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Abstract.
The Advanced Virgo detector has contributed with its data to the rapid growth

of the number of detected gravitational-wave signals in the past few years, alongside
the two LIGO instruments. First, during the last month of the Observation Run 2
(O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and
GW170817) and then during the full Observation Run 3 (O3): an 11 months data
taking period, between April 2019 and March 2020, that led to the addition of about
80 events to the catalog of transient gravitational-wave sources maintained by LIGO,
Virgo and KAGRA. These discoveries and the manifold exploitation of the detected
waveforms require an accurate characterization of the quality of the data, such as
continuous study and monitoring of the detector noise. These activities, collectively
named detector characterization or DetChar, span the whole workflow of the Virgo
data, from the instrument front-end to the final analysis. They are described in details
in the following article, with a focus on the associated tools, the results achieved by the
Virgo DetChar group during the O3 run and the main prospects for future data-taking
periods with an improved detector.
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1. Introduction

A century after being predicted by Albert Einstein in the framework of general relativity,
gravitational waves (GWs) have been detected by a global network of ground-based
interferometric detectors [1]. The LIGO [2] and Virgo [3] collaborations, now joined
by the KAGRA [4] collaboration, have observed in the past six years dozens of GW
signals coming from merging compact binary systems. Compact binaries composed
of two black holes (BHs), two neutron stars (NSs), or both kinds of compact object
have all been observed so far. GW150914 [1], the first GW signal ever detected (at
that time by the two Advanced LIGO detectors) was a binary BH merger. Two years
later, shortly after the Advanced Virgo (AdV) detector had started operating, the 3-
interferometer network detected the signal GW170817 [5], emitted by the fusion of two
NSs and associated with counterparts in the entire electromagnetic spectrum, leading
to the birth of multi-messenger astronomy with GWs. More recently, LIGO, Virgo and
KAGRA (“LVK”) have announced the first detections of NS-BH mergers in data taken
in January 2020 [6].

All events add up in a GW Transient Catalog whose first four versions— GWTC-1 [7],
GWTC-2 [8], GWTC-2.1 [9] and GWTC-3 [10]— have been released. Such a catalog
allows scientists to go beyond the detections themselves and probe the populations of
compact stars, estimate the merger rate of binary systems, test general relativity in
the strong-field regime, and perform searches for counterparts using archival data from
other observatories. The reconstructed GW strain data—the so-called h(t) streams—are
regularly released in chunks of several months on the Gravitational Wave Open Science
Center (GWOSC) website [11].

Producing these results requires a thorough characterization of the data quality, a large
part of which involves studying and monitoring the noise of GW detectors. This activity,
often referred to as detector characterization or DetChar, is an expertise which has
been constructed over many years, starting with the initial detectors [12, 13]. Analysis
methods and tools have been developed and implemented to characterize the Virgo data
both with low latency and offline. They cover a physics-driven chain that starts from
the raw data recorded by the instrument and extends all the way to the final set of GW
events and the related analysis. The results of DetChar analyses are used to improve
the detector performance during commissioning periods and to maximize the sensitivity
to GW signals during an Observing Run, when science-quality data is recorded.

This paper reports the work of the Virgo DetChar group over the past few years, with an
emphasis on the preparation for the third LIGO-Virgo observing run, O3 (April 2019—
March 2020), on the activities during O3, as well as on the final results achieved after
the run and the experience accumulated in view of the future runs of the LVK network.
These achievements stem from the developments made before and during the O2 run
(for Virgo: 25 days of data taking in August 2017) and those will also be described here
when appropriate.
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Section 2 provides an overview of the AdV detector configuration during the O3 run,
preceded by a short summary of the path that led to this data taking period. The
same section also introduces notions and concepts that will be extensively used in the
rest of the article, and defines a few related abbreviations. Then, Section 3 summarizes
the O3 run from a Virgo perspective: how the data taking was organized, what the
performance of the detector and the final O3 dataset were. Section 4 describes the
main DetChar tools, classified by categories: monitoring tools; generic multi-purpose
tools; tools to study noise transients; tools to investigate the noise spectrum; and finally,
common LIGO-Virgo tools. The description of each tool has been kept short in the main
text; additional information regarding those that are not referenced in the literature is
provided in Appendix A. Section 5 presents the Virgo online data quality framework
built for the O3 run. Section 6 deals with the framework developed to vet signals
candidate to be released as public alerts to the astronomical community. Section 7
presents the main DetChar analyses done on the O3 dataset to study noise transients;
their impact on GW searches; the noise spectrum; and the final validation of events.
Finally, Section 8 provides some information about the ongoing preparation of the future
O4 run, that is scheduled to start at the end of 2022.

A list of the main abbreviations used throughout the article is provided as well, for
reference.

2. The Advanced Virgo Detector

This section focuses on the Virgo detector during the O3 run. First, we briefly review the
main steps of the AdV project up to the beginning of O3. In particular, we emphasize
its participation to the last four weeks of the O2 run in August 2017 that were rich
of discoveries. Then, we summarize the activities during the 1.5 year-long shutdown
between O2 and O3 that allowed the Virgo Collaboration to improve the instrument
significantly. Finally, we describe the detector configuration during O3 and present the
main features of the data it has collected.

2.1. The path to the O3 run

Virgo [14] is an interferometric detector of GWs located at the European Gravitational
Observatory (EGO) in Cascina, Italy. The AdV project [3] allowed to upgrade the
original instrument to a second-generation detector, similarly to what LIGO has done
with its two interferometers [2], located in Hanford (WA, USA) and Livingston (LA,
USA). The funding of AdV was approved in December 2009 by CNRS (France) and
INFN (Italy), with an in-kind contribution from Nikhef (The Netherlands). The
decommissioning of the first-generation Virgo detector started in Fall 2011, after
the completion of the science run VSR4 [15], pursued together with the GEO600
detector [16] (the Advanced LIGO upgrade project had already started). The
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installation of the Avanced Virgo equipment started mid-2012 and was completed in
2016. The upgraded interferometer was robustly controlled in March 2017 and the next
few months were dedicated to commissioning activities: noise hunting and sensitivity
improvement. At the end of July, the detector was very stable and had a sensitivity
corresponding to a binary neutron star (BNS) range§ of ∼30 Mpc, that is more than a
factor two above the performance of the Virgo+ detector during the VSR4 run.

Therefore, AdV started taking data on August 1 2017, joining the second Observing Run,
O2, which had started on November 30, 2016 for the two LIGO interferometers [17].
On August 14, 2017, the AdV detector made its first detection of a GW. That event,
labelled GW170814, was also recorded by the two LIGO interferometers. It was the
first ever triple detection of a binary black hole coalescence, allowing an unprecedented
accuracy in the localization of the source in the sky [18]. A few days later, on August
17, the three interferometers jointly detected, for the first time, a GW emitted by the
coalescence of two neutron stars [19]. This event, known as GW170817, was accompanied
by the almost simultaneous detection of a gamma-ray burst by the Fermi Gamma-ray
and Integral space telescopes [20]. The accuracy in the localization of the GW source
(approx. 30deg2) allowed to identify the optical counterpart in the galaxy NGC4993 [21].
The O2 run ended on August 25, 2017.

The LIGO-Virgo shutdown between O2 and the third Observing Run, O3, lasted 19
months. On the Virgo side, it was divided into four periods.

• A post-O2 commissioning phase, until early December 2017.
The goal was twofold: to make a series of measurements on the O2 detector
configuration that would have been too invasive during the run and to perform
some tests to try to further improve the instrument.

• Hardware upgrades until mid-March 2018. Four main projects were pursued:

– The re-installation of the monolithic suspensions and various vacuum
upgrades.
The steel wires, with which the AdV arm cavity mirrors had been suspended
for the O2 run, were replaced with quartz fibers. Monolithic suspensions,
successfully tested in the Virgo+ configuration [22, 23], had been foreseen
in the AdV Technical Design Report [24]. Yet, multiple breakings of fused
silica fibers when installed in vacuum were observed in Fall 2016, forcing the
recourse of steel wires to preserve the participation of Virgo to the O2 run. The
fiber breaking issue was eventually demonstrated to be caused by a spurious
dust contamination generated by some vacuum pumps [25]. Therefore, the
Virgo vacuum system was improved in order to avoid contamination with dust
particles while the suspension fibers were shielded.

§ The BNS range is the average distance up to which the merger of a BNS system can be detected. The
average is taken over the source location in the sky and the BNS system orientation, while a detection
is defined as a signal-to-noise ratio of 8 or above
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– A higher laser power.
The laser power injected into the interferometer was increased, in order to
reduce the photon shot noise, limiting the high-frequency sensitivity: 10 W
(19 W) were injected in Virgo during the O2 run (at the beginning of the O3
run).

– The installation of a squeezed light source.
This allows to further reduce the shot noise limit at high frequencies
by modifying the quantum properties of the light coming out of the
interferometer [26].

– The test installation of an array of seismic sensors.
An in-depth characterization of the seismic noise field at the test mass locations
was performed in order to prepare for the subtraction of the Newtonian noise
contribution that may limit the low-frequency sensitivity in the future [27].

• A commissioning period, until Fall 2018, to improve the sensitivity and the duty
cycle of the detector.
• Finally, the transition phase to the O3 run, that officially started on April 1st, 2019

at 15:00 UTC.

2.2. The O3 configuration

The AdV detector has been designed to achieve a sensitivity about one order of
magnitude better than that of the initial Virgo, corresponding to an increase in the
detection rate by about three orders of magnitude. The AdV design choices were made
on the basis of the outcome of the different research and development activities carried
out within the GW community and the experience gained with Virgo, while also taking
into account budget and schedule constraints.

The simplified optical schematic of AdV during the O2 and O3 runs is shown in Figure 1.
In the following, we briefly outline the different parts of the detector layout and define
the main abbreviations that are labelled on the schematic or used later in the article.
Further information about the O3 configuration and control system of the Virgo detector
can be found in [28].

The Virgo power-stabilized infrared laser beam (PSL, wavelength: 1.064 µm) is filtered
at the interferometer input by a 144 m triangular cavity called the input mode-cleaner
(IMC); the two flat mirrors of the IMC are located on the first suspended injection
bench (SIB1), that also hosts various optics for beam matching. Then, the beam
goes through the partially reflective power recycling (PR) mirror before being split
into two perpendicular beams at the beam splitter (BS) mirror. The two 3 km-long
arms hosting Fabry-Perot cavities are called "North" and "West" as they are roughly
oriented along these geographical directions. The cavity mirrors closest (furthest away)
from the BS are called "input" ("end") mirrors. So, following these conventions, the test
masses (the four mirrors forming the two 3-km long Fabry-Perot cavities) are labelled
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Figure 1. Schematics of the AdV configuration during the O3 run (not to scale),
showing optics, photodiodes and quadrant photodiodes, such as the main components
of the global feedback system used to steer the detector. The suspended optical benches
introduced in the text are not represented here. This figure is taken from [28].

north input (NI), north end (NE), west input (WI) and west end (WE). Both arms
end with a suspended terminal bench—called suspended north-end bench (SNEB) or
suspended west-end bench (SWEB)—hosting a photodiode (B7 or B8) receiving the
cavity transmitted beam. After propagation and storage in the kilometric cavities, the
arm beams recombine on the BS and the beam resulting from this interference goes to
the interferometer output port. As indicated in Figure 1, the location of the foreseen
signal recycling (SR) mirror was occupied by the first lens of the detection system during
the O3 run (and during O2 as well). The installation of that additional mirror only took
place during the shutdown period that followed the end of O3. Further downstream is
the place where the beam from the frequency-indepedent squeezed light source enters
the detector. Finally, prior to being detected on the dark fringe port B1 photodiode
located on the suspended detection bench 2 (SDB2), the output port beam is filtered in
sequence by two output mode-cleaner (OMC) cavities, OMC1 and OMC2, located on
the suspended detection bench 1 (SDB1).

A complex active feedback system, made of several automated control feedback loops,
is necessary to bring the detector to its global working point and maintain it there. In
particular, it aims at controlling the four main longitudinal degree of freedoms (DOFs)
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of the AdV detector in its O2-O3 configuration that are defined below. This global
control relies on radio-frequency sidebands for the carrier beam that are generated by
the electro-optical modulator (EOM) located in between the laser source and the IMC
on Figure 1. The 6, 8 and 56 Mhz sidebands are used to control the interferometer,
while the 22 MHz one is used to control the injection system.

• The length difference between the Virgo Michelson interferometer short arms
(MICH), lN− lW , sets the destructive interference (‘dark fringe’) optimal condition.

• Thepower recycling cavity length (PRCL), lPR+(lN+lW )/2, that must be resonant.

• The lengths of the kilometric Fabry-Perot cavities, LN and LW , that must be
resonant as well, or rather their sum and difference that are more physical.

– The common (i.e. average) length of the two arm cavities (CARM), (LN +

LW )/2, used as a length etalon by the second-stage frequency stabilization
system (SSFS) to stabilize further the frequency of the input laser.

– The difference of the two arm cavity lengths (DARM), LN −LW , the quantity
sensitive to a passing GW.

2.3. Virgo data and DetChar products

The GW strain data stream reconstructed at the Virgo detector is dominated by
noise with, up-to-now, rare and weak GW signals. That noise results from several
contributions that can be roughly classified into two main categories.

• Fundamental noises, that are inherent to the instrument and represent the ultimate
limit of its sensitivity. Their combination is usually Gaussian and stationary,
meaning that their properties do not change in time.

• Various varying noise artifacts, whose origins are manifold (hardware components
of the detector, feedback control loops, interaction with the external environment,
etc.) and that represent potential issues, not only because they may impact the
running of the instrument but also—and above all—because they show up in the
background of searches for GWs, limiting thus their sensitivity. Noise transients,
called glitches, can either look like real signals or overlap in time with one, either
imparing its detection or confusing the inference of its source parameters. They are
monitored and studied using time-frequency representations that are used to classify
their numerous signatures into families and separate them from real GW events.
In addition, long-lasting noise excesses, also called spectral noises, are also seen
around particular frequencies (power main frequency and its harmonics, suspension
resonating modes, etc.): the narrow ones, (nearly) monochromatic, are called lines
and the wider ones bumps. Both can manifest themselves in several “flavours”.
For instance, lines can exist individually, but sometimes appear as combs, that is
families of lines separated by a constant frequency interval. They are typically due
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to processes with a strict time periodicity, like electronic clock signals. Bumps may
have some specific structure, depending on the source. Both lines and bumps can
exhibit structures symmetric around their main frequency, called sidebands, that
are due to non-linear interactions among different disturbances. Moreover, spectral
noises can be persistent across a full run, be present only in a portion of it, or evolve
in time.
Both the glitch rate in a particular frequency band and the properties (amplitude,
peak frequency and bandwidth) of spectral noises can vary in time to reflect changes
occuring at the level of the detector or its environment.

To allow investigating these variations, hundreds of auxiliary channels are acquired
by the Virgo data acquisition system (DAQ), providing both a detailed status of the
detector control systems and a complete monitoring of the local environment [29, 30].
When characterizing the detector or studying the quality of some data, the Virgo
DetChar group often singles out integer GPS ranges of interest, that are called segments
in the following.

2.4. Noise Budget

The noise budget compares the measured detector sensitivity with the incoherent sum
of all known noise contributions. Each noise projection depends on the noise level, as
measured by external probes, and of its coupling to the strain channel h(t), that is
estimated by dedicated measurements called noise injections [31].

The AdV noise budget is based on the SimulinkNb [32] software package. It includes a
complete model of the four main longitudinal DOFs of the interferometer (DARM,
CARM, MICH, PRCL), with the interferometer optical response simulated using
Optickle [33], the mirror suspension approximated with a double pendulum state space
model of the mirror and marionette (the steel body to which the mirror is suspended, a
component of the Virgo suspension’s last stage, called payload [34]), and the feedback
response measured from the transfer function between the photodiode signal and the
mirror and marionette corrections. This approach allows to simply add different noise
sources at their physical entry into the interferometer control loop, and also includes
the expected cross couplings between the longitudinal DOFs.

This model has been verified to match the measured open loop transfer functions of the
four modeled DOFs, and to reproduce the interferometer strain data calibration with
errors smaller than 10%. In total more than 100 noise sources are taken into account,
and the total of those noises is summarized in Figure 2. The noise is summed in log
spaced frequency bins, which allows resolving narrow lines at low frequency and a precise
representation of broadband noise at high frequency. The noises taken into account are
as follows:
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Figure 2. Snapshot of the AdV O3 noise budget generated at a time of near best
sensitivity of the detector (February 8th, 2020). The different noise sources shown are
described in the text, the green line (BNS range: 66 Mpc) represents the sum of these
noises and it can be compared to the measured total noise shown in black (BNS range:
59 Mpc).

ASC – Angular Sensing and Control. This represents the control noise of 12 angular
DOFs of the interferometer (two per mirror) and four DOFs of the beam injected
into the interferometer. The coupling of these noises has been measured by injecting
broadband noise into each DOF [35].

DAC – Digital Analog Converter. This is the electronic noise of the digital to analog
converters used to drive the six main mirrors and marionettes of the interferometer.
This electronic noise has been measured in the laboratory before installation, and
the noise coupling is modeled using SimulinkNb.

Dark. This is the electronic and dark noise of the photodiodes used in the four
longitudinal DOFs control. The noise is measured by closing shutters of each
photodiode, and the noise coupling is modeled.

Demodulation. This is the phase noise of the demodulation of radio frequency signal
from photodiodes to control CARM, MICH and PRCL. That phase noise mixes the
two demodulation quadratures. This bi-linear noise source is measured, and the
noise coupling is modeled using SimulinkNb.

ENV – Environment. This is the sum of three contributions: acoustic, magnetic
and scattered light. The acoustic and magnetic noises are measured with four
microphones and three 3-axis magnetometers, located in the experimental buildings
near the interferometer components (see [29, 30] for details). Their couplings
are measured by broadband and sweeping sine noise injections. Scattered light
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is measured in two ways: i) using the signal from auxiliary photodiodes which have
a linear coupling that is modeled; ii) using position sensors of suspended benches
that couple in a non-linear way modeled with a measured scaling factor [36].

LSC – Length Sensing and Control. This represents the control noise of four DOFs:
MICH, PRCL, OMC length, and residual intensity noise. The noise is measured
in all cases, the coupling is measured for all except for the OMC length where it
is modeled. Note that this results in double counting the dark and quantum noise
of the sensors used for MICH and PRCL control, however these double counted
contributions are negligible.

Quantum. Quantum noise of the detector and shot noise of the sensors used for
MICH, PRCL and CARM control. The noise and the coupling are modeled using
SimulinkNb.

SSFS. This represents the control noise of the relative error between CARM and the
laser wavelength. The noise is measured, the frequency dependent coupling is
modeled using SimulinkNb and a time dependent scaling factor is measured.

Seismic-Thermal. This is the sum of the negligible seismic noise and three thermal
noise contributions: suspension, mirror coatings and residual gas pressure in the
arm vacuum tubes. The noise sources and the couplings are modeled using
analytical functions in separate dedicated codes.

“flat noise”. It is a noise source of not yet understood physical origin. Its level has
been measured proportional to the square root of the DARM offset used to obtain
the interferometer DC readout [37, 38].

The sum of the noises described above correspond to a BNS range of 66 Mpc, while the
actual BNS range in the corresponding data was measured at 59 Mpc. Hence, about
10% of the noise limiting BNS detections is unaccounted for.

More in details, at frequencies above 1 kHz the sensitivity is mostly limited by quantum
shot noise. The measured level is about 5% higher than expected. This is due to a slow
degradation of the frequency independent light squeezing during O3, from 3 dB at the
beginning of the run to about 2.5 dB at the end of it.

In the most sensitive frequency range, between 80 Hz and 200 Hz, there are significant
contributions from three sources: quantum shot noise, mirror coating thermal noise and
the “flat noise” of unknown physical origin. Assuming that the “flat noise” estimate is
correct, removing completely this unknown noise source would have resulted in 10 Mpc
improvement in the BNS range.

At low frequencies between 20 Hz and 50 Hz, the dominant noise sources are quantum
radiation pressure noise that is increased by the frequency independent light squeezing
and the laser intensity noise. However 30% of the noise remains not understood in that
frequency range, so other significant noise sources are yet to be identified.
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3. The O3 run

The joint LIGO-Virgo Observing Run 3— "O3"— has been divided into two consecutive
sub-data-taking periods, separated by a one-month commissioning break in October
2019.

• O3a: from April 1, 2019 at 15:00 UTC (GPS: 1238166018), to October 1, 2019 at
15:00 UTC (GPS: 1253977218).

• O3b: from November 1, 2019 at 15:00 UTC (GPS: 1256655618), to March 27, 2020
at 17:00 UTC (GPS: 1269363618).

All three detectors have participated to the whole run. The O3b end date has been
anticipated by about a month, due to the worldwide covid-19 pandemic.

This section presents the LIGO-Virgo O3 run, seen from a Virgo perspective. First, we
describe the main activities into which the data taking was divided, before summarizing
how the detector was steered from the EGO control room. Then, we focus on actions
taken to maximize the amount of data collected and to ensure their good quality. In
particular, we highlight the main DetChar activities during O3, explaining how they fit
and complement each other, following the flow of data from the detector to the final
analysis. Key to achieve this level of performance and to maintain it over almost a
year, were the 24/7 on-call duty service and the rapid response team: both are briefly
described as well.

Then, we review the performance of the Virgo detector during O3, mainly from the
point of view of the duty cycle. A high duty cycle requires not only a stable and robust
detector against external disturbances (see [30] for a comprehensive study of that topic)
but also a quick and reliable procedure to bring the instrument to its working point (the
lock acquisition), starting from an uncontrolled global state. The main statistics of the
Virgo O3 global control acquisition are thus provided, before studying the actual duty
cycle. We also present the evolution of the AdV detector sensitivity, from the O2 run
to the end of O3.

This section ends with a brief overview of the final Virgo O3 dataset, describing how it
was constructed offline, building upon the preliminary dataset estabilished by the live
monitoring and data quality checks.

3.1. Data taking

While data acquisition was the highest priority during the O3 run, a limited fraction of
the time had to be dedicated to other activities. The two main recurring ones were:

• the maintenance periods, held every Tuesday morning, staggered with respect to
the similar times in LIGO, in order to maximize the two-detector network coverage.
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Maintenance, limited to about 4 hours per week, was used to look after the detector
components, to perform various cleaning activities, and to host noisy activities
incompatible with data taking— for instance the refilling of liquid nitrogen tanks
located nearby the central building (CEB), north-end building (NEB) and west-end
building (WEB), delivered by heavy trucks.
• the calibration shifts, held almost every week on Wednesday afternoons or evenings.

These campaigns allowed to check the accuracy of the reconstruction of the h(t)

strain stream [39], to monitor its stability over time and to test new, complimentary
calibration methods, like the use of a Newtonian calibration [40] in addition to the
usual photon calibrators [41].

In addition, commissioning time was allocated irregularly to tune or optimize some
aspects of the detector, depending on the needs and opportunities. Finally, some time
was spent studying and fixing problems impacting the data taking.

3.2. Detector steering

The Virgo data taking is largely automated and usually only requires a single operator
on duty in the control room. Operators are present 24/7 during a run and take shifts
every 8 hours.

The AdV detector automation, called Metatron, relies on the Guardian [42, 43]
framework, developed by LIGO and based on hierarchical finite state machines. The
Virgo implementation links this framework to the DAQ: automation nodes become DAQ
nodes that get data directly from shared memories and are synchronized with the one-
second data availability period. A generic mechanism to read and write DAQ channels
has been introduced and can be used within user codes via dedicated functions.

The full Virgo control acquisition procedure has been implemented in Metatron, initially
prior to the O2 run and then updated for the O3 configuration—the main difference
being the addition of the frequency-independent squeezing [26]. The scheme adopted,
depicted in Figure 3, strictly follows a bottom-up approach, with the lower-level nodes
being automatically managed by higher-level ones.

The suspension nodes (violet background in the graph) are tasked to align/misalign the
Virgo optics; each of them is managed by the most appropriate control nodes (dark blue
background), divided on the basis of the degrees of freedom to be controlled. The main
node—Interferometer Control— is usually the only one operated manually to steer
the detector. It defines the control paths such as for instance the main global control
procedure that allows reaching the Science mode (the nominal data taking state), plus
other procedures to control various configurations of the optics or to perform automated
calibrations, etc. It relies on the underlying managed nodes to perform these actions
on the instrument. During the final steps of the control procedure, each single part
of the interferometer is ultimately entangled with the others, and the interferometer is
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Figure 3. Metatron nodes hierarchy used during the O3 run.

naturally treated as a single system; for these reasons, the last part of the procedure
is directly managed by the upper level node, which sets the control parameters to the
whole system, while the lower level nodes are only used as watchdogs for the correct
functioning of their own sub-systems.

Additionally, the Metatron main node manages:

• the laser Injection System, from the laser source to the IMC (orange background);
• the two Output Mode Cleaners that are controlled in sequence in the final steps of

the nominal control acquisition procedure (pale green background);
• the Detection System at the interferometer output port (pale green background);
• the frequency-independent Squeezing System (light blue background), whose

control proceeds in parallel to the main detector control procedure. As Virgo can
take valid Science data with or without this system being in its nominal state, the
corresponding Metatron node is a bit apart from the others logic-wise.
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Only during the calibration measurements, the Interferometer Control node is
automatically managed by the Calibration node (magenta background).

The Metatron framework also takes care of generating high-level flags that provide the
overall status of the interferometer: this is done within the Interferometer Status
node (dark green background). Finally, the Interferometer Events node (dark green
background) records all state transitions of the detector. The Interferometer Status
and Interferometer Events information is passed onto the Virgo live monitoring system,
documented in Section 4.1.

3.3. DetChar organization

Figure 4 shows the flow of data, from the interferometers (IFOs, on the left), to the
physics analyses (on the right). While focusing on the GW candidates, this schematic
highlights the three main pillars of DetChar activities during a run.

• The first timescale on which DetChar activities take place is online (latency: O(s)).
Quick automated checks are run on live data to mark out (good or bad quality) the
data stream used as input by the “pipelines”—that is the algorithms that scan the
network data in real time, as soon as they become available. Initial data quality
information is indeed shipped alongside the reconstructed GW stream, as explained
in Section 5.

• The second timescale is near real-time (latency: O(min)), crucial to assess the
quality of the GW candidate public alerts. Thanks to a dedicated framework that
is described in Section 6, the data around a significant candidate are vet for each
detector and a global decision is then taken: either to confirm the public alert sent
to the telescopes or to retract it (see Section 3.4 below for a description of the
procedure).

• Finally, the last timescale is offline (high latency: up to months after the data
taking). The goals of these studies are twofold: first, to finalize the dataset that all
offline analyses will use, regardless of whether they look for transient or continuous
signals; then, to validate the events that will be included in the final publications
and whose parameters will be used to extract astrophysical information.

To ensure a continuous monitoring of the data quality, DetChar shifts were organized
during the entire O3 run on a weekly basis, with two people (working onsite or
remotely) on duty. The shifter crew changed every Tuesday morning, during the weekly
maintenance of the Virgo detector. In addition to attend all relevant meetings. DetChar
shifters usually reported their findings at the weekly DetChar meeting on Fridays and
at the weekly detector meeting on Tuesdays (thus at the end of their weekly shift).
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Figure 4. Dataflow from the interferometers (labelled "IFOs" on the left) to the
offline validation of GW candidates and the completion of the final dataset (right). It
focuses on the generation and the vetting of the public alerts that are a key product
of the LIGO-Virgo observing runs. It shows the three main timescales at which the
Virgo DetChar group operates: online, near real-time and offline (see text for details).

3.4. On call duty service and rapid response team meetings

An on-call service was organized during the O3 run to ensure a 24/7 expert coverage
for all the Virgo detector components, from hardware systems to online computing and
DetChar. In case of a problem, the operator on duty would contact the relevant experts
from the control room, plus the data taking coordinators if needed.

In addition, a joint LIGO-Virgo low-latency automated alert system was setup to contact
the rapid-response team (RRT) experts—specialists of data taking, data quality or GW
transient searches—that would meet remotely on short notice each time a public alert
candidate had been identified in real time. They would vet that candidate, using all
raw information available, plus the output of several data quality checks, triggered
automatically by the generation of the signal candidate: the data quality report (DQR),
see Section 6.1 for details. The outcome of an RRT meeting could be twofold: either to
confirm the public alert, or to retract it when the astrophysical origin of the candidate
was questionable.

3.5. Virgo O3 duty cycle

Table 1 summarizes the performance of the global control acquisition procedure for the
Virgo detector during O3. This performance has been stable over the whole run, showing
the robustness of that procedure. As not all control acquisition attempts are successful,
a global control acquisition procedure is defined as a set of successive control attempts
that leads to the global control of the instrument.

The median duration of a successful global control acquisition attempt is 18 minutes:
about 30% of this time is spent reaching the detector working point (Michelson
interferometer at the dark fringe, power recycling cavity and arm cavities resonant,
SSFS enabled); 50% is spent to control the two OMCs at the Virgo output port; the
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final 20% are used to reach the lowest noise configuration at the level of the suspension
actuation.The median number of attempts needed to complete a global control sequence
is 2 and the median duration of a successful global control acquisition sequence is 25 min,
during O3 the quickest sequence took about 13 min.

Table 1. Summary of the Virgo global control acquisition performance during O3:
the control is acquired after a successful control acquisition sequence that counts one
or more control acquisition attempts.

Global control acquisition attempt

Median duration 18 minutes
Distribution of this time

Reaching the detector working point ∼30%
Controlling the two OMCs ∼50%

Acquiring the lowest noise configuration ∼20%

Global control acquisition sequence

Median number of attempts 2
Median duration 25 min

Table 2. Summary of the O3 data taking performance of the Virgo detector. The
last three rows of the table provide duty cycles for different configurations of the 3-
detector LIGO-Virgo global network: the fraction of the time during which at least
one the three instruments is taking data, at least two are and finally all three are.

O3a O3b O3

Virgo global control segments
Mean [hr] 6.1 6.4 6.3

Median [hr] 2.7 1.8 2.2

Virgo Science segments
Mean [hr] 5.0 4.0 4.5

Median [hr] 2.6 1.4 1.9

Duty cycles

Virgo [%] 76.3 75.6 76.0
Network—at least 1/3 [%] 96.8 96.6 96.7
Network—at least 2/3 [%] 81.9 85.4 83.4

Network—3/3 [%] 44.5 51.0 47.4

Table 2 details the control stability of the Virgo detector, separately for the sub-runs
O3a and O3b, and averaged over the whole O3 run. The “global control segments” are
stretches of data during which Virgo is controlled in its nominal low-noise configuration,
while the “Science segments” are the subset of the global control segments during which
Virgo is taking data of good, science-compatible, quality. The difference of duration
between the global control and Science segments is dominated by limited disruptions of
the data taking, that usually stop the Science mode for a short time. The dominant
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source of these breaks is the frequency-independent squeezer that lost its nominal
configuration about 240 times during the O3 run; the median time to restore it and
switch back to Science data taking was about 140 seconds.

We note that the Virgo segment duration summary numbers listed here are lower than
those reported by LIGO [44, 45]. Yet, this difference has no significant impact on
the duty cycle that is very similar for the three detectors of the global LIGO-Virgo
network. The comparison between the O3a and O3b sub-runs shows that the impact of
the winter season (larger sea seismic activity, wind, and more generally bad weather),
although real, has been limited. Overall, the global network duty cycle has improved
during O3, mainly due to the increase of the LIGO detectors duty cycle, while the Virgo
one has been very stable. With an average of 76%, the Virgo O3 duty cycle is lower than
that measured during August 2017, the final weeks of the O2 run Virgo took part of:
∼85%. Yet, the O3 performance has been achieved over 11 months spanning a whole
calendar year and cannot be directly compared to the duty cycle of a 25-day run in
Summer time, the most favorable period to operate an instrument like Virgo. Running
one full year instead of one month is also more complex person-power wise, and the
Virgo organization implemented during O3, although perfectible, held on during the
whole run. This experience represents a good base on which to build upon in order to
improve the Virgo performance for the O4 run and beyond.

Figure 5 shows the breakdown of the time spent in different modes by Virgo during
O3. Overall, the O3a and O3b distributions are quite consistent. Breaking these 11
month-averaged duty cycle figures down to a 24-hour period, Virgo took data during
about 18 hours, with the remaining six hours roughly divided into three blocks of the
same duration: ∼2 hours for controlling the detector (Locking), ∼2 hours for recurring
activities (Calibration, Commissioning and Maintenance) and∼2 hours for solving issues
(Any other state).

The analysis of these pie charts shows that increasing the duty cycle during future
runs will not be straightforward. The room for improvement is limited in each area
and so any significant duty cycle gain will likely stem from a combination of various
small progresses, each made possible by the redesign or the optimization of a particular
process.

To conclude this overview, Figure 6 summarizes the improvement of the sensitivity of
the AdV detector. The BNS range associated to each curve is given in the legend. From
O2 to O3b, the BNS range has more than doubled from 28 to 60 Mpc, with a continuous
improvement of the sensitivity in the whole bandwidth of the detector. Many spectral
features of the residual noise structures have either been removed or significantly reduced
over time.
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Figure 5. Breakdown of the time spent in different modes by the Virgo detector
during the O3 run (larger, top-middle pie chart) and separately during the O3a
and O3b sub-runs (pie charts at the bottom). The Locking mode corresponds to
periods when the control of the detector is being acquired. The regular maintenance
and calibration periods have been described in Section 3.1. Finally, the Any other
state category includes all the other situations encountered during the whole run:
troubleshooting periods, various kinds of tuning, etc. These results exclude the 1
month-long commissioning break that took place in October 2019, in between the O3a
and O3b sub-runs. In each pie chart, the modes are sorted by decreasing percentage.

Figure 6. Comparison between four sensitivity curves of the AdV detector: during O2
(green trace), at the beginning of O3a (purple), at the beginning of O3b (red) and at
the end of O3b (blue). The caption provides the corresponding estimated BNS ranges.
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3.6. The Virgo O3 dataset

The final Virgo O3 dataset consists of more than 250 days of data recorded during the
O3a and O3b sub-runs and whose quality has been checked and validated (described in
Section 7.4.1). It is built upon and supersedes the online good-quality Science dataset
that was used as input by the analysis pipelines that looked for GWs in real time
(see Section 5). Dedicated studies have been performed offline to refine the quality
assessment of the data. In addition to running more in-depth analyses, new checks have
been added during the run, as potentiel flaws got discovered in the existing analyses, or
new problems identified at the detector level. Moreover, small sets of good data that
had not been automatically included in the dataset (either because they were incorrectly
labeled or because part of their data quality information was missing) were added by
hand.

The main categories of checks applied to assess the quality of the Virgo data are the
following.

• Are key components of the Virgo hardware (suspensions and photodiodes) having
transient problems?
These checks, described in Section 5.1.2, were fast enough to be performed online
on live data.
• Is the reconstruction of the GW strain time series h(t) nominal?

This is a prerequisite for any further use of the Virgo data. The online
reconstruction of the Virgo data was satisfactory: only about three weeks at the
end of O3a were reprocessed offline to increase the sensitivity by a few percents [39].
Yet, during periods of high seismic activities (bad weather, high wind or the passing
of seismic waves from strong and distant earthquakes), it could be replaced [30]) by
a more robust control configuration— the so-called "earthquake (EQ)-mode" [39].
Although that procedure saved some lock losses whose recovery would have costed
time, it could not be validated against the nominal reconstruction of the h(t) strain
stream until the final two months of O3b. Therefore, during most of the O3 run,
data taken in these peculiar conditions had to be excluded from the final dataset.
• Do the data suffer from known problems?

Tailored checks were run offline to identify and isolate periods during which the
detector was not behaving nominally, although it was still controlled.One example
of such studies is the fact that the North Input mirror suspension was randomly
suffering from a transient (a few second-long) loss of data. This was usually enough
to lose the control of the entire detector, and hence to lose at least about 20-30
minutes of data: the time to reacquire the locked state and to restore Science data
taking. Therefore, a patch was developed by experts to detect the data loss and
switch to a less robust—but still available—control until the missing data were
back. This saved hours of running time for Virgo overall, but a dedicated scan of
the data had to be performed offline to identify the occurrences of these control
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switches (potentially inducing transients and artifacts of instrumental origin in the
data) and to remove them from the final dataset.

• Are the data consistent?
For instance it was decided to remove offline the last few seconds of a segment
preceeding a control loss of the detector as those data could be corrupted— see
Sec. 7.4.1 for details

• Is the dataset complete?
For example there could be segments with missing or corrupted h(t) channel that
would require a limited reprocessing. Or there could be segments with missing
missing data segments due to problems in the DAQ, etc..

Data segments that fail one of the checks defined above are classified as "Category 1"
(CAT1) vetoes and must be excluded from all analyses. Overall, only about 0.2% of the
Virgo O3 Science dataset have been CAT1-vetoed.

To conclude this overview of the Virgo performance during the O3 run, Figure 7
compares the Virgo BNS range distributions before (red) and after (blue) applying data
quality cuts to determine the final O3 dataset. As expected, data quality requirements
remove periods of low BNS range, i.e. when the sensitivity was poor. Yet, about
1% of the data have a BNS range lower than 35 Mpc, that is significantly below the
typical values achieved during O3 for that sensitivity estimator. While these data have
not been flagged as bad by the various checks run on the dataset, they correspond to
periods during which the detector was less accurately controlled, in particular due to
bad weather.

4. Tools for detector characterization and data taking monitoring

All DetChar analyses rely on dedicated software frameworks, called generically tools in
the following. Most of these have been developed within Virgo. In addition, thanks
to the long-lasting collaborations among the Virgo, LIGO and now KAGRA DetChar
groups, we benefit from additional tools or methods that have been developed partly or
totally by colleagues.

More than 100 servers have been running in real-time during O3 to monitor the Virgo
detector, run various data quality checks and perform specific DetChar tasks. Data are
processed by the tools described in the following subsections and whose outputs are
included in the live data streams or stored on disk. Finally, the end products of these
analyses are converted into information for the control room and summary plots that
are updated with a latency of a few minutes at most and regularly archived for offline
analyses.

All these processes are steered using the Virgo Process Monitoring (VPM) software
interface, that allows to configure, start/stop and monitor processes running on Virgo
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Figure 7. Distributions of the Virgo BNS range during O3 for the online (red
histogram and trace) and offline (blue) dataset. The top (bottom) plot compares
the histograms (cumulative distributions).

online servers. These include detector control, data transfer to and from Virgo, and
the analysis of the reconstructed h(t) stream by the online GW searches running in the
EGO computing center. All actions performed using the VPM interface are logged and
recorded, in order to reconstruct as accurately as possible the software running at any
given time, should this need arise.

The most important DetChar tools used during the O3 run are described in the following.
They have been classified in a few categories depending on their usage or target:
monitoring, generic data analysis, glitches, spectral noise or databases. Yet, they are
not independent: they are often combined to characterize some features of the detector,
or to provide a complete overview of the quality of the Virgo data. The flowchart in
Figure 9 represents the main analyses carried out by the DetChar group with the tools
presented in this section. The arrows follow the data-flow, which starts from the detector
raw data that is analyzed by the various tools, whose data products are then saved to
disk and used to generate DQ flags and reports. The latter are used by both GW search
pipelines and by commissioners and operators that control the status of the detector.

Figure 8 describes a specific example of joint application of various analysis tools and
monitors to the study of transient noise.
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Figure 8. The Virgo strain data and auxiliary channels are analysed by DetChar tools
to monitor and investigate transient noise. The noise stationarity is monitored with
dedicated tools (Section 4.2.3). The data is analysed with Omicron (Section 4.3.1) and
transient triggers are saved to disk for further noise investigation. In particular, the
UPV algorithm (Section 4.3.2) isolates coincidences between triggers from the strain
and auxiliary channels. BRMSMon (Section 4.2.2) detects transient noise excesses in
axiliary channels. Both UPV and BRMSMon generate data quality segments used to
reject transient noise found by GW searches. The performance of these data quality
segments is evaludated by a tool called VetoPerf (Section 4.3.3). The transient noise
is also monitors with web tools like VIM (Section 4.1.3) and the DMS (Section 4.1.2).

4.1. Monitoring tools

4.1.1. dataDisplay The dataDisplay software [46] allows the user to read (online or
offline) Virgo data and to visualize various types of plots for all the channels available
from the DAQ. For instance, it helps to investigate quickly the time evolution of a noise
artifact, the coherence between two control signals or the time-frequency characteristics
of a transient noise. It has been used extensively during the O2 and O3 runs and all
over the AdV detector commissioning in between. Figure 10 shows an example of the
dataDisplay interface and output.
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Figure 9. Flowchart of the various tools and monitors used for detector character-
ization that are presented in Section 4. The data-flow starts from the raw data acquired
from the detector, which is analyzed by the various tools and used to produce processed
data and data visualizations used for monitoring purposes. Some of the outputs of the
various tools are used to generate DQ products, to be used by GW search pipelines
and commissioners to control the interferometer.

Figure 10. Example of the plots produced by the dataDisplay (left) and main panel
of the dataDisplay graphical user interface (right).

4.1.2. DMS: the Detector Monitoring System The Detector Monitoring System
(DMS) [47, 48] provides a detailed live status of all the components that make the Virgo
detector operate, from the hardware parts to the online software used to control the
instrument and take data. It also includes the monitoring of environmental data from
around the experimental areas. Each of the many DMS monitors uses a set of DAQ
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Figure 11. DMS snapshot closest in time to the GW190412 GW event, showing the
detailed status of the Virgo detector about four seconds after the arrival of that signal.
The DMS web interface looks like a checkerboard. Each row, labelled in the most-left
column, corresponds to a different part of the instrument (mirror suspensions, vacuum
system, etc.). That part is broken down in smaller sets that are each associated with a
cell on the web interface. Each cell can contain many DMS flags and its color reflects
the highest severity among all these flags (green↔ no alarm; yellow↔ warning; red↔
alarm (not present on that particular snapshot); grey↔ some information is missing).
Clicking on a cell gives access to the flag individual information: their values and
associated severities.

channels, combines them by performing mathematical and logical operations on their
outputs and produces a flag whose value can take four severity levels, each associated
with a color for visual display. A web interface is used to display and browse the DMS
monitor flags with a few second-latency, both in the Virgo control room and remotely.

In addition, a new DMS archival system has been set up for the O3 run: complete DMS
snapshots are taken every ∼10 seconds and archived. They can be retrieved later at
any time, by running a playback application that uses the same interface as the live
DMS. This functionality is particularly convenient to check the status of the detector a
posteriori, when a GW candidate or a particular feature in the data have been identified.
For instance, Figure 11 shows the Virgo detector status about four seconds after the
detection of the GW event GW190412 [49].
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Figure 12. Screenshot of a VIM webpage displaying information about the Virgo
detector on Tuesday February 18, 2020. Top left plot, stripchart of the detector
status: the weekly maintenance, preceded by a planned calibration and followed by a
short commissioning period, interrupts the data taking that restarts in the evening.
Top right plot: daily sensitivity compared with references. Bottom left plot: glitch
monitoring provided by the Omicron analysis described in Section 4.3.1. Bottom right
plot: spectrogram of the GW strain h(t) in the 20-210 Hz frequency range.

4.1.3. VIM: the Virgo Interferometer Monitor The Virgo Interferometer Monitor
(VIM) [50, 51] manages a collection of automated scripts that update every few minutes
a wide set of plots and tables; all these monitoring products are archived on a daily
basis. A web interface allows users to browse that database, both for live monitoring
of the experiment and for offline investigations. VIM is an essential tool that provides a
direct access to a detailed status of the various Virgo detector components and of related
frameworks, such as calibration and online data processing, data transfer or online data
analyses. A snapshot of the VIM web interface is shown in Figure 12.

4.2. Generic tools

4.2.1. The VirgoTools utilities In-depth studies of a particular feature observed in
the data or analyses scanning a significant fraction of the dataset require the use of
dedicated software. Common and key building blocks of these codes are access to
the DAQ channels and to the detector component configurations. Thus, dedicated
packages have been developed over the years to provide simplified and generic interfaces
to these data: they rely on low-level core packages like the FrameLib software library [52]
but calls to these functions are hidden to the users. These packages interact with the
software, hardware and data of the Virgo interferometer: they are widely used within
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the collaboration, from daily use in the control room to DetChar studies. The two
main collections of such functions are PythonVirgoTools [53] and MatlabVirgoTools,
targeting Python and Matlab developers respectively.

4.2.2. Computing Band-limited RMS band-limited RMS (BRMS) of DAQ channels in
specific frequency ranges are useful indicators for transient disturbances or new features
in the data. For instance, low-frequency BRMS of seismometer data allow to separate
different contributions to the seismic noise at EGO [30]. Going from low to high
frequencies, one can isolate successively: distant and potentially strong earthquakes;
sea activity on the Tuscany coastline; anthropogenic contributions with day/night and
weekly periodicities; finally, on-site activities. In addition, BRMS are used to monitor
the excitation of the violin modes, the resonances of the mirror suspensions.

In Virgo, various software frameworks can compute BRMS. One worth-mentioning is
BRMSMon, a dedicated software that is widely used by the environmental monitoring team
and in data quality studies. In addition to generating BRMS, BRMSMon can compare their
values to thresholds (either fixed or adaptive) and logically combine the outputs of these
comparisons into binary channels called flags. For instance, assuming a collection of 9
sensors installed in different EGO buildings, one can create a flag that is active (value
equal to 1) if at least 5 of these 9 sensors exceed their own threshold and inactive (value
0) otherwise. The BRMSMon output channels, sampled at 1 Hz, are included in the DAQ.

4.2.3. Testing stationary and Gaussianity Several analysis tools have been
implemented to perform statistical tests to verify the stationarity and Gaussianity of
the data. These properties are indeed the typical assumptions at the base of most of
the statistical analyses, and in particular of the matched filter technique [54, 55], which
modeled GW searches such as MBTA [56], PyCBC [57] and GstLAL [58] are based on.
Moreover, the onset of a non-stationary behavior of the detector can be the symptom
of some hardware malfunction or some contamination from environmental noises. In
any case, it requires prompt investigations of the causes and, possibly, the actuation of
adequate mitigation strategies.

Band-limited RMS Stationarity Test Tool (BRiSTOL) provides a multi-band stationarity
test based on the empirical distribution of the signal BRMS [59]. Stationarity is tested
dividing these BRMS’ into chunks and verifying the compatibility of their empirical
distribution functions by means of a two-sample Kolmogorov–Smirnov test [60]. This
provides p-values that, compared to a previously decided significance level, indicates
where in a time–frequency map the hypothesis of stationary should be rejected. The
resolution of this map is given by the duration of each chunk and that of the BRMS
estimates, typically one minute and one second respectively; that in frequency is
determined by the band division of the spectrum for computing the BRMS’, which
is conveniently done choosing exponentially spaced frequency intervals. The typical
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Figure 13. Example of stationarity time–frequency map obtained with BRiSTOL,
where a significance α = 1% has been chosen and regions rejecting the stationarity
hypothesis are colored in shades of red.

output of this tool is reported in Figure 13, while further details about the definition of
the test statistic are discussed in Appendix A.1.

BRiSTOL mainly targets slow non-stationarities, that is, changes in the statistical
properties of the data over time scales longer than a second; for faster transients, namely
glitches, other strategies are typically used and will be described in Section 4.3.

This tool has been developed in the commissioning phase preceding O3, and has been
used during the run to assess the quality of the data as part of the event validation
procedure (refer to Section 7.4.2 for more details).

rayleighSpectro [61] is a tool to test the hypothesis of Gaussianity of the data at each
frequency of its spectrum. This is based on the Rayleigh test [62], which is a consistency
test of the amplitude spectral density (ASD) estimates on various data intervals.

If the data is stationary and Gaussian, the ASD estimate is drawn from a Rayleigh
distribution at every frequency, and the ratio of its standard deviation and mean should
be asymptotically equal to

√
4− π√
π
' 0.52 (1)

That constitutes the test statistic. Deviations from this value can be both a symptom
of ASD misestimation, due for example to non-stationary data, or to regions of the
spectrum where the data is not compatible with a Gaussian distribution, as for example



4. TOOLS FOR DETECTOR CHARACTERIZATION AND DATA TAKING MONITORING36

10 1 0.1

Rayleigh
test statistic

10

100

1000

F
re

q
u
en

cy
[H

z]

0 10 20 30 40 50 60

Time [min] from 15:00 UTC
of 8 April 2019

Rayleigh test on Virgo data

0.5 1.0 1.5 2.0
Rayleigh test statistic

Figure 14. Example of application of the Rayleigh test, where the blue line in the left
panel is the test statistic estimated over the entire hour of data, while the colormap
corresponds to ASD estimates over 10 seconds of data. The vertical black line on the
left plot indicates the limit value 0.52. See text for details.

regions corresponding to spectral lines. More details about this test are presented
in Appendix A.2.

This tool can be used complementary to BRiSTOL to independently test stationarity
and Gaussianity. It is included in VIM and also used in the DQR for event validation (see
Sections 4.1.3 and 6).

Figures 13 and 14 show examples of application of these two tools to one hour of data at
the beginning of O3a. In the former, BRiSTOL highlights many slow non-stationarities
at frequencies up to about 20 Hz, most likely due to high microseismic activity, as well
as a loud glitch at about 15:45 UTC. The latter is clearly identified by the Rayleigh
test with values of the test statistic larger than what is expected for stationary and
Gaussian noise. Moreover, in the colormap of Figure 14, spectral lines, in particular
those associated with the 100, 150 and 200 Hz harmonics of the mains (the European
power grid frequency is 50 Hz), are highlighted in blue, corresponding to values of the
test statistic smaller than the reference one of Equation (1). In the left-hand side panel
of the same image, the 450 Hz frequency of the main test masses violin modes, and its
first harmonic at about 900 Hz, are highlighted as well.

Figure 15 shows another example of a Rayleigh spectrum around an O3b time where
transient noise was present for several minutes between 10 Hz and 20 Hz.

4.2.4. Monitoring BNS range drops and gating data Two useful high-level data quality
monitors are based on BNS range downwards excursions: one tags BNS range drops, that
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Figure 15. Example of Rayleigh spectrum averaged over 300 s, where any bin above
0.52 is a potential non-stationary or non-Gaussian noise present during those 300 s.
Values well below 0.52 correspond to persistent frequency lines.

are significant dips in that quantity, while the other automatically generates (logical)
gates that are applied on the GW strain channel to smooth out to zero the data that
are affected by a strong noise transient.

BNS range drops

A BNS range drop means that the live sensitivity of the detector is degrading
significantly, at least in a given frequency band, possibly in the entire bandwidth of
the instrument. Therefore, it is important to identify transient sensitivity worsenings
and investigate their causes. BNS range drops are very diverse: the decrease goes from
a few percents to almost the full range, while the drops can last from a few seconds to
minutes.

During O3, BNS range drops were detected using an absolute threshold on the live
value of that quantity. After the end of the run, adaptative methods able to follow
the natural evolution of the BNS range and to locate all significant drops have been
developed. Figure 16 shows examples of the output of the adaptative BNS range drop
locator running on O3 data.

Gates

If not removed from data, noise bursts can pollute the estimation of the noise spectrum
for several seconds, hence limiting the sensitivity of the GW search algorithms during
that period. In Virgo, this problem is mitigated online by gating out (meaning zeroing)
glitchy chunks of data. The gating algorithm triggers on significant BNS range drops:
at least 40% below its median value, computed over the last 10 seconds. On both sides
of the gate, a weight is applied on the h(t) strain channel during 10/32th of a second,
varying smoothly from 1 to 0 (0 to 1) before (after) the gate. The online gated h(t)

strain channel is included in the DAQ alongside the ungated one and GW searches are
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Figure 16. Performance of the BNS range drop locator during two days of O3. Top
plot: November 10, 2019, a day during which the duty cycle was quite high but the data
taking conditions were not stable; many glitches and consequently BNS range drops
were observed, mostly due to the laser power stabilization system in the morning and
to a worsening of the weather conditions starting from the afternoon. Bottom plot:
February 7, 2020, a day with no global control loss but a BNS range baseline varying
over time; actions took place during the afternoon to improve the Virgo performance,
leading to visible improvements of the BNS range in steps. The blue traces show the
range vs. time, while the red dots show the drops that have been identified. In both
cases the BNS range drop locator is able to identify most, if not all, significant drops.
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free to use one or the other stream as input.

As gating is based on h(t) variations, gated data cannot simply be removed from the
physics-analysis dataset as this procedure could flag real GW, for instance loud high-
mass binary black hole mergers. On the other hand, gating information can be used in
a statistical way to help identify potential periods of bad data quality characterized by
frequent gating usage. This can be measured using both the density of gates (number
per time unit) and the fraction of the wall-clock time that is gated out.

During O3, the gating algorithm has produced more than 13,000 gates (corresponding
to a few tens per day in average), adding up to about 4 hours of gated data in total.
The gate mean duration is around 1.1 s while the median is around 0.8 s, meaning that
most gated glitches are very short as 20/32th s are always added to the measured glitch
duration to transition from non-gated data to the gate itself and back. The longest gate
is about 10 s.

Excluding from this online Science dataset the segments that have been vetoed for offline
data analyses (see Section 3.6) leads to a removal of about 20% of the gates and of about
30% of their total duration—although this procedure only removes about 0.2% of the
Virgo O3 dataset. As expected, gates are most likely when the data are bad. Going
one step further by requesting in addition that the baseline BNS range be greater than
35 Mpc, one excludes more than 50% of the remaining gates and more than 60% of the
gated times while that cut would remove about 1% of the data from the final dataset.
Gates are generated more often when the data taking conditions are sub-optimal.

Finally, one can associate all gates with a glitch detected by Omicron (see Section 4.3.1)
whereas the opposite is not true: there are many glitches that have no impact on the BNS
range. These glitches have a frequency range that is outside of the Virgo bandwidth for
BNS GW waveforms: either because there is no significant signal contribution expected
in this frequency range, or because the noise level is high enough to make that range
contribute little if anything at all to the BNS range.

4.2.5. Monitoring global Control losses Losses of the global control of the Virgo
interferometer do not just interrupt the data taking: they decrease the overall duty cycle
as few tens of minutes are needed after each such event to restore the conditions for
taking good-quality data sensitive to the passing of GWs (see discussion in Section 3.5).
Therefore, categorizing control losses is important to understand their main causes and
to get alerted when a new family appears, or when a known category becomes more
frequent.

An extensive offline study of the global control losses in science data-taking mode during
the O3 run has lead to the identification of the root cause of the control losses in
most cases [30]. The experience gained with this work will be useful for the pre-O4
commissioning phase (noise hunting) and the subsequent data taking periods in two
ways. First, the categories identified during O3 will be reused as a starting point
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to investigate new control losses. Then, an online monitor will analyze these global
control losses within minutes of their occurrence; it will automatically provide a set
of automated plots for further human diagnosis and possibly point out their probable
cause. This framework is currently under development and will reuse the approach (if
not the proper software infrastructure) of the DQR— see Section 6.1.

4.3. Glitch identification and characterization tools

4.3.1. Omicron To detect and characterize transient noises, we use a search algorithm
called Omicron [63]. The data is processed using the Q transform [64] which consists
in decomposing a time series x(t) onto a generic basis of complex-valued sinusoidal
Gaussian functions centered on time τ and frequency φ:

X(τ, φ, σt) =

∫ +∞

−∞
x(t)

W

σt
√

2π
exp

[
−(t− τ)2

2σ2
t

]
e−2iπφtdt. (2)

This transformation is a modification of the standard short Fourier transform in which
the analysis window size σt varies inversely with the frequency and is characterized by
a quality factor Q: σt = Q/(

√
8πφ). The parameter space (τ, φ,Q) is tiled to guarantee

both a high detection efficiency and an optimized processing speed. The noise of the
input signal x is whitened prior to the Q transform such that all noise frequencies have
the same weight. This is done through the normalization factor W which includes an
estimate of the local stationary noise such that the Q transform coefficient X directly
measures the signal-to-noise ratio (SNR) associated to each individual tile (τ, φ,Q). A
glitch in the data is detected by Omicron as a collection of tiles with high-SNR values.
An Omicron glitch is characterized by a set of parameters (τ, φ,Q) given by the tile
with the highest SNR value. Omicron offers a two-dimensional representation of glitches
where the SNR distribution of tiles is plotted in one or several Q planes. Examples of
spectrograms are given in Figure 8 and Figure 24

4.3.2. Use-percentage veto The use-percentage veto (UPV) algorithm [65] was developed
to detect and characterize noise correlations between two glitch data samples; one
derived from the gravitiational-wave strain channel h(t) and the other derived from
an auxiliary channel. The algorithm tunes, considering Omicron triggers of a given
auxiliary channel, a signal-to-noise ratio threshold such that, when a trigger is above
threshold, there is a high probability to find a coincident glitch in h(t) data. In O3,
the Vigo data were processed with the UPV algorithm on a daily basis to support the
noise characterization effort; some auxiliary channels were identified by UPV as exhibiting
glitches correlated with h(t) glitches, providing hints about the noise coupling in the
detector.

4.3.3. VetoPerf The VetoPerf analysis tool measures the performance of a data quality
flag. A data quality flag is defined as a list of time segments targeting transient noise
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events. VetoPerf counts the number of h(t) triggers detected by Omicron which are
coincident with the data quality flag time segments. From this, it derives performance
numbers and produces diagnostic plots characterizing that data quality flag.

4.3.4. Scattered light monitor Scattered light is a non-linear, non-stationary noise
affecting the sensitivity of the interferometer in the GW detection frequency band.
As adaptive algorithms such as Empirical Mode Decomposition (EMD) [66, 67, 68] are
suitable for the analysis of non-linear, non-stationary data, they can be used to quickly
identify optical components which are sources i.e., culprits, of scattered light [69]. As
part of the detector characterisation effort, a tool was developed and applied to Virgo
O3 data with the aim of identifying culprits of scattered light in the DARM DOF of
the detector [70]. The tool employs the recently developed time varying filter EMD
algorithm (tvf-EMD) [71] as it was found to give more accurate results compared to
EMD [70]. When scattered light is affecting the detector, arches show up in DARM
spectrograms. The arches frequency and their time of occurrence is given by the so
called predictor (measured in Hz)

farch(t) = 2
|v(t)|
λ

, (3)

where v(t) is the velocity at which the optical component is moving and λ is the laser
wavelength. Equation (3) is computed using the position data of several optics of
the detector, such as for example the SWEB. Having obtained predictors for several
optical components the tool computes the instantaneous amplitudes IA(t) i.e., the
envelope of DARM’s oscillatory modes which are extracted by tvf-EMD. IA(t) can be
correlated with the list of predictors. The optical component with the highest correlation
among its predictor and the IA(t) of DARM is considered to be the culprit of the
scattered light noise witnessed in DARM. Visual counterproof can be performed (see
Figure 6 of [70]) overlapping the culprit’s predictor on the DARM spectrogram [72].
The methodology of [69, 70] was extended and integrated in the gwadaptive-scattering
pipeline, an automated Python code which allowed to characterise the origin of scattered
light glitches in LIGO during the O3 run [73]. Furthermore, adaptive analysis can be
used to daily monitor the onset and time evolution of scattered light noise in connection
with microseismic noise variability [74]. So called daily analysis have been integrated
in the gwadaptive-scattering pipeline as well.

4.4. Spectral noise identification and characterization tools

4.4.1. Spectrograms and injected lines identification Within the VIM (see Section 4.1.3),
spectrograms spanning periods from one day to a week are regularly updated using the
custom Spectro software [61]. This framework is based on a set of ROOT [75, 76]
scripts that provide various indicators (BRMS, Rayleigh spectra, etc.), useful to help
the investigation of non-stationary spectral lines or intermittent noises. The Spectro
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Figure 17. A typical 7-day spectrogram of the h(t) channel, generated by the Spectro
tool and allowing the monitoring of a wandering spectral line whose main frequency
was first stable around 83 Hz before increasing up to around 100 Hz in about a day.

tool has also been used during O3 to probe the time-frequency pattern of the glitches
associated with BNS range drops. An example of time-frequency plot provided by this
tool during O3 and discussed in section 7.3.2 is shown in Figure 17.

4.4.2. NoEMi and the (known) lines database The Noise Frequency Event Miner
(NoEMi) tool [77, 78] tracks on a daily basis spectral lines, both stationary and wandering
ones, and searches for coincidences between the lines found in a main channel—typically
the GW channel h(t)—and in a list of auxiliary channels. The NoEMi configuration
defines several parameters and thresholds, like for instance: the threshold on the critical
ratio‖ for peak selection in the spectra, the frequency resolution (linked to the time
length of the data segments over which the fast Fourier transform (FFT) is computed),
the name of the main channel, the list of auxiliary channels to search for coincidences.
During O2, the NoEMi software produced daily results and looked for peaks in the
spectra using a frequency resolution of 1 mHz. With this configuration NoEMi looked for
coincident spectral peaks between the DARM channel and approximately 40 auxiliary
channels.

During the break between the O2 and O3 runs, the NoEMi software has been intensively
modified, resolving the main issues identified in the old version. The original code was
not well-structured (and hence difficult to modify) and also not fully-efficient CPU-wise.
Furthermore, the original version produced several static files which were unessential
for the final output. As a further improvement, the MySQL database which stores all
parameters of each spectral line found during the run has been normalized, meaning

‖ Defined as the number of standard deviations a given peak amplitude is different from the mean of
the peaks amplitude distribution.
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Figure 18. Virgo spectral lines identified during O3. The blue curve is the estimated
ASD of the Virgo strain signal during O3. Red vertical bars mark the frequency of
the identified spectral lines. Lines parameters are listed in [79]. Most of the lines have
been found by NoEMi.

that useless or redundant data have been removed and that the data storage is now
more coherent. The database scalability has been improved as well, in order to allow
storing more data and handling a higher load of requests. Additionally, a more dynamic
interaction with the web interface used to browse the results has been introduced. The
new version of the code has been used for the first time in O3.

During O3, NoEMi used the same set of ∼40 auxiliary channels as in O2, plus an
additional set of ∼140 environmental channels, e.g. seismic, magnetic, and acoustic
probes. The coincidence between a line in the GW strain signal and the signal of one of
the environmental monitor, suggests that the noise line originates from a physical source
such as a vacuum pump, a cooling fan, an electronic device, etc. This information helps
to identify the instrumental origin of detected lines in the GW signal, and it has been
included in the official Virgo-O3 line list publicly released by the GWOSC [79]. Figure 18
illustrates the lines identified in the Virgo GW strain signal during O3.

Internally, lines that have been identified are stored in a dedicated database that includes
detailed informations about them: most notably their times of appearance, and links
pointing to the associated documentation (logbook entries, studies, mitigation actions,
etc.). The contents of the database can be compared with a new NoEMi processing, to
find out quickly which lines identified by NoEMi are already known and which ones are
not.
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4.4.3. Bruco The brute-force coherence tool (BruCo) [80, 81] is a python-based tool
designed to search for correlated noise by computing the magnitude-squared coherence
between a main channel (typically, but not necessarily, the strain signal h(t)) and all
other non-redundant auxiliary channels (about 3,000 channels in O3). Implementation
details of the BruCo software at EGO during O3 are described in Appendix A.3.

BruCo main output is a table that contains, for each frequency bin, the ordered list of
the auxiliary channels that are most coherent with the main channel. For each auxiliary
channel in that list, the projected coherence (defined in Appendix A.3) is plotted and
linked from the table. Assuming linear coupling, the projected coherence estimates the
contribution of the noise witnessed by that auxiliary channel to the main one. Figure 19
shows BruCo daily plots illustrating one example of noise contamination spotted during
O3, which triggered a more in-depth investigation [31, 82].

BruCo jobs were run regularly and automatically during the whole O3 run, with daily
results displayed on a dedicated VIM web page (see Section 4.1.3). In addition, BruCo
has often been used as an on-demand analysis tool to examine specific time periods.

4.4.4. MONET The interferometer noise spectrum sometimes present some peculiar
structures as a consequence of the non-linear couplings between different noise processes;
these structures constitute two pairs of sidebands around known lines (see Sec. 2.3),
which are not explained by means of the previously described linear coherence methods.
One example of this kind of noise is bi-linear noise, generated by the coupling of two
noise sources that jointly affect a third signal. In GW detectors, the main cause of
this bi-linear noise is due to the upconversion of the low frequency seismic noise, that
can affect the mirrors angular controls, which couples with some narrow-band noise
processes, like power lines and calibration lines (see, e.g., [83, 59]).

The Modulated NoisE Tool (MONET), [84], is a python-coded tool designed to investigate
these sidebands. The main hypothesis at the basis of this tool is that the sidebands are
due to some coupling of a carrier signal with the low-frequency (up to a few Hz) part
of an auxiliary channel. Under this hypothesis, MONET searches for coherence between a
main channel (typically, but not necessarily, the detector strain signal) and a new signal,
created as the product in the time domain of the chosen carrier signal and a modulator
signal. The modulator signal is constructed by applying a low-pass filter to the signal
of an auxiliary channel. More details are reported in Appendix A.4, including a typical
MONET output plot.

MONET has been successfully used during the commissioning phase between O2 and O3
and during O3, allowing to spot the auxiliary channels contributing to the observed
sidebands; for instance, it allowed to investigate the sidebands observed around the
1111 Hz line (injected for the purpose of the laser frequency stabilization control
loop) [85] and the 50 Hz harmonics [86, 87, 88, 89].
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Figure 19. Selection of BruCo VIM daily plots evidencing noise contaminating the
Virgo strain signal during O3. The top plot shows the coherence between the DARM
and the laser EOM that produces the 56 MHz signals used for the arms length control.
The bottom plot shows the ASD of the DARM signal (blue line) and the corresponding
projected coherence (red line) in the frequency ranges where it was found significant
enough. The noise was then found to originate from back-reflected light onto the laser
bench, most likely due to a damage on the EOM that component has been removed
after O3.

4.5. Common LIGO-Virgo tools

4.5.1. DQSEGDB For each data quality flag, the Data Quality Segment Database
(DQSEGDB) [90] stores the segments (integer GPS ranges) during which that particular
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flag is active, meaning that the set of conditions it is based on is fulfilled. For instance
one such flag tags the GPS segments during which the Virgo detector is taking data
in science mode, meaning that the data acquired live is expected to meet the quality
criteria for physics analysis. There are two ways to fill this database with Virgo flags:

• online, during the data taking, through the SegOnline server that is compiling
information provided by various data streams;

• offline, by completing or fixing existing segment sets, or adding new data quality
flags to monitor additional conditions.

A versioning system is used to keep track of changes in segment lists that can modify a
particular flag, i.e. that impact offline analyses, by changing the contents of the dataset
they are processing. By convention, the highest version number corresponds to the best
(most recent) segment list and is the one queried by default.

4.5.2. GraceDB During O3, the GRAvitational-wave Candidate Event Database
(GraceDB) [91] has been the central place where informations about transient GW
candidates was uploaded and stored: online search triggers, source localisation estimates
in the sky, data quality information, other metadata, etc. In particular, GraceDB
triggered automatically frameworks like the DQR through the LIGO-Virgo Alert System
(LVAlert) [92] when candidate events of interest were identified; and, consequently, DQR
results (see Section 6.1) got uploaded back to GraceDB as soon as they became available.
GraceDB has a public-faced portal that provides information about the public alerts
shared with the astronomer community, while most of its data are private and reserved
to the LIGO, Virgo and KAGRA collaborations.

5. Real-time data quality

Online data quality was a key challenge to tackle for DetChar during the O3 run. The
availability and the reliability of that information, supporting the data taking, had to be
high in order to allow the real-time transient GW searches to make the best use of the
Virgo data. Significant candidates identified by those analyses— usually found in data
from at least two of the three detectors of the global network, but sometimes significant
in a single instrument— would then lead to public alerts, used by telescopes to search
for counterparts of potential GW signals.

In this section, we first describe the different blocks of the Virgo online data quality
architecture, in use at EGO during the O3 run. This framework matches the dataflow
shown in Figure 4 and is complemented by the vetting of the most significant triggers
identified in low latency, described in the following Section 6. In summary, real-time
information about the detector status was combined with fast data quality estimators
to produce a single integer channel sampled at 1 Hz, the Virgo state vector. That



5. REAL-TIME DATA QUALITY 47

Figure 20. Online architecture to produce data quality products during the O3 run.
The status of the interferometer is monitored by a dedicated Metatron server (see
Section 3.2). Data quality flags are generated by dedicated servers: the DMS, the
BRMSMon process (environment), the VetoMerger process (large deviations in auxiliary
signals), the Hrec process (h(t) reconstruction), and the Omicron algorithm (glitches in
h(t) and auxiliary signals). Data quality segments are then generated by the SegOnline
process and saved in the LIGO-Virgo segment database, while the online h(t) stream,
the state vector and the veto channels are sent to online data analysis pipelines through
the V1FromOnline server. See text for additional informations.

state vector was shipped alongside the GW strain channel h(t) to computing centers
where data were analysed in real time. Its integer value was constructed by gathering
several binary information (schematically: good vs. bad) encoded as bits; that bit
pattern would later be decoded by the analysis frameworks to discard any bad data.
Parallel to this data analysis stream, this information—the detector status plus the
real-time assessment of the data quality—was automatically uploaded by a dedicated
online process (called SegOnline) to DQSEGDB.

Finally, we present the experience gained during O3 with additional data-quality inputs,
called veto streams whose aim is to help searches to reduce their false alarm rate by
identifying triggers that are very unlikely to be of astrophysical origin.

5.1. The Virgo O3 online data quality framework

The online data quality architecture is designed to deliver data quality products to online
transient searches. It is based on a set of servers connected to the DAQ and providing
relevant information about the quality of the data (raw data plus the reconstructed
h(t) stream). In the following, the main elements of this architecture, summarized in
Figure 20, are presented.

5.1.1. State vector Table 3 defines the 16 bits of the Virgo state vector integer channel
in use during the O3 run. A bit is said to be active when its value is 1, meaning that
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the corresponding check is passed. A value at 0 means instead that a problem, or a
non-nominal state, has been detected. The information provided by these bits is on
purpose partially redundant, in the sense that several bits can be at 0 when proper data
taking conditions are not met. During O3, the bits 0, 1 and 10 were required to be
active to have the 1 s data frame processed by real-time analyses.

Table 3. Definition of the bits of the Virgo state vector during the O3 run (see text
for details).

Bit number Active when

0 h(t) successfully computed.
1-2 Science mode enabled.
3 h(t) successfully produced by the calibration pipeline.

4-7
Bits irrelevant for the present discussion:

either redundant with other bits or unused during O3.

8
No DetChar-related hardware injection

(see Section 7.2 for more details).

9
No continuous wave hardware injection

(the only type of non calibration-related injections
performed for a short period during O3, while taking nominal data).

10 Online data quality is good (no CAT1-type veto).

11
Virgo interferometer fully controlled,

with a nominal working point or close to it.
12-15 Not used.

5.1.2. Online CAT1 vetoes During the O3 run, the problems detected online and
leading to CAT1 vetoes are listed below. These saturation checks were combined using
a logical OR to produce CAT1 vetoes with a 1 s granularity. Section 7.4.1 describes the
corresponding set of offline CAT1 vetoes, used by all analyses processing the final O3
Virgo dataset— and obviously including these online CAT1 vetoes.

• No saturation of any of the 4 dark fringe photodiodes, using the ‘DC’ (from 0 to a
few Hz) and ‘Audio’ (from a few Hz to 10-50 kHz) demodulated signals.

• No saturation of the correction signal of any of the 16 suspension stages monitored.

• No saturation of the rate of glitches reported by the online Omicron framework for
the DARM correction channel¶.

¶ A more correct way to monitor the glitch rate would have been to scan h(t), but the latency added
by that check would have made the strain channel available too late for online processing. The offline
equivalent version of that check did use h(t), as latency was not an issue anymore in that case.
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5.1.3. SegOnline Any channel provided by the DAQ or by the online processing (for
instance DMS monitors or BRMSMon process) can be used by the SegOnline process to
build segments of data quality flags which are sent online to DQSEGDB.

SegOnline writes down segments into XML files with a latency of about 10 s and those
XML files are then read by a rsync process to upload the segments into DQSEGDB every
5 min. Such data quality segments can be then used by any analysis or can be viewed
and downloaded through a dedicated web interface [93].

5.2. Veto streams

Low-latency transient searches are limited by glitches in the h(t) data. Each search
pipeline is sensitive to specific families of glitches. The online data quality architecture
is designed to deliver a channel to flag glitches relevant to a given low-latency pipeline.
These channels are called veto streams. A veto stream is a time series which can only
take two values: 0 means good quality and 1 means bad quality. A veto stream is
generated by the VetoMerger process which combines information from many online
data quality processes, which must be carefully selected to target the glitches limiting
the search of interest.

Some Omicron processes (Section 4.3.1) are configured to select triggers detected in
auxiliary channels with a signal-to-noise ratio above a threshold tuned with the UPV
algorithm (Section 4.3.2). These triggers are known to witness glitches in the h(t)

channel. When this is the case, the veto channel is set to 1. VetoMerger also ingests
the data quality flags generated by BRMSMon (Section 4.2.2) to veto environmental
disturbances.

In O3, the veto stream system was experimented as an input to one of the low-latency
searches for compact binary mergers, PyCBC Live [94, 57]. The veto stream, named
DQ_VETO_PYCBC, combined two elements: a veto channel delivered by Omicron to target
scattered-light glitches, and a data quality flag produced by BRMSMon to tag occasional
glitches associated to lightning strikes. A conservative approach was adopted to tune the
vetoes: their thresholds were set at high values to reliably flag really limiting glitches,
while keeping the rejected time low. As a result, only 0.05% of the O3 science time
was flagged by the DQ_VETO_PYCBC veto stream. PyCBC Live used the veto stream to
simply prevent the generation of a candidate event from Virgo data, or remove Virgo’s
contribution from a LIGO-Virgo candidate, during periods of active veto. In future runs,
the veto streams may be integrated in a more general framework based on auxiliary
channels to discard or down-weight transient noise events.

The effect of the veto streams has also been evaluated on the PyCBC offline analysis, using
Virgo single-detector triggers generated by the broad-space PyCBC search [95] during the
period from April 1 to May 11, 2019. The triggers used for this study are ranked by the
reweighted SNR, the signal-to-noise ratio returned by the matched filtering technique,
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Figure 21. Cumulative fraction of vetoed PyCBC triggers with reweighted SNR higher
than a threshold, as a function of the threshold value. The grey band shows the
envelope of the fraction of rejected triggers from 1,000 time-shifted trials (covering
from the minimum to the maximum obtained value), while the red points show the
results obtained using the unshifted veto segments. The fractions are relative to the
overall number of triggers generated by the offline PyCBC broad-space search. The left
plot considers vetoes targeting scattered-light glitches, and the right plot considers
vetoes associated with glitches from lightning.

weighted by the result of χ2 tests that quantify how well the time-frequency distribution
of power observed in the data is consistent with the one expected from the matching
template. For practical reasons, only triggers with reweighted SNR higher than 6 are
considered. To evaluate the impact of the vetoes on the offline search, triggers with
a merger time belonging to a vetoed segment are removed. The study is performed
separately for vetoes targeting scattered-light glitches and glitches from lightning. The
fraction of vetoed triggers is shown by the red points in Figure 21, and in both cases is
found to be of the order of 10−4, mainly affecting low reweighted SNRs.

The statistical significance of the impact of the vetoes on the offline PyCBC triggers is
assessed by performing a time-shifted analysis, and using it to calculate the probability
that the fraction of vetoed triggers obtained from the unshifted analysis corresponds
to triggers that have no correlation with the veto segments. To this end, we shift
the veto segments by a constant time offset and recompute the fraction of vetoed
triggers, obtaining a “null sample” that we can compare to the fraction obtained using
the unshifted segments. Note that the null fraction is rescaled to account for the overlap
between the science mode segments and the time-shifted veto segments. We construct
1000 such null samples by repeating the time-shifted analysis with time offsets covering
the range [−50000,+50000] s in steps of 100 s. The spread (range between minimum and
maximum) of the obtained fractions of rejected triggers is shown in gray in Figure 21. At
a reweighted-SNR threshold of 6, the unshifted fraction is higher than any time-shifted
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fraction, for both scattered-light and lightning vetoes. We conclude that the probability
for the observed effect of the vetoes on the PyCBC offline triggers to be a statistical
fluctuation is less than 10−3. For higher reweighted-SNR thresholds of 8.5 (10.5), this
probability is 2 × 10−3 (2 × 10−2) for vetoes targeting scattered-light glitches, and less
than 10−3 (6 × 10−3) for vetoes associated with lightning glitches. It does therefore
appear that scattered light and lightning strikes are correlated with a small population
of PyCBC triggers, and that the veto streams can in principle be used to remove or
down-weight these triggers.

6. Public alerts

As demonstrated with the extraordinary GW170817 [5] event from the O2 run, public
alerts sent by the LIGO-Virgo network are key deliverables targeting the astronomy
community. Yet, how successful these are depends on the accuracy of the information
provided and of the latency at which they are delivered. For O3, the main contribution
of the DetChar group to this effort has been the design and the implementation of the
DQR framework. A DQR is a set of data quality checks, automatically triggered by the
finding of a new GW candidate. Its output allowed the RRT team to vet the associated
data in a timely way. Moreover, its usage extended way beyond the data taking period,
as it was the main tool used to assess the data quality of all GW candidates identified
by analyses, in some cases with a latency longer than a year (compared to when the
corresponding data were acquired).

The implementation and the performance of the Virgo O3 DQRs are described below,
before summarizing how Virgo contributed to the LIGO-Virgo public alerts during the
O3 run.

6.1. Data Quality Reports

6.1.1. Introduction The DQR is a framework developed by LIGO and Virgo for the O3
run, in order to quickly gather enough information to vet the significant triggers found
by the online transient GW searches. The goal is to either confirm the associated public
alert, or have it retracted at once. All 80 public alerts delivered during O3 [96] (of which
24 retracted) have used this input.

A DQR runs on a computing cluster where the h(t) strain channel and the associated
raw data auxiliary channels are available in low latency. Therefore, each collaboration
(Virgo at EGO and LIGO for its two detectors) was responsible for the implementation,
the operation, the monitoring and the upgrade of its own DQR framework. There was
however an agreement on a common format for the check outputs, originally developed
by LIGO [97].

The DQR framework is triggered by GraceDB through the LVAlert protocol. A JSON
payload received from GraceDB allows for the generation and the configuration of a new
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DQR. The checks are then processed and their results are uploaded back to GraceDB,
alongside all the records associated with that particular GW candidate. In order for the
DQR to be triggered, a candidate event is required to have a false-alarm rate below 1/day.
This is a conservative threshold, much higher than that required to release the candidate
as a public alert, but still low enough to keep the computational cost of generating the
DQRs under control. Therefore, in average, only a handful of DQRs were automatically
processed on a daily basis during the ≈330 days of the O3 run: not a high CPU load
overall, but still about 20 times more DQRs than the number of public alerts that had to
be vetted.

6.1.2. Virgo implementation and contents Figure 22 summarizes the Virgo DQR
architecture used during the O3 run. When a trigger with a low-enough false alarm
rate is received, a new DQR is created and configured, using information from GraceDB.
Then, the data quality checks are run in parallel on the EGO HTCondor [98] farm. As
soon as a given check is complete, its results are uploaded back to GraceDB. In parallel,
the DQR progress and results are immediately available for Virgo DetChar experts and
on-duty people, through an EGO-internal web server. The DQR format [97], originally
developed by LIGO, is lighter and more versatile than the GraceDB user interface: it
ensures a direct access to the Virgo DQR outputs. The DQR webpage URL is automatically
sent to the relevant internal mailing list as soon as the newly-created DQR processing
starts.

The Virgo DQR framework has evolved quite significantly over the course of O3. Partly to
tune and improve the workflow based on the experience accumulated when stressing the
system during an actual run, but mainly to extend the scope of the DQR by adding
additional data quality checks. These new checks were either tests that had been
foreseen but could not have been implemented by the start of O3, or new procedures
that brought additional information that was found missing or useful when starting
vetting real triggers.

Therefore, at the end of O3, the Virgo DQR included 34 checks, for a total of 99 jobs.
There are roughly three jobs per check: the first, to run the code and process the
data; the second, to post-process the check results and convert them to the LIGO-Virgo
common DQR format; finally, the third to upload the results back to GraceDB. Some
checks included a fourth job as an initial configuration phase while others, developed
specifically for the DQR, produced directly check outputs in the required DQR output
format, meaning that those checks required one job less.

The Virgo DQR checks have been categorized in the following way.

• Key checks
They bring information mandatory to properly vet a candidate event. This includes:
the top-level status of the detector at the time of the trigger; some time-frequency
spectrograms of the GW strain data at different timescales around that time; finally,
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Figure 22. Schematics of the Virgo O3 DQR architecture. See text for a description
of this workflow.

the scan of the main data quality flags available online, in order to look for any
obvious problem in the data.

• Characterization of the Virgo detector noise around the time of the trigger
The noise transients (glitches) are inventoried and their potential overlap with the
time-frequency extent expected for the candidate is probed— if applicable. In
addition, searches for noise correlations in the time domain and noise coherences in
the frequency domain are run, such as tests of noise Gaussianity and stationarity.

• Detailed Virgo status
Several different analysis contribute to this global picture of the instrument. All
data quality flags available are checked. In addition, the DMS database is scanned
to extract the snapshots closest in time to the trigger, to see what warnings or
alarms were on— if any. Also, the logfiles of all the online servers running in the
DAQ are scanned to spot errors that could be coincident with the trigger or impact
it. Finally, various live data/reference comparison plots are generated to check the
time series and distributions of a subset of the DAQ channels..

• Digest of the environment status
This includes checking the seismic noise at EGO in various frequency bands
corresponding to different sources (microseim related to sea activity on the Tuscany
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shoreline or local anthropogenic activities: see [30] for details), the sea activity and
the weather.

6.1.3. Performance of the Virgo O3 DQR framework This section briefly summarizes
the performance of the Virgo DQR, via a statistical analysis using data from O3b that
correspond to the final, most complete, version of that framework during the O3 run. As
time distributions can include outliers due to occasional technical problems impacting
the DQR dataflow somewhere along its way, from GraceDB to the EGO HTCondor farm
and back, the results presented in the following two tables include the 50th and 95th

percentiles in addition to the mean values.

Table 4 provides the measured latencies for the processing steps that occur upstream of
the DQR. The meaning of each row is reported below.

• The first figure is the difference between the time when the trigger is recorded in
GraceDB and the time when the corresponding data were acquired.

• The second measures the time needed for GraceDB to send the LVAlert and to
have this message trigger the Virgo DQR framework upon reception.

• The third number reports the time needed to create and configure a new DQR
instance, until it is ready for processing. One should note that this duration includes
a 300 s wait time, imposed in order to allow GraceDB to receive, process and
gather all triggers found by the different online searches that analyse strain data in
parallel and independently. The assumption is that, after these five minutes, the
low-latency information available in GraceDB should be optimal and stable in the
vast majority of cases. Therefore, the actual DQR configuration phase only takes a
few tens of seconds: the needed data are located in the low-latency streams just
made available by the DAQ and the 30+ check scripts are generated one after the
other.

• Finally, the last reported duration accounts for the time needed to start processing
the DQR on the EGO HTCondor farm. This depends on the occupancy of the farm
and of the EGO internal network performance.

Table 4. Summary of the performance of the low-latency + Virgo DQR dataflow
during O3b, from the GPS time of a trigger to the start of the Virgo DQR on the EGO
HTCondor farm: see text for details.

Operation
Time taken [s]

Median Mean 95th percentile
Data acquired → Candidate on GraceDB 52 166 331

Candidate on GraceDB → LVAlert trigger 4 4 11
LVAlert trigger → Virgo DQR configured 331 339 383

Virgo DQR configured → Virgo DQR started 8 10 21
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We can see that the mean time elapsed between the recording of the data by the different
detectors and the creation of a new record in GraceDB is under three minutes; the
median time is even under one minute while the tail of the time distribution extends
beyond five minutes. This includes the reconstruction of the GW strain channels;
the transfer of these data alongside the associated online data quality information
to computing centers; the processing of these data by real-time GW searches; the
automated analysis of the results and the final transfer of trigger information to
GraceDB. Then, the new alert is received at EGO a few seconds later, triggering the
creation and the configuration of a new DQR instance. Removing the compulsory wait
time of 300 s, the DQR configuration takes a few tens of seconds only. Finally, about
10 additional seconds are needed on average to have the first DQR jobs processed on the
EGO HTCondor farm.

Table 5 summarizes the performance of the Virgo O3 DQR framework in terms of running
time. Each row corresponds to a category of checks. The quoted durations increase from
one row to the next as each new set of checks includes the previous ones.

• The quick checks whose outputs are mandatory to vet a trigger take about 6 minutes
to be all available, with a few minutes spread.

• Adding information about the Omicron triggers around the candidate takes about
10 more minutes. During O3, this latency was dominated by the fact that Omicron
triggers were computed in real time and stored internally by the online server: they
were only written to disk every 600 s, in order to allow the framework to cope with
the incoming data flow. Work will be done prior to O4 to optimize this latency and
to make the DQR aware of when the needed data have been written to disk, so that
their processing can start immediately after.

• Omicron-scanning all the available channels (more than 2,000 in total, with the
vast majority of them sampled at 10 kHz) around the trigger time requires 15-20
additional minutes.

• Finally, the full DQR took from 1.5 to 2 h to complete. The longest checks were
BruCo and UPV, plus the scan of all online logfiles described above.

Another key figure of merit of the DQR framework is the number of (software) check
failures per DQR instance. Table 6 shows the results of a statistical analysis based on the
subset of the DQRs that were automatically processed in real time during O3b because
the candidate false-alarm rate was below the 1/day threshold. Only 13% (2%) of the
DQR had 1 (2) failed checks. No exhaustive analysis of these failures has been performed,
as most of these DQRs were never checked by hand because the associated trigger was
not significant enough. The two main causes of problems were, however, incomplete
handling of edge-cases with the input data and actual bugs in processing algorithms.
These issues did not affect the rapid vetting of any public alert during O3, and this
framework worked smoothly as well for the validation of the offline events found later
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Table 5. Summary performance of the Virgo DQR processing during the last ∼100 days
of the O3b run. The quoted durations include the time to upload DQR check results
back to GraceDB that usually takes from ∼5 to ∼20 s.

Operation
Time from start [s]

Median Mean 95th percentile
Quick key checks 374 383 619

Adding Omicron trigger distributions 868 816 935
Adding full Omicron scans 1740 2159 4690

End 5185 4954 6330

by the archival GW searches. Both issues are being addressed as part of the upgrade of
the DQR framework for the O4 run.

Table 6. Percentages of the O3b Virgo DQRs with 0, 1 and 2 unsuccessful checks
respectively.

Number of unsuccessful checks 0 1 2
Percentage of O3b automatically processed DQRs 85% 13% 2%

6.2. O3 public alerts

6.2.1. Public alerts retracted because of an issue with Virgo data During O3, 24 public
alerts out of 80 have been retracted: 8 during O3a and 16 during O3b. Out of these
retractions, only two were due to Virgo data:

• S191124be [99] was due to a problem in the noise removal procedure included in the
reconstruction of the h(t) GW stream [39]. Two such cleaning algorithms running
in sequence started interfering, leading to a noise increase over time. An online
pipeline started triggering on that excess noise, creating several non-astrophysical
GW candidates in rapid succession (Figure 23) until one of them had a false
alarm rate lower than the public alert threshold. That led to the generation of
an automated alert that was then quickly retracted.
A similar problem should not happen again in future runs for three reasons:
i) improved noise cleaning procedures are being developed within the Virgo
h(t) reconstruction; ii) an online monitoring dedicated to such noise removal
interferences will be in place during O4; iii) a monitoring of the pipeline trigger
rates in GraceDB will be running as well during future data taking periods, in order
to spot quickly any misbehavior, like an excess trigger rate (thee case of S191124be)
or the opposite: a too long data-taking time period without any trigger, even of
low significance.
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Figure 23. Number of Virgo DQRs automatically processed per day during the O3b
run. The peak of 31 entries corresponds to November 24, 2019 when there was a
transient problem with the Virgo h(t) reconstruction: that generated several online
triggers, finally including S191124be that passed the public alert threshold and was
promptly retracted.

• S200303ba [100] was a single-pipeline trigger with most of its SNR concentrated
in Virgo. At that time, Virgo data were quite noisy due to bad weather. An
Omicron-scan around the trigger time (Figure 24) showed evidence of scattering
light noise at low frequency. The unusually-long delay to send out the retraction
circular (about 80 min) was partly due to an issue with the Gamma-ray Coordinates
Network broker connection.

6.2.2. Virgo contribution to O3 public alerts Out of the 56 non-retracted O3 public
alerts, 42 involved the Virgo detector. For 10 out of the 14 LIGO-only alerts, Virgo
was not controlled in its nominal configuration at the GPS time of the trigger. This
fraction is consistent with the average duty cycle of Virgo during O3 (see Section 3.5).
For the four remaining alerts, described in detail next, Virgo was fully controlled at the
time of the trigger and had a BNS range consistent with its typical performance at that
moment.

S190720a occurred during a ∼ 1 min segment between lock acquisition and beginning of
nominal observing mode, so Virgo data were not used for low-latency analyses. Offline
analyses later confirmed S190720a as a significant detection and were able to use the
low-noise Virgo data, finding a non-negligible amount of signal power in them. S190720a
was published as GW190720_000836 in GWTC-2 [8].

S190910d occurred during nominal observing mode in Virgo. It was a marginal
candidate, only reported by a subset of the low-latency searches. These searches did
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Figure 24. Omicron spectrogram around the time of the S200303ba trigger.
The search template time-frequency track (solid line) overlaps with low-frequency
scattering-light glitches (yellow color) caused by bad weather.

not find a significant amount of signal power in Virgo data, and did not report Virgo as
being used for the candidate. S190910d was not confirmed by offline analyses.

S190923y occurred while Virgo was undergoing commissioning activity. It was not
confirmed by offline analyses.

S200225q occurred while Virgo was undergoing a calibration run. Offline analyses
confirmed S200225q as a significant detection and were able to include the low-noise
Virgo data, although no significant signal power was found there. S200225q was
published as GW200225_060421 in GWTC-3 [10].

7. Global data quality studies

This final section presents examples of global data quality studies made during or after
the O3 run: noise transients, spectral analyses, classification of auxiliary channels based
on their potential sensitivity to GW signals and offline data quality studies leading to
the final Virgo O3 dataset.

7.1. Glitches and pipeline triggers

7.1.1. Glitch rates during the O3 run During data taking, Omicron runs online on
a few hundred channels, including the GW strain h(t), and monitors glitches in real
time: these triggers are stored on disk with a few minutes latency. Figure 25 displays
the evolution of the glitch rate during the O3 run. Figure 26 provides more details
by breaking the global Omicron glitch rate into SNRs (top plot) and peak frequencies
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Figure 25. Virgo glitch rate, using Omicron triggers, for the final O3 dataset (Science
segments that have not been CAT1-vetoed). The blue dots are averages over one
hour while the red curve shows the corresponding weekly moving average. The gap in
between O3a and O3b corresponds to the 1-month commissioning break.

(bottom plot). In these plots, the glitch rates have been smoothed by computing their
weekly moving average to ease the reading.

The large majority of glitches identified by Omicron have a moderate SNR: between 5
(the minimum value from which the Omicron trigger is kept) and 8. The highest trigger
rate at the very beginning of O3a corresponding to glitches with a peak frequency
between 440 and 460 Hz is an artefact due to a mis-configuration of the Omicron online
server that was quickly fixed. The significant increase of the trigger rate in O3b with
respect to O3a is mainly due to the bad weather conditions during the fall and winter
seasons (see [30] for more details). The weather was actually very quiet in January 2020
and the associated drop in glitch rate is quite strong.

7.1.2. Offline searches Non-stationary instrumental noise can potentially impact
searches for transient GW, which must include methods to robustly separate
astrophysical candidates from noise fluctuations. Despite the power of such methods,
inspecting the candidates produced by a search remains a sensitive way to identify
problematic operating conditions of GW detectors.

In this section, we focus on candidates produced from Virgo O3 archival data by one
of the pipelines used by the LIGO and Virgo collaborations to detect compact binary
mergers, namely PyCBC [95]. This analysis performs a broad-space search for compact
binary mergers involving neutron stars, black holes, or a mix of both. It uses a bank of
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Figure 26. Glitch rates (weekly moving average) using Omicron triggers during the
O3 run for Virgo— the gap in between O3a and O3b corresponds to the 1-month
commissioning break. The top plot breaks the glitch rate into SNR ranges, while the
bottom one categorizes it in terms of frequency ranges for the glitch peak frequency.
The choice of the frequency bands has been mainly driven by the need to isolate some
frequencies: 50 Hz (mains fundamental power in Europe), 150 Hz (second harmonics
of the mains) and the range around 450 Hz (another harmonics of the mains, plus the
range in which the frequencies of the suspension wire violin modes are located).
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Figure 27. Rate of compact binary merger candidates produced from Virgo O3 data
using a broad-space search based on PyCBC. Left: rate as a function of the matched-
filter SNR. Right: rate as a function of the reweighted SNR, which combines the SNR
and two χ2 discriminators. Red, blue and green curves correspond respectively to
templates lasting less than 0.6 s, 0.6–4 s, and more than 4 s. Curves of the same color
represent different chunks of Virgo data, each lasting ∼ 5 days. The black curves show
the rate over the entire run and search space. They extend to lower rates than the
individual chunks due to the much longer duration of the entire run.

model waveforms and matched filtering to generate candidates from LIGO and Virgo
data. Each single-detector candidate is ranked by a combination of its matched-filter
SNR and various statistics designed to reject candidates produced by non-stationary
noise.

Figure 27 shows the rate of candidate events recorded by PyCBC from Virgo data. The
horizontal axis shows either the matched-filter SNR of the candidate (left plot) or a
ranking statistic which combines the SNR of the candidate and two χ2 signal-based
discriminators [101, 102] (right plot). The vertical axis shows the rate of candidates
that are ranked higher than the value in the horizontal axis +. If the Virgo noise had
been Gaussian and stationary throughout O3, we would expect the rate to decrease
exponentially for larger and larger values of the ranking, and be independent on the
template parameters and particular chunks of data. Instead, the rate-vs-SNR curves
show a more complicated behavior, with a large variation across the search space and
particular data chunks. We observe a non-negligible rate at SNRs as high as 100,
+ At this early stage of the PyCBC analysis, candidates with merger times within fractions of a second
from each other can be highly correlated, because a given transient in the data typically “rings off”
several templates with high overlaps between each other. The estimated rate of candidates is biased if
this correlation is not accounted for. We do so by means of a clustering procedure: a given candidate
is ignored if a higher-ranked one exists within a time window of ±5 s.
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while astrophysical signals are typically expected to have SNRs between ∼5 and ∼10.
After the application of the χ2 discriminators, the behavior changes drastically, and the
exponential behavior of the rate is recovered, at least as long as we restrict to a subset
of the search space. We still observe a large variation of the exponential slope and
amplitude across the search space and data chunks, except for the longest templates
(green curves of Figure 27), which are more robust to instrumental artifacts due to
their particular time-frequency signature. However, the same variation is also seen with
candidates from the LIGO detectors, and it is taken into account by the analysis when
ranking the multidetector candidates [103].

A detailed inspection of the candidates in the tails of these plots shows that the highest
SNRs can be attributed to a single segment of ∼15 min of data on November 11, 2019.
These data contain narrowband, loud and rapidly-varying excesses of power (coming
from transient problems with the noise subtraction algorithms used to reconstruct the
GW strain channel h(t)) which temporarily affected the data conditioning algorithm
used by PyCBC. Most of these high-SNR triggers were removed by the χ2 discriminators,
effectively vetoing the entire problematic segment. On the other hand, most top
candidates by χ2-weighted SNR are clearly associated with scattered-light glitches. We
conclude that the χ2 discriminators used by PyCBC, which were designed for and tuned
on LIGO data, are also reasonably effective in Virgo, and should be further developed
to more effectively reduce the impact of scattered light.

7.2. Channel safety: channel (in)sensitivity to gravitational waves

Many Virgo data quality analyses aim at ensuring that GW candidates are of
astrophysical origin and not caused by terrestrial noise. Typically, searches for
correlations between auxiliary channels (monitoring the environment, the detector
status, the accuracy of its control, etc.) and the h(t) strain channel are run to produce
vetoes, that reject times when such correlations are identified. This strategy can lead
to a loss of interesting signals if any of the auxiliary channels is sensitive to GWs,
which means that it picks up disturbances induced in the detector by these. Hence, a
good knowledge of the couplings of auxiliary channels to h(t) is essential. To gather
such information, a statistical analysis of all auxiliary channels is performed, using the
approach proposed in [104].

This method relies on hardware injections that mimick the effects of GWs on the
detector, by moving in a deterministic way one of its test masses. They are used to
workaround the fact that the transfer functions between h(t) and most auxiliary channels
are not well-known, nor understood. The injected signals are 0.6 s long sinusoidal
Gaussian functions of various frequencies (between 19 Hz and 811 Hz) and amplitudes
(SNR between ∼20 and ∼500). The frequencies injected are chosen to scan the entire
detection band while avoiding any known resonant frequency (like violin modes). Each
waveform is injected three times, spaced by 15 s.
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This safety analysis assumes that glitches in a given auxiliary channel are distributed
according to a stationary Poisson process, whose rate and p-value time series are
measured using stretches of data during which no hardware injection is performed.
These p-value time series are used to define a classification threshold. Then, a null test
is applied to see whether the p-value distribution changes significantly in the presence
of hardware injections. Auxiliary channels that exhibit anomalously small p-values (i.e.
lower than the defined threshold) are classified as unsafe, meaning that they are likely
to mirror excess power coming from the strain channel. The other channels, called safe
are the only ones used to produce vetoes.

Virgo DetChar hardware injections were organized at short notice, in the few days
between the anticipated end of the O3b run (because of the pandemic) and the moment
when the detector was switched off. Among the ∼2500 auxiliary channels analysed, 69
are found to be unsafe. The safety analysis of these data allowed to validate the existing
sets of safe and unsafe channels determined by a previous study. These results matched
as well the a priori safe status one could infer based on the definition of the auxiliary
channels, i.e. which measurements they perform and how they do them.

7.3. Spectral noise

The term spectral noise, introduced in Section 2.3, identifies the class of detector
disturbances appearing as an persistent excess in the noise power spectrum estimation
of the data.

Spectral noise has a negative impact especially on searches for persistent GWs,
which aim at detecting astrophysical or cosmological signals mainly through the
identification of their spectral features. Two typical signal categories of persistent
waves are continuous gravitational waves (CW) [105] and a stochastic gravitational-
wave background (SGWB) [106]. The signals are very weak with respect to the already
detected coalescing binary emission. Due to their persistent nature, they can be looked
for in the frequency domain where the accumulated power over long observation times
can show up at a detectable level, after applying effective signal processing techniques.
Moreover, some spectral features of the signals can help in discriminating them from
detector noise. On the other hand, spectral noise can mask signals, or produce false
candidates, in both cases reducing the search sensitivity.

Searches for persistent signals are typically run off-line, once long stretches of data have
been collected. An early identification of spectral disturbances and of their instrumental
source would allow to remove, or at least reduce, the source of noise, thus improving
the quality of the data.

Different actions can be accomplished at the detector characterization level in support
of data analysis. A first action is to identify, and possibly remove, the instrumental
source of spectral noises as soon as possible during a data taking period. This is a
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non trivial task that typically requires a significant amount of work to nail down which
detector component is responsible for a given disturbance and to eliminate the noise
source, which may imply to replace the noisy component (for instance a cooling fan,
an electric motor, etc.) [31], to shut it down (if not needed) or to modify it properly.
This could consist, for instance, in shifting the frequency of a calibration line which
non-linearly couples to another noise source, in order to move the noise line frequency
into a less relevant band for the GW search [12, 107].

A second action is the use of additional techniques to differentiate between possible
signals and other spectral features. These methods strongly depend on the analysis
and on the type of GW signals searched An example of such techniques relies on the
Doppler effect. An astrophysical CW signal is expected to be modulated in frequency
by the Doppler effect, due to the Earth rotation, which induces a shift ∆f(t) ' f0

~v(t)·n̂
c

,
where f0 is the source frequency, ~v the detector velocity, n̂ the unit vector identifying
the sky direction and c the speed of light. CW searches correct this Doppler effect, thus
any monochromatic line present in the h(t) signal is spread by a maximum amount of
∆fmax ' 10−4f0 · cosβ— where β is the ecliptic declination. This shift corresponds to
up of hundreds or even thousands of frequency bins for typical CW searches.

Potential candidates found in the analysis lead to follow-up investigations to identify a
possible instrumental source. This follow-up is also based on a combination of DetChar
activity, to spot the source of the disturbances, and application of CW or SGWB
algorithms to build confidence in the astrophysical nature of the candidate, see e.g.
[108].

Although spectral noises cannot always be removed, it is still useful to characterize them
by constructing a list of noisy lines. This list can be used to exclude those disturbing
frequency bands from the analysis, or to veto candidates with frequency too close to
those of these noisy lines

The identification of lines is typically done by automated pipelines (see Sections. 4.4.1,
4.4.2 and 4.4.3), based on

(i) user-defined thresholds set on data power spectrum or on line persistency, defined
as the fraction of FFT, compared to the total number covering the full observation
time, in which the “normalized” power content of a given frequency bin was above
such a threshold (typically set to six times the average value);

(ii) by highlighting coincidences or significant coherence among different channels;
(iii) by highlighting a pattern in time-frequency maps of the data.

Candidates found in GW searches are subject to verification steps, in which the
identification of possible noise counterparts is done by processing the data in the
relevant frequency band and period of time and/or running manually one or more of
the previously mentioned line identification pipelines, described in Sections. 4.4.1, 4.4.2,
4.4.3. In the following we report and discuss a few examples of lines identified in Virgo
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O3 data. Readers can refer to the LIGO-Virgo GWOSC [79] for the full official list of
lines.

7.3.1. Combs Combs are families of lines separated by a constant frequency interval.
Typically, noise combs are electromagnetic disturbances generated by digital devices
(e.g. microprocessors, programmable communication devices like logical controllers,
ethernet cables, wireless repeaters) that leak into the strain signal. Comb lines can have
an impact on searches for persistent GWs due to their large number and usually high
strength. This makes the identification of combs an important task. There are several
combs present in Virgo O3 data, which we describe in the following.

A 1 Hz spaced comb with 0 Hz offset was already present during previous runs. A
new 1 Hz comb discovered during O3 has a 0.333 Hz offset with respect to integer
frequencies. This comb was discovered following investigations of a line at 22.333 Hz
that falls within a region of interest for the Vela pulsar CW search. The instrumental
origin of the comb has been confirmed by finding lines at the same frequency in the
magnetometers deployed at EGO.

Figure 28 shows the line persistency computed over the frequency range 21.8-23.5 Hz on
O3 Virgo data. Both 1 Hz combs are clearly visible. Furthermore, there is a comb with
0.2 Hz spacing, whose origin is unknown. The grey area indicates the frequency region
explored by a narrow-band CW search targeting the Vela pulsar. The strong line at
22.333 Hz produced an outlier in the search, which was discarded after its instrumental
origin was identified.

Finally, two more combs which have been identified by DetChar studies, have both
∼9.99 Hz spacing, one with 0 Hz offset and the other with 0.5 Hz offset.

7.3.2. Wandering line around 83 Hz – 84 Hz A wandering line is a peculiar kind of
spectral noise where the frequency of a spectral line changes with time, with no apparent
reason. This is also called a drifting line once the mechanism driving the frequency
change is at least partially identified, making its variations not entirely random anymore.

An example that triggered lots of DetChar investigations during O3 is the line, normally
located between 83 and 84 Hz, as shown in Figure 17, that reached about 110 Hz
at the maximum of its excursion and had variations of a few Hertz over about one
hour [109, 110]. Its origin dates back to the Virgo commissioning run 10 (C10) of
August 2018 [59], and possibly even earlier, in the preparatory phase preceding O2 [111].
Neither of the mechanism that make the line to depart from its typical frequency of about
83 Hz or what produces its variations with time have ever been understood, although
several data analysis techniques have been applied and newer ones developed for line
tracking [59]. An analysis with Bruco (see 4.4.3) revealed no witness channel coherent
with h(t) around that line. Moreover, we tracked the frequency evolution of this line,
and we correlated the corresponding time series with the auxiliary channels monitoring
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Figure 28. Plot of line persistency over the frequency band 20-30 Hz. The grey box
identifies the frequency range covered by a narrow-band search of CW signals from
the Vela pulsar in O3a data. The line at 23.333 Hz, which contributed to produce a
candidate in the search is clearly visible. In fact, several other lines belonging to the
1 Hz comb, both at integer frequencies and shifted by 0.333 Hz, and to a weaker 0.2 Hz
comb, are present.

Virgo [109]. This technique has proven successful in the past, in the case of drifting
lines driven by the temperature of some optical components [112], but has produced no
convincing correlation in the case of this line, whose origin has remained unknown.

7.3.3. Spectral noise bump around 55 Hz Figure 29a) shows the power spectrum of the
Virgo GW strain channel h(t) computed at two different dates, February 26 and March
2, 2019 (before the start of the O3 run), showing that a wide bump around 55 Hz had
been cured in the meantime. Indeed, a detailed study had shown that this disturbance
was present most of the time and was observed also in the PRCL channel. This allowed
to remove most of this noise excess when producing the reconstructed strain h(t), by
accurately subtracting the remaining PRCL contribution [39]. Note that this 55 Hz
bump affected the frequencies around 55.6 Hz, where the CW signal possibly emitted
by pulsar PSR J1913+1011 is expected. Furthermore, this bump was located within
the most sensitive region of the Virgo spectrum for an (isotropic) stochastic background
search.

7.3.4. Spectral noise around the 50 Hz power line frequency The GW strain signal in
the frequency region between 45 Hz and 55 Hz was significantly affected by ambient
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electromagnetic fields originating from the interferometer infrastructure. This noise was
studied and mitigated in subsequent steps during the run [31].

The intense 50 Hz line, corresponding to the frequency of the electricity mains, was
mitigated and substantially eliminated from h(t) (see Figure 29b), by implementing a
feed-forward noise cancellation scheme using as sensor a voltage monitor of the detector
uninterruptible power supply system [31]. This operation did not reduce the 50 Hz
harmonics also present in the h(t) spectrum (see Figure 6) because they are not due to
a non-linear response of the interferometer. They are present in the global environmental
disturbances and enter the GW strain channel through different coupling paths.

Sidebands of the mains frequency, at approximately 49.5 Hz and 50.5 Hz, were generated
by the pulse width modulation of the electric heater controller of the IMC building. The
noise was mitigated by decoupling the electric ground of the building from the central
experimental area with an isolation transformer.

Figure 29c) illustrates a wide-band noise affecting the same region. The origin of this
noise was eventually found to be a noisy static voltage accidentally applied to the signal
wires of the motors used for positioning and balancing the WE mirror suspension, then
coupling capacitively to the mirror coil actuator wires. The noise was mitigated by
un-plugging the drivers of the motors, which are not used in science mode.

Finally, Figure 29d) illustrates a family of lines between 47 Hz and 49 Hz which have
been identified as vertical mechanical modes of the last stage of the test mass suspension
system. These modes are excited by ambient magnetic fields coupling to the magnetic
actuators along the suspension chain. This noise was suppressed by an active mechanical
damping of the modes.

7.4. Offline data quality

7.4.1. Offline studies and checks While Section 5.1.2 describes the online CAT1 vetoes,
we focus here on the final set of offline CAT1 vetoes. They supersede online vetoes and
have been used by all analyses processing the final O3 Virgo dataset. These include
analyses using the O3 LIGO-Virgo public dataset: that is why the GWOSC website [113]
includes detailed public information about these vetoes [114].

Like the online CAT1 vetoes, all these veto flag segments of bad data that are unusable.
They are defined with a 1 s granularity and the figure-of-merit used to quantify their
impact is their dead time, that is the fraction of Science time that is removed by applying
them individually. Yet, the vetoes are not independent and they may overlap. Therefore,
they are meant to be applied globally on the dataset, by taking the logical OR of all of
them.

The offline vetoes defined during the O3 run can be classified into three main categories.
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Figure 29. Four steps of the reduction process of the strain spectral noise between
40 Hz and 60 Hz during O3. In all sub-figures the blue curve is before the mitigation,
and the red curve is after the mitigation. a) Cancellation of the spectral noise structure
around 55 Hz which was common to the PRCL signal. b) Subtraction of the 50 Hz
line associated to the power grid. c) Mitigation of a wide-band noise associated to the
motor driver crate of the WE suspension. d) Suppression of a few noise lines associated
to mechanical modes of the test masses payload.

• The duplication—after crosscheck and potential additions or fixes—of online
CAT1 vetoes: this includes the saturations of dark fringe photodiodes or mirror
suspensions, and the monitoring of the reconstructed GW strain h(t).

• The upgrade of existing online vetoes: the excess rate of glitches is monitored offline
using h(t) whereas only the DARM channel could be used online due to latency
constraints.

• The addition of new vetoes, based on information that was not available in low
latency, or that was not known at the time online flags were generated. These
categories are described below.

– Checks of the consistency and of the completeness of the files storing the h(t)

GW stream: these vetoes flag segments in which h(t) is missing or contains
missing samples.

– The h(t) stream is reconstructed by blocks of eight consecutive seconds of data.
Therefore, a control loss can possibly impact up to the eight seconds of data
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that predate it. As the exact time of a control loss is not easy to define, the
last ten seconds preceding each recorded control loss have been removed.

– The Science dataset has been scanned accurately to identify segments during
which the detector was not taking good quality data, contrary to what its
status was indicating. These segments were removed from the final dataset.

– Finally, a workaround was applied to the detector control system during some
weeks in O3b in order to mitigate transient data losses due the failure of an
hardware component. That patch allowed to maintain the working point of the
instrument, thus sparing a ∼20 min control acquisition procedure each time it
prevented a global control loss. Yet, the application of that workaround could
degrade the quality of the data. Thus, the impacted segments were removed
from the final dataset, with some safety margin on both ends (the last 10
seconds before having the control patch be applied automatically, and the first
110 seconds following the end of the transition back to the nominal control
system).

Table 7 summarizes the impact of CAT1 vetoes on the final O3 Science dataset: overall,
only 0.2% of the Science data have had to be removed due to various problems.

Table 7. Virgo O3 offline Science dataset and CAT1 vetoes.

O3a O3b O3a + O3b
Science dataset 12,057,731 s 9,611,843 s 21,669,574 s
Logical OR 18,802 s 20,636 s 39,438 s

of all offline CAT1 vetoes (0.16%) (0.22%) (0.18%)

Conversely, a few minutes of good quality data that had not been included in the online
Science dataset for various and clearly understood reasons (software issue, human error,
etc.) were added to the offline, final, dataset.

7.4.2. Event validation To assess whether the detection alerts produced by transient
searches [57, 94, 115, 116] should be considered as “candidate events”, a procedure of
validation is implemented after each generated trigger [10, 45]. This task has the role to
verify if data quality issues, such as instrumental artifacts, environmental disturbances,
etc., can impact the analysis results and decrease the confidence of a detection, or even
foster a rejection [117].

The validation of the online triggers found by GW transient searches includes two
separate stages. A prompt evaluation is typically completed within few tens of minutes
after an event trigger has been generated, as represented by the data flow in Figure 4.
Its goal is to determine a preliminary detection confidence and sky localization, in order
to deliver public alerts to the astronomy community and support for multi-messenger
follow up observations [117], as described in Section 6, or to vet that trigger if evidence



8. PREPARATION OF THE O4 RUN 70

of severe contamination from non-astrophysical artifacts is present. A team of DetChar
shifters is in charge of this task as part of the rapid-response team (Section 3.4). The
decision about the event is primarily based on the quick results provided by the DQR
within a few minutes from the trigger. This decision takes into account the evaluation of
the operational status of the detector and its subsystems, the environmental conditions,
as well as preliminary checks on the strain data. In particular, the shifters are asked to
verify the presence of excess noise, namely glitches, around the time of the trigger and
the validity of the hypotheses of stationarity and Gaussianity of the data, as discussed
in Sections 4.2.3 and 4.3. Moreover, it is examined the possible presence of correlations
between the strain data and the auxiliary sensors, which may advise a non-astrophysical
origin of the trigger.

With higher latency, a second stage of validation is performed by a validation team
to finally check candidate events before publications, including those found by offline
analyses [56, 95]. Besides of (double-)checking the astrophysical origin of the event
trigger, the main purpose of this process is to carefully assess whether the parameter
estimation of the source properties can be affected by noise artifacts. This procedure
takes advantage of dedicated reruns of the DQR, as well as from additional tools and
metrics, including, for example, signal consistency checks [45, 118].

For those events where non-stationary noise, such as glitches, are found in the vicinity of
the putative GW signal, or even overlapping with it, a procedure of noise mitigation is
implemented [119, 120]. During O3b, such process has involved 12 events, including one
with Virgo data, GW191105e [10, 121], where the process of mitigation and validation of
the data quality has improved the parameter estimation results and credibility. Various
O3a events have undertaken a preliminary version of this procedure [8].

8. Preparation of the O4 run

The LIGO-Virgo O3 run has lead to the discovery of dozens of new GW signals from
compact binary mergers, which have boosted our knowledge of these populations in
our local Universe and allowed further, more stringent, tests of general relativity. The
O3 run has also been the first long data-taking period for the AdV detector. Thus, it
represents a full-scale, extended and non-stop stress test of the organization and work
methods of the Virgo DetChar group. The experience accumulated during these 11
months will form the base of the DetChar activities, both to prepare and operate for
O4 and the following runs.

Although the Virgo DetChar group has fulfilled all its main requirements during the
O3 run, work has been going on since then to improve its performance and extend its
activities. In particular, the anticipated differences between the O3 and O4 runs lead
to new challenges that the group should tackle. The AdV detector will have evolved
significantly, with the completion of the Phase I of the AdV+ project. The main changes
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on the instrument side are the addition of the signal-recycling mirror in between the
beam splitter and the output port of the Virgo interferometer, a higher input laser power
and the implementation of frequency-dependent squeezing. This new configuration will
require dedicated instrument characterization activities, while many new data quality
features will have to be discovered, understood and later mitigated or solved. On the
data analysis side, progress in terms of sensitivity while keeping the network duty cycle
high will lead to more GW detections. On the one hand, more work will be required
to validate this excess of signal candidates compared to O3; on the other hand, the
triggers passing a given false alarm rate threshold will remain dominated by noises,
meaning that the bulk of computing resources used by the Virgo DetChar group will
not change significantly.

Gathering experience from the past and predictions for the future, a few top priorities
have emerged for the DetChar group. A first and obvious one is to broaden the scope of
the DetChar monitoring, to make sure that no relevant area remains uncovered, from raw
data to the final analyses. Then, the latency of the various DetChar products should be
decreased when it is relevant and possible: either by making the corresponding software
framework more efficient, or by processing new data more regularly. Finally, some
emphasis should be put on increasing the automation of the DetChar analyses and the
reporting of their results. In that respect, the DQR is a good example of the realization of
these plans. Parallel to common LIGO-Virgo-KAGRA developments on the framework
architecture to make DQRs more uniform among the three collaborations and to improve
its performance, additional data quality checks will be implemented. They will provide
combined results that should give a partial digest of the global vetting of a given GW
signal candidate.

The increase of the information available and the help to identify quickly its most
relevant points should allow maintaining, if not improving, the high and steady level of
Virgo performances observed during O3.

Acknowledgements

September 2021 version – https://tds.virgo-gw.eu/ql/?c=17224

The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare
(INFN), the French Centre National de la Recherche Scientifique (CNRS) and the
Netherlands Organization for Scientific Research (NWO), for the construction and
operation of the Virgo detector and the creation and support of the EGO consortium.
The authors also gratefully acknowledge research support from these agencies as
well as by the Spanish Agencia Estatal de Investigación, the Consellera d’Innovació,
Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA
Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and
the European Union— European Regional Development Fund; Foundation for Polish

https://tds.virgo-gw.eu/ql/?c=17224


PREPARATION OF THE O4 RUN 72

Science (FNP), the Hungarian Scientific Research Fund (OTKA), the French Lyon
Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS),
Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—
Vlaanderen (FWO), Belgium, the European Commission. The authors gratefully
acknowledge the support of the NSF, STFC, INFN, CNRS and Nikhef for provision
of computational resources.

We would like to thank all of the essential workers who put their health at risk during
the COVID-19 pandemic, without whom we would not have been able to complete this
work.

The authors would also like to thank Samuel Salvador for his extensive and careful
proofreading of the manuscript.
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BRiSTOL Band-limited RMS Stationarity Test Tool

BruCo brute-force coherence tool

DMS Detector Monitoring System

DQR data quality report

DQSEGDB Data Quality Segment Database

LVAlert LIGO-Virgo Alert System

MONET Modulated NoisE Tool

NoEMi Noise Frequency Event Miner

UPV use-percentage veto

VIM Virgo Interferometer Monitor

AdV Advanced Virgo

ASD amplitude spectral density

BH black hole

BNS binary neutron star

BRMS band-limited RMS

BS beam splitter

CARM common (i.e. average) length of the two arm cavities

CEB central building

CW continuous gravitational waves

DAQ data acquisition system

DARM difference of the two arm cavity lengths

DOF degree of freedom

EOM electro-optical modulator
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FFT fast Fourier transform

GraceDB GRAvitational-wave Candidate Event Database

GW gravitational wave

GWOSC Gravitational Wave Open Science Center

IMC input mode-cleaner

MICH length difference between the Virgo Michelson interferometer short arms

NE north end

NEB north-end building

NI north input

NS neutron star

OMC output mode-cleaner

PR power recycling

PRCL power recycling cavity length

PSD power spectral density

RRT rapid-response team

SGWB stochastic gravitational-wave background

SNEB suspended north-end bench

SNR signal-to-noise ratio

SR signal recycling

SSFS second-stage frequency stabilization system

SWEB suspended west-end bench

VPM Virgo Process Monitoring

WE west end

WEB west-end building

WI west input

Appendix A. Additional tool information

In this Appendix, we describe in more detail some of the data analysis techniques
presented in Section 4, and their implementations into tools. Appendix A.1 and
Appendix A.2 provide additional information on the statistics adopted to test the
hypotheses of stationarity and Gaussianity with the BRiSTOL and rayleighSpectro
tools, and their interplay. Appendix A.3 and Appendix A.4 are devoted to the tools for
spectral noise investigations BruCo and MONET. The former uses the coherence as a figure
of merit to study the linear transfer of power between a set of auxiliary channels and a
main channel, usually the GW strain h(t). The latter investigates non-linear couplings
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between channels, by studying the coherence of the main channel (usually h(t)) with a
synthetic one, created by modulating a carrier signal (either an existing DAQ channel or
a sinusoid with a fixed frequency) with the low-frequency part of an auxiliary channel.

Appendix A.1. BRiSTOL - a Band-limited RMS Stationarity Test Tool

This statistical test aims at verifying the hypothesis of wide (or weak) sense stationarity
of the data, i.e. that the covariance function is left unchanged by shifts in time.
We test this by verifying that subsequent power spectral density (PSD) estimates, in
predefined frequency bands, are compatible with the same probability distribution. The
corresponding test statistics are based on a set of BRMS time series, estimated on an
equal number of bands:

BRMS t(b) =

√∫
f∈b

Ŝt(f) df, for b ∈
{

[fmax
1 , fmin

1 ], . . . , [fmax
K , fmin

K ]
}

(A.1)

for data xtn recorded at Nyquist rate fS, tn = t+ n/fS, where Ŝt(f) is a PSD estimate
referred to time t, and obtained with the periodogram method [122]:

Ŝt(fk) =
1

N

∣∣∣∣N−1∑
n=0

xtne
−2πi nfk/fS

∣∣∣∣2, fk =
k fS
N

, for k = 0, . . . , N − 1 (A.2)

Two modifications have been implemented to make (A.1) more suitable for the study
of transient noise, in particular to highlight slow non-stationarity. Firstly, spectral lines
(refer to Section 4.4.2 for more details) have been removed from the integral. These are
narrow features in the PSD of the data, originating from resonances in various parts of
the interferometer and their harmonics. Their intensities can be orders of magnitude
larger than the neighboring noise floor. Hence, if a line is present in a band where we
are about to compute the BRMS, it is likely to dominate the final estimate, and also the
corresponding fluctuations, preventing us from probing the features of the underlying
noise floor. To remove these lines, we identify them with an algorithm similar to the one
developed for the NoEMi pipeline [77], and based on the prominence of their PSD [123].

Second, glitches are also typically removed from the BRMS time series. These fast
transients can manifest at a rate of about 10 per minute, as shown in Figure 25, which
means that every data segment longer than a few seconds is likely to contain one of
them. To focus on slower noise transients, which typically are not targeted by tools
specifically devoted to excess power identification, such as those presented in Section 5,
we must exclude the data segments affected by glitches from the stationarity test. This
is done by means of an algorithm based on a rolling median absolute deviation, defined
as the median absolute difference from the median, to identify outliers in the BRMS
data.
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Then, the time series corresponding to the resulting modified BRMS are divided
into “chunks” where estimate their empirical distribution function. The stationarity
hypothesis is tested by means of a two-sample Kolmogorov–Smirnov test [60] for each
pair of consecutive chunks, whose p-values are compared to a test significance α (to be
decided in advance), and the (null) hypothesis of stationarity rejected when the latter
is exceeded.

There are two advantages in using the BRMS. First, averaging over the frequencies
of each band has a similar variance reduction effect than the means in Welch’s PSD
estimation method [124]. This in turn allows a finer time resolution while maintaining
a moderate variance for our test statistics, that is, the empirical distribution of the
BRMS. Second, the various non-stationarities typically manifest in specific frequency
bands, closely related to the noise source that generated them. For example, the main
harmonic of scattered light is usually visible below 30 Hz; non-linear and non-stationary
couplings of the angular controls with the 150 Hz harmonic line are characteristic of
a tight region around it, etc. So, without losing much of resolution, we can perform
the noise characterization directly on these bands instead of on each frequency bin
comprising the spectrum of the signal.

Appendix A.2. rayleighSpectro - Gaussianity test

Similarly to what was discussed for the stationarity hypothesis, Gaussianity is likewise
important to be tested separately in the different regions of the spectrum where noise
sources can show up. rayleighSpectro does this by means of a consistency check
on the PSD estimated from the data with what is expected for stationary Gaussian
noise. Indeed, if the data is compatible with the hypothesis od Gaussianity, the
periodogram estimator in Equation (A.2) is asymptotically (with N) described by an
exponential distribution of parameter S(fk)

−1 [125], where S(fk) is the process PSD.
The corresponding ASD estimator, obtained as the square root of Equation (A.2), is
described by a Rayleigh distribution with parameter

√
S(fk)/2. The scaling property of

this distribution can be used to construct consistency tests. For example, the standard
deviation of the ASD estimates obtained on non-overlapping segments provides an
estimator of the standard deviation of this variable, which equals

√
(4− π)S(fk)/2.

Similarly, the mean of these estimates provides an estimator of the mean:
√
πS(fk)/2.

The ratio of these two quantities gives a statistic that, at each frequency fk, is
asymptotically equal to a constant whose numerical value is given in Equation (1),
in the null hypothesis that the data is described by a stationary and Gaussian
distribution. The actual value of the previous quantity for a finite number of averages
and the corresponding critical values for performing statistical tests have been computed
in [126, 61].

By dividing the data into chunks of duration ∆t, one can obtain a time–frequency map,
similar to a spectrogram, showing with time resolution ∆t the frequencies and times
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where the data significantly depart from the expected value of Equation (1). Smaller
values of this statistic are associated with data having smaller fluctuations than those
expected for a Gaussian process; spectral lines usually behave in this way. Larger values
are instead typical of non-stationary noises, such as glitches, that produce a larger
variance of the ASD estimates.

The interplay between this tool and BRiSTOL for the assessment of the stationarity and
Gaussianity of the data is the following. The latter assesses where the data is compatible
with the hypothesis of wide sense stationarity, that is, the second order moments (i.e. the
covariance or the RMS) are left unchanged by shifts in time. This corresponds also to
strong sense stationarity if the data is also Gaussian, that is, completely characterized
by its mean and covariance functions, as tested by rayleighSpectro. Conversely,
deviations from these assumptions can be tested independently.

Appendix A.3. BruCo

The BruCo python code (version 2017-01-23) [80], is publicly available from the git
repository [81], which also provides a description of the argument list. An instance of
the repository is kept with Virgo-specific data access features.

BruCo computes the magnitude-squared coherence between a main channel (typically,
but not necessarily, the detector strain channel h(t)) and all auxiliary channels that, at
the time of interest, are recorded by the DAQ system. Optionally, a set of redundant
channels which are known a priori to be correlated with the main one, can be excluded.
In Virgo, during the O3 run, there were approximately 3,000 non-redundant channels
with a sampling frequency ≥1 kHz. To deal with the high computational load required
by this analysis, BruCo implements the option of multi-core parallel processing in up to
10 threads.

In the BruCo implementation adopted for Virgo during O3, a continuous Science data
segment of length T = 800 s is selected for the main channel h(t) and, in turn, for each
auxiliary channel n(t). Each data segment is resampled to a targeted output frequency
of 2 kHz with the Fourier resampler scipy.signal.resample, divided into Nave = 100

sub-segments (8 s long) and the averaged magnitude-squared coherence is computed,
as:

Ch,n(fi) =
|< FFTn(fi)

∗FFTh(fi) >|2
<| FFTh(fi) |2><| FFTn(fi) |2>

(A.3)

where FFT denotes the windowed fast Fourier transform, "<>" denotes the averaging
operation, fi is the ith frequency bin, and "∗" the complex conjugate operation. With
these parameters, the frequency resolution is df = Nave/T = 0.125 Hz. Coherence is
examined up to 1 kHz, and its value is deemed significant if it exceeds a threshold set to
0.03, a value corresponding to the 95% confidence level of the distribution of averaged
coherence between random data [127], given the selected parameters.
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Daily BruCo results are html-formatted and made accessible in a dedicated VIM web
page (see Section 4.1.3). The BruCo VIM summary page allows to quickly spot noise
paths contributing to the GW strain h(t) in specific frequency bands. A summary table
is generated: each row corresponds to a given frequency bin and contains the list of
the most coherent channels in descending order. The cell background is color coded in
shades of red from full red (maximum coherence: 1) to white (no coherence) as shown in
Figure A1. For each auxiliary channel, a plot (see Figure 19) of the projected coherence
quantity, hn(f) =< FFTh(f) >

√
Ch,n(f), is produced and linked to the table. In

the hypothesis of linear coupling, this quantity estimates the contribution to the strain
channel of the noise witnessed by the nth auxiliary channel [127]. Additionally, the
VIM daily summary page contains the list of the top ranked channels in the frequency
bins with coherence greater than 0.3 (Table A1), and a plot of the combined projected
coherence greater than 0.5 (Figure A2).

Figure A1. An example of BruCo result webpage displaying, for each frequency
bin (leftmost column), the most coherent channels sorted by decreasing coherence
value, also represented by the red shade intensity. These data are from November 11,
2019. The large coherence detected at frequencies 155−170 Hz triggered some further
investigations of the noise [128].

Appendix A.4. MONET

MONET computes the magnitude-squared coherence between a main channel (typically
the DARM channel) and a list of other signals, that are constructed multiplying in the
time domain a carrier signal and a set of modulating auxiliary channels to which a low-
pass filter (with a typical cutoff frequency of a few Hz) is applied; the carrier signal can
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Table A1. An excerpt (15 top lines) from top ranked channels’ summary with
coherence greater than 0.3 for GPS time 1264319383 (2020/01/29 at 07:49:25 UTC).

Frequency [Hz] Coherence Type of channel
9.375 0.348 West arm transmitted power measurement

9.500 0.371
Angular correction of the last stage
of WI payload suspension

13.375 0.308
Sensing signal measured at the dark fringe port,
used to control optical cavity alignment

13.625 0.349 Same sensing signal
13.750 0.347 Same sensing signal
14.125 0.311 Same sensing signal
14.250 0.310 Same sensing signal
14.375 0.335 Same sensing signal
14.625 0.309 Same sensing signal
15.375 0.323 Same sensing signal

16.250 0.589
Longitudinal correction of the last stage
of BS payload suspension

16.375 0.532 Same longitudinal correction
16.750 0.303 Same sensing signal

60.375 0.403
Calibration signal applied
to the WE test mass actuators

Figure A2. A BruCo VIM daily combined projection of the GW strain channel h(t),
showing coherences greater than 0.3 for the same GPS time 1264319383 (2020/01/29
at 07:49:25 UTC) as the previous plot.

be a real channel or a simulated signal (e.g. a sinusoidal signal). Similarly to what is
done with BruCo, also with MONET continuous science data segments of a specific time
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length T are selected for all the channels to be investigated; then each data segment
is resampled to a targeted output frequency (f out) and, finally, the magnitude-squared
coherence is computed with Equation A.3. For the analysis of O3 Virgo data we typically
used a cutoff frequency of 5 Hz, T = 1200 s and f out=1 kHz.

MONET can be executed on demand, investigating dozens of auxiliary channels and
spectral lines every single run. The outputs are organized in a directory structure:

• A main directory, whose name indicates the main channel, the initial gps time and
the time length of the segment of data to be analysed.

• A secondary directory, named after the carrier signal used.

• Several sub-directories, one for each modulator channel.

The secondary directory contains an ascii table and a summary figure. The ascii table
contains three columns: the frequency bins, the computed above-theshold coherence
values for each bin (ordered from the lowest to the highest) and the corresponding
modulator channels name. Figure A3 shows the MONET summary plot for the DARM
channel during O3. Superimposed to the main channel’s ASD there are red points
marking the frequencies at which coherence above threshold is found with at least one
auxiliary channel.

In each sub-directory, a table and a plot are generated, in which the coherence values
associated with the specific modulator channel for each frequency bin are reported;
several other plots are also produced, in which the ASD of the main channel is reported,
together with the noise projection based on the coherence values, around the specific
spectral lines to be investigated (see Figure A4).
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Figure A3. ASD of the DARM channel (in black), together with red points that mark
the frequencies at which the coherence is above the threshold, fixed in this case at 0.3;
the initial GPS time of the analysed data and the chosen carrier signal are indicated
on the top of the figure.
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Figure A4. ASD of the main channel (DARM) around the 350 Hz spectral line (in
black), together with the noise projection, based on the coherence values obtained with
the modulator channels ASC_Diffp_TY and ASC_Diffp_TX, in blue and orange
respectively (these two channels are used to control the angular movement of the
mirrors in the detector arms, to guarantee the proper ricombination of the laser beams
at the beam splitter); the initial gps time of the analysed data and the chosen carrier
signal are indicated on the top of the figure.
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