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ABSTRACT
This paper investigates sparse sampling techniques applied
to downsampling and interference detection for multiband
radio frequency (RF) signals. To reconstruct a signal from
sparse samples is a compressive sensing problem. This pa-
per compares three different reconstruction algorithms: 1)
�1 minimization; 2) greedy pursuit; and 3) MUltiple SIg-
nal Classification (MUSIC). We compare the performance of
these algorithms and investigate the robustness to noise ef-
fects. Characteristics and limitations of each algorithm are
discussed.

1. INTRODUCTION

According to traditional Shannon-Nyquist sampling theory,
to allow perfect reconstruction, a signal must be sampled at
more than twice the highest frequency contained in the sig-
nal, also known as the Nyquist rate [1].

In traditional spectrum analyzers, a narrow band signal
is usually converted to baseband and then sampled according
to the Nyquist rate. However, when the signal is affected by
interference or frequency shifting effects, down-converting
the signal to baseband may introduce aliasing unless an anti-
aliasing filter is applied. On the other hand, to sample such
RF signals at Nyquist rate (e.g. 100GHz) is usually very
difficult or impossible in practice. Therefore, reducing the
sampling rate is highly needed.

In order to reduce the sampling rate, the signal structure
should be studied first. Suppose a bandpass signal occupies
a spectrum from fa,1 to fb,1. Meanwhile, several interfer-
ence signals are randomly allocated in the intervals [ fai , fbi ],
i = 2, . . . ,N, where fa,1 < · · ·< fa,N , fb,1 < · · ·< fb,N . Then,
the Nyquist sampling rate for such signal is fnyq = 2 fb,N .
According to the theory of compressive sensing [2], a sig-
nal can be reconstructed from far fewer samples, i.e. be-
low the Nyquist rate, if the signal is sparse in a certain do-
main. Since it is known that there are only N frequency
bands in the entire spectrum, and the width of each band is
B1 = fb,1− fa,1 > 0, . . . ,BN = fb,N − fa,N > 0, the signal spec-

trum can be regarded as sparse if ∑N
i=1 Bi � fnyq. Therefore,

compressive sensing can theoretically be applied to recon-
struct a multiband RF signal using a sampling rate signifi-
cantly below below the Nyquist rate.

In practice, the number of subbands N and the location
of the subbands are unknown for interference signals. It be-
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comes a blind multiband signal reconstruction (BMSR) prob-
lem, which was first discussed by Feng in 1996 [3]. In 2009,
Mishali and Eldar applied compressed sensing theory to the
BMSR problem [4]. They formulated the problem as a mul-
tiple measurement vector (MMV) problem. Chen and Huo
later applied convex optimization and greedy pursuit to solve
the MMV problem [5].

In this paper, we mainly investigate three reconstruction
algorithms to solve the BMSR problem. The first is a gen-
eral MUSIC algorithm, which is very suitable for the BMSR
problem [6]. The other two are widely used reconstruction
algorithms in traditional compressive sensing theory. One
is Multiple Basis Pursuit De-Noising (M-BPDN) [7], which
belongs to the family of �1-minimization in convex optimiza-
tion, and the other belongs to the category of greedy pur-
suit algorithms. Instead of using multi-orthogonal matching
pursuit (M-OMP) [5], we apply a stagewise factor as Multi-
ple Stagewise Orthogonal Matching Pursuit (M-StOMP) [8].
Then, we investigate the performance of these algorithms
from the view of detecting spectrum allocation and evalu-
ate the mean square error (MSE) in the frequency domain
between the reconstructed signal and the signal sampled at
Nyquist rate. We also investigate the robustness of these
algorithms under various levels of additive white Gaussian
noise (AWGN). Finally, the disadvantages and limitations of
each algorithm are listed.

2. PROBLEM AND BACKGROUND

2.1 Single Measurement Vector Model
In compressive sensing [2], one single measurement vector
model is given by,

y =Ax, (1)

where y ∈ C
p×1, A ∈ C

p×L, x ∈ C
L×1, and p < L. Suppose

ζ ∈C
L×1 is a linear transformation of the signal x in the basis

Ψ, ζ = Ψx, and x = Ψ−1ζ. If ‖x‖0 = q, and q � L, x is

a sparse representation of ζ, and Ψ ∈ C
L×L is the dictionary

matrix of ζ. Here ‖ · ‖0 is a zero norm calculation, which is
defined as, ‖x‖0 = T,T = {i|xi �= 0}. Transforming the sig-

nal ζ by the measurement matrix Φ ∈R
p×L, the compressed

vector y is obtained: y =Φζ. Then, the matrix A in (1) is
A=ΦΨ.

2.2 Multiple Measurement Vector Model
The MMV problem is an extension of the single measure-
ment vector problem as follows [5]:

Y =AX, (2)



where Y ∈ C
p×B, A ∈ C

p×L, X ∈ C
L×B.

Here A is a similar combination matrix as in (1), with
p < L. X is a row-sparse matrix, i.e., has few non-zero
rows, and Y is an observed matrix. The vectors x̂i and ŷi,
i = 1, . . . ,B, are the columns of X and Y. When B = 1, (2)
reduces to the single measurement vector problem. There-
fore, the MMV problem can be regarded as solving B parallel
single measurement vector problems. (2) can be rewritten as,

ŷi =Ax̂i, i = 1, . . . ,B. (3)

Meanwhile, considering the effect of AWGN ε, (2) is ex-
tended by,

Y =AX+ε, (4)

where ε∼N(0, 1
B δ 2

ε ), and E[εiεi] = δ 2
ε .

2.3 Multiband Signal Model
Here, we use a multiband signal model [9]. Suppose x( f ) is
the spectrum of ζ (t). Let F denote the spectrum support set
in the whole spectrum [0, fnyq]. We define a signal as multi-

band if F =
⋃N

i=1[ fa,i, fb,i], and x( fn) = 0, if fn /∈ F. Since
the maximum frequency fb,N in F is unknown, the signal is
bandlimited to fnyq. As mentioned before, the spectrum of a

signal is sparse if ∑N
i=1 Bi � fnyq. How to sample this kind of

signal in a sparse way is discussed below.
Instead of using one sampler on ζ (t) uniformly at the

Nyquist rate, i.e. ζ[n] = ζ (nT ), T = 1/ fnyq, Feng and
Bresler proposed a parallel structure with p samplers [3].
Each one samples at rate of 1/(LT ) with a different time
shifting. Consequently, the x( f ) in frequency is divided

into L consecutive subbands, i.e. xi( fi), fi ∈ [ i−1
LT , i

LT ), i =
1, . . . ,L.

Then, the x( f ) is reformulated as X( f̂ ), f̂ ∈ [0, 1
LT ) (de-

tails in [4]). Each row of X( f̂ ) is xi( f̂ ), i = 1, . . . ,L, which
corresponds to xi( fi). Suppose the bandwidth of each sub-
band in x( f ) does not exceed a maximum bandwidth Bmax,

the maximum f̂ should be larger than Bmax, i.e. max{Bi} ≤
Bmax ≤ 1/(LT ). Here we discretize the f̂ to B samples with

B ≥ Bmax, we get X ∈ C
L×B, and L ≤ 1/(BT ). Then, the

model of multiband signal is given by,

Y =AX, (5)

where A ∈ C
p×L is referred as a universal sampling matrix

[3]. The structure can be a multicoset sampler [3] or a ran-
dom demodulator [10]. Here p is the number of samplers,
and L is the sampling period. The overall sampling rate is
fs =

p
LT = p

L fnyq, with p < L. It is clear that (5) is exactly the
same type of problem (MMV) as (2).

In this paper, the investigated reconstruction algorithms
are based on the discretized frequency model (2). As long
as X is reconstructed, ζ can be easily calculated [4]. The
effects of frequency discretization and quantization are out
of the scope of this paper, as well as the design of the A
matrix.

2.4 Optimization Problem
Since p < L, (2) is an underdetermined equation, satisfied by
infinitely many solutions. Therefore a unique solution of (3)

should be the sparsest X̂.

To reconstruct the original signal from the observed sig-
nal, several algorithms have been proposed in the literature.
The sparsest solution to (2) can be found by solving the be-
low optimization problem,

min ‖R(X)‖0

subject to Y =AX,
(6)

where R(·) calculates the �2 norm of the ith row in X, i =
1, . . . ,L, and ‖R(·)‖0 returns the number of rows containing
non-zeros elements.

Here recall the multiband signal model. Before refor-
mulating the frequency, the sparsity q = ||x||0 in (1) counts
the number of non-zero frequencies in the whole spectrum.
However, in (5), N = ‖R(X)‖0,N = 1, . . . ,L, is the number
of subbands allocated in the support F.

3. RECONSTRUCTION ALGORITHMS

We define S as the support of X, S � {i| ‖xi‖0 �= 0}, where

xi is the ith row of X. In the MMV problem, we have XS �
[x̂H

1 , . . . , x̂
H
N ]

H , where x̂i = xS[i], i = 1, . . . ,N. x j is the jth row

of X, and (·)H is the Hermitian transpose. Correspondingly,

A = [a1, · · · ,aL], where ai is the ith column in A. Then,

AS � [âH
1 , · · · , âH

N ], where âi = aS[i].
Obviously, if the support S is known, (2) reduces to,

Y =ASX
S, (7)

where AS ∈ C
p×N , and XS ∈ C

N×B. If p > N, (7) becomes

an overdetermined equation. Then, X̂ can be reconstructed
as the least-squares estimate

X̂=A†
SY, (8)

where (·)† is the pseudoinverse operation.
However, S is usually unknown in (2). To solve (6) is an

NP-hard combinatorial optimization problem [5], since
(L

N

)
combinations must be evaluated to find the correct support
S. This computation increases exponentially with the size L,
and N. For multiband signal models, when S is unknown, (5)
becomes a blind spectrum signal model. Therefore, many
suboptimal algorithms are proposed to reconstruct S and X .

The other problem is how to be sure that X̂ is the sparsest
solution of (6) even if support S is reconstructed. Will there

exist another solution X̃ such that ‖X̃‖0 < ‖X̂‖0? Therefore,
some properties of the matrix A should be discussed to meet
the uniqueness condition of (5).

3.1 Uniqueness and Minimum Sampling Rate
By following the theorem and definition of Kruskal-rank of
the matrix A in [4], we have:

Definition 1 Kruskal-rank: Given a matrix A, define η =
KruskR(A) as the maximal number such that every η
columns of matrix A are linearly independent.

Theorem 1 Uniqueness: The matrix X is the unique spars-
est solution of (6), if ‖R(X)‖0 ≤ KruskR(A)/2.

Calculating the Kruskal-rank of a matrix A is a combi-
natorial problem. In this paper, we apply a universal sam-
pling matrix A which guarantees that X is uniquely recon-
structable [3]. For a specific number of samplers p, one dis-
tinct sampling matrix A is found via solving a minimax op-
timization problem. For details, please refer to [3].



Regarding to the minimum sampling rate, since A ∈
C

p×L with p < L, it is easy to get p ≥ η ≥ 2‖R(X)‖0 = 2N.

Theorem 2 Minimum rate: The theoretical minimum sam-
pling rate of the overall parallel structure is fs =

2
‖R(X)‖0

L fnyq.

In the following parts, we discuss how to reconstruct the
support S, and solve (4) by three suboptimal algorithms.

3.2 MUSIC with Spectral Analysis
MUSIC is a technique of spectral estimation, which was first
invented by Schmidt [6] in 1986 to solve the problem of
direction-of-arrival (DOA). In this paper, we use the tradi-
tional MUSIC algorithm [4] to solve (2). The detailed steps
are listed in Algorithm 1.

Algorithm 1 MUSIC Algorithm

Input: A,Y, and N
1: Estimate the autocorrelation, Q= E

[
YYH

]
2: Eigendecomposition, Q=UΛUH

3: Find the 2N signal subspace, Us = subsig(U)
4: Calculate the MUSIC spectrum,

P̂mu =
{
aH

i (I−UsU
H
s )ai

}−1
, i = 1, ...,L

5: Set S as the indices of peak values of P̂mu

6: return S and X̂=A†
SY

In step 2, Q is decomposed as, Q = UΛUH , or Q =
∑p

i=1 λiuiu
H
i . One of the crucial steps in MUSIC is to sepa-

rate the signal subspace and noise subspace from U. For the
noiseless case, the order of eigenvalues is,

λ1 ≥ λ2 ≥ ·· · ≥ λ2N ≥ λ2N+1 = · · ·= λp = 0, (9)

Then, in step 3, the first 2N eigenvalues, λi, i = 1, . . . ,2N, are
referred as signal subspace eigenvalues, and ui, i= 1, . . . ,2N,
are referred as signal subspace eigenvectors.

However, with increasing noise level ε, the difference be-
tween signal eigenvalues and noise eigenvalues is more and
more difficult to distinguish, which affects the performance
of MUSIC dramatically.

3.3 Basis Pursuit Minimization
Basis pursuit [11] is a convex relaxation of �0 minimization
in (6),

min ‖R(X)‖1

subject to Y =AX.
(10)

Considering the effect of noise (4), basis pursuit de-noising
(BPDN) is an approximation of basis pursuit,

min ‖R(X)‖1

subject to ‖yi −Axi‖2
2 ≤ δ 2

ε , i = 1, · · · ,B. (11)

In this paper, we use the function spgl1_mmv from the
SPGL1 toolbox to solve the BPDN in MMV problem [7].

3.4 Greedy Pursuit
Orthogonal matching pursuit (OMP) is an improvement of
matching pursuit (MP) [12]. In relation to the MMV prob-
lem, several greedy algorithms have been proposed [5]. One
of the improved M-OMP is listed in Algorithm 2 [5].

Algorithm 2 Multi-orthogonal matching pursuit (M-OMP)

Input: residual R(0) =Y, subset S0 = /0, iteration n = 1
1: while stop criterion is not met do
2: g

(n)
i =R(n−1)H

ai

3: S(n) = S(n−1)∪ argi max
∥∥∥g(n)

i

∥∥∥
r

4: X
(n)
S(n)

=A†

S(n)
Y

5: R(n) =Y−AX(n)

6: check stop criteria
7: n := n+1
8: end while
9: return X and S

In Algorithm 2, S(n) denotes a set containing the indices

of the elements selected up to nth iteration. R(n) is the resid-

ual in the nth iteration. gi is the projection of the residual on

the ith column of A. The main change of the M-OMP in [5]
is the step 3, where ‖ · ‖r calculates the r-norm of gi. In this
paper, we set r = 2.

Usually, when A is not an orthogonal basis, the orthogo-
nality of M-OMP is not preserved. In step 3, it is unnecessary
to find a new column vector of ai, which must be orthogonal
to the previous ones. By introducing the concept of a stage-
wise weak factor λ [8], we change step 3 in Algorithm 2,
resulting in Algorithm 3. Instead of selecting the index with
max‖gi‖r, we select indices which are no less than λ · ‖gi‖r,
where λ = 0, . . . ,1. When λ = 1, Algorithm 3 is exactly the
same as Algorithm 2.

Algorithm 3 Multiple Stagewise Orthogonal Matching Pur-
suit (M-StOMP)

Input: residual R(0) = Y , subset S0 = /0, λ , iteration n = 1
1: while stop criterion is not met do
2: g

(n)
i =R(n−1)T

ai

3: S(n) = S(n−1)∪
{

i :
∥∥∥g(n)

i

∥∥∥
r
≥ λ maxi

∥∥∥g(n)
i

∥∥∥
r

}

4: X
(n)
S(n)

=A†

S(n)
Y

5: R(n) =Y−AX(n)

6: check stop criteria
7: n := n+1
8: end while
9: return X and S

4. NUMERICAL EXPERIMENTS

In this section, we discuss the performance of each algo-
rithm. First, we describe the simulation set-up. Second, two
aspects of performance are discussed.

4.1 Simulation Set-up
Fig. 1 shows the spectrum of a multi-band signal. We set the
entire bandwidth as 5kHz. The Nyquist frequency is fnyq =
1/T = 10kHz. There are N = 3 subbands in total. We set the
maximum bandwidth of each bandwidth Bi ≤ 200Hz. Since
the number of allocated subbands 3, 6 samplers are used, and
each sampling at the rate 1/(LT ), where L ≤ 1/(BT ) = 50,
so 1/(LT ) = 200Hz. The overall sampling rate is p/LT =
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Figure 1: Simulated signal containing 3 subbands with each
bandwidths ≤ 200Hz. Entire bandwidth 5kHz. 6 samplers.
Overall sampling rate 1.2kHz. (a) Original vs. reconstructed
spectrum by MUSIC. (b) MUSIC algorithm benchmark at
SNRin = 100dB.

6 ·200Hz = 1200Hz, which is the minimum sampling rate fs
in theorem 2. Apart from the number of samplers and input
signal to noise ratio (SNR), the other parameters are fixed in
the simulation set-up.

In Fig. 1a, the blue line is the original spectrum with
100dB as input SNR. The red dashed line is the spectrum
reconstructed by the MUSIC algorithm. We can see that the
spectrum support is perfectly reconstructed at the minimum
sampling rate when p = 6. The noise applied is AWGN. By
changing the input SNR (SNRin) level, we can check the ro-
bustness of the reconstruction algorithms. However, since
the allocation of the signal subbands is unknown, the noise
is added on the entire signal spectrum. Therefore, the SNRin

is defined as the signal power in each subband proportion to
the noise power in the entire Nyquist range.

We use two methods to analyse the reconstruction algo-
rithm performance. Since reconstructing the support S is es-
sential for the MUSIC algorithm, one method is to evaluate
the probability of finding the correct support. Another is the
MSE. Here we evaluate the MSE between the reconstructed
signal spectrum and the spectrum sampled at Nyquist rate.

Fig. 1b shows the benchmark of MUSIC algorithm at
SNRin = 100dB and p = 6. The x-axis shows the number
of simulations, and the y-axis shows the spectrum MSE. The
simulation stops when the following condition is met for 5

times consecutively, i.e. the difference between the ith MSE

and jth MSE is smaller than 1×10−3, where j = i+100, i ∈
Z+, and i ≥ 5000. In this paper, the number of simulations
for each set-up is no less than 5000 times. Fig. 1b shows that
after around 11000 simulations, the spectrum MSE is 0.0068.

4.2 Recovery Probability
Fig. 2 shows a comparison between probability of finding the
correct spectrum support vs. the number of samplers. The x-
axis is the number of samplers p, where the sampling rate is
fs = p/LT , and 50 samplers corresponds to the Nyquist rate.

It is not surprising to see that the more samplers, the
higher probability of correct reconstruction can be achieved.
Comparing the 30dB cases, MUSIC is the best. It can
achieve the theoretical lowest sampling rate when p = 6. We
get the same perfect reconstruction from M-StOMP, and M-
BPDN when p = 11, and p = 12 respectively. So, the ad-
vantage of MUSIC is obvious. Comparing with M-StOMP

and M-BPDN, it looks similar. By checking the lowest num-
ber p for which P = 100% at different SNRin, we find that
M-StOMP works slightly better than M-BPDN. The simula-
tion result is the same as the theoretical result in [5]. With
decreased SNRin, if the signal is heavily distorted by noise
(SNRin < 0dB), MUSIC is not better than the other two al-
gorithms. The reason is that for MUSIC, when the signal is
drowned out by the noise, it is difficult to separate the signal
subspace from the noise subspace by the eigenvalues in (9).

4.3 Mean Square Error
Having found the correct spectrum support, we evaluate the
reconstructed spectrum quality. Fig. 3 shows three images
representing the spectrum MSE. Along the x-axis is the
number of samplers p, and along the y-axis is SNRin from
−8dB to 30dB. The step size of the y-axis is 1dB. Each
pixel represents a MSE value. The three images use the same
grey scale from 0 to 0.25. Here we define 0 as black (perfect
reconstruction), and 0.25 as white (failed reconstruction).

Comparing Fig. 3a to 3c, it is quite clear to find a narrow
line in (a) as the lowest sampling rate to separate successful
and failed reconstruction from 30dB to 5dB. However, in (b)
and (c), the boundary of lowest sampling rate is blurred. In
the region of 0dB ≤ SNRin ≤ 5dB, MUSIC still works sig-
nificantly better than M-StOMP, and M-BPDN, if the num-
ber N in (9) is given.

However, the performance of the MUSIC algorithm is
strongly related to steps 3 and 5 in Algorithm 1. First, when
the number of N is unknown, we cannot take the first 2N
eigenvalues arbitrarily as signal subspace. The algorithm
works only if signal eigenvalues are separable from noise
eigenvalues, which requires an obvious gap between these
two groups of eigenvalues. Second, the support set S is de-
termined by the peak indices in step 5. Therefore, the method

of designing the thresholding for P̂mu is very important.
When SNRin < 0dB, the MSE in both (b) and (c) are de-

creased with increased number of samplers except for MU-
SIC. In this region, MUSIC seems to fail. Even when sam-
pling the signal at Nyquist rate, M-BPDN can reconstruct the
signal successfully at SNRin = −8dB while M-StOMP and
MUSIC cannot. In the case of MUSIC, the difficulty lies in
signal and noise eigenvalue separation. For the M-StOMP
algorithm, with increased noise level, the algorithm is easily
attracted by local minima. Meanwhile, although M-BPDN
works well when SNRin ≤ 0dB, the performance of the al-
gorithm is determined by the level of the coefficient ε in (4).
Usually the SNRin is unknown in advance, which makes M-
BPDN sensitive to inaccurate estimation of δ 2

ε in (11).

5. CONCLUSION

In this paper, we analyzed three multiple measurement vector
(MMV) reconstruction algorithms, namely as MUSIC, M-
StOMP, and M-BPDN, for blind reconstruction of multiband
signals from samples below the Nyquist rate. M-StOMP is a
paralleled greedy pursuit algorithm, and M-BPDN is a par-
alleled basis pursuit de-noising algorithm. After evaluating
numerous simulations, we see that MUSIC can achieve the
theoretical lowest sampling rate when SNRin ≥ 30dB. We
also identify that it is a bottleneck for MUSIC to separate
the signal and noise eigenvalues when SNRin ≤ 0dB. For
M-StOMP, and M-BPDN, we find M-StOMP to outperform
M-BPDN in all tested cases. However, when SNRin < 0dB,
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Figure 2: Probability of finding correct spectrum support vs. no. of samplers. (a) MUSIC Recovery Probability. (b) M-StOMP
Recovery Probability. (c) M-BPDN Recovery Probability.
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Figure 3: SNRin vs. no. of samplers on grey map, the pixel color is proportional to the MSE of reconstructed signal. (a)
MUSIC Recovery MSE Performance. (b) M-StOMP Recovery MSE Performance. (c) M-BPDN Recovery MSE Performance.

the M-BPDN is the only algorithm which can reconstruct a
signal successfully at the Nyquist rate.

Future work can be focused on the sampling matrix A de-
sign or reconstruction algorithm improvement. It’s not trivial
to design a universal sampling matrix (5). Meanwhile, eigen-
value separation is crucial for MUSIC when SNRin is low,
and N is unknown.
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