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Abstract
We consider online convex optimization when a number k of data points are outliers that may be
corrupted. We model this by introducing the notion of robust regret, which measures the regret only
on rounds that are not outliers. The aim for the learner is to achieve small robust regret, without
knowing where the outliers are. If the outliers are chosen adversarially, we show that a simple
filtering strategy on extreme gradients incurs O(k) additive overhead compared to the usual regret
bounds, and that this is unimprovable, which means that k needs to be sublinear in the number of
rounds. We further ask which additional assumptions would allow for a linear number of outliers.
It turns out that the usual benign cases of independently, identically distributed (i.i.d.) observa-
tions or strongly convex losses are not sufficient. However, combining i.i.d. observations with the
assumption that outliers are those observations that are in an extreme quantile of the distribution,
does lead to sublinear robust regret, even though the expected number of outliers is linear.
Keywords: Online convex optimization, robustness, outliers

1. Introduction

Methods for online convex optimization (OCO) are designed to work even in the presence of ad-
versarially generated data (Hazan, 2015; Shalev-Shwartz, 2011; Cesa-Bianchi and Lugosi, 2006),
but this is only possible because strong boundedness assumptions are imposed on the losses that
limit the influence of individual data points. On the other hand, the most practically successful
methods do not enforce an a priori specified bound on the losses, but instead adapt to the norms of
the observed gradients or to the observed loss range. For example, the regret bound for AdaGrad
adapts to the ranges of the gradient components per dimension (Duchi et al., 2011), the regret bound
for online ridge regression scales with the largest observed loss (Vovk, 2001), the regret bound for
AdaHedge in the prediction with experts setting scales with the observed loss range of the experts
(De Rooij et al., 2014), the regret bound for online gradient descent on strongly convex losses scales
with the maximum gradient norm squared (Hazan et al., 2007), etc. In all such cases a small number
of outliers with large gradients among an otherwise benign dataset can significantly worsen perfor-
mance. This is also clear directly from the algorithms themselves, where we see that large gradients
have the effect of significantly decreasing the effective step size for all subsequent data points, lead-
ing to slower learning. Extreme outliers may occur naturally, for instance because of heavy-tailed
distributions or sensor glitches, but if each loss is based on the input of a user, then we may also
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be concerned that a small number of adversarial users may try to poison the data stream (Kurakin
et al., 2017).

We formally capture the robustness of OCO methods by modifying the standard setting to mea-
sure performance only on the rounds that are not outliers. The goal of the learner is to perform as
well as if the outliers were not present, up to some overhead that is incurred for filtering out the
outliers. As in standard OCO, learning proceeds in T rounds, and at the start of each round t the
learner needs to issue a prediction wt from a bounded convex domain. The environment then reveals
a convex loss function ft with (sub)gradient gt := ∇ft(wt) at wt, and performance is measured by
the cumulative difference between the learner’s losses and the losses of the best fixed parameters u.
Unlike in the standard OCO setting, however, we only sum up losses over the subset of inlier rounds
S ⊆ {1, 2, . . . , T} that are not outliers, leading to the following notion of robust regret:

RT (u,S) :=
∑
t∈S

(
ft(wt)− ft(u)

)
. (1)

The challenge for the learner is to guarantee small robust regret without knowing S. Importantly, we
aim for robust regret bounds that scale with the loss range or gradient norms of the rounds in S , but
not with the size of the outliers, so even extreme outliers should not be able to confuse the learner.

In Section 3, we first consider the fully adversarial case where the only thing the learner knows
is that there are at most k outliers, so T −|S| ≤ k, and both the inliers and the outliers are generated
adversarially, without any bound on the range of the outliers, and with the range of the inliers also
unknown a priori. We introduce a simple filtering approach that filters out some of the largest
gradients, and passes on the remaining rounds to a standard online learning algorithm ALG. When
the losses are linear, this approach is able to guarantee that

RT (u,S) = RALG
T (u) +O

(
G(S)k

)
for all S such that T − |S| ≤ k simultaneously, (2)

where G(S) is the norm of the largest gradient among the rounds in S and RALG
T (u) is the regret of

ALG on a subset of rounds under the guarantee that their gradient norms are at most 2G(S). The
extension to general convex losses then follows from a standard reduction to the linear loss case.
We follow up by showing that (2) is unimprovable, not just for adversarial losses, but even if the
losses are independent and identically distributed (i.i.d.) according to a fixed probability distribution
or if the losses are strongly convex. This fixes the dependence on the number of outliers k to be
linear in k in quite some generality. Nevertheless, in Section 4 we identify sufficient conditions to
get around the linear dependence: if the gradients are i.i.d., and we take S = Sp to be the rounds
in which ‖gt‖∗ is at most the p-quantile Gp of the common distribution of their norms, then there
exists a method based on approximating Gp by its empirical counterpart on the available data that
guarantees that the expected robust regret is at most

E [RT (u,Sp)] = O
(
Gp

(√
pT +

√
p(1− p)T lnT + ln2 T

))
. (3)

SinceO
(
Gp
√
pT
)

would be expected if Sp were known in advance, we see that the overhead grows
sublinearly in T and is even asymptotically negligible for outlier proportion 1 − p = o(1/ ln(T )).
More generally, we extend this result such that the gradients do not need to be i.i.d. themselves, but
it is sufficient if there exist i.i.d. random variables Xt and a constant L such that ‖gt‖∗ ≤ L‖Xt‖∗.
We then define the quantile with respect to the distribution of the Xt. This covers nonlinear losses
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of the form ft(w) = ht(w
ᵀXt) for convex functions ht that are L-Lipschitz, like the logistic

loss ft(w) = ln(1 + exp(−YtwᵀXt)) and the hinge loss ft(w) = max{1 − YtwᵀXt} for Yt ∈
{−1,+1}, both with L = 1.

Related Work The definition of robust regret may remind the reader of the adaptive regret (Hazan
and Seshadhri, 2009; Daniely et al., 2015), which measures regret on a contiguous interval of
rounds I that is unknown to the learner. Since adaptive regret can be controlled by casting it into the
framework of specialist (sleeping) experts (Freund et al., 1997; Chernov and Vovk, 2009), it is nat-
ural to ask whether the same is possible for the robust regret. To apply the specialist experts frame-
work, we would assign a separate learner (specialist) to each possible subset of rounds S that would
then be active only on S , and such a pool ofm learners would be aggregated using a meta-algorithm.
Computational issues aside, this approach runs into two problems: the first is that all existing meta-
algorithms assume the losses to be bounded within a known range, and therefore cannot be applied
since we do not assume that even the range of the inliers is known. Second, even if the range issue
could be resolved, the specialist regret would incur a Ω(

√
T logm) = Ω(

√
kT log(T/k) overhead,

already if we only consider all m =
(
T

T−k
)
≥ (T/k)k possible subsets with exactly k outliers. We

see that k now multiplies T , which is much worse than the optimal additive dependence on k in (2).
Reducing the dependence on the largest gradient norm has previously been considered in the

context of adaptive online and stochastic convex optimization (Duchi et al., 2011; Ward et al., 2019).
However, these methods still depend on the average of all (squared) gradient norms, and therefore
require these norms to be finite. In contrast to these adaptive methods, our method can handle
a small number of adversarial samples, with large or even infinite norm, while our robust regret
analysis still guarantees a sub-linear bound.

In the context of stochastic optimization, Nazin et al. (2019) propose a robust version of mirror
descent based on truncating the gradients returned by a stochastic oracle. Their main goal is to
establish a sub-Gaussian confidence bound on the optimization error under weak assumptions about
the tails of the noise distribution. Contrary to our setup, they control the smoothness of the objective
and the variance of the noise, so that already a vanilla (non-robust) version of SGD would achieve a
vanishing optimization error in expectation (but not with a sub-Gaussian confidence). Diakonikolas
et al. (2019a) propose a robust meta-algorithm for stochastic optimization that repeatedly trains a
standard algorithm as a base learner and filters out the outliers. This approach is conceptually similar
to our filtering method, but it is designed to work in a batch setting, with the data (sample functions)
given in advance. Prasad et al. (2018) provide a robust batch algorithm for stochastic optimization
by applying the ideas from robust mean estimation to robustify stochastic gradient estimates in a
(batch) gradient descent algorithm.

In the online learning and bandit literature, interesting results were obtained for dealing with
adversarial corruptions of data that are otherwise generated i.i.d., to still benefit from the stochastic
setting (Lykouris et al., 2018; Gupta et al., 2019; Amir et al., 2020). Wang and Chaudhuri (2018)
and Zhang et al. (2020) further consider data poisoning attacks on an online learner, but the focus
is on the optimization of the adversary, while the learner remains fixed. In all these works, contrary
to ours, the corrupted data is still assumed to lie in the same range as the non-corrupted data. A
notable exception is the very recent work of Chen et al. (2020), which proposes online algorithms
for contextual bandits and linear regression in a framework in which the linear model is realizable
(well-specified) up to small noise, and a fixed, randomly selected, fraction of examples is arbitrarily
corrupted (as in the Huber ε-contamination model (Huber, 1964)), but still remains bounded. In
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contrast, we avoid strong distributional assumptions such as model realizability, and do not make
any probabilistic assumptions about the corruption mechanism or impose any constraints on the
magnitude of the outliers.

Starting with pioneering works of Tukey and Huber (Tukey, 1959; Huber, 1964) there has been
a tremendous amount of past work in the area of robust statistics, which concerns the basic tasks
of classical statistics in the presence of outliers and heavy-tailed distributions (Huber, 1981). A
more recent line of research building on the work of Catoni (2012); Minsker (2015); Lugosi and
Mendelson (2019b,a) concerns estimation with sub-Gaussian-style confidence for heavy-tailed dis-
tributions. Finally, our setup is different from, but conceptually related to, a line of research on
machine learning and statistical problems in the presence of adversarial data corruptions (Charikar
et al., 2017). This has been studied, for instance, in the context of parameter estimation (Lai et al.,
2016; Cheng et al., 2019; Diakonikolas et al., 2018; Lugosi and Mendelson, 2019c; Prasad et al.,
2020), robust PCA (Candès et al., 2011), regression (Klivans et al., 2018; Diakonikolas et al., 2019b;
Liu et al., 2020), classification (Klivans et al., 2009; Liu and Tao, 2016; Awasthi et al., 2017) and
many other cases. See the in-depth survey by Diakonikolas and Kane (2019) for an overview of
recent advances in this direction.

Outline We start by summarizing our setting and notation in the next section. Then, in Section 3,
we prove the upper bound (2) for adversarial losses, and show matching lower bounds both for i.i.d.
losses and for strongly convex losses. As a further example, we show how robust regret can be
used to bound the excess risk in the Huber ε-contaminated setting via online-to-batch-conversion.
In Section 4 we turn to the quantile case and establish (3). Finally, Section 5 concludes with a
discussion of possible directions for future work. Some proofs are deferred to the appendix.

2. Setting and Notation

Formally, we consider the following online learning protocol. In each round t = 1, 2, . . . the learner
first predicts wt ∈ W , where the domain W is a non-empty, compact and convex subset of Rd.
The adversary then reveals a convex loss function ft : W → R, and the learner suffers loss
ft(wt). We assume throughout that there always exists a gradient or, more generally, a subgra-
dient gt := ∇ft(wt) at the learner’s prediction, which is implied by convexity of ft whenever
wt lies in the interior of W and also on the boundary if there exists a finite convex extension of
all ft to a larger domain that contains W in its interior. The performance of the learner with re-
spect to any fixed parameters u ∈ W is measured by the robust regret RT (u,S) over the rounds
S ⊆ [T ] := {1, 2, . . . , T} that are not outliers, as defined in (1). The definition of subgradients
implies that ft(wt) − ft(u) ≤ (wt − u)ᵀgt, which implies that RT (u,S) is bounded from above
by the linearized robust regret

R̃T (u,S) :=
∑
t∈S

(wt − u)ᵀgt.

We will state our main results for an arbitrary norm ‖·‖ on W and measure gradient lengths in
terms of the dual norm ‖gt‖∗ = supw∈Rd:‖w‖≤1w

ᵀgt. Let D = maxu,w∈W ‖w − u‖ denote the
diameter of the domain. For the analysis of the robust regret, we need a Lipschitz bound for the
gradients that are in the set S , which we denote by

G(S) := max
t∈S
‖gt‖∗ .

4



ROBUST ONLINE CONVEX OPTIMIZATION

3. Robustness to Adversarial Outliers

In this section we derive matching upper and lower bounds of the form in (2).

3.1. Upper Bounds

Let ALG be any Lipschitz-adaptive algorithm, which we will use as our base online learning algo-
rithm. Our general approach is to add a filtering meta-algorithm FILTER that examines (the norm
of) incoming gradients and decides whether to filter them or pass them on to ALG for learning. If
S were known in advance, then FILTER could filter out all outliers and pass on only the rounds
in S , but since S is not known, FILTER needs to learn which rounds to pass on. Although most
online learning algorithms base their updates only on gradients, we note that we do allow ALG to
use the full loss function ft to update its state when FILTER passes on round t to ALG. When a
round t is filtered, we assume that ALG behaves as if that round had not happened, so we will have
wt+1 = wt. Our FILTER for this section is displayed in Algorithm 1.

Algorithm 1: Top-k Filter: Filtering for Adversarial Setting
Input: Maximum number of outliers k
Initialize: Let L0 = {0, 0, . . . , 0} be an ordered list of length k + 1.
for t = 1, 2, . . . do

Maintain invariant that Lt contains k + 1 largest gradients;
if ‖gt‖∗ > minLt−1 then

Obtain Lt from Lt−1 by removing the smallest item in Lt−1 and inserting ‖gt‖∗;
else

Set Lt equal to Lt−1;
end
Filter with factor 2 slack;
if ‖gt‖∗ > 2 minLt then

Filter round t;
else

Pass round t on to ALG;
end

end

Theorem 1 Suppose ALG is any Lipschitz-adaptive algorithm that guarantees linearized regret
bounded by BT (G) on the rounds that it is passed by FILTER, if the gradients in those rounds have
length at most G, and let FILTER be Algorithm 1 with parameter k. Then the linearized robust
regret of ALG+FILTER is bounded by

R̃T (u,S) ≤ BT
(
2G(S)

)
+ 4D(u,S)G(S)(k+ 1) for any S : T − |S| ≤ k and u ∈ W , (4)

where D(u,S) = maxt:‖gt‖∗≤2G(S) ‖wt − u‖.

There are two main ideas to the proof. First, since the list Lt in Algorithm 1 contains k+1 elements
and there are at most k outliers, at least one of the elements of Lt must be one of the inliers from S.

5
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It follows that the smallest element of Lt is a lower bound on G(S). The second idea is that, instead
of filtering on this lower bound directly, we filter with factor 2 slack. Since every filtered gradient
is also added to Lt, this factor 2 ensures that the minimum of Lt must at least double for every
k + 1 rounds that are filtered. The resulting exponential growth of the filtered rounds means that
the contribution to the robust regret of all filtered rounds is dominated by the last k + 1 rounds, and
therefore does not grow with T .
Proof Let F ⊂ [T ] denote the rounds filtered out by Algorithm 1, and let P = [T ] \ F denote the
rounds that are passed on to ALG. Then the linearized robust regret splits as follows:

R̃T (u,S) =
∑
t∈S∩P

(wt − u)ᵀgt +
∑

t∈S∩F
(wt − u)ᵀgt.

We will show that Algorithm 1 guarantees that the gradients on the passed rounds are bounded as
follows:

‖gt‖∗ ≤ 2G(S) for all t ∈ P , (5)

which implies that∑
t∈S∩P

(wt − u)ᵀgt =
∑
t∈P

(wt − u)ᵀgt −
∑
t∈P\S

(wt − u)ᵀgt

≤ BT (2G(S)) + 2D(u,S)G(S)|P \ S| ≤ BT (2G(S)) + 2D(u,S)G(S)k,

where the first inequality uses the assumption on ALG and Hölder’s inequality, and the second
inequality uses that |P \ S| ≤ |[T ] \ S| ≤ k.

We proceed to prove (5). During the first k rounds, minLt = 0, so (5) is trivially satisfied. In
all later rounds, Lt ⊆ {‖gs‖∗ : s ≤ t} ⊆ {‖gs‖∗ : s ≤ T}. Consequently, Lt must contain at
least one element ‖gt‖∗ with t ∈ S, because T − |S| ≤ k and |Lt| = k + 1 > k. It follows that
minLt ≤ G(S), so all passed gradients satisfy (5).

LetGmin = min{‖gt‖∗ | t ∈ F} > 0 be the length of the shortest filtered gradient. To complete
the proof, we will show that∑
t∈S∩F

(wt − u)ᵀgt ≤ D(u,S)
∑

t∈S∩F
‖gt‖∗ ≤ D(u,S)

∑
t∈F

Gmin≤‖gt‖∗≤G(S)

‖gt‖∗ ≤ 2D(u,S)G(S)(k + 1).

The first of these inequalities follows from Hölder’s inequality, and the second from the definition
of G(S). To establish the last inequality, we proceed by induction: since Lt contains the k + 1
largest observed gradient norms, we observe that there can be at most k + 1 filtered rounds in
which G(S)/2i+1 < ‖gt‖∗ ≤ G(S)/2i, because after k + 1 such rounds we will have minLt >
G(S)/2i+1 forever. It follows that we have the following induction step:∑

t∈F
Gmin≤‖gt‖∗≤G(S)/2i

‖gt‖∗ ≤ (k + 1)G(S)/2i +
∑
t∈F

Gmin≤‖gt‖∗≤G(S)/2i+1

‖gt‖∗ for i = 0, 1, 2, . . .

Unrolling the induction, we therefore obtain

∑
t∈F

Gmin≤‖gt‖∗≤G(S)

‖gt‖∗ ≤ (k + 1)G(S)

dlog2
G(S)
Gmin

e∑
i=0

2−i ≤ (k + 1)G(S)

∞∑
i=0

2−i = (k + 1)G(S)2,

6
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which is what remained to be shown.

As for the run-time, one may maintain the k largest gradient norms encountered in a priority
queue. The time used by Algorithm 1 on top of ALG is O(ln k) ≤ O(lnT ) per round. This may
be pessimistic in practise, as FILTER only performs work if the current gradient is among the k+ 1
largest seen so far.

3.1.1. EXAMPLES

To make the result from Theorem 1 more concrete, let us instantiate ALG as online gradient descent
(OGD), which starts from any w1 ∈ W and updates according to

wt+1 = ΠW(wt − ηtgt),

where ΠW(w) denotes Euclidean projection of w ontoW , and ηt > 0 is a hyperparameter called
the step size. Tuning the step size for general convex losses, we find that we can tolerate at most
k = O(

√
T ) outliers without suffering in the rate:

Corollary 2 (General Convex Losses) Let ‖·‖ be the `2-norm, let ALG be OGD with step size

ηt = D/
√

2
∑t

s=1 ‖gs‖22 and let FILTER be Algorithm 1 with parameter k. Then the robust regret
is bounded by

RT (u,S) ≤ 2D

√∑
t∈S
‖gt‖22 + 2DG(S)

(
2k +

√
k + 2

)
≤ 2DG(S)

(√
T + 2k +

√
k + 2

)
for any S : T − |S| ≤ k and u ∈ W .

(6)

The proof of the corollary is in Appendix A.
The step size of OGD may also be tuned for σ-strongly convex losses, which are guaranteed to

be curved in all directions, and satisfy the requirement that

ft(u) ≥ ft(w) + (u−w)ᵀ∇ft(w) +
σ

2
‖u−w‖22 for all u,w ∈ W .

In this case, we obtain the following guarantee on the robust regret, which is proved in Appendix A:

Corollary 3 (Strongly Convex Losses) Suppose the loss functions ft are σ-strongly convex. Let
‖·‖ be the `2-norm, let ALG be OGD with step size ηt = 1

σt and let FILTER be Algorithm 1 with
parameter k. Then the robust regret is bounded by

RT (u,S) ≤ 2G(S)2

σ

(
lnT + 1

)
+

5G̃(u,S)2

2σ
(k + 1) for any S : T − |S| ≤ k and u ∈ W ,

(7)
where G̃(u,S) = 2G(S) + maxt:‖gt‖2≤2G(S) ‖∇ft(u)‖2.

The standard regret bound of OGD for strongly convex losses is of order G2

σ log T (Hazan et al.,
2007), so in this case we can tolerate k = O(log T ) outliers without suffering in the rate, under the
additional assumption that G̃(u,S) = O(G(S)). This seems like a reasonable assumption if we
think of the condition ‖gt‖2 ≤ 2G(S) as expressing that round t is not too extreme.

7
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Huber ε-Contamination As a final example, we consider the Huber ε-contamination setting (Hu-
ber, 1964). In this case losses are of the form ft(w) = f(w, ξt), where the random variables ξt are
sampled i.i.d. from a mixture distribution Pε defined by

ξ ∼

{
P if M = 0

Q if M = 1
where M ∼ Bernoulli(ε)

for some ε ∈ [0, 1). The interpretation is that P is the actual distribution of interest, which is
contaminated by outliers drawn from Q. The hidden variable M is not observed by the learner, so it
is not known which observations are outliers. Let S∗ ⊆ [T ] denote the set of inlier rounds in which
Mt = 0. Then the robust regret RT (u,S∗) may be viewed as the ordinary regret on a modified loss
function f̃(w,M, ξ) that is equal to f(w, ξ) on samples from P but zero on samples from Q, i.e.
f̃(w,M, ξ) = 1{M = 0}f(w, ξ) and

RT (u,S∗) =

T∑
t=1

(
f̃(wt,Mt, ξt)− f̃(u,Mt, ξt)

)
. (8)

Let the risk with respect to the inlier distribution P be defined as

RiskP (w) = E
ξ∼P

[f(w, ξ)] .

Then, applying online-to-batch conversion (Cesa-Bianchi et al., 2004) to the modified loss f̃ , we
obtain the following result, which bounds the excess risk under P by the robust regret when the
observations are drawn from the contaminated mixture Pε, without requiring any assumptions about
the outliers coming from Q:

Lemma 4 (Huber ε-Contamination) Suppose the losses ft are i.i.d. according to the mixture dis-
tribution Pε, and let uP ∈ arg minw∈W RiskP (w) be the optimal parameters for the distribution
of the inliers. Let w̄T = 1

T

∑T
t=1wt, where w1, . . . ,wT are the predictions of the learner. Then

E
Pε

[RiskP (w̄T )− RiskP (uP )] ≤ EPε [RT (uP ,S∗)]
(1− ε)T

. (9)

Moreover, if |f(w, ξ)−f(uP , ξ)| ≤ B almost surely when ξ ∼ P is an inlier, then for any 0 < δ ≤ 1

RiskP (w̄T )− RiskP (uP ) ≤ RT (uP ,S∗)
(1− ε)T

+
2B

1− ε

√
2

T
ln

1

δ
(10)

with Pε-probability at least 1− δ.

(Details of the proof are given in Appendix A.) We see that, if we can control the robust regret with
respect to the unknown set S∗ of inlier rounds, then we can also control the excess risk with respect
to the inlier distribution P . For example, instantiating the learner as in Corollary 2 leads to the
following specialization of Lemma 4.

Corollary 5 In the setting of Lemma 4, suppose that ‖∇f(w, ξ)‖ ≤ G for all w ∈ W almost
surely when ξ ∼ P is an inlier, and that ε ≤ 1/2. Let the learner be instantiated as in Corollary 2
with k = dεT +

√
2Tε(1− ε) ln(2/δ) + 1

3(1− ε) ln(2/δ)e for any 0 < δ ≤ 1. Then

RiskP (w̄T )− RiskP (uP ) ≤ 12DGε+
2DG

(
5
√

2 ln(2/δ) + 2
)

√
T

+
2DG

(
ln(2/δ) + 10

)
T

(11)

with Pε-probability at least 1− δ.
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Here ∇f(w, ξ) should be read as the gradient of f(w, ξ) with respect to w. The constant depen-
dence on DGε, which does not go to zero with increasing T , is unavoidable because P is non-
identifiable based on samples from Pε. For instance, consider the linear loss f(w, ξ) = ξw with
W = [−D/2,+D/2] and Pε such that ξ = −G and ξ = +G both with probability ε, and ξ = 0
with probability 1 − 2ε. Then we cannot distinguish the case that P = Pε(· | ξ ≤ 0) and Q is a
point-mass on +G from the case that P = Pε(· | ξ ≥ 0) with Q a point-mass on −G. No matter
what the output of the learner is, its excess risk under P will always be at least DGε in one of these
two cases.

The proof of Corollary 5 is postponed to Appendix A. It is a straightforward combination of
Lemma 4 and Corollary 2, with the only point of attention being the tuning of the number of out-
liers k. In expectation, the number of outliers is εT , but we choose k slightly larger so that the
probability that the number of outliers exceeds k is negligible.

3.2. Lower Bounds

We now show that the bounds obtained in the previous part of this section are non-improvable in
general. First note that one can always choose S = [T ] (no outliers) and apply a standard lower
bound for online learning algorithms which guarantees expected regret Ω(

√
T ) for general losses

and Ω(lnT ) for strongly-convex losses. This matches the first term in the bound of Theorem 1.
Therefore, we will only show a bound Ω(k), which, combined with the standard one, leads to a
Ω(max{

√
T , k}) = Ω(

√
T+k) lower bound on the regret for general convex losses and Ω(lnT+k)

for strongly convex losses.
Consider a learning task over domainW = [−W,W ] for some W > 0. To prove a lower bound

for general convex losses, we choose the loss sequence to be ft(w) = Gξtw, where ξt ∈ {−1,+1}
are i.i.d. Rademacher random variables with Pr(ξt = −1) = Pr(ξt = +1) = 1

2 , while G > 0
controls the size of the gradients/losses.

Theorem 6 (Lower Bound with I.I.D. Losses) For any k and any online learning algorithm run
on the sequence defined above, there exist adversarial choices of S with T − |S| ≤ k and u ∈ W
such that

E
f1,...,fT

[RT (u,S)] ≥ DG(S)k

4
,

where f1, . . . , fT are i.i.d. as described above.

Proof Let S1 = {t ∈ [k] : ξt = 1} and S−1 = {t ∈ [k] : ξt = −1}. The adversary will choose
u = −Wζ and S = Sζ ∪ {k + 1, . . . , T}, where ζ ∈ {−1, 1} is a Rademacher random variable
independent of ξ1, . . . , ξT . The expected regret jointly over ξ1, . . . , ξT , ζ is then given by

E [RT (u,S)] = E

[
G

T∑
t=1

1t∈Swtξt −G
T∑
t=1

1t∈Suξt

]

= G
k∑
t=1

E [1ζ=ξtwtξt]︸ ︷︷ ︸
=0

+G

T∑
t=k+1

E [wtξt]︸ ︷︷ ︸
=0

+GW

k∑
t=1

E [1ζ=ξtζξt]︸ ︷︷ ︸
=1/2

+GW

T∑
t=k+1

E [ζξt]︸ ︷︷ ︸
=0

= GW
k

2
,

9
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where we used the independence of ξt and ζ in the second and the fourth sum, while

E [1ζ=ξtwtξt] = E [ E [1ζ=ξtwtξt | ξt] ] = E [wtξt/2] = 0, and E [1ζ=ξtζξt] = E [1ζ=ξt ] =
1

2
.

As the bound holds for the random choice of ζ it also holds for the worst-case choice of ζ. The theo-
rem now follows fromD = maxu,w∈W |w−u| = 2W andG(S) = maxt∈S |gt| = maxt∈S G|ξt| =
G.

A similar bounding technique leads to a lower bound for σ-strongly convex losses, except that
the distribution of the losses differs between the first k rounds and the later rounds. This still
implies a lower bound for adversarially generated data, but not for i.i.d. losses. In this case, we will
choose the domainW = [−W,W ], the loss sequence based on the σ-strongly convex squared loss,
ft(w) = σ

2 (w −Wξt)
2, for t ≤ k, and ft(w) = σ

2 (w −Wζ)2 for t ≥ k, where ξ1, . . . ξk and ζ are
again i.i.d. Rademacher variables.

Theorem 7 (Lower Bound for Strongly Convex Losses) For any k and any online learning algo-
rithm, there exist adversarial choices of S with T − |S| ≤ k and u ∈ W such that

E
f1,...,fT

[RT (u,S)] ≥ G2(S)k

16σ
,

where f1, . . . , fT are the σ-strongly convex losses described above.

Proof Using the same notation as in the proof of Theorem 6, the adversary will choose u = Wζ
and S = Sζ ∪ {t+ 1, . . . , T}. The expected regret jointly over ξ1, . . . , ξk, ζ is given by

E [RT (u,S)] =
σ

2

k∑
t=1

E
[
1ζ=ξt(wt −Wξt)

2
]︸ ︷︷ ︸

≥W 2/2

+
σ

2

T∑
t=k+1

E
[
(wt −Wζ)2

]︸ ︷︷ ︸
≥0

− σ

2

k∑
t=1

E
[
1ζ=ξt(ζ −Wξt)

2
]︸ ︷︷ ︸

=0

≥ σW 2k

4
,

where to bound the first sum we used

E
[
1ζ=ξt(wt −Wξt)

2
]

= E
[
E
[
1ζ=ξt(wt −Wξt)

2 | ξt
] ]

= E
[
(wt −Wξt)

2/2
]

= E
[
w2
t /2−Wξtwt +W 2/2

]
= w2

t /2 +W 2/2 ≥W 2/2.

To finish the proof note that |∇ft(wt)| = σ|wt −Wξi| ≤ 2σW so that G(S) ≤ 2σW .

4. Robustness for Quantiles

In this section we consider robust online linear optimization in the stochastic i.i.d. setting. That is,
we consider i.i.d. gradients gt ∼ P that are in particular independent of the learner’s prediction wt.
Let Gp := qp(‖g‖∗) be the p-quantile of the gradient in dual norm ‖·‖∗. To keep things simple,
we will assume that P does not have an atom at Gp, so that P{‖g‖∗ ≤ Gp} = p exactly. We call

10
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a gradient gt an outlier if ‖gt‖∗ > Gp. Fix a domain W of diameter D in the norm ‖·‖. We are
interested in algorithms that knowW and p but not Gp, play wt ∈ W , and we aim to bound their
expected robust regret on the (random!) set of inliers S = {t ∈ [T ] : ‖gt‖∗ ≤ Gp}. That is, we aim
to control

R̄T := E
[
max
u∈W

RT (u,S)

]
= E

max
u∈W

∑
t∈[T ]:‖gt‖∗≤Gp

〈wt − u, gt〉

 . (12)

Note that a bound on the expected robust regret implies a robust pseudo-regret bound, where the
data-dependent maximum is replaced by the fixed minimiser of the expected loss on inliers, i.e.
u∗ ∈ arg minu∈W uᵀ E[gt | ‖gt‖∗ ≤ Gp]. Our FILTER algorithm for the stochastic setting is
shown as Algorithm 2. The main idea is that it only passes rounds to the base ALG for which it is
virtually certain that they are inliers. To this end our FILTER computes a lower confidence bound
LCBt on the quantile Gp. Smaller gradients are included, while larger ones are discarded. The crux
of the robust regret bound proof is then dealing with the inlier gradients that end up being dropped.
We will find it instructive to state our algorithms and confidence bounds with a free confidence
parameter δ. Tuning our approach will then lead us to set δ = T−2.

Algorithm 2: Filtering meta algorithm for Robust Quantile Regret
Input: Quantile level p ∈ (0, 1), confidence δ, online learner ALG
for t = 1, 2, . . . do

Have ALG produce wt. Receive gradient gt;
Let q̂t−1 be the empirical quantile function of past gradients g1, . . . , gt−1. ;

Compute LCBt−1 = q̂t−1(p−ut−1) at threshold ut−1 =
√
t−12p(1− p) ln 1

δ + 1
3 t
−1 ln 1

δ ;

if ‖gt‖∗ ≤ LCBt−1 then
Pass round t on to ALG;

else
Ignore round t;

end
end

We now show that the expected robust regret is small.

Theorem 8 Let ALG have individual sequence regret bound BT (G) for T rounds with gradients
of dual norm at most G, and which is concave in T . Let D be the diameter of the domain. Then the
FILTER Meta-Algorithm 2 with δ = T−2 has expected robust regret bounded by

R̄T ≤ BpT (Gp) +DGp

(
4
√

2p(1− p)T lnT +
13

3
(lnT )2 + 3

)
.

If ALG does its job, the first term is the minimax optimal regret for when the outlier rounds
were known. The other terms quantify the cost of being robust. When p is not extreme, this cost is
of order GpD

√
T lnT , rendering it the dominant term overall (escalating the minimax regret by a

mild log factor). When p tends to 1 or 0, the robustness overhead gracefully reduces to the (lnT )2

regime.

11
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The proof can be found in Appendix B. The main ideas are as follows. As we have no control
over outlier gradients (they may be astronomical), we must assume that ALG gets confused without
recourse if FILTER ever passes it any outlier. Note that FILTER is not evaluated on outlier rounds,
so it does not suffer from this gradient’s magnitude. But its effect is that, for all we know, ALG is
rendered forever useless, upon which FILTER may incur the maximum possible regret of GpDT .
Our approach will be to choose our threshold for inclusion conservatively, and to apply concen-
tration in all rounds simultaneously, to ensure this bad event is rare (this is the source of the lnT
factor). A second concentration allows us to deal with the discarded inliers.

We conclude the section with a selection of remarks.
Examples The examples of Section 3.1.1 also apply here. Depending on the setting, and hence the
appropriate base algorithm ALG, the dominant regret term can be either the DGp

√
p(1− p)T lnT

term, or the BpT (Gp) term. The former case applies for OGD, while the latter case happens in the
K-experts setting with many experts and few rounds, i.e. K � T . There adding robustness comes
essentially for free.
Anytime Robust Regret As stated, the algorithm needs to know the horizon T up front to set the
confidence parameter δ in the deviation width ut. We can use a standard doubling trick on T to get
an anytime algorithm.
Anytime concentration One may wonder how much the analysis can be improved by replacing
our union bound over time steps with a time-uniform Bernstein concentration inequality, as e.g.
developed by Howard and Ramdas (2019). Sadly, the best we can hope for is to be able to use
δ = 1

T , which would lead to a constant factor
√

2 improvement on the dominant term. We cannot
tolerate a higher overall failure probability, for we have to pacify the regret upon failure, which may
be of order T .
High Probability Version Going into the proof, we see that a high probability robust regret bound
is also possible. We would need to change the analysis of P (2), as we currently analyse it in expec-
tation. Observing that it is a sum of T conditionally independent increments, we may use martingale
concentration to find that, with probability at least 1−T−1, this sum is at most its mean (which fea-
tures in the expected regret bound) plus a deviation of order

√
T lnT . We obtain a high-probability

analogue of Theorem 8 with slightly inflated constant.
Large-Feature-Vectors-as-Outliers We may also deal with non-i.i.d. gradients using exactly the
same techniques developed above, as follows. We assume that ft(w) = ht(w

ᵀXt), where Xt ∈ Rd
is a feature vector available at the beginning of round t, and ht is a scalar Lipschitz convex loss
function, revealed at the end of round t. This setting includes e.g. linear classification with hinge
or logistic loss. Upon assuming that feature vectors X1,X2, . . . are drawn i.i.d. from P (while the
ht are arbitrary, possibly adversarially chosen), we can take the p-quantile Xp := qp(‖X‖∗) of
the dual norm of the feature vectors. We may then measure the robust expected regret (12) on the
inlier rounds S = {t ∈ [T ] : ‖Xt‖∗ ≤ Xp}, and obtain the analogue of Theorem 8, where the only
subtlety is using the gradient bound on ht to transfer from inlier Xt to small loss.

Proposition 9 Consider a joint distribution on sequences of feature vectors and scalar Lipschitz
convex functions (X1, h1), (X2, h2), . . . such that the feature vectors X1,X2, . . . are i.i.d. with
distribution P on Rd.1 Let Xp = qp(‖X‖∗) be the p-quantile of the feature dual norm. Let ALG
be an algorithm for online-convex optimisation over a domain of diameter D and loss functions

1. We do not constrain the distribution of h1, h2, . . ., so we can model adversarial loss functions that are correlated with
the feature vectors.

12
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ft(w) = ht(w
ᵀXt) that guarantees individual-sequence regret bounded by BT (X) in any T -

round interaction with ‖Xt‖∗ ≤ X , without having to know X up front. Consider FILTER Meta-
Algorithm 2 with gt replaced by Xt. Then the expected robust regret on inlier rounds S = {t ∈
[T ] : ‖Xt‖∗ ≤ Xp} is bounded by

R̄T = E

[
max
u∈W

∑
t∈S

(ft(wt)− ft(u))

]
≤ BpT (Xp)+DXp

(
4
√

2p(1− p)T lnT +
13

3
(lnT )2 + 3

)
.

Proof The proof follows that of Theorem 8, with one extra (standard) step. Namely, to bound the
loss on inlier rounds (for the dropped rounds term P (2) in the proof, and the concentration failure
term P (3) in the proof), we use convexity, Hölder and bounded derivative to obtain

ft(wt)− ft(u∗) ≤ ht(w
ᵀ
tXt)− ht(u∗ᵀXt) ≤ h′t(w

ᵀ
tXt)(wt − u∗)ᵀXt ≤ DXp.

Online-to-Batch Example We now discuss an example where the standard theory for stochastic
gradient descent does not apply, but the iterate average of online gradient descent with quantile-
based filtering still gives risk convergence guarantees. To keep things simple, we work in the one-
dimensional setting withW = [−1,+1]. To stay within the assumptions of Proposition 9, we take
ft to be the logistic loss ft(w) = ht(wXt) with ht(z) = ln(1 + e−ytz) for yt ∈ {−1,+1}. To
make things interesting, we take Xt ∈ R to have a distribution with heavy tails, with P(|Xt| > x)
of order x−(1+γ) for large enough x, for some γ ∈ (0, 1). Taking γ > 0 ensures that the expected
loss E[ft(w)] is finite (as ft(w) ≈ (−Xtytw)+ for large Xt), and hence has a bonafide minimiser
(which can be in the interior or on the boundary, depending on the details of the distribution). Taking
γ < 1 ensures that the tails are so heavy that E[f ′t(w)2] =∞ (as f ′t(w) ≈ (−ytXt)+ for large Xt),
and hence standard theory for SGD does not apply. Instead we will use Lemma 4 and Proposition 9
to argue that the filtered iterate average w̄T approximates the minimiser of the risk u∗ in the sense
that

EP [RiskP(w̄T )− RiskP(u∗)] → 0 as T →∞. (13)

To bound the risks above, we will decompose P = pP +(1−p)Q where p is a quantile level chosen
below, P = P

(
·
∣∣‖Xt‖ ≤ Xp

)
and Q = P

(
·
∣∣‖Xt‖ > Xp

)
. We will bound the P-risks in terms of

P -risks, then we will use Lemma 4 to bound the P -risk difference in terms of the robust regret, and
we will use Proposition 9 to bound that regret. We will settle on picking p = 1− 1√

T
. This has the

effect that the p-quantile is Xp ∝ T
1

2(1+γ) (by inverting the tail probability). On the one hand, for
any w ∈ W , the bias, i.e. the difference in risk on P (inliers only) and on P (full distribution), is at
most of order

|RiskP(w)− pRiskP (w)| ≤ EP
[
ft(w)1|Xt|>Xp

]
≈ EP

[
(−Xtytw)1|Xt|>Xp

]
≤ EP

[
|Xt|1|Xt|>Xp

]
=

∫ ∞
Xp

P(|Xt| > x) dx ∝ X−γp ∝ T−
γ

2(1+γ) .

On the other hand, the regret bound for T -round online gradient descent with gradient norms
bounded by X is BT (X) = O(DX

√
T ). Hence for our choice of p, the first term in the bound

from Proposition 9 is dominant and of order Xp

√
T . Dividing by T to plug in to Lemma 4 results

in Xp
√
T

T ∝ T
− γ

2(1+γ) . Both contributions (bias and regret) are of the same order and converge to
zero, indicating that quantile-filtered online gradient descent achieves (13).
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5. Conclusion and Future Work

We have shown that the robust regret can be controlled for adversarial data when there are at most k
outliers. A general question that we leave open is whether it is possible to get a bound for adversarial
losses that does not depend on the number of outliers k, but on some other natural property of the
losses. For instance, we may try to incorporate prior knowledge about the size of the gradients
by specifying a prior π on gradient norms and bounding the robust regret in terms of the prior
probability π(G(S)) of the size of the inlier gradients. A possible way to approach this might be
to introduce specialist experts for different thresholds G and then aggregate these. This runs into
severe difficulties, however, because we only find out whether a specialist should be active or not in
round t after making our prediction wt and observing gt. Moreover, specialists would have different
loss ranges and the robust regret can only depend on the loss range G(S) of the correct specialist.

We also provided a sublinear bound on the robust regret for i.i.d. gradients when the outliers
are defined as rounds in which the gradients exceed their p-quantile, or when they can be bounded
in terms of an i.i.d. variable Xt. Alternatively, outliers might be defined as gradients with norms
exceeding their empirical p-quantile at the end of T rounds. For i.i.d. gradients, the empirical p-
quantile after T rounds is close to the actual p-quantile with high probability, so this case can be
handled by running the method from Section 4 for a slightly inflated p. However, the empirical
quantile formulation continues to make sense even when gradients are not i.i.d., so it would be
interesting to know whether a linear number of outliers can be tolerated in any such non-i.i.d. cases.

Acknowledgments

Van Erven and Sachs were supported by the Netherlands Organization for Scientific Research
(NWO) under grant number VI.Vidi.192.095. Kotłowski was supported by the Polish National
Science Centre under grant No. 2016/22/E/ST6/00299.

References

Idan Amir, Idan Attias, Tomer Koren, Yishay Mansour, and Roi Livni. Prediction with corrupted
expert advice. In Advances in Neural Information Processing Systems 33, 2020.

Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. The power of localization for efficiently
learning linear separators with noise. J. ACM, 63(6), 2017.

Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In NeurIPS
20, pages 65–72, 2007.
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Appendix A. Proofs for Examples from Section 3

Proof of Corollary 2 LetP ⊂ [T ] denote the rounds that are passed on to OGD. Then the linearized
regret of OGD on the rounds in P is bounded by

BT (2G(S)) ≤ 2D

√∑
t∈P
‖gt‖22,

as follows from arguments similar to those by Duchi et al. (2011) (see e.g. Corollary 2 by Orabona
and Pál (2018)). Bounding further, we obtain

BT (2G(S)) ≤ 2D

√∑
t∈S
‖gt‖22 +

∑
t∈P\S

‖gt‖22 ≤ 2D

√∑
t∈S
‖gt‖22 + 2D

√ ∑
t∈P\S

‖gt‖22

≤ 2D

√∑
t∈S
‖gt‖22 + 2DG(S)

√
k,

where the last step uses that |P \ S| ≤ |[T ] \ S| ≤ k by assumption on S. Plugging this into (4)
and bounding RT (u,S) ≤ R̃T (u,S) and D(u,S) ≤ D, the first inequality in (6) follows. Finally,
using that ‖gt‖2 ≤ G(S) for all t ∈ S, we see that the second inequality holds as well.

Proof of Corollary 3 Let P ⊂ [T ] denote the rounds that are passed on to ALG. By the proof of
Theorems 2.1 and 4.1 of Bartlett et al. (2007), the linearized regret of ALG on the rounds in P is
bounded by

R̃T (u,P) ≤ 1

2

∑
t∈P

‖gt‖22
σt

+
σ

2

∑
t∈P
‖wt − u‖22 ≤

2G(S)2

σ

(
lnT + 1

)
+
σ

2

∑
t∈P
‖wt − u‖22.

Plugging this into Theorem 1 and applying the definition of strong convexity, we get that the robust
regret is bounded by

RT (u,S) ≤ R̃T (u,S)− σ

2

∑
t∈S
‖wt − u‖22

≤ 2G(S)2

σ

(
lnT + 1

)
+ 4D(u,S)G(S)(k + 1) +

σ

2

∑
t∈P
‖wt − u‖22 −

σ

2

∑
t∈S
‖wt − u‖22

≤ 2G(S)2

σ

(
lnT + 1

)
+ 4D(u,S)G(S)(k + 1) +

σ

2

∑
t∈P\S

‖wt − u‖22

≤ 2G(S)2

σ

(
lnT + 1

)
+ 4D(u,S)G(S)(k + 1) +

σD(u,S)2

2
k.
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From this the desired result follows because G(S) ≤ G̃(u,S)/2 and

D(u,S) ≤ max
t:‖gt‖2≤2G(S)

‖gt‖2 + ‖∇ft(u)‖2
σ

≤ G̃(u,S)

σ

by Lemma 10 below.

Lemma 10 Suppose ft is σ-strongly convex. Then ‖w − u‖2 ≤ ‖∇ft(w)‖2+‖∇ft(u)‖2
σ for all

w,u ∈ W .

Proof Applying the definition of σ-strong convexity twice, we have

(w − u)ᵀ∇ft(u) +
σ

2
‖w − u‖22 ≤ ft(w)− ft(u) ≤ (w − u)ᵀ∇ft(w)− σ

2
‖u−w‖22,

which leads to

σ‖w − u‖22 ≤ (w − u)ᵀ
(
∇ft(w)−∇ft(u)

)
≤ ‖w − u‖2‖∇ft(w)−∇ft(u)‖2 ≤ ‖w − u‖2

(
‖∇ft(w)‖2 + ‖∇ft(u)‖2

)
,

from which the result follows.

Proof of Lemma 4 Let
R̃iskPε(w) = E

(M,ξ)∼Pε

[
f̃(w,M, ξ)

]
denote the risk for the modified loss under the mixture distribution Pε. Then the key to both results
is to observe that

RiskP (w̄T )− RiskP (uP ) =
R̃iskPε(w̄T )− R̃iskPε(uP )

1− ε
.

This allows us to apply standard results for online-to-batch conversion to the modified losses f̃
under distribution Pε: the first inequality follows by combining

E
Pε

[
R̃iskPε(w̄T )− R̃iskPε(uP )

]
≤

EPε
[∑T

t=1

(
f̃(wt,Mt, ξt)− f(uP ,Mt, ξt)

)]
T

,

with (8), and the second result follows by applying Corollary 2 of Cesa-Bianchi et al. (2004) to the
modified excess losses f̃(w,M, ξ)− f̃(uP ,M, ξ). By the boundedness assumption on the original
excess loss a.s. under P , these are bounded in [−B,B] a.s. under Pε, and we obtain

R̃iskPε(w̄T )− R̃iskPε(uP ) ≤

∑T
t=1

(
f̃(wt,Mt, ξt)− f̃(uP ,Mt, ξt)

)
T

+ 2B

√
2

T
ln

1

δ

with Pε-probability at least 1− δ. The second result then follows by plugging in (8) again.
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Proof of Corollary 5 Let A be the event that (10) holds with B = DG and δ replaced by δ/2, and
let B be the event that the number of outliers

∑T
t=1Mt as at most k. Then Corollary 2 implies that

(11) holds on the intersection of A and B, because

RiskP (w̄T )− RiskP (uP ) ≤
2DG

(√
T + 2k +

√
k + 2

)
(1− ε)T

+
2DG

1− ε

√
2

T
ln

2

δ

≤
2DG

(√
T + 3k + 2

)
(1− ε)T

+
2DG

1− ε

√
2

T
ln

2

δ

≤ 6DGε

1− ε
+

2DG
(

1 + 3
√

2ε(1− ε) ln(2/δ)
)

(1− ε)
√
T

+
2DG

(
(1− ε) ln(2/δ) + 5

)
(1− ε)T

+
2DG

1− ε

√
2

T
ln

2

δ

≤ 12DGε+
2DG

(
2 + 5

√
2 ln(2/δ)

)
√
T

+
2DG

(
ln(2/δ) + 10

)
T

,

where the last inequality uses the assumption that ε ≤ 1/2 to obtain a simpler expression. Now the
probability of A is at least 1− δ/2 by the second result of Lemma 4, which applies because

−DG ≤ −(w − uP )ᵀ∇f(uP , ξ) ≤ f(w, ξ)− f(uP , ξ) ≤ (w − uP )ᵀ∇f(w, ξ) ≤ DG (14)

P -almost surely. And the probability of B is at least 1− δ/2 by Bernstein’s inequality (Boucheron
et al., 2013, Section 2.8). Hence, by the union bound, it follows that both A and B hold simultane-
ously with probability at least 1− δ, as required.

Appendix B. Proof of Theorem 8 from Section 4

Proof The point of departure is that, by definition, 1 {‖gt‖∗ ≤ Gp} is i.i.d. Bernoulli-p. By Bern-
stein’s concentration inequality (for fixed time t), we have that w.p. ≥ 1− δ

1

t

t∑
s=1

1 {‖gs‖∗ ≤ Gp} ≥ p−

√
2p(1− p) ln 1

δ

t
−

ln 1
δ

3t

Rephrasing this event with the empirical quantile function q̂t, we see that w.p. ≥ 1− δ,

Gp ≥ LCBt := q̂t (p− ut) where ut :=

√
2p(1− p) ln 1

δ

t
+

ln 1
δ

3t
. (15)

We apply the analogous concentration in the other direction to find that with probability at least
1− δ,

Gp−2ut−3/(2t) ln 1
δ
≤ LCBt (16)

where the extra margin 3 ln 1
δ

2t is necessary to correct for the fact that p − 2ut may be closer to 1/2
than p, and hence require a slightly enlarged confidence width. In the remainder of the proof, we
fix δ = T−2, to ensure that the probability of failure of either event (15) or (16) over the course of
T rounds is at most 2

T .
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Let Et denote the event that (15) and (16) hold at round t, and let E =
⋂T
t=1 Et. We split the

expected robust regret in three parts R̄T ≤ P (1) + P (2) + P (3) spelled out below, depending on
whether the desired concentration event E holds or not, and within E we split the rounds in those
where FILTER passes the gradient on to ALG and those were it was ignored:

P (1) := E

1E max
u∈W

∑
t∈[T ]:‖gt‖∗≤LCBt−1

〈wt − u, gt〉


P (2) := E

1E max
u∈W

∑
t∈[T ]:LCBt−1<‖gt‖∗≤Gp

〈wt − u, gt〉


P (3) := E

1Ec max
u∈W

∑
t∈[T ]:‖gt‖∗≤Gp

〈wt − u, gt〉


For part P (1), we apply the individual-sequence regret bound BT̂ (Gp) of ALG, where T̂ is the
random number of rounds, for which we have E[T̂ ] ≤ pT . We then drop the indicator and Jensen
the expectation inside to get P (1) ≤ BpT (Gp). For part P (2), we use that E and LCBt−1 < ‖gt‖∗
imply that Gp−2ut−3/(2t) ln 1

δ
< ‖gt‖∗ < Gp to find

1E max
u∈W

∑
t∈[T ]:LCBt−1<‖gt‖∗≤Gp

〈wt − u, gt〉 ≤ 1E
∑

t∈[T ]:G
p−2ut−3/(2t) ln 1

δ
<‖gt‖∗≤Gp

DGp

Dropping the indicator, taking expectation and using the definition of quantile yields

P (2) ≤ DGp

T∑
t=1

P
{
Gp−2ut−3/(2t) ln 1

δ
< ‖gt‖∗ < Gp

}
≤ DGp

T∑
t=1

(2ut + 3/(2t) ln
1

δ
)

≤ DGp

(
4
√

2p(1− p)T lnT +
13

3
(lnT )2 + 1

)
Finally, for P (3) we use that the integrand is bounded by TDGp, and the error probability by
P(Ec) ≤ 2

T to find P (3) ≤ 2DGp.
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