electron and ion
temperatures (npshock); see Borkowski et al. (2001). These
models consider the gradient in the ionization age downstream
of the shock, with an upper value (net)u and a lower value (net)l,
rather than the mean value of net for the entire shock. The
npshock model, in addition, also accounts the slow,
collisional equilibration of the electron temperature due to
Coulomb interaction between the protons and the electrons,
assuming kTe< kTp at the shock. We refer to this family of
models as “ISM” for the rest of this work.
For the npshock model, we took shock velocity measure-

ments from Williams et al. (2016) to compute the mean shock
temperatures in our different regions and provide them as input
parameters, while the electron temperature is left free. We
assumed a distance of 2.3 kpc for Tycho’s SNR to compute
these values (see Table 3 for shock velocity and mean
temperature values). The parameters were allowed to vary
over the whole parameter space set by XSPEC boundaries.
Log-uniform priors were given to all normalization parameters
and to the ionization timescale. The abundance was frozen to
solar abundances (Anders & Grevesse 1989) to replicate what
was done in the literature. For every other parameter, uniform
priors in linear space were assumed.
The resulting likelihood posterior distribution for each model

is monomodal and Gaussian-like, so we do not display it here.
The best-fit parameter values are shown for all regions in
Figure 3. The best-fit parameter values for the TBabs
(pshock) and TBabs(npshock) models are so close that
some of the data points in the corresponding frame are not
visible because they are overlapping. We found kTe∼ 2 keV in
all regions for the TBabs(nei), TBabs(pshock), and
TBabs(npshock) models, which is similar to the values
found by Hwang et al. (2002) and Warren et al. (2005) for the
electron temperature. The ionization timescale of all three
models show values around 108 cm−3 s. The NH values are also
displayed in Figure 4 and are also very similar for all three
models with NH∼ 0.6× 1022 cm−2.
The Bayes factors of the ISM models are displayed in

Table 2. The TBabs(pshock) and TBabs(npshock)
models have similar Bayes factors, which are significantly
better than the standard TBabs(nei) model.

3.4.3. Shocked Ejecta Emission

In order to correctly assess the nature of the spectra, one
must look for the presence of ejecta emission. This is a delicate
task, as there are not many thermal features in the spectra,
which makes it hard to constrain ejecta properties. The ejecta
component was modeled using the vnei model. The plasma
temperature was allowed to vary between 1 and 5 keV and the
ionization timescale was allowed to vary over the whole
parameter space. The H, He, C, N, and Ni abundances were
frozen, and the other elements were free to vary between 10−2

and 101 with log priors.

Figure 4. Best Bayesian NH values with 1σ-equivalent quantile error bars for
single-component models in each of the five regions. The color code is the
same as in Figure 3. Some error bars are smaller than the corresponding data
points and are therefore not visible.
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The resulting posterior distributions are monomodal for most
parameters, although for all models a few abundances are
poorly constrained. Most notably the Ne, Ca, and Ar
abundances display either flat parameter spaces, or their
distribution is cut by lower parameter value boundaries. This
is enhanced in Region 2, where no element is correctly
constrained barring the Si abundance. All the best-fit
abundance values are unrealistically low (e.g., �0.4, with the
highest values being ∼0.4 for the Si and the S), and cannot be
meaningfully interpreted as representing ejecta components.
The best-fit values for the main parameters (kTe, net, and the
normalization) are displayed in Figure 3. All values are clearly
different from the best-fit values of the ISM model, with
notably higher electron temperatures ranging between 2.1 and
2.6 keV; the ionization timescale is 1 order of magnitude
greater with values around 1010cm−3 s, and even as high as
3× 1011 cm−3 s for Region 2.

The Bayes factor or the TBabs(vnei) model for all
regions are shown in Table 2. Please note that this model was
the longest single-component model to process due to the
higher number of free parameters and the low amount of
discriminating features in the spectra to fit these parameters.

3.4.4. Comparison of Single-component Models

As a comparison metric we used the Bayesian evidence log
(z) computed by BXA (see Section 3.3 for details). For each
region the highest evidence was used as the normalization. The
resulting Bayes factors Δlog(z)= log(z)–log(z)max for all
regions can be found in Table 2. In the same table the log(z)
for each model averaged over all regions is also shown,
normalized by the best average. To interpret these values, we
used Jeffreys’s scale (Jeffreys 1961), which states that a |Δlog
(z)| �2 is “decisive” (e.g., that the model with the highest
evidence is decisively better at representing the data). The best
model for each region spectrum has therefore a value Δlog
(z) equal to zero, and the lowest the Bayes factor is for a model,
the less appropriate it is to describe the spectra. We highlight
the highest-evidence models in green in the table. In the
following paragraphs, we also use the threshold |Δlog(z)|∼2 to
compare other inadequate models together, as there are
interesting points to make about these too. We also computed
the AIC, BIC, and ΔC for all models (see Section 3.3 for a
description of these metrics). In the same way as the Bayes
factors, they were computed for each model and normalized by

the best model. All values are shown in Tables A1, A2, and A3,
respectively, in Appendix A.
For four out of the five regions, the thermal vnei model

gives the best representation according to the Bayes factor,
demonstrating the importance of a refine modeling of the
ejecta. This is also visible in the C-stat values, as shown in the
lower right panel of Figure 3.
The exception is Region 2, which is better represented by our

custom cutoff power law (sqrtcutoffpl). This supports
our preliminary assertion about Region 2 being the least
contaminated by ejecta and the best candidate region to study
the shocked ISM (see Section 2 and Figure 2).
However, no single-component model is able to correctly

capture the physical parameters of a complex multicomponent
plasma, as shown by the unrealistically low abundances given
by the vnei model, or by the goodness-of-fit metrics. A
combination of these different components is needed to get an
acceptable representation of these spectra.

3.5. Two-component Models

In this section we combine a nonthermal component
alongside a thermal one, which models either the shocked
ISM or ejecta emission. As the computational times for the
analysis are long, we restrict the analysis to the quickest models
to run, e.g., a thermal component with a simple power-law

Table 2
Bayes Factors for all Single-componentModels in Each of the Five Regions

log(z) - log(z)max

Model Region 1 Region 2 Region 3 Region 4 Region 5 Average

Single nonthermal TBabs(powerlaw) −254.45 −29.00 −116.39 −205.27 −200.08 −159.84
TBabs(srcut) −221.15 −11.94 −86.94 −184.05 −181.02 −135.82
TBabs(cutoffpl) −176.72 −6.82 −60.70 −154.55 −159.00 −110.36
TBabs(sqrtcutoffpl) −176.93 0.00 −54.78 −152.83 −154.82 −106.67

Single thermal ISM TBabs(nei) −208.98 −105.72 −172.72 −212.21 −174.81 −173.69
TBabs(pshock) −203.23 −90.04 −149.00 −202.59 −168.19 −161.41
TBabs(npshock) −203.64 −89.63 −148.39 −202.68 −168.62 −161.39

Single thermal ejecta TBabs(vnei) 0.00 −6.00 0.00 0.00 0.00 0.00

Note. For each region (column) the Bayesian evidence of every model is normalized to the best one in that region (column). The Bayesian evidence for each model
averaged over all regions and normalized by the best average evidence is shown in the last column. The best model for each region has a value of zero and is
highlightedin bold. Models with very low log z( )D are models providing the worst representations of the data (which is in average the TBabs(nei) model here).

Table 3
Shocked Region Properties from Williams et al. (2016)

Region number Region number VS kTe
This work( ) (Williams 2016) (km s−1) (keV)

1 1 2891 9.77
2 16 3328 12.95
3 12 3644 15.53
4 11 3666 15.72
5 9 3633 15.44

Note. The first column displays the number of the analyzed regions in this
work. The second column displays the number of the closest corresponding
regions from Williams et al. (2016). The third column displays the shock
velocity computed from their expansion rates, and the fourth column displays
the associated mean shock temperature (see Equation (4.12) in Vink 2020).
Note that these values have been derived assuming a distance of 2.3 kpc for
Tycho’s SNR.
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component to represent the nonthermal emission and the nei
model for the shocked ISM. The ejecta are still modeled by a
single vnei component.

3.5.1. Nonthermal + Thermal ISM Emission

The Tbabs(powerlaw+nei) model was used to model
the synchrotron and ISM emissions. We sampled the posterior
distribution for all regions with the same priors as for the
single-component models, with the exception of the temper-
ature, which is assigned a log-uniform prior to speed up
computation. We took Region 2 as the main example and
display the resulting posteriors in the corner plot in Figure 5.
Note that the posteriors for this model are similar to first order
to those for the other regions.

The likelihood distribution displays a complex shape, with
several peaks of which two modes strongly dominate. These
two modes cover values of net centered on ∼5 × 108 cm−3 s
and on ∼3 × 1013 cm−3 s, respectively, and both indicate small
kTe values of ∼0.1 keV. The two corresponding best fits are
shown in Figure 6 with their residuals and reduced C-stat
values (denoted as Cr). The power-law component dominates
the emission, while the peak of the thermal emission lies below
an energy of 1 keV. While both Cr (∼1.3) indicate the fitted
models to be statistically acceptable, they are barely able to
reproduce faint spectral line features present in the spectra.
Most notably, the signature of the Si emission line at 2 keV can
be seen in the residuals. This indicates difficulties for this two-
component nonthermal+ISM model to fully reproduce the
observed spectra.

Additionally, an net as high as 3 × 1013 cm−3 s is unlikely to
originate from shocked ISM in the vicinity of the blast wave.
The maximum ionization timescale is related to the shock
velocity and the width of the emission region as
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where n0 is the pre-shock density and Δr is the width of the
extraction region, and assuming a shock compression factor of
4. Assuming a distance D= 2.3 kpc for Tycho’s SNR, the
width of our spatial regions is Δr= 6″ ;0.087 pc. Taking a
shock velocity Vs= 3328 km s−1 (see Table 3), an net as high
as 3× 1013 cm−3 s would imply an improbably high pre-shock
electron density of >103 cm−3 s. This is orders of magnitude
above the measured electron densities reported in the literature,
which range from ∼0.1 to ∼1.5 cm−3 (Chiotellis et al. 2013).
Instead, for the extraction width used, Vs= 3328 km s−1, and
n0= 0.3 cm−3, we expect net≈ 4× 109 cm−3s.

The low net values (∼5 × 108 cm−3 s) given by the other
mode correspond to reasonable post-shock electron densities
(∼0.2 cm−3). However, the thermal normalization is also
sensitive to the electron density and emission volume. One
can compute the electron density by assuming a depth along the
line of sight for the spatial regions we are analyzing such as
n VDnorm 4 10e

2 2 14p» ´ . Assuming the emission volume V to
be a box with a depth equal to the length of our analyzed
regions (90″ in sky plane) gives a post-shock electron density
of ∼ 9.5 cm−3, which is 2 orders of magnitude higher than the
value obtained from the ionization timescales. Varying the
depth of the volume does not significantly change this result,

unless it is over two orders of magnitude compared to the
length of the regions (a depth at least 100 times the length of
the region is needed to bring the density back to consistent
values). This would imply a strongly anisotropic shape for the
remnant with an overelongated morphology along the line of
sight, which is not plausible. As this mode is not self-
consistent, we discarded it too.
The inconsistencies of the XSPEC NEI model led Cassam-

Chenaï et al. (2007) to use a self-consistent NEI model by first
assuming a post-shock electron density and then computing the
corresponding emission measure and ionization timescale. We
took a similar approach by modifying the boundaries of these
two parameters based on assumed electron densities values,
i.e., we imposed additional priors. We chose an upper bound
value of 10 cm−3 for the post-shock electron density, giving
upper bounds of ∼5 × 10−3 cm−3 and ∼5 × 109 cm−3 s for the
thermal normalization and ionization timescale, respectively.
We then sampled the likelihood posterior distribution of the
TBabs(powerlaw+nei) model with these new constraints.
This sampled region in the parameter space is actually part of
the 5σ contours drawn in Figure 5 and corresponds
approximately to the third isolated region visible in several
boxes and marked by a small black cross. The corresponding
best fits are displayed in Figure 7, and the derived parameter
values are displayed in Figure 8. The resulting electron
temperature values range between 2 and 2.6 keV for all regions
but Region 2, which displays a lower value of 1.3 keV. The
hydrogen column density varies from 0.77 to 1.1× 1022 cm−2,
and shows a similar trend as the electron temperature, with the
minimum value given by Region 2. The ionization timescale
values range between 1 and 5× 109 cm−3 s. The photon
indexes values range between 2.9 and 3.2. As the power-law
normalization values are very similar to the single power-law
model already shown in Figure 3, we do not display them here.

3.5.2. Nonthermal + Ejecta Emission

The Tbabs(powerlaw+vnei) model was used to model
the synchrotron and ejecta emissions. A problem with the
vnei model implemented in XSPEC is that the continuum is
computed from the hydrogen abundance, which is not relevant
in the case of ejecta-dominated spectra. A way to bypass this
issue as well as the emission measure/metal abundance
degeneracy is to set the heavy element abundances to high
values. This way, the thermal continuum emission is dominated
by the metal-rich ejecta and the continuum due to hydrogen is
negligible—see Greco et al. (2020) for more details. The price
of this approach is an uncertainty on the absolute value of
abundances in the regions selected, which is acceptable here as
our analysis is focused on the shocked ISM emission rather
than on the ejecta one.
The same parameters ranges as for the corresponding single-

component model were set for both the components, with the
exception of abundances and normalization for the vnei due
to the abundance/emission measure degeneracy in XSPEC
thermal models. The abundances were set to vary between
higher values (between 102 and 104) and the thermal normal-
ization to lower values (between 10−10 and 10−7) in order to
properly reproduce the ejecta-dominated scenario. Note that
larger ranges for the abundances were not possible due to
computation time issues.
The resulting posteriors are monomodal for all parameters,

with the exception of abundances (similarly to the single vnei

8

The Astrophysical Journal, 951:103 (28pp), 2023 July 10 Ellien, Greco, & Vink



component) and of the electron temperature. Depending on the
region, most element posterior distributions are either flat or
falling on parameter boundaries, with the exception of the O, S,
and Si elements, which are in average well constrained. For all
regions the electron temperature posterior distribution was flat
over the whole parameter space.

The best Bayesian fits for all regions are displayed in
Figure 7, with their goodness of fit. The derived parameter
values are shown in Figure 8. The Si abundance best-fit values
for all regions are on the order of 104. The abundance ratio of
other elements by Si can be found Table 4. While the mean
normalization of the ejecta component is much lower than the
nonthermal component, the modeling of the emission lines
allows to fit some crucial thermal features such as the Si line at

2 keV, on the contrary to the nonthermal+ISM model (see
residuals in Figures 5 and 6).

3.5.3. Comparison of Two-component Models

In the same way as Section 3.4.4, we use the Bayes factors
derived by BXA to compare the two-component models. The
Bayes factors are displayed in Table 5, alongside a selection of
single-component models and of a three-component model that
are discussed later in this work.
When comparing two-component nonthermal+ISM models

to the best single-component model, one can clearly see that in
all regions but Region 2, the single vnei performs better than
the nonthermal+ISM models. This is due to ejecta lines not

Figure 5. Posterior likelihood distribution of the TBabs(powerlaw+nei) model on Region 2. The distributions have been sampled with the BXA package. Log-
uniform priors have been set for all parameters, with the exception of the power-law photon index Γ and the hydrogen absorption NH, which have received linear
priors. The temperature kTe is given in keV, the normalization of the power law in keV−1 cm2 s−1, the ionization timescale net in s cm−3, and the normalization of the
thermal model in cm−3. The top plot of each column shows the individual parameter histograms. The contours correspond (from darker to lighter blue) to 1σ, 2σ, 3σ,
and 5σ significance levels. The likelihood distribution features a complex multimodal shape, which appears to be dominated by two main solutions. The areas marked
with a black cross in the net and kTe boxes correspond roughly to the new boundaries for these parameters when enforcing self-consistency for the NEI model (see text
in Section 3.5.1 for details). This plot has been realized with the corner Python package (Foreman-Mackey 2016).

9

The Astrophysical Journal, 951:103 (28pp), 2023 July 10 Ellien, Greco, & Vink



being reproduced neither by the power law nor by the ISM
model. Due to the ability of the ejecta component to reproduce
these faint spectral line features in the model on top of the
power law, the nonthermal+ejecta gives a better representation
of the shock spectra than the nonthermal+ISM and single-
component models. This is clearly visible in the Bayes factors
displayed in Table 5 and enhances the fact that accurately
modeling the thermal features present in the spectra deserves
considerable attention when studying nonthermal X-ray emis-
sion from shocks, even if they are synchrotron dominated. This
also shows that the ejecta emission is the dominant thermal
contribution to the spectra.

However, there are still spectral features not correctly
modeled by the nonthermal+ejecta model and visible in the
residuals (see Figure 7), especially at lower energies (<2 keV).
This still leaves room for an improved representation of the
spectra, using a third component.

3.6. Three-component Models

In this section we combine two thermal components
alongside a nonthermal one. Computation time issues are even
more prevalent here, forcing us to make prior assumptions
about the models and strongly limiting the variety of models
we can use. First, we use the simplest three-component model
TBabs(powerlaw+nei+vnei) to analyze all regions and
compare it to single-component and two-component models.
Then we perform an extended analysis of Region 2 only, with
nonthermal model variants.

3.6.1. Nonthermal+ejecta+ISM

The TBabs(powerlaw+nei+vnei) was used to model,
respectively, the synchrotron, ISM, and ejecta emission. For the
ejecta priors, the kTe was first allowed to vary between 1 and
5 keV. The ionization timescale was still left free and was
allowed to vary over the whole default XSPEC parameter
space. Leaving abundances free to vary were resulting in

computation times so long it was not converging in realistic
times for this work. Therefore, we chose to freeze abundances
using prior information. The Si abundance was frozen to 104,
and the other abundances were set (and also frozen)
accordingly to the ratios previously computed (see Table 4 and
Section 3.5.2). The priors for the second thermal component
(ISM) are the same as described in Section 3.5.1, most notably
with the self-consistency constraints.
The parameter posterior distributions are for the most part

monomodal, although not necessarily Gaussian-like and are, in
a few cases, poorly constrained. Most notably the tail of the 1σ
contours of the ISM ionization timescale is cut by the upper
boundary for Regions 2, 3, 4, and 5. The ISM electron
temperature posterior is similarly cut in Regions 3, 4, and 5.
This might be an issue to estimate upper limits on these
parameters. In order to properly constrain these parameters, we
slightly relaxed the priors on the upper boundary. We relaxed
the ISM electron temperature upper limit from 3 to 5 keV for
all regions. We also relaxed the ISM ionization timescale upper
limit from 5× 109 to 9× 109 cm−3 s in Regions 4 and 5, and to
3.5× 1010 cm−3 for Regions 2 and 3. These upper ranges are
well above the expected values of net of 4× 109 cm−3 s; see
Section 3.5.1, Equation (1). These wider priors allow us to
correctly constrain the 1σ contours for the temperature in all

Figure 6. Left: best-fit model and residuals associated to the likelihood maximum centered on net = 5.108 cm−3 s, for the Tbabs(powerlaw+nei) model over
Region 2ʼs spectrum. Right: same as left but the likelihood maximum is centered on net = 3.1013 cm−3 s.

Table 4
Ejecta Abundance Ratios Derived from the Two-component Nonthermal

+ejecta Model (Tbabs(powerlaw+vnei)

Region 1 Region 2 Region 3 Region 4 Region 5

O/Si 1.391 0.589 0.458 0.831 0.489
Ne/Si 0.046 0.043 0.047 0.055 0.039
Mg/Si 0.053 0.052 0.066 0.084 0.040
S/Si 0.540 1.409 1.474 1.794 1.236
Ar/Si 0.064 0.080 0.077 0.096 0.078
Ca/Si 0.065 0.067 0.074 0.095 0.072
Fe/Si 0.046 0.049 0.111 0.088 0.143
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Figure 7. Best Bayesian fit for the Tbabs(powerlaw+vnei) model for all five regions. This model is the best two-component model to reproduce the spectra,
according to Bayesian evidences (see Table 5).
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regions and to constrain the ionization time in Regions 2, 4,
and 5. However the ISM ionization time remains unconstrained
in Region 3. Given that the estimated pre-shock densities are on
the order of 0.2 cm−3, with a maximum possibility of
n0= 1.5 cm−3

—implying net< 2× 1.8× 1010 cm−3 s—setting
an even higher upper boundary would make the model
physically implausible. The posterior distributions are dis-
played for all regions in Figures B1, B2, B3, B4, and B5 in
Appendix B.

Our analysis, therefore, only provides a lower constraint for
this specific parameter in Region 3. We stress that modifying
the priors here has a very low impact on Bayesian evidence
values, as shown in Table 5. The resulting posterior

distributions are shown in Appendix B. We show the best fits
for the Tbabs(powerlaw+nei+vnei) model in Figure 9
with their associated Cr. The best-fit parameter values are
shown in Figure 10.
As seen in Figure 10, the mean electron temperature over all

our shock regions for the ISM thermal component is
kT 0.96e,ISM 0.51

1.33= -
+ keV, which is lower than the mean ejecta

temperature kT 2.53e, ejecta 0.89
1.40= -

+ keV. The average best-fit
values found for the ISM ionization timescale in all regions
(excluding Region 3 as it only provide a lower limit) is
n t 2.55 10e ISM 1.22

0.5 9( ) = ´-
+ cm−3 s, which is an order of

magnitude lower than the average ejecta ionization timescale
n t 2.17 10e ejecta 0.52

0.0.76 10( ) = ´-
+ cm−3 s. We computed the post-

Figure 8. Best Bayesian parameter values with 1σ-equivalent quantile error bars for the two-component models in each of the five regions. Only the main parameters
and C-stat are shown. The physical component for each model is indicated in the legend. The thermal normalizations are so different because of our method to take
care of the abundance/emission measure degeneracy (see text and Greco et al. 2020, for details). Some error bars are smaller than the corresponding data points and
are therefore not visible.
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shock electron densities using shock velocities from Table 3,
and the ambient densities for each region using a compression
ratio of 4 (see Section 3.5.1 for the detailed methodology). The
pre-shock and post-shock electron densities are displayed in
Figure 11 and show the same trend as net. We find an average
(excluding Region 3) ambient electron density of around
n 0.32e 0.15

0.23= -
+ cm−3.

While the statistics are low with only five points, it is still
interesting to compare the variations in the shocked ISM
properties along the edge of the SNR. The hydrogen column
density was left free to vary during our analysis. As the
shocked ISM emission resides mainly at low energies, strong
hydrogen column density differences between our regions
could bias our comparison. This is not the case here as we find
only moderately higher NH best-fit values for Regions 3 and 4
with an average N 0.78 10H 0.04

0.04 22= -
+ cm−2 than for the other

regions with an average N 0.71 10H 0.04
0.04 22= -

+ cm−2. We
investigated the presence of differences between Regions 1
and 2 (northern area of the remnant) and Regions 4 and 5
(southern area; we exclude Region 3 here because it only
provides a lower limit on the density), as an ambient medium
density gradient has been found in the literature around Tycho
SNR (Williams et al. 2013). Northern regions have an average
electron density of n 0.33e 0.15

0.19= -
+ cm−3, while southern

regions have n 0.31e 0.13
0.29= -

+ cm−3. This difference is not strong
enough to confirm the presence of a density gradient, especially
considering the large error bars. However the density values
found are consistent with values from the literature, whether

they are from previous shock X-ray spectral studies
(�0.7 cm−3; Cassam-Chenaï et al. 2007), X-ray expansion
measurements (∼0.2 cm−3; Katsuda et al. 2010), or infrared
flux measurements (Williams et al. 2013; e.g., ∼0.1–0.2 cm−3).
On the other hand, there is no evidence for a particular

correlation between the properties of the shocked ISM and the
properties of the nonthermal synchrotron emission.

3.6.2. Comparison with Previous Models

The resulting Bayesian evidence values are displayed
alongside previous models in Table 5. The three-component
models give significantly better representations of the spectra
than previous models. The associated Δlog(z) is larger than the
limit of 2 set by Jeffrey’s scale and way beyond uncertainties
due to numerical errors. This trend is confirmed by other
metrics such as the AIC (see Table A1) andΔC (see Table A3),
but is in disagreement with the BIC (see Table A2). This is
purely due to the abundances being frozen in the three-
component model contrary to being free to vary in the two-
component model, creating a difference in the number of
parameters skewing the BIC numerical values by a large
amount. In addition to the low electron temperatures and
ionization times, this supports the fact that this second thermal
component is actually a signature of faint shocked ISM. This
signature is present in all regions, although poorly constrained
in Regions 3, 4, and 5, as shown by the posterior distributions
of the ISM parameters in Figures B3, B4, and B5).

Table 5
Bayes Factors for a Selection of Single-component, Two-component, and Three-component Models in Each of the Five Regions

Log(z)–Log(z)max

Model Region 1 Region 2 Region 3 Region 4 Region 5 Average

Single nonthermal TBabs(sqrtcutoffpl) −231.34 −45.14 −146.64 −211.74 −200.10 −166.84
TBabs(vnei) −54.42 −51.14 −91.86 −58.91 −45.28 −60.17

Nonthermal + thermal TBabs(powerlaw+nei) −196.61 −40.31 −150.37 −192.61 −161.36 −148.10

Nonthermal + ejecta TBabs(powerlaw+vnei) −12.32 −9.48 −5.57 −7.86 −7.98 −8.49

Nonthermal + ejecta + ISM TBabs(powerlaw+nei+vnei) −0.18 0.00 −1.37 0.00 −0.20 −0.20
TBabs(powerlaw+nei+vnei)a 0.00 −0.06 0.00 −0.68 0.00 0.00

Notes. For each region (column) the Bayesian evidence of every model is normalized to the best one in that region (column). The last column shows the Bayesian
evidence for each model averaged over all regions and normalized by the best average evidence. The best model for each region has a value of zero and is
highlightedin bold.
a Slightly wider priors have been used for this model to get better constraints on the parameters. More information is given in the text (see Section 3.6).

Table 6
Bayes Factors and Other Goodness-of-fit Metrics for a Selection of Models for Region 2

Model z zlog log max( ) ( )- ΔC AIC AICmin- BIC BICmin-

Single nonthermal TBabs(powerlaw) −74.37 148.73 136.73 196.83
TBabs(sqrtcutoffpl) −45.14 90.28 80.28 132.28

Nonthermal + ISM TBabs(powerlaw+nei) −40.31 80.62 74.62 110.43
TBabs(sqrtcutoffpl+nei) −33.77 67.54 65.54 85.16

Nonthermal + ejecta TBabs(powerlaw+vnei) −9.48 18.96 28.96 0.00
TBabs(sqrtcutoffpl+vnei) −14.08 28.15 22.15 57.96

Nonthermal + ejecta + ISM TBabs(powerlaw+nei+vnei) 0.00 0.00 0.00 11.52
TBabs(sqrtcutoffpl+nei+vnei) −0.22 0.43 0.43 11.95

Note. The models were chosen to show the differences between models with a cutoff nonthermal component and models with a regular power law. The complete
version of this table with values for all 35 models can be found in Table C1. The best model for each region has a value of zero and is highlighted in bold .
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Figure 9. Best Bayesian fit for the Tbabs(powerlaw+nei+vnei) model for all five regions. The nei component models the shocked ISM emission, and the
vnei component models the ejecta emission. The corresponding posterior distributions can be found in Appendix B.
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3.6.3. Extended Analysis of Region 2

In the case of multiple-component models, we so far restrained
ourselves to the simplest phenomenological model for the
nonthermal component, e.g., a power law, and to the simplest
thermal models for the shocked ISM (nei). This was done to get
a global picture across all five regions while still maintaining
computation times in realistic time ranges. In order to test models
with more variants, we now only use Region 2 as the main
analysis region in the following sections, increasing the number of
models tested but diminishing the number of regions analyzed.

We sampled the composite (e.g., “nonthermal+thermal’,
“nonthermal+ejecta,” and “nonthermal+ejecta+ISM”) model
posterior distributions, with the same setups for the nonthermal
components. The thermal components were given the exact
same parameter boundaries as in Sections 3.4 and 3.5. The BXA
sampler had difficulties with three-component models featuring
an srcut component. These models were the longest to
sample, with weeks of computation for a single model running

on 42 cores.4 The other composite models with a cutoff
nonthermal component showed similar issues, although at
slightly smaller extents. The corresponding Bayes factors are
displayed for a subset of the models alongside other metrics in
Table 6.
When looking at Table 6, one can see that the single-

component models with energy cutoff perform better than the
single-component thermal models and regular power law.
However, a different picture appears when adding a component
modeling shocked ISM or ejecta, where the presence of a cutoff
gives either lower Bayesian evidence (nonthermal+ejecta case)
or no significant difference in the Bayesian evidence
(nonthermal+ejecta+ISM case). The highest evidence is
admittedly given by the TBabs(powerlaw+npshock
+vnei) model, but other three-component models have close

Figure 10. Best Bayesian parameter values with 1σ-equivalent quantile error bars for TBabs(powerlaw+nei+vnei) models in each of the five regions. Note that
in this plot, the different colors correspond to model components and not to models by themselves. Only the main parameters and the C-stat are shown. The physical
component for each component is indicated in the legend. The thermal normalizations are so different because our method takes care of the abundance/emission
measure degeneracy (see text and Greco et al. 2020, for details). Some error bars are smaller than the corresponding data points and are therefore not visible.

4 Explaining why this part of our spectral analysis has been done over one
region only.
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evidence values (see Table C1 in Appendix C). As explained in
Section 3.3, these values are too close to each other to make
definitive conclusions about which model is the best.

We will not go into too much detail about posterior
distribution shapes here, but still highlight a few interesting
points. The posteriors of the three-component models with a
cutoff are in most cases monomodal, so we do not display
them. However, the energy cutoff parameter for these models
features an elongated “banana” shape and is almost always cut
by upper boundaries. This behavior did not change when we
tried to increase the upper boundary value, which makes the
cutoff energy of these models poorly constrained. While the
Bayes factors do not strongly indicate whether a cutoff is
necessary or not to describe the spectrum of Region 2, the
poor constraints on this additional parameter indicates there is
no need for it. Applying Occam’s rule to two models
performing equally at describing the data, the simpler model
should be chosen. In that case, it appears that a cutoff for the
nonthermal component is unnecessary for the three-comp-
onent class of models, as it does not significantly improve the
model performances at reproducing the observed shock
spectrum. Therefore the presence of thermal components in
the model and of an energy cutoff for the nonthermal
component appear to be anticorrelated in Region 2. This casts
some doubt on the cutoff energies obtained in previous work,
which may have been affected by ignoring the presence of a
(weak) thermal component. This should be further investi-
gated, also in relation to the unexpected relation between the
cutoff energy and shock velocity reported in Lopez et al.
(2015).

3.7. Best Bayesian-selected Model

We added different cutoff models to our analysis in the
previous section, increasing the total number of models applied

to Region 2’s spectrum to 35 (see Table C1). The main point
we want to highlight here is that adding the cutoff models did
not change much the results found in Sections 3.5 and 3.6 for
Region 2. Bayes factors and other metrics indicate that the
three-component models that take ejecta contamination into
account should still be preferred over the other simpler models.
This is an additional argument in favor of the presence of X-ray
emission from shocked ISM behind the blast wave not only for
Region 2 but for all regions. X-ray upper limits were previously
provided by Cassam-Chenaï et al. (2007) on shocked ISM,
based on the lack of evidence for thermal emission. While our
findings provide Bayesian evidence for shocked ISM emission
and should be confirmed later by spectroscopic data with an
enhanced resolution—especially in the low-energy range
0.5–2 keV; see Section 4—this is the first time to our
knowledge that such a detection is reported for the vicinity
of Tycho’s SNR shock wave in the X-rays.
Within the “nonthermal+ejecta+ISM” class, the Bayesian

selection does not allow to unambiguously pick a specific
model as the best model. In order to simulate the expected
high-resolution X-ray spectrum of the shock regions of Tycho
we use the Tbabs(powerlaw+nei+vnei) model as a
template, and we chose Region 2 as it is the region
exacerbating the strongest synchrotron emission and the most
featureless spectrum (it is therefore the region where increased
spectral resolution is of most interest). The model and its
components are displayed in Figure 9.

4. Athena/X-IFU Simulations

4.1. Qualitative Characterization of Shock Spectra

We presented in previous sections our analysis on Tycho’s
SNR shock spectra. The Bayesian framework gave a new point
of view on the data compared to previous studies and allowed
us to select the most adequate model(s) at representing the
spectra over all analyzed spatial regions. Based on the Bayes
factor and other metrics, we found that “nonthermal+ejecta
+ISM” models were the most adequate to fit the spectra. This
provided a first insight on the value of the electron temperature
Te, given by the continuum of these models. As said in the
introduction of this paper, this value is interesting in relation to
the proton temperature Tp and to their ratio T Te p- (Ghavamian
et al. 2013; Vink et al. 2015).
However, given the moderate spectral resolution of the

Chandra/ACIS-I detector and the molecular contamination of
the optical blocking filter, it is not possible to make such
diagnostics with this detector or similar ones (e.g., XMM-
Newton/pn). This is particularly relevant in this case given the
low net (∼109 cm−3 s) values measured: emission lines are
strongly shifted to low energies (typically toward the range
0.5–2 keV; see the nei components in Figure 9 for examples).
This partially explains the difficulty in detecting any contrib-
ution from the shocked ISM, especially with a frequentist
approach as done in previous studies. The thermal emission
lines would mainly reside at low energies, where both the low
statistics and the spectral resolution do not allow to resolve
them, while the high-energy emission is dominated by the
featureless nonthermal emission.
Future instruments such as Athena/X-IFU will feature an

increased efficient area and spectral resolution (�3 eV in the
0.2–12 keV energy range). Such data could provide a clear
view on this topic and allow us to confirm or deny this

Figure 11. Post-shock electron densities using net values from the ISM
component of the TBabs(powerlaw+nei+vnei) model, shock velocities
from Williams et al. (2016; see Table 3). The ambient (pre-shock) electron
densities are computed with a compression ratio of 4. Horizontal axes show the
region numbers and the region azimuthal angles in degrees clockwise from the
north.
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characterization of the shock spectra. In the next subsections,
we use our best Bayesian-selected model, the TBabs
(powerlaw+nei+vnei) model (see Section 3.7), as a
template to simulate the X-IFU spectra of the shock regions in
order to measure the effects of the Doppler broadening on the
emission lines.

4.2. Simulation Parameters

The Doppler broadening of emission lines is modeled by the
XSPEC convolution model, gsmooth, which implements a
simple Gaussian smoothing of the spectrum. All subsequent
simulated spectra use the TBabs(powerlaw+nei+vnei)
model, with posterior distributions computed with BXAin
Region 2. The actual model used for the simulation is therefore
given by TBabs(gsmooth(powerlaw+nei+vnei)).
This adds two additional parameters, the Gaussian standard
deviation σE and the scaling index of σ with energy, denoted α.
The last is usually frozen to unity. In the strong shock limit, σE
is given by

E

c
V

3

16
,E s

0s =

with E0= 6 keV here. To simulate the spectra, we draw
random values from the posterior distributions sampled in
Section 3. In the case of σE, we draw random shock velocity
values from a Gaussian distribution with mean Vs from
Williams et al. (2016; see Table 3) and with standard deviation
equal to the statistical error on the measurement from the same
paper. This gives roughly σE in the range ∼28–30 eV. We
chose to draw 100 parameter sets.

We simulated the spectra using the XSPEC command fakeit.
The Auxiliary Response File (ARF), Redistribution Matrix File
(RMF), and background files are taken from the publicly
available online version of the X-IFU simulation tools5 (see
Barret et al. 2018, for more details). In order to investigate the
sensitivity of X-IFU in detecting the Doppler broadening at
different exposure times, we simulated three different spectra
with exposure times of 103, 104, and 105 s, respectively, for
each parameter set, leading to a total of 300 simulated spectra.
Examples of such spectra are displayed in Figure 12.

4.3. Method

Contrary to analysis of the observed spectra, we are not
interested in refined parameter space exploration but rather
want to estimate the possibility to detect thermal Doppler
broadening in the 300 simulated spectra, in order to infer ion

temperatures. The complete Bayesian approach for each
individual spectrum is therefore not necessary, and we go
back to the faster frequentist approach. Fits are performed with
the XSPEC Levenberg–Marquadt algorithm and with C-stat as
minimization statistics.
We fit the simulated spectra with three different models: (A)

a TBabs(powerlaw+nei+vnei) model, i.e., without the
gsmooth component, (B) a TBabs(gsmooth(powerlaw
+nei+vnei)) model with σE frozen to the true value drawn
in Section 4.2, (C) same as model B but with unfrozen σE. In
each case, we use the reduced C-stat to estimate the goodness
of fit, denoted Cr=C-stat/K with K being the number of
degrees of freedom.
We computed for each spectrum the ΔC-stat (hereafter ΔC

with ΔCX−Y=C-statX−C-statY) between models A and B, as
well as B and C. As ΔC is approximately Δχ2 distributed,
ΔCA−B allows us to constrain how significant is the addition of
the gsmooth component into the simulated spectra and how
much it impacts the fits. A low value of ΔCA−B would mean a
low significance of the detection of Doppler broadening, as any
model without broadening would give a similar goodness of fit.
In addition, ΔCB−C gives the confidence interval at which the
true value of σE is recovered. The last metric we used is the
relative error er in percent, which is defined as

e 100 ,r
E E

E

,B ,C

,B

s s
s

= ´
-

and measure the accuracy of the fits when it comes to measure
the value of σE.

4.4. Constraints on Doppler Broadening

For each of the three models and for each exposure time bin,
we computed the median6 reduced C-stat denoted 〈Cr〉 , as well
as 〈ΔCA−B〉 and 〈ΔCB−C〉. We then computed the confidence
interval in percentage corresponding to 〈ΔCB−C〉. In the same
way, we compute for each exposure time bin the median of the
distribution 〈er〉, as well as the positive and negative error bars
given by the median absolute variation (MAD). All values are
displayed in Table 7.
The low 〈Cr〉 values for exposure times of 1 and 10 ks are

not surprising: error bars are very large and spectra are
overfitted. Making any clear statement based on the analysis of
spectra with such wide error bars is impossible: many different
models could equally satisfyingly describe the same spectrum.
This is not the case for spectra with exposure times of 100 ks.

Table 7
Fit Results Averaged Over 100 Simulated X-IFU Spectra for Each Exposure Time Bin

Exposure Time 〈Cr,A〉 〈Cr,B〉 〈Cr,C〉 〈ΔCA−B〉 〈ΔCB−C〉 〈Confidence Interval〉 〈er〉
ks( ) %( ) %( )
1 0.44 0.43 0.43 159 0.81 63.1 0.33 19.0

4.9
-
+

10 0.88 0.78 0.77 1736 0.84 64.1 0.77 2.4
2.2

-
+

100 2.18 1.04 1.03 15673 0.94 66.7 0.04 2.3
1.7

-
+

Note. From left to right: exposure time in ks, averaged reduced C-stat for model A, averaged reduced C-stat for model B, averaged reduced C-stat for model C,
averaged ΔC-stat between models A and B, averaged ΔC-stat between models B and C, corresponding averaged confidence interval in percentage, and averaged
relative error on the measure of σE with the uncertainties given by the width of the error distribution. All averages are medians. See the text for details.

5 http://x-ifu.irap.omp.eu/resources/for-the-community

6 One or two fits were not converging correctly, strongly skewing the
distributions of Cr and others metrics. Therefore we used the median and the
median absolute variation (MAD) rather than the mean and standard deviation
here, as they are more robust to outliers.
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On the other hand, while 〈Cr,A〉 is quite similar to 〈Cr,B〉 and
〈Cr,C〉 for the 1 and 10 ks spectra, it is much higher (∼2.18) for
the 100 ks spectra, indicating that models without the
gsmooth component are much worse at fitting the spectra
when given enough information. This is not the case for models
B and C, which give almost perfectly reduced C-stat on average
in this case.

This is further confirmed by looking at 〈ΔCA−B〉, which is
very high. The improvement in the goodness of fit when adding
the gsmooth component to the models is excessively
significant, and is due to the pristine spectral resolution of
emission lines of X-IFU at low energies. This creates strong
residuals when the model is not able to accurately fit their
width and results in very bad fits (see Figure 13). In the
opposite way, 〈ΔCB−C〉 is very low, corresponding to
confidence intervals of ∼65%. This highlights excellent
performance by model C, which shows that, on average, fitted
σE values approach very significantly the true value.

The relative errors are also extremely low, showing how
accurately the Doppler broadening is reproduced by model C.
Please note however that while 〈er〉 is very low (less than 1%
for each exposure time), the actual er distributions are quite
broad. The fitted models in particular have a tendency to
overestimate the value of σE, with MAD higher (up to ∼19%)
for negative relative errors. In the worst case, such errors would
propagate relative errors of ∼40% on Ti.

7

An interesting point to make here is the fact that, while
spectra with exposure times 1 and 10 ks are overfitted by model
C, the model still recovers the Doppler broadening, with
relative error almost as good as in the 100 ks spectra. This
suggests that observation times as short as 1 ks could be
enough to settle the presence of emission lines at low energies
and make measurements of Doppler broadening. Of course,
extended observation times would still be needed to accurately
model all its properties. In any case, these simulated spectra
show how impactful X-IFU will be in unveiling the properties

of thermal components in the vicinity of SNR blast waves,
whether it is shocked ISM or ejecta.

5. Conclusions

In this work we report on an extended Bayesian analysis of
the featureless spectra of five thin regions located at various
points close to the Tycho’s SNR shock wave, using Chandra
archival data. Our goal was to detect shocked ISM emission in
the spectra, or at least to put constraints on its characteristics by
performing a spatially resolved spectral analysis of previously
analyzed Chandra archival data with a more sophisticated
statistical tool, based on Bayesian inference.
The computations were performed with the BXA package,

which allows us to sample the posterior likelihood distribution
of models over the data and compute for each model the
marginalized likelihood also called Bayesian evidence (see
Section 3.2). The Bayesian evidence (i.e., Δlog(z) values) was
then used as the main metric to compare and select models in a
simple way. This was the first time such an approach was
applied to the study of thermal emission in the vicinity of
Tycho’s SNR blast wave.
We first compared the output from BXA for single-

component models with results from the literature and found
very good matches (see Section 3.4). We then applied it to
more complicated cases, with composite models featuring both
a thermal component and a nonthermal one (see Section 3.5).
In the case of nonthermal+ISM models, we showed that the
parameter spaces of such a class of models display complex
shapes, with multiple likelihood maxima. We also showed the
main modes of some of these models to be not physically
possible, similarly to previous findings in the literature
(Cassam-Chenaï et al. 2007). By adding constraints to the
model parameters, we explored regions of these model
parameter spaces less statistically plausible, but physically
acceptable. However a better description of the spectra were
given by nonthermal+ejecta models with free abundances,
which were able to better reproduce emission lines in the
spectra, even though some faint spectral line features were still
not correctly reproduced in the low-energy band. We then

Figure 12. Simulated X-IFU spectra with different exposure time values are
displayed alongside the ACIS shock spectrum of Region 2 (black crosses). The
normalization of the ACIS spectrum is the original, but the X-IFU spectra have
been renormalized by a factor of 10 for display purposes. The black lines are
fitted TBabs(powerlaw+nei+vnei) models with unfrozen σE (see text of
Section 4.3 for details).

Figure 13. Effect on the emission line of the inclusion of Doppler broadening
in the fitted model. Red crosses are a simulated X-IFU spectrum with
σE = 29 eV and an exposure time of 100 ks. The black line is the fitted model
with Doppler broadening, and the gray dashed line is the model without.

7 The ion temperature is given by T m c Ei i E 0
2( )s= .
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added a third component to our models and sampled the
posteriors of nonthermal+ejecta+ISM models. We find that
this class of models is significantly better at describing the data
than single-component and two-component models according
to Bayes factors and other metrics, providing the first proof for
shocked ISM emission in the shock front of Tycho’s SNR.

We detected shocked ISM in all five regions, which allowed
us to study spatial variations of its properties. We found rather
low electron temperatures (kT 0.96e,ISM 0.51

1.33= -
+ keV) through

all regions (see Figure 10). These temperatures are lower than
the mean shock temperature (∼12 keV) by an order of
magnitude. If the ion temperature is of the same order of
magnitude as the mean shock velocity, this indicates a
temperature ratio on the order of 0.1, which is far from the
asymptotic kTe/kTp=me/mp in the strong shock limit and
could indicate moderate energy transfer between ions and
electrons. However, these are only assumptions, and ion
temperature measurements are needed to settle this question.

From the ionization timescales of the shocked ISM and
velocity measurements from Williams et al. (2016), we were
able to derive ambient electron densities (Figure 11). We find
an average (excluding Region 3 in which the upper limit of net
is not constrained) ambient electron density n 0.32e 0.15

0.23= -
+

cm−3, in agreement with the upper limit of 0.7 cm−3 reported
by Cassam-Chenaï et al. (2007). We find no significant
difference in the ambient density between the north regions
(n 0.33e 0.15

0.19= -
+ cm−3) and the southwest regions ne =

0.31 0.13
0.29

-
+ cm−3), and we are not able to confirm the presence

of the density gradient around Tycho’s SNR found in infrared
measurements by Williams et al. (2013).

In order to test the robustness of our analysis, we added
several different synchrotron cutoff models in the region with
the strongest nonthermal emission (e.g., Region 2; see
Section 3.6.3 for details). Not only this allowed us to compare
more models but also to evaluate how the thermal component
properties interact with the addition of cutoffs. We found that
such models were not giving significantly better descriptions in
terms of Bayesian evidence than composite models with a
regular power law. Following Occam’s rule, the cutoff is
therefore not necessary to describe the spectra. This shows that
the presence of a faint thermal component in the spectra
appears to be anticorrelated with the presence of a cutoff for the
nonthermal emission.

We showed that the low ionization timescale and electron
temperature are shifting shocked ISM emission lines to low
energy ranges, where Chandra/ACIS sensitivity drops. In
Section 4 we showed that the future instrument X-IFU on board
Athena will be able to resolve such low energy lines. Therefore,
we simulated X-IFU spectra using our best Bayesian model as
a template, including also a gsmooth component to model the
thermal broadening. These simulations allowed us to estimate
the possibility for thermal Doppler broadening measurement
with X-IFU. We were able to measure Doppler broadening
with average relative errors lower than 1% and recovering the
actual broadening with confidence intervals of around 50%.
Overall, these results provide very promising perspectives

for future X-IFU observations of SNRs, not only to definitely
settle the question on the presence of a thermal component in
the vicinity of SNR shocks, but also to measure quantities such
as the ion temperature, which, in conjunction with the electron
temperature, are essential to our understanding of collisionless
shocks.
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Appendix A
Additional Metrics for Model Selection

We display in this appendix the additional model compar-
ison metrics for Sections 3.4, 3.5 and 3.6 (see main text for
details). The AIC values are displayed for every model of the
five regions in Table A1, the BIC values in Table A2 and the
differences in C-stat in Table A3.
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Table A1
Akaike Information Criterion for Every Model of the Five Regions

AICmin-AIC

Model Region 1 Region 2 Region 3 Region 4 Region 5 Average

Single nonthermal TBabs(powerlaw) 631.81 159.24 422.64 538.11 501.11 450.58
TBabs(srcut) 563.02 121.74 361.25 492.76 459.79 399.71
TBabs(cutoffpl) 471.86 110.11 306.86 433.55 415.25 347.53
TBabs(sqrtcutoffpl) 472.02 99.89 296.56 430.76 407.91 341.43

Single ISM TBabs(nei) 533.06 303.28 525.42 545.51 445.94 470.64
TBabs(pshock) 527.13 274.35 480.47 529.13 435.67 449.35
TBabs(npshock) 527.15 274.36 480.50 529.14 435.67 449.36

Single Ejecta TBabs(vnei) 107.66 110.99 176.25 115.41 91.51 120.36

Nonthermal + thermal TBabs(powerlaw+nei) 397.73 85.08 294.62 382.94 326.91 297.46

Nonthermal + ejecta TBabs(powerlaw+vnei) 29.35 30.45 15.52 22.52 22.35 24.04

Nonthermal + ejecta + ISM TBabs(powerlaw+nei+vnei) 0.00 0.00 0.00 0.00 0.00 0.00

Note. For each region (column) the AIC of every model is normalized to the best one in that region (column). The last column shows the AIC for each model averaged
over all regions, normalized by the best average AIC. The best model for each region has a value of zero.

Table A2
Bayesian Information Criterion for Every Models of the Five Regions

BICmin-BIC

Model Region 1 Region 2 Region 3 Region 4 Region 5 Average

Single nonthermal TBabs(powerlaw) 691.51 217.85 496.17 604.65 567.82 515.60
TBabs(srcut) 622.72 180.35 434.79 559.30 526.49 464.73
TBabs(cutoffpl) 523.46 160.62 372.29 491.99 473.86 404.45
TBabs(sqrtcutoffpl) 523.63 150.40 362.00 489.20 466.52 398.35

Single ISM TBabs(nei) 584.67 353.79 590.86 603.95 504.55 527.56
TBabs(pshock) 578.74 324.86 545.91 587.57 494.28 506.27
TBabs(npshock) 578.76 324.87 545.94 587.58 494.28 506.28

Single Ejecta TBabs(vnei) 94.50 96.74 176.92 109.08 85.35 112.52

Nonthermal + thermal TBabs(powerlaw+nei) 433.14 119.40 343.86 425.19 369.33 338.19

Nonthermal + ejecta TBabs(powerlaw+vnei) 0.00 0.00 0.00 0.00 0.00 0.00

Nonthermal + ejecta + ISM TBabs(powerlaw+nei+vnei) 11.13 10.03 24.96 17.96 18.13 16.44

Note. For each region (column) the BIC of every model is normalized to the best one in that region (column). The last column shows the BIC for each model averaged
over all regions, normalized by the best average BIC. The best model for each region has a value of zero. Please note that according to BIC, the “nonthermal+ejecta”
model performs better than the three-component model “nonthermal+ejecta+ISM” because it is biased by the way the abundances were handled in our analysis (see
Section 3.6.2 for details).
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Appendix B
Posterior Distributions of the Three-component Models for

all Regions

We display here the posterior distributions of the best
Bayesian-selected three-component models for all regions (see

Table 5). The posterior distributions of regions 1, 2, 3, 4 and 5
are respectively displayed in Figure B1, B2, B3, B4 and B5.

Table A3
Difference in C-stat for Every Model of the Five Regions

ΔC-stat

Model Region 1 Region 2 Region 3 Region 4 Region 5 Average

Single nonthermal TBabs(powerlaw) 643.81 171.24 434.64 550.11 513.11 462.58
TBabs(srcut) 575.02 133.74 373.25 504.76 471.79 411.71
TBabs(cutoffpl) 481.86 120.11 316.86 443.55 425.25 357.53
TBabs(sqrtcutoffpl) 482.02 109.89 306.56 440.76 417.91 351.43

Single ISM TBabs(nei) 543.06 313.28 535.42 555.51 455.94 480.64
TBabs(pshock) 537.13 284.35 490.47 539.13 445.67 459.35
TBabs(npshock) 537.15 284.36 490.50 539.14 445.67 459.36

Single Ejecta TBabs(vnei) 101.66 104.99 170.25 109.41 85.51 114.36

Nonthermal + thermal TBabs(powerlaw+nei) 403.73 91.08 300.62 388.94 332.91 303.46

Nonthermal + ejecta TBabs(powerlaw+vnei) 19.35 20.45 5.52 12.52 12.35 14.04

Nonthermal + ejecta + ISM TBabs(powerlaw+nei+vnei) 0.00 0.00 0.00 0.00 0.00 0.00

Note. For each region (column) the ΔC-stat of every model is normalized to the best one in that region (column). The last column shows the ΔC-stat for each model
averaged over all regions, normalized by the best average ΔC-stat. The best model for each region has a value of zero.
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Figure B1. Posterior likelihood distribution of the TBabs(powerlaw+nei+vnei) model in Region 1. The distributions have been sampled with the BXA
package. Log-uniform priors have been set for all parameters, with the exception of the power-law photon index Γ and the hydrogen absorption NH, which have
received linear priors. The temperatures are given in keV, the normalization of the nonthermal component in keV−1 cm2 s−1, the ionization timescales in cm−3 s, and
the normalizations of the thermal components in cm−3. The top plot of each column shows the individual parameter histograms, with the 0.16, 0.5, and 0.84
percentiles shown as dashed vertical black lines. The contours correspond (from darker to lighter blue) to 1σ, 2σ, and 3σ significance levels.

22

The Astrophysical Journal, 951:103 (28pp), 2023 July 10 Ellien, Greco, & Vink



Figure B2. Same as for Figure B1 but for Region 2.
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Figure B3. Same as for Figure B1 but for Region 3.
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Figure B4. Same as for Figure B1 but for Region 4.
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Figure B5. Same as for Figure B1 but for Region 5.
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Appendix C
Bayesian Evidence for all Models in Region 2

We display in Table C1 all metrics for the extended analysis
of Region 2 in Section 3.6.3 (see the main text for details).

Table C1
Bayes Factors and Other Goodness-of-fit Metrics for Every Model (Including Models with an Energy Cutoff) for Region 2

Model z zlog log max( )– ( ) ΔC AIC AICmin– BIC BICmin–
TBabs(powerlaw) −74.37 148.73 138.73 196.83
TBabs(srcut) −57.08 114.16 104.16 162.26
TBabs(cutoffpl) −51.96 103.92 95.92 145.91
TBabs(sqrtcutoffpl) −45.14 90.28 82.28 132.28

Single thermal TBabs(nei) −151.09 302.19 294.19 344.18
TBabs(pshock) −135.21 270.42 262.42 312.41
TBabs(npshock) −134.90 269.81 261.81 311.80

Nonthermal + ISM TBabs(powerlaw+nei) −40.31 80.63 76.63 110.43
TBabs(powerlaw+pshock) −30.87 61.73 59.73 85.44
TBabs(powerlaw+npshock) −40.52 81.04 79.04 104.75
TBabs(srcut+nei) −35.07 70.14 70.14 87.76
TBabs(srcut+pshock) −35.24 70.48 70.48 88.09
TBabs(srcut+npshock) −35.47 70.93 70.93 88.55
TBabs(cutoffpl+nei) −36.30 72.60 72.60 90.22
TBabs(cutoffpl+pshock) −36.34 72.67 72.67 90.29
TBabs(cutoffpl+npshock) −36.52 73.05 73.05 90.66
TBabs(sqrtcutoffpl+nei) −33.77 67.55 67.55 85.16
TBabs(sqrtcutoffpl+pshock) −33.68 67.36 67.36 84.98
TBabs(sqrtcutoffpl+npshock) −33.88 67.75 67.75 85.37

Nonthermal + ejecta TBabs(powerlaw+vnei) −9.48 18.96 30.96 0.00
TBabs(srcut+vnei) −15.70 31.41 25.41 67.31
TBabs(cutoffpl+vnei) −16.25 32.50 28.50 62.30
TBabs(sqrtcutoffpl+vnei) −14.08 28.15 24.15 57.96

Nonthermal + ejecta + ISM TBabs(powerlaw+nei+vnei) −0.00 0.00 2.00 11.52
TBabs(powerlaw+pshock+vnei) −0.86 1.72 1.72 19.33
TBabs(powerlaw+npshock+vnei) 0.00 0.00 0.00 17.61
TBabs(srcut+nei+vnei) −1.99 3.98 3.98 21.59
TBabs(srcut+pshock+vnei) −7.08 14.17 14.17 31.78
TBabs(srcut+npshock+vnei) −5.64 11.29 11.29 28.90
TBabs(cutoffpl+nei+vnei) −2.88 5.76 7.76 17.27
TBabs(cutoffpl+pshock+vnei) −3.23 6.47 8.47 17.99
TBabs(cutoffpl+npshock+vnei) −7.27 14.54 16.54 26.06
TBabs(sqrtcutoffpl+nei+vnei) −0.22 0.43 2.43 11.95
TBabs(sqrtcutoffpl+pshock+vnei) −0.70 1.39 3.39 12.91
TBabs(sqrtcutoffpl+npshock+vnei) −4.93 9.86 11.86 21.38
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