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ABSTRACT
Formal models of opinion formation commonly represent an 
individual’s opinion by a value on a fixed opinion interval. We 
propose an alternative modeling method wherein interpreta-
tion is only provided to the relative positions of opinions vis-à- 
vis each other. This method is then considered in a similar 
setting as the discrete-time Altafini model (an extension of the 
well-known DeGroot model), but with more general influence 
weights. Even in a linear framework, the model can describe, in 
the long run, polarization, dynamics with a periodic pattern, and 
(modulus) consensus formation. In addition, in our alternative 
approach key characteristics of the opinion dynamic can be 
derived from real-valued square matrices of influence weights, 
which immediately allows one to transfer matrix theory insights 
to the field of opinion formation dynamics under more relaxed 
conditions than in the DeGroot or discrete-time Altafini models. 
A few specific themes are covered: (i) We demonstrate how 
stable patterns in relative opinion dynamics are identified 
which are hidden when opinions are considered in an absolute 
opinion framework. (ii) For the two-agent case, we provide an 
exhaustive closed-form description of the relative opinion mod-
el’s dynamic in the long run. (iii) We explore group dynamics 
analytically, in particular providing a non-trivial condition under 
which a subgroup’s asymptotic behavior carries over to the 
entire population.
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1. Introduction

Opinion formation processes play a prominent role in societies. Recent exam-
ples are the polarization of opinions regarding covid-19 measures or the 
demonstrations and political debates on racial discrimination. Some of these 
processes correspond to short-term dynamics, such as the fluctuating views on 
the use of wearing face masks to combat covid-19. Other examples reflect 
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more long-term opinion formation processes like the cycles in fashion indus-
try (Aspers & Godart, 2013), where the reintroduction of colors seems to 
follow a periodic pattern extending over many years.

The underlying dynamics behind opinion formation are highly complex due to 
the interdependence of interconnected individuals influencing each other, directly 
or indirectly, in various ways (Flache et al., 2017; Friedkin & Johnsen, 1990; 
Kozitsin, 2020; Lee et al., 2020). There is a large body of empirical studies 
(Bramson et al., 2016) of opinion dynamics in society, among which many are 
performed through surveys. However, despite important theoretical advances thus 
far, the understanding of how individual-level opinion changes translate into 
large-scale phenomena, such as polarization or consensus formation, has 
remained limited. For empirical studies, it is a complicating factor that the number 
of agents involved can be large, making data collection challenging. But even when 
large amounts of data are available, a theoretical modeling framework of opinion 
formation is desirable, so as to facilitate a sound interpretation of the data. A long- 
standing challenge has been to explain phenomena such as polarization, consen-
sus formation, and periodicity relying on relatively compact and transparent 
models.

Over the past decades great advances have been made, and a large variety of 
opinion formation models have been proposed. Linear models were studied 
assuming that agents are willing to move their opinions closer to those of 
sources of influence in a network. A seminal model of this type is the DeGroot 
model (DeGroot, 1974) where opinions develop according to a weighted 
averaging principle. Here, agents typically reach a consensus when the popu-
lation is “well-connected” and “aperiodic.”1 In further exploring richer 
dynamics, researchers introduced more complex, sometimes nonlinear opi-
nion formation models, such as Flache and Macy (2011); Friedkin and Johnsen 
(1990); Hegselmann and Krause (2002). Some of these nonlinear models can 
be investigated analytically, such as the influential Friedkin-Johnsen model 
(Friedkin & Johnsen, 1990). Other models are mainly analyzed through 
simulations, such as the Bounded Confidence model (Deffuant et al., 2000; 
Krause, 1997) and other agent-based models (Flache et al., 2017). While most 
of these models generate opinion dynamics that lead to convergence of the set 
of opinions in a population to a bounded finite range, some models added 
assumptions that also induce persistent divergence, periodicity, or shift of 
opinions over time (Flache et al., 2017; Friedkin & Johnsen, 1990). This applies 
in particular to models that added the possibility that agents can be “nega-
tively” influenced, seeking to distance their opinions from those of negatively 
evaluated sources – the so-called boomerang effect (Altafini, 2013; Flache & 
Macy, 2011, Macy et al., 2003).

1“Well-connected” and “aperiodic’’ in the DeGroot model and the discrete-time Altafini model (Altafini, 2012; Altafini, 
2013; Liu et al., 2017) means that the driving matrix is irreducible and not periodic, respectively.
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One outstanding research problem in opinion formation models concerns 
finding a simple framework in which the main large-scale phenomena (includ-
ing polarization, consensus formation, and periodicity) can be explained in the 
long run, explicitly covering situations in which the population is “well- 
connected” and “aperiodic”. The underlying model dynamics would prefer-
ably be linear, thus allowing an explicit analysis relying on matrix-theoretic 
tools. Having such a relatively elementary framework would clearly be highly 
appealing, as it would allow one to reason about the major opinion formation 
phenomena through a single transparent, but highly general, model.

A second open problem relates to the interpretation of model outcomes for 
opinion formation processes that play out simultaneously in long-term and short- 
term time scales. Especially linear models based on the DeGroot framework either 
generate consensus or persistent divergence of opinions from each other in the 
long run. This can obscure that there may be robust patterns of fragmentation in 
a population that persist over long time periods even when the overall 
distribution2 of opinions moves toward consensus, or shifts to other intervals in 
an opinion spectrum, or keeps diverging. For example, an opinion distribution 
exhibiting consensus when observed from one historical frame of reference may 
seem to reveal strong polarization from another frame of reference – albeit 
potentially within a shifted or much smaller range of socially acceptable views.

To illustrate the possibility of shifting opinion ranges highlighted in the pre-
vious paragraph, consider changes in opinions in society regarding racial discri-
mination between the 18th century and now. Where at one point in history a large 
portion of the non-enslaved population held the opinion that enslaving members 
of racial minorities was acceptable behavior while a minority fiercely disagreed, 
about two centuries later outright rejection of this view thankfully has become the 
clear consensus. However, to the extent that differences in opinions about exis-
tence and justification of social, economic, or judicial inequalities between racial 
groups can be seen at the same opinion scale as acceptance or rejection of slavery, 
events like the recent rise of the Black Lives Matter movement illustrate how 
strong polarization can occur within a shifted range of existing views that may 
appear as reflecting near-consensus (about rejecting slavery) when compared to 
an opinion distribution from a different historical period.

The shift of opinion ranges over time or persistent divergence of opinions can 
occur particularly when processes of distancing from negatively evaluated opinion 
sources can generate boomerang effects. There is an ongoing debate in the 
literature about the extent to which such boomerang effects actually occur in 
empirical social influence. For example, in a controlled laboratory experiment 
Takács et al. (2016) found no convincing empirical support for a boomerang 
effect. However, as mentioned in Flache et al. (2017), this is insufficient evidence to 

2In this paper, the distribution of opinions refers to the spread of opinions of the agents considered, i.e., it is not 
meant as a probability distribution.
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exclude boomerang effects in situations where they would be expected on theore-
tical grounds, such as for strong emotional content (Sobkowicz, 2012, 2015), high 
ego-involvement, or strong antagonistic group identities (Huet & Deffuant, 2010). 
Accordingly, empirical field studies have aimed to test the possibility of boomer-
ang effects and find at least some support for opinion shifts away from the position 
of a source of influence, possibly caused by a boomerang effect (Bail et al., 2018; 
Kozitsin, 2021; Levendusky, 2013; Liu & Srivastava, 2015).

The theoretical significance of opinion dynamics involving boomerang effects 
led researchers (Altafini, 2013; Liu et al., 2017; Proskurnikov et al., 2016, 2020; Shi 
et al., 2019) to explore their implications for opinion dynamics. An example of 
such a model with linear influence dynamics is the discrete-time Altafini model 
(an extension of the DeGroot model) which captures in the long run a specific type 
of polarization: modulus consensus formation.3 Still, in a “well-connected” popu-
lation the DeGroot and discrete-time Altafini model is limited to describing 
(modulus) consensus formation in the long run; general polarization, persistently 
shifting opinion ranges or periodic evolution of opinions remain unexplained.4

In this paper, we contribute to addressing both research problems highlighted 
above. We propose a simple and transparent mathematical framework that can 
help explain polarization, consensus formation, and periodicity in the long run in 
a “well-connected” and “aperiodic” population, even when such patterns cannot 
be observed within limited sections of an opinion spectrum. The key innovation of 
the framework is the idea of only modeling the relative positions of opinions vis-à- 
vis each other, which we will call relative opinions. This approach provides an 
alternative viewpoint on opinion modeling and allows one to contemplate in 
a general but also compact framework about opinion dynamics. We will explain 
and motivate relative opinions in greater detail in Section 2. From a technical 
point of view, we will model relative opinions in a setting similar to the discrete- 
time Altafini model, but with more general influence weights5; the relative opinion 
model. We will show that it is especially suitable for modeling agents who can 
adjust their opinion both positively and negatively after interaction with agents, 
while still remaining in a linear framework. As a result, the model succeeds in 
describing rather complex dynamics while working with a relatively simple under-
lying mechanism.

We believe that the consideration of relative opinions is also of significance 
in aiding the interpretation of results found in empirical research. Longer term 
patterns may be challenging to identify for studies focusing on changes 
observed in distributions of opinions measured with fixed attitude scales, 
which are typically used by survey instruments (Bramson et al., 2016).

3In the long run, i.e. as time proceeds indefinitely, an agent’s opinion evolves to either x or � x with x 2 Rþ .
4Note that the DeGroot model and the discrete-time Altafini model can asymptotically describe general polarization 

and periodic evolution of opinions when the driving matrix is reducible or periodic.
5We consider more general influence weights in the sense that any real-valued square matrix can be considered as driving 

matrix of the system. The discrete-time Altafini model assumes that the driving matrix A can be time-dependent, in this 
paper we assume that A does not change over time. We leave the time-dependent variant for further research.
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In Section 2 we explain and motivate the idea of modeling relative opinions 
in greater detail. Then, in Section 3 the relative opinion model is introduced. 
The dynamics of the model are of the same complexity as in the DeGroot 
model, i.e., in essence described by a linear map. Section 4 discusses structural 
properties that are used in the analysis of later sections. In addition, the 
model’s asymptotic (long term, that is) behavior is focused on. For the specific 
case of two agents, we present an exhaustive closed-form description of the 
relative opinions’ asymptotic behavior, in particular showing how polarization 
(in the sense of persistent disagreement), consensus formation, and periodicity 
indeed arise. At the methodological level, no heavy machinery is used: ele-
mentary techniques from matrix algebra and Markov chain theory suffice.

Section 5 presents an analysis of two clusters of agents or “groups” (Altafini, 
2012; Eger, 2016; Proskurnikov et al., 2016) and the corresponding asymptotic 
opinion formation dynamics. We conclude with a discussion that includes 
suggestions for further work in this area.

The complete Matlab code and datasets used in generating the figures in this 
article are publicly available through https://www.comses.net/codebase- 
release/14f7267a-e6e5-493c-9fc5-954a1d37f928/.

2. Explanation and motivation of modeling relative opinions

In order to explain relative opinions in the context of the current literature on 
opinion formation models, we first discuss the custom of modeling opinions 
on a bounded range ½a; b� with a; b 2 R and a< b, which we call the absolute 
opinion framework. The assumption of a bounded range is in various models 
not specified as an explicit component of the model’s definition, instead it 
follows indirectly from the considered influence parameters. As an illustration, 
in the DeGroot model the sum of the influence weights exhibited on any agent 
must equal 1, while a similar condition holds for the discrete-time Altafini 
model6 (Liu et al., 2017). In these examples, the considered influence para-
meters in fact restrict opinions to only evolve (modulus) toward each other. 
When more general negative influences between agents7 are considered as 
well, opinions may evolve unboundedly away from each other. In order to 
ensure that opinions stay within bounds, various models have been studied 
with modifications of the influence parameters. Examples of modifications are 
smoothing (Flache & Macy, 2011) and truncating functions (Feliciani et al., 
2017). An important drawback of models with such restrictions or modifica-
tions of influence parameters is that they generally lack convincing empirical 
backing. For example, to our best understanding no convincing empirical 

6Here, the sum of absolute values of the possibly negative influence weights exhibited on any agent must equal 1.
7More general with respect to the influences considered in the discrete-time Altafini model.
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support has been provided for the claim that the sum of absolute influence 
weights exhibited on any agent equals 1, as imposed in the discrete-time 
Altafini model.

An alternative remedy to the problem that “opinions may evolve unbound-
edly” is the modeling of relative opinions, which we will explain here. It should 
be noted that the remedy arises as a by-product of modeling relative opinions; 
other empirically grounded motivations for relative opinions are discussed 
further in this section. In the tradition of the bounded range ½a; b�, the 
boundaries a and b act in fact as two reference points. Indeed, an opinion y 2
R with a � y � b is interpreted as an opinion that is y � a and b � y “away” 
from the boundaries a and b respectively. The bounded range is a modeling 
assumption, other choices may provide different insights into opinions 
dynamics. Hence, alternatively, we can choose the value 0 as our only reference 
point, which also provides a convenient interpretation of “positive” and 
“negative” opinions: positive values are interpreted as “positive” opinions 
and vice versa. The essential difference with a bounded range is the actual 
content or interpretation we seek to model. The distance of an opinion y1 2 R 

to the reference point is now y1 � 0, stand-alone we do not grant interpreta-
tion to this distance except for its sign. Instead, we only grant interpretation to 
the relative distance of y1 with respect to another agent, say with opinion 
y2 2 R , namely the fraction y1

y2
. Summarizing, an agent 1ʹs opinion y1 only 

reveals the side of the opinion spectrum it is on, “positive” or “negative,” and 
nothing about the magnitude of its opinion. Only when agent 1ʹs opinion is 
viewed with respect to an agent 2ʹs opinion, one gains a sense of the magnitude 
of agent 1ʹs opinion, namely agent 1ʹs opinion is a y1

y2 
fraction of agent 2ʹs 

opinion. The complete interpretation of y1 follows from comparing it with all 
N > 1 agents in the population: the fractions y1

y2
; . . . ;

y1
yN

, note that these are N �
1 terms instead of N. We thus only model the relative position of agent’s 
opinion vis-à-vis each other and (indirectly) the reference point 0 – relative 
opinions – which clearly lacks the notion of boundaries.

The idea of relative opinions can also be viewed from a slightly different 
angle. An interpretation is that we are following and perceiving the popula-
tion’s opinion through the eyes of a single agent, the Observer. The Observer 
perceives the distance between its own opinion and zero as the “unit distance” 
and only observes other agents’ opinion with respect to it. Interesting is that 
every Observer perceives relative distances between all agents identically (up 
to a sign).8 In the field of economics/finance, changing Observer’s view is 
similar to the concept of changing the numéraire.

8An Observer 1 perceives the opinion of agents 2 and 3 as y2
y1 

and y3
y1

, their relative distance is y2
y1
=

y3
y1
¼

y2
y3

, the latter 
term is not dependent on the Observer’s opinion y1.
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Considering relative opinions has advantages in various settings. The rela-
tive opinion framework is suitable for capturing relative position shifts in 
agents’ opinion, including consensus formation and polarization. In particu-
lar, it can describe opinions that shift from the positive side of the opinion 
spectrum to the negative and vice versa. An empirical example of such a shift is 
the change of British attitudes about homosexual relations (Chattoe-Brown, 
2014): in 1987 around 75% of the sample of the British population studied in 
the British Social Attitude survey were negative on homosexual relations. This 
decreased to 30% by 2010. Another example is the decrease of whites in the 
U.S. agreeing to home sellers’ discrimination from around 65% in 1972 to 
below 30% in 2008 (Bobo et al., 2012).

An especially advantageous setting for relative opinions is where opinion 
boundaries are unnecessary to define beforehand. When a bounded opinion 
range is defined too narrowly, the model may already exclude (unexpected) 
phenomena by the choice of opinion range. As an illustration, in the ques-
tionnaire of the 1972 U.S. General Social Survey (Smith et al., 1972-2018) 
participants were asked, “Do you think Negroes should have as good a chance 
as white people to get any kind of job, or do you think white people should 
have the first chance at any kind of job?”. Not only the wording of the question 
but also the range of answering options used in that survey reveals how 
opinions in U.S. society have dramatically shifted since then. In 1972, partici-
pants could choose from the answers 1. As good a chance, 2. White people first, 
8. Don’t know. Hypothetically, a modeler in 1972 that applied this opinion 
scale would not be able to describe opinions evolving to the opinion Black 
people first. In general, it is arguable that the range of offered survey answers to 
participants at any period in time is defined by the range of acceptable 
opinions at that moment. So, when one wants to model longer term opinion 
dynamics one cannot restrict opinion ranges to the values used in a survey at 
a given point in time. In the longer time-scale, it can be challenging to define 
the outermost boundaries without excluding phenomena since it requires 
a certain vision of the future. An example in political sciences where the 
relative approach seamlessly fits in is the study of the range of acceptable 
political thoughts, the so-called Overton Window (Dustin et al., 2019). In this 
perspective, what is “acceptable” at a given moment in history is mostly 
dependent on the position of opinions vis-à-vis each other, which is precisely 
what the relative opinion framework focuses on.

A drawback of a bounded opinion range is that it only allows modelers to 
study subsets of influence parameters which ensure that opinions remain 
within the defined boundaries. To our best understanding, these restrictions 
on influences between agents are generally not supported by empirical evi-
dence. In contrast to the bounded opinion range, the relative opinion frame-
work is not restricted to any set of influence parameters. Where in the 
bounded opinion range agents influence each other less and less as opinions 

THE JOURNAL OF MATHEMATICAL SOCIOLOGY 7



move closer to a boundary, influences between agents in the relative opinion 
framework can remain unchanged. From an Observer’s point of view, influ-
ences can remain intact regardless of the position of its own opinion, since its 
opinion has, by definition, no meaning in isolation (except for its sign).

3. Model

3.1. Model description

We propose a model where the relative opinion framework is considered in 
a similar setting as in the discrete-time Altafini model (Liu et al., 2017), but 
with more general influence weights. The object of study is a vector y 2 R N 

with entries y1; . . . ; yN , with N > 1 being the number of agents in the popula-
tion. In models such as the DeGroot model or the discrete-time Altafini model, 
the stand-alone entries of y typically describe the agents’ opinion. We choose 
an alternative interpretation of y where the actual content of y lies in the sign 
and in the relative magnitude of the entries as described by9 

which we call relative opinions. Interestingly, relative opinions can be suffi-
ciently represented by N � 1 terms, instead of the N-terms present in y. For 
example, consider the N � 1 terms where entries of y are denoted in units of 
agent 1‘s opinion (the Observer see Section 2): y2

y1
; . . . ;

yN
y1

. Clearly, the relative 
opinions vis-à-vis agent 1 follows immediately. Also, the fraction yi

yj 
which is 

the relative opinion between agents i and j (i; j ¼ 2; . . . ;N) can be obtained by 
dividing the terms yi

y1 
with yj

y1
.

Thus, we use an N-dimensional vector, while really only being interested in 
relative opinions that can be described by N � 1 terms. This difference in 
dimension hints at the absence of a 1-to-1 mapping between the set of all y 2
R N and the set of all relative opinions that can be constructed from N agents. 
Indeed, any vector γ y 2 R N with scalar γ > 0, represents the identical relative 
opinions as y 2 R N . This can be easily seen by noting that γ appears both in 
the numerator and denominator of expression (1). The multiplicative scalar γ 
is restricted to be positive in order to preserve the side of an agent’s opinion on 
the opinion spectrum. A vector y 2 R N is thus always one of many represen-
tations of the underlying relative opinion; we therefore call these vectors 
representative opinion vectors.

9We consider a zero entry of y as a singular situation where the agent with zero opinion is excluded from the 
definition of relative opinions (until this opinion becomes non-zero due to influences by other agents).
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We further elucidate representative opinion vectors with a numerical 
description of a three agent society with a mildly negative, a mildly positive, 
and a strongly positive opinion, which might, for example, be described by the 
column opinion vector ð� 1; 1; 2Þ` (with x` the transpose of the vector x). 
From a relative point of view, the third agent’s positive opinion is twice as large 
in magnitude as the first agent’s negative opinion and of the opposite sign, 
while the second agent’s opinion is half the magnitude of the third agent’s 
opinion and of the same positive sign. Note now that the opinion vector in 
which all opinions are scaled by a factor 2, that is the vector ð� 2; 2; 4Þ`, still 
yields the same relative description.

We are ready to define the equivalence relation that relates identical repre-
sentative opinion vectors. With a; b 2 R N , 

We write: a;b.
Under the equivalence relation, representative opinion vectors develop 

according to an iterated weighted averaging principle that builds on, but also 
differs from the discrete-time Altafini model. In contrast to the discrete-time 
Altafini model, we do not restrict the sum of absolute values of the possibly 
negative influence weights exhibited on any agent to 1. Instead, we consider 
general influence weights between agents, hence, to a certain extent general-
izing the discrete-time Altafini model further. In the relative opinion model 
each agent i is tied to another agent j by a susceptibility weight aij 2 R . The 
opinion of agent i is repelled by the opinion of agent j when the weight aij is 
negative10, attracted to the opinion of j when the weight is positive, and is 
completely unaffected by the opinion of j when the weight equals 0. Thus, each 
agent’s way of processing the opinions of all agents in the population can be 
described by a (row) vector of susceptibility weights. The susceptibility weights 
of the entire population can therefore be summarized in a square updating 
matrix A ¼ faijg1�i;j�N , with aij 2 R . Given such an updating matrix A and an 
initial representative opinion vector yð0Þ 2 R N , the development of the repre-
sentative opinion vector yðtÞ at time t ¼ 1; 2; 3; . . . is described, in the context 
of relative opinions, by the difference equation 

with A a real valued square N � N matrix and yðtÞ a real valued N-dimensional 
representative opinion vector. Although the model is defined for general A we 
will focus in this paper on A with 

P
j aij > 0, i ¼ 1; . . . ;N, which we will 

explain at the end of Subsection 3.4. It is worth to emphasize that Equation 

10We build further on the literature that explores the implications in those situations where the boomerang effect 
does apply, see Section 1.
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(2) describes only the development of the relative positions of agents’ opinion, 
as in expression (1). Thus, although the formulation of the difference equation 
is highly similar to, for example, the DeGroot or the discrete-time Altafini 
model, the interpretation is completely different.

3.2. Fixing a representation

Some representations of relative opinion dynamics would help the reader 
better in interpreting the patterns than others. For example, representing the 
development of yðtÞ “as is” – as described by Equation (2) – certainly contains 
all the relevant information required to obtain the fractions in expression (1), 
however, not necessarily in a compact or insightful manner. Since yðtÞ in 
Equation (2) are representative opinion vectors and thus considered under 
the equivalence relation, it represents the same state of opinions as γ y tð Þ for 
any γ > 0. Hence, there is the freedom to transform a representative opinion 
vector to an equivalent one. These transformations can be seen as choosing 
different representations for the same state of relative opinions, with the goal 
to reveal the actual content we are interested in. We denote these transforma-
tions, which are not an integral part of the model’s definition, by 
normalizations.

There is a large amount of freedom in choosing specific normalizations. 
More specifically, for a function φ : R N ! Rþ, we can define the map � :

R N ! R N through 

Then, evidently, y;�½y�, implying that Equation (2) describes identical relative 
opinion dynamics as 

In this paper, we typically choose convenient normalizations φðyÞ, such as 
keeping the sum of absolute opinion values in y or the Euclidean norm of y 
constant, thus, 

10 K. M. D. CHAN ET AL.



All figures of representations of relative opinions in this paper incorporate 
a specific choice of normalization φ > 0, thus providing the reader a sense of 
the development of relative opinions as in expression (1). A different choice of 
φ would evidently result in different figures, but the actual content, the ratio of 
agents’ opinions, does not depend on the choice of φ.

As a consequence of the freedom in choosing normalizations, visualizations 
of opinion’s evolution should be interpreted with care. An agent’s opinion (the 
Outlier) that apparently evolves away from the majority’s opinion may actually 
not be moving at all. Instead, the majority may be shifting its opinion, while 
the Outlier’s opinion remains unchanged. A hypothetical example is a British 
individual that retains a negative attitude toward homosexual relations since 
1983 (see Section 2), while the British majority shifts its opinion from negative 
to positive in the period 1983 to 2010 (Chattoe-Brown, 2014). From 
a visualization perspective, the British individual that remains with its negative 
attitude may have “moved away” from the majority while not changing its 
attitude at all.

3.3. Example: relative versus absolute opinion framework

In the following numerical example, we show how modeling within a relative 
opinion framework rather than an absolute framework leads to different 
conclusions when “opinions evolve unboundedly” in time. More specifically, 
we show how the relative approach offers a possible – admittedly strongly 

(a) Model with opinions in an
absolute opinion framework

(b) Model with opinions in a rel-
ative opinion framework

Figure 1. Example of opinion evolution in a population with 100 agents, in an absolute opinion 
framework (Figure 1a) and in a relative opinion framework (Figure 1b) with identical underlying 
influences. Opinions in a model defined on an absolute opinion framework diverge, while opinions 
polarize towards a stable difference in a model defined on a relative opinion framework. The 
representative opinion vectors in Figure 1b are scaled such that the sum of their absolute entries 
equals 100, meaning that each agent has on average an opinion of 1 (in absolute value).
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simplified and speculative – interpretation of the possible dynamics under-
lying a development like the rise of the Black Lives Matter movement against 
the backdrop of a long historical shift toward increasing consensus on aban-
doning discriminatory views (represented as opinions in the negative range) 
on interracial relations in society.

Consider the opinion dynamics in a population of 100 agents in which there 
is persistent clustering of opinions within and mutual disagreement between 
two subgroups of the population, while both subgroups shift over time in the 
same direction on an underlying opinion dimension.11 Figure 1a shows 
opinions in an absolute framework. The opinions of both groups exceed any 
upper bound of a fixed opinion interval within finite time. Substantively, the 
underlying dynamics can be interpreted as the interaction between a more 
progressive subgroup in a population and a more conservative one, clustering 
around two different values on an opinion spectrum. Members of the con-
servative group (in the model corresponding with numerically lower opinions) 
are socially influenced by the progressive group (corresponding with numeri-
cally higher opinions), so as to gradually shift their opinions toward the 
progressives. However, the progressive group itself also simultaneously shifts 
its opinions away from those of its conservative followers, aiming to maintain 
its relatively more progressive stance in this society. These dynamics described 
above, viewed from an absolute opinion framework, result in an overall and 
unbounded increase of the opinion value in both groups over time, while their 
opinions simultaneously keep diverging from each other.

In a relative opinion context, only the opinion ratios between agents as in 
expression (1) are meaningful. To a certain extent, the concept of “opinions 
evolve unboundedly” as in the previous paragraph does not exist from 
a relative point of view. With identical underlying dynamics, but now in 
a relative opinion framework the evolution as shown in Figure 1a still holds, 
however, the opinion vectors should now be interpreted as representative 
opinion vectors. Meaning that the actual content lies in the sign of each 
opinion and the ratios between the opinions. To illustrate the development 
of the relative opinions we choose a normalization similar to φ1. Opinion 
vectors are normalized such that the sum of the absolute values of the entries 
equals the network population size N ¼ 100; see Figure 1b for the correspond-
ing dynamics. The main conclusion is that in relative terms opinions polarize 
over time to a stable distribution (Figure 1b), while in a model based on an 
absolute interpretation, one of the two subpopulations moves its opinion 
toward the historical position of the other subpopulation (Figure 1a), thus 
offering a possible interpretation of the dynamics underlying a development 
like the rise of the Black Lives Matter movement.

11How exactly this dynamic was generated with our relative opinion model is explained in Appendix A.5.
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3.4. Attentiveness and degree of persistence

In this subsection, we introduce the terminologies (positive) attentiveness and 
degree of persistence which are important parameters in explaining the dynamics 
of the relative opinion model in the long run, as shown in Section 4. Attentiveness 
is the total “budget” of susceptibility weights each agent has to distribute among all 
agents, i.e., the sum of the entries of the agent’s row in the matrix A. In DeGroot’s 
absolute opinion model, each row of A sums to 1, and in the discrete-time Altafini 
model, the sum of the absolute entries of each row sums to 1. In our relative 
opinion model, we allow the sum to be any arbitrary number.

Here, it is borne in mind that a negative row sum is, from an interpretation 
perspective, implausible. A negative row sum represents an agent that is 
influenced negatively by the opinion of the entire population on aggregate 
(including herself). As a consequence, even when the population is in con-
sensus, the agent’s opinion changes sign after one time period. This situation is 
not meaningful theoretically or empirically, hence we will typically think of the 
row sums as positive numbers (

P
j aij > 0; i ¼ 1; . . . ;N), which we will assume 

from here on. We call the assumption of each agent having positive attentive-
ness, the positive attentiveness assumption.

An agent’s attentiveness reflects the relative importance she assigns to the 
topic under consideration. The other important agent characteristic is the 
degree of persistence, describing the degree up to which an agent sticks to 
her own opinion from the previous time period, reflecting the level of resis-
tance against opinion change. In a sense, the degree of persistence is indicative 
of the tendency to always take into account a fixed initial opinion value as in 
(Friedkin & Johnsen, 1990). In Section 4 it is shown how the population’s 
attentiveness and degree of persistence are important parameters in explaining 
the asymptotic dynamics in the relative opinion model. The formal definitions 
of the two notions are as follows.

° Agent i‘s attentiveness is defined as her total susceptibility toward the population and 
can be quantified by 

P
j aij. 

° Agent i‘s degree of persistence is defined as the level up to which she is resistant toward 
changing her opinion of the previous time period, or aii. The population’s degree of 
persistence is defined as the sum of the individuals’ persistences, i.e., 

P
j ajj ¼ TrðAÞ.12

4. Model dynamics

The aim of this section is to show how the phenomena of polarization, 
consensus formation, and periodicity may arise in the long run in a relative 
opinion framework. First, we discuss basic properties of the model at 

12Trð�Þ refers to the trace function, which is defined as the sum of the diagonal elements of a square matrix.
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a methodological level. Then, dynamics of the relative opinion model as 
a result of each agent’s attentiveness are explained. Finally, we describe 
exhaustively (mostly in relation to Theorem A.1 in the appendix) the asymp-
totic dynamics of the N ¼ 2 relative opinion model under the positive atten-
tiveness condition.

4.1. Basic properties

As we will argue, no heavy machinery is required for analyses of the relative 
opinion model; elementary techniques from matrix algebra and Markov chain 
theory suffice. In particular, the evolution of the opinion vector as described by 
Equation (2) may be rewritten, under mild regularity conditions (see 
Appendix A.2), as the sum of the product of its eigenvalues and eigenvectors. 
As a consequence, Equation (2) takes the form 

where λ1; . . . ; λN are the eigenvalues of A, v1; . . . ; vN its corresponding eigen-
vectors and b1; . . . ; bN coefficients. In the following, the basic characteristics of 
Equation (4) are informally discussed; for a more formal account we refer to 
Appendix A.2.

For the informal discussion, let there be a unique largest eigenvalue λ1 (in 
absolute value) of A, with corresponding eigenvector v1. As time progresses, 
the portion that corresponds to the term of v1 increases, in the sense that 
eventually yðtÞ behaves effectively as λt

1b1v1 in the absolute opinion context, 
entailing that the relative opinions as in Expression (1) converge to a vector 
proportional to v1. When λ1 is positive eventually none of the opinions change 
sign, whereas when λ1 is negative they will keep alternating. It is also possible 
that λ1 is complex (but not real valued); then, as explained by Theorem A.3, 
the relative opinion vector (asymptotically) shows periodic behavior. 
Summarizing, the long-term behavior of the relative opinion vector is deter-
mined by the dominant eigenvalue (positive/negative, real/non-real).

Under mild regularity conditions, Equation (4) also applies to the DeGroot 
and the discrete-time Altafini model.13 Therefore, in the study of the devel-
opment of relative opinions we can build further on results derived from these 
models, to the extent that conclusions about absolute opinions are allowed to 
be transferred to relative opinions. In the DeGroot model, all entries aij are 
positive or zero, with the rows summing to 1. Hence, after each time step, each 
agent’s opinion has become either more similar to the opinions of some of the 
other agents, or has remained completely unaffected (corresponding to 
a strictly positive or zero influence weight, respectively). For the opinions to 
reach a consensus, it is therefore sufficient that all agents directly or indirectly 

13Here, we refer to the discrete-time Altafini model where the driving matrix is time-independent.
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influence all the other agents, a condition that is equivalent to the matrix A 
being irreducible. This mechanism ensures that each agent’s opinion moves in 
the direction of the weighted population mean. However, a complicating 
factor is that agents can also “pass around” their opinions periodically without 
moving in the direction of each other’s opinion, a phenomenon referred to as 
periodicity. Think, for example, of two agents who fully adopt each other’s 
opinion after each time step. Hence, only if the agents are “well-connected” 
(irreducible matrix A) and do not just pass opinions around (aperiodicity), 
then a consensus is reached in the DeGroot model. The translation of the 
aforementioned to Equation (4) is: there exists a strictly largest real-valued 
eigenvalue of A and the corresponding eigenvector14 is 1N (i.e., the all-ones 
column vector of dimension N). For the case of N ¼ 2, we will show how 
consensus formation and conditions such as irreducibility and aperiodicity, as 
key features of the DeGroot model, reappear in a broader context within the 
relative opinion model (Appendix A.2). The relative opinion model can, to 
a certain extent, be considered as a generalization of the DeGroot and the 
discrete-time Altafini model.

4.2. Attentiveness and reaching a consensus

An important notion in understanding long-term phenomena – such as 
consensus formation and polarization – in the relative opinion model is the 
level of attentiveness of the population’s agents, which we will discuss here. 
Recall that an agent i‘s attentiveness 

P
j aij reflects her total susceptibility 

toward the opinion of the entire population. An agent with relatively high 
attentiveness is influenced more by the population’s opinion (including her-
self) than other agents are. From an interpretation perspective, attentiveness 
provides information about an agent’s degree of (net) positive attention 
toward the opinion topic. Different groups may have a radically different 
attentiveness regarding specific issues, think of the difference between adoles-
cents and elderly people in their concerns regarding the health consequences 
of covid-19, or the difference between members of minority and majority 
groups in their concerns regarding the social impact of racial discrimination.

Two examples are considered here to show how different levels of atten-
tiveness typically result in polarization in the relative opinion model. As in the 
entire paper, we assume here that all agents have positive attentiveness. In the 
first example, consider a two agent population where the agents have no 
interaction with each other, and have different attentivenesses (e.g. 
a11 > a22 > 0 and a12 ¼ a21 ¼ 0). At each time step, the opinion of the agent 
with the lower attentiveness depreciates relatively to the agent with the higher 

14For a non-negative irreducible matrix A with period h and spectral radius r the following holds (Perron-Frobenius): 
1) r is a real-valued eigenvalue with a one-dimensional eigenspace, 2) A has exactly h complex-valued eigenvalues 
with absolute value r.
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attentiveness by a factor a22
a11
< 1. As time progresses, the opinion of the lower- 

attentiveness agent approaches 0, and the relative opinion approaches the 
representative opinion vector ð1; 0Þ`.15 This elementary example illustrates 
how a difference in attentiveness leads to a separation of opinions over time. 
One could say that it results in polarization, even in a situation in which the 
agents do not repel each other’s opinion, in fact they do not interact at all!

In the second example, two agents behave essentially identically, but one 
agent brings twice as much attention to the topic as the other: a1j ¼ 2a2j, 
j ¼ 1; 2. At each time step, the opinion of the high-attentiveness agent is twice 
the opinion of the other agent, so that the relative opinion corresponds to the 
representative vector ð2; 1Þ`. This illustrates that having different degrees of 
attentiveness may also lead to polarization when agents do interact.

In fact, consensus formation cannot occur when agents in a population have 
different levels of attentiveness. This can be easily seen by noting that, under 
mild regularity conditions, yðtÞ as in Equation (4) eventually approaches one of 
the eigenvectors of A. Hence, for consensus formation, the all-ones vector 1N 
must be an eigenvector of A in Equation (2) (see Subsection 4.3 for a definition 
of consensus formation). This suggests – to the extent that the model is 
applicable in real societies – that consensus will not be reached for topics 
such as covid-19 measures and impact of racial discrimination as long as the 
groups have clearly different attention levels, irrespective of the structure of 
the underlying influence network. As such, one could expect that equal atten-
tiveness could be a condition to reach a consensus by (endogenous) interac-
tions between agents. This would imply for instance that public campaigns for 
people to stick to covid-19 rules would have to start with monitoring and 
minimizing the different levels of attention across groups in the society, 
instead of raising attention in general.

The condition of equal levels of attentiveness is ensured in the DeGroot 
model by assuming the driving matrix A to be a stochastic matrix.16 A similar 
assumption holds for the discrete-time Altafini model: here the matrix of 
which the entries are equal to the absolute value of the entries of A is required 
to be stochastic, allowing for the possibility of modulus consensus formation 
(Liu et al., 2017). Since Equation (2) is identical to the model description of the 
DeGroot and discrete-time Altafini model, but with more general influence 
weights, the conditions for (modulus) consensus formation apply directly to 
the relative opinion model (including notions as “structurally balanced signed 
digraphs” (Liu et al., 2017)). Under mild regularity conditions, consensus 

15Observing that the updating matrix is the diagonal matrix A with entries a11 and a22 with eigenvectors ð1; 0ÞT and 
ð0; 1ÞT, the result follows from Equation (8) in the appendix.

16Each row sums to 1.
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formation in the relative opinion model occurs when the driving matrix A in 
Equation (2) has an eigenvector that is equivalent to 1N , while its associated 
eigenvalue is positive real-valued and is the unique largest eigenvalue in 
absolute sense,17 as suggested by Equation (4). Here, we do not attempt to 
formulate all matrices A with this property, but we emphasize that conditions 
for consensus formation in the relative opinion model boil down to the matrix 
algebra question of defining sets of square matrices A with real-valued entries 
for which the aforementioned holds. The freedom to consider any matrix A in 
the relative opinion model is an important advantage of the relative opinion 
model. In Section 5 we illustrate the convenience of this freedom by showing 
the possibility of having consensus formation within groups.

Equal attentiveness is a necessary condition for consensus formation in the 
relative opinion model, but it does not ensure consensus. In particular, in 
Subsection 4.3 we show that different levels of attentiveness can also be 
a driver for asymptotic periodic behavior even when the underlying driving 
matrix A is irreducible and aperiodic. For brevity and readability, we call 
a matrix with equal levels of attentiveness among all agents an equal atten-
tiveness matrix. We formally say that an m� n matrix M is a k-equal atten-
tiveness matrix if a k > 0 exists such that M1n ¼ k1m, with 1n the n- 
dimensional all-ones vector. Going forward we sometimes leave out “k- 
equal” when it does not cause any ambiguity. This definition also applies to 
non-square matrices; see Section 5 for an application.

4.3. Model behavior for N ¼ 2

This subsection’s aim is to exhaustively explain in the N ¼ 2 relative opinion 
context how polarization, consensus formation, and periodic behavior arise 
asymptotically, as a result of the parameters chosen in the updating matrix A 
appearing in Equation (2). Some mechanisms align with counterparts in the 
DeGroot model, whereas others are, to our best knowledge, new within the 
literature on linear opinion formation models. We use the following defini-
tions throughout:

° Consensus formation is the asymptotic process of opinions moving to within an 
arbitrarily small relative distance of each other.18

° Polarization is the asymptotic process of opinions moving to a constant, not arbitrarily 
small, relative distance of each other.

17Here we note that such uniqueness is not a necessary condition, see Appendix A.2
18For any i; j 2 f1; . . . ;Ng, limt!1 yðtÞi =yðtÞj ¼ 1 with yðtÞi the i-th entry of the opinion vector yðtÞ . Polarization and 

periodic behavior are mathematically defined in a similar way. An example of consensus formation is the following 
evolution of representative opinion vector in a two-agent society: ð1; 2ÞT; ð2; 3ÞT; ð3; 4ÞT; . . . . The absolute 
distance remains 1 while the relative distance evolves as 1

2 ;
1
3 ;

1
4 ; . . . , moving towards an arbitrarily small distance. 

Formal mathematical definitions of “convergence’’ and “asymptotic behavior’’ are provided in Section A.1.2.
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° Periodic behavior is the asymptotic process of opinions moving arbitrarily close towards 
a behavior in which the evolution of relative opinions consistently repeats itself after 
a fixed time period.

Polarization, consensus formation, and periodic behavior are in essence 
defined as (dynamic) “shapes of the histogram” of the limiting (for large t, 
that is) opinion distribution. In the situation of consensus formation, this 
shape converges toward a single vertical line, unlike in the situation of 
polarization. In the situation of periodic behavior, there is no convergence: 
the shape evolves according to a periodic pattern. Quantitative definitions of 
polarization in opinion distributions, as observed in surveys, have been pro-
posed (Bramson et al., 2016) and can be applied to characterize stable patterns 
of polarization in the relative opinions as generated by the relative opinion 
model, even when there are no stable patterns in absolute opinions.

In the relative opinion model, for the two-agents case the degree of persis-
tence together with the attentiveness fully determines the asymptotic behavior. 
Recall that the degree of persistence reflects the degree to which an agent 
adapts her opinion (for agent i quantified by the value of aii relative to 

P
j aij). 

The degree of persistence of the population is defined similarly 
(
P

i aii ¼ TrðAÞ). For brevity and readability, we introduce the following 
definitions of three levels of persistence for a two-agents population:

° An agent i is whimsical when, at each time step, she repels her own opinion (aii < 0). The 
population is whimsical (on aggregate) when its TrðAÞ< 0. 

° An agent i is open-minded when, at each time step, she holds on to some of her own 
opinion while also adopting some of the opinions of the other agents (aii 2 ð0; kiÞ, with 
ki the attentiveness of agent i, which we assumed to be positive). The population is open- 
minded (on aggregate) when TrðAÞ 2 ð0;

P
i kiÞ. 

° An agent i is stubborn when, at each time step, she strongly holds on to her own opinion 
while being repelled by the opinions of the other agents (aii > ki). The population is 
stubborn (on aggregate) when TrðAÞ>

P
i ki.

In combination with attentiveness, these three categories explain exhaustively 
the qualitative asymptotic behavior of the relative opinion model with two agents 
under the positive attentiveness assumption. The degree of open-mindedness has 
been found as an important parameter in related models of opinion change, for 
example in bounded confidence models (Hegselmann & Krause, 2002, 2015), 
while stubbornness has been discussed in for example (Flache & Torenvlied 2004). 
A whimsical agent is similar to a stubborn agent in the sense that their opinion is 
both repelled from a “certain” opinion. However, they are different in the sense 
that a whimsical agent i tends to change her opinion toward the origin (aii < 0), 
while a stubborn agent j tends to change her opinion away from the origin 
(ajj > k). Hence, a whimsical agent has the tendency to change the sign of her 
opinion, while a stubborn agent has the tendency to stick to the same sign. At the 
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end of this section, remarks are made regarding some boundary cases and rates of 
convergence. It it notable that qualitatively the results presented in this section 
extend to populations of arbitrary large N that consist of two groups, as will be 
extensively discussed in Section 5.

In the discussion below, we do not include the trivial case that A represents two 
agents with equal attentiveness and no interaction. In this trivial case, where A 
effectively corresponds to the identity matrix, clearly the opinion vector remains 
constant over time; it corresponds to the two-agent DeGroot model with the 
updating matrix A being reducible. The results as discussed in the following 
subsections are all under the positive attentiveness assumptions; we write “relative 
opinion model” for the relative opinion model under the positive attentiveness 
assumption. All results are substantiated in the appendix, in particular by 
Theorem A.1.

4.3.1. Consensus formation
The relative opinion model for two agents leads to consensus formation if two 
conditions are met. The first of these conditions is equal attentiveness of all 
agents, as discussed in Subsection 4.2. The necessary additional condition for 
consensus formation is open-mindedness: the agents must on aggregate be 
open-minded. Notably, it is not necessary for both agents to be open-minded. 
These two conditions together are similar to the conditions under which 
opinions in the two-agent DeGroot model reach a consensus. There is 
a crucial difference, though: in the DeGroot model both agents must be open- 
minded, while in the relative opinion model consensus can even be reached 
when one of the two agents is not; see Figure 2.

4.3.2. Polarization
The relative opinion model for two agents allows for three types of polariza-
tion, as illustrated by Figure 3. The first type (Figure 3a) results from agents 
having unequal degrees of attentiveness, as explained in Subsection 4.2. We 
remark that in certain circumstances, unequal attentiveness can also result in 
periodic asymptotic behavior, as depicted in Figure 4c; we get back to this in 
Subsection 4.3.3.

The second and third types of polarization (Figures 3b and 3c) arise as a result of 
equal attentiveness and a stubborn population. In case the stubborn population 
consists of an open-minded and stubborn agent, we have polarization of type 2. 
Observe from Figure 3b that in this case the signs of the limiting relative opinions 
remain equal. To have polarization of type 3, i.e., limiting relative opinion of 
different signs, it is required that both agents are stubborn; see Figure 3c. As in 
Figure 1a, the parameters applied in these examples would result in absolute 
opinions to grow beyond any bound, but within a relative context, the opinions 
stabilize.
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Type 1 polarization directly relates to earlier models of opinion dynamics 
addressing persistent opinion variation as a consequence of strategically changing 
salience of an issue for agents (Flache & Torenvlied, 2004; Stokman & Stokman, 
1995). Polarization of types 2 and 3, being a consequence of negative social 
influences, has been studied before in opinion formation models (Baldassarri & 
Bearman, 2007; Flache & Macy, 2011; Mark, 2003; Macy et al., 2003). One typical 
outcome of these models is two clusters at maximal distance within a confined 
absolute opinion space, but also fragmentation into multiple opinion clusters can 
occur (Mäs et al., 2014). Polarization in the relative opinion model is more general 

Figure 2. Consensus formation in a population of two agents with equal attentiveness. The 
opinion vectors are scaled such that the sum of their absolute values equals 2. The population 
is open-minded, still it consists of an open-minded and stubborn agent.

(a) Type 1: unequal attentive-
ness

(b) Type 2: equal attentiveness
and stubborn population with
one stubborn agent

(c) Type 3: equal attentiveness
and stubborn population with
two stubborn agents

Figure 3. Polarization in a population of two agents. The opinion vectors are scaled such that the 
sum of their absolute values equals 2. Polarization in Figure 3a arises as a result of different 
attentiveness between the agents. Polarization in Figure 3b arises under equal attentiveness and 
a stubborn population; here one agent is stubborn and one is open-minded. Polarization in 
Figure 3c arises under equal attentiveness and a stubborn population; here both agents are 
stubborn.
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in the sense that it also covers persistently shifting opinions of both groups in 
absolute terms but converging to a constant distance in the relative opinion 
context.

4.3.3. Periodicity
Asymptotic periodic behavior of the relative opinion model of two agents 
appears as a result of three different types of mechanism. In the first type, 
displayed in Figure 4a, each agent adopts the other agents’ beliefs completely, 
as if each of them passes on the others’ opinions at each time period. This type 
of periodicity is also covered by the DeGroot model.

The second type of periodic behavior appears when the population is 
whimsical and all agents have equal attentiveness; see Figure 4b. Here, the 
opinion of the whimsical agent follows an alternating pattern, while the open- 
minded agent follows the opinion of the whimsical agent, thus displaying an 
alternating pattern as well. One could argue that a population that is whimsical 
may be considered as unrealistic.

The third type of periodic behavior, and the only type that allows for 
periods larger than two time steps, arises as a result of unequal attentiveness 
and a “strong” enough interaction between the stubborn and open-minded 
agent. The situation of the relative opinion evolution, as illustrated in 
Figure 4c, can be interpreted as a stubborn agent that tries to move away 
from the open-minded agent’s opinion, first by evolving to an opinion with 
a different sign. Since the open-minded agent follows the stubborn agent, after 

(a) Type 1: equal attentiveness
and artificially passing around
opinions

(b) Type 2: equal attentiveness
and whimsical population

(c) Type 3: unequal attentive-
ness combined with ”strong”
stubborn and open-minded in-
teraction

Figure 4. Periodic behavior in a population of two agents. The opinion vectors are scaled such that 
the sum of their absolute values equals 2. Periodic behavior in Figure 4a arises as a result of equal 
attentiveness and open-minded agents who completely adopt the opinion of the other agent. 
Periodic behavior in Figure 4b arises as a result of equal attentiveness and a whimsical population. 
Periodic behavior in Figure 4c appears under unequal attentiveness combined with “strong” 
stubborn and open-minded interaction, i.e., ða11 � a22Þ

2 < � 4a12a21.
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a while the signs of both agents will be equal; the stubborn agent then repeats 
her behavior by moving her opinion to the other side of the opinion spectrum, 
thus leading to periodic behavior.

A counterforce to type 3 asymptotic periodic behavior is the difference in 
degree of persistence between the agents. As discussed in Subsection 4.2, in 
a population with no interaction, different degrees of persistence result in 
decay of the low-persistence agent’s opinion to a neutral position. When the 
agents’ degrees of persistence “sufficiently” differ, this force dampens the 
forces involved in the type 3 periodicity mechanism, producing consensus 
formation when the population is open-minded and has equal attentiveness 
(see Subsection 4.3.1) and polarization otherwise. Mathematically, periodicity 
of type 3 arises when ða11 � a22Þ

2 < � 4a12a21, (Proposition A.4) where the 
left-hand side represents the difference in degree of persistence and the right- 
hand side the degree of the forces that cause type 3 periodic behavior.

Under the condition of equal attentiveness (i.e., a11 þ a12 ¼ a21 þ a22 ¼ k), 
the difference in degree of persistence (i.e., ða11 � a22Þ

2) increases with an 
increase in the level of interaction between the stubborn and open-minded 
agents (i.e., 4a12a21). Adding the forces resulting from unequal attentiveness is 
therefore necessary in order to produce type 3 periodic behavior.

Asymptotic periodic behavior of type 3 seems to reflect the dynamics 
between a typical pioneer and the masses that tend to follow the pioneer’s 
ideas. In this context, one could think of non-fashionistas copying the ideas of 
fashionistas in the fashion industry, or regular social media users who follow 
the actions of influencers. Observe that the pioneer in the type 3 example 
changes her opinion in the opposite direction, relative to those of the other 
agents, while the pioneer in the type 2 example changes her opinion opposite 
to her own opinion.

Investigation of patterns of persistent instability in opinion formations has 
been performed before, for example in Flache and Torenvlied (2004) or Strang 
and Macy (2001). However, to our best knowledge, it has never been demon-
strated before in a linear model with a “well-connected” and “aperiodic” 
population. As in Figure 1a, the applied influence weights in producing 
Figure 4 leads to opinions growing unboundedly in time considered from an 
absolute opinion interpretation; within the relative context, the opinion devel-
opment stabilizes to a periodic pattern.

4.3.4. Remark: boundary cases and rate of convergence
The description of the asymptotic behavior of the relative opinion model for 
two agents under the positive attentiveness assumption in the previous sub-
sections is “near-exhaustive”: what remains open are the boundary cases 
where, under equal attentiveness, the degree of persistence of the population 
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is exactly between whimsical and open-minded, and between open-minded 
and stubborn. As shown by Theorem A.1, in the appendix, in these boundary 
cases our main findings essentially carry over.

The rate at which the relative opinion vector starts to reveal consensus 
formation, polarization, or periodic behavior is typically exponential, as can be 
seen from Equation (4). Under the assumption of equal attentiveness, the rate 
is relatively low when the degree of persistence of the population is “close” to 
the boundary values. This is explained by observing that the forces of being 
whimsical, open-minded, and stubborn are weaker around the boundary 
values of degrees of persistence. When the degree of persistence is exactly 
between open-minded and stubborn, the rate becomes Oðt� 1Þ, whereas, 
remarkably, when the degree is exactly between whimsical and open- 
minded, “convergence” is immediate.

5. Analysis of dynamics in a two-group population

In this section, we extend the results of the two-agent relative opinion model, 
as was discussed in Subsection 4.3, to a two-group population with arbitrarily 
many agents. The theory of this section serves as a basis for producing opinion 
dynamics as described by Figure 1. Our results on groups illustrate that the 
relative opinion model still allows relatively explicit mathematical analysis for 
arbitrarily large population sizes and relevant structures of the updating 
matrix A. This section also provides techniques to produce more complex 
asymptotic dynamics than the ones in the two agent population. Additionally, 
it contains a hypothesis on when the individual groups’ asymptotic behavior 
carries over to the entire population.

5.1. Definition of groups

The terminology “groups of individuals” is used in a variety of contexts. 
Examples are groups of individuals who are in favor or against the Black 
Lives Matter movement, or individuals who believe or do not believe in the 
safety of vaccination. One of the main conceptualizations of polarization in the 
literature is that disagreement between groups occurs together with agreement 
within groups (Bramson et al., 2016; Esteban & Ray, 1994; Flache et al., 2017). 
This seems to coincide with patterns of opinion distribution often encoun-
tered regarding contentious issues: for example, during the protests of the 
Black Lives Matter movement the opinions of supporters more or less reached 
a consensus, while the opinions of the opponents did so as well. This motivates 
why the definition of groups should at least cover consensus formation within 
the groups simultaneously with polarization between the groups.
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As shown in Subsection 4.2, agents must have an equal degree of attention 
to allow for consensus formation. In the relative opinion framework, it is 
therefore necessary to require that agents belonging to the same group have 
equal attentiveness toward their own group. As shown in the appendix (A.7), 
an equal attentiveness toward the agents of the other group as well may lead to 
polarization between groups, while consensus formation occurs within the 
groups. Therefore, groups in this section are characterized by the agents’ 
degree of attention.

Throughout this section, the following definition will be used. In a two- 
group setting, a group is a collection of agents that have equal attentiveness to 
the agents in their own group and have equal attentiveness to the agents of the 
other group. The attentiveness of the group’s agents to their own group may 
differ from the attentiveness to the agent of the other group. Evidently, 
a population with two groups can be rearranged such that the updating matrix 
consists of 4 blocks of equal attentiveness matrices: 

Here, A11, A22 are square c11- and c22-equal attentiveness matrices, and A12 and 
A21 are (not necessarily square) c12- and c21-equal attentiveness matrices. The 
coefficients c11; c12; c21; c22 2 R are called attentiveness degrees. As the matrices 
A11 and A22 contain the set of weights that describe the influence between 
agents within their group, we call them intragroup matrices. By the same 
token, we call A12 and A21 intergroup matrices.

Relying on the definition of equal attentiveness, it is possible to decompose 
each intra- and intergroup matrix into its attentiveness degree and 1-equal 
attentiveness matrix: 

with Pij 1-equal attentiveness matrices, i; j 2 f1; 2g. Equation (6) reveals that 
within each group, the dynamics are governed by P11 and P22, while P12 and 
P21 determine the dynamics between the groups, within the structure imposed 
by the matrix of attentiveness degrees: 

A comparable group setting is considered analytically in, for example (Eger, 
2016), and through simulations in (Amblard & Deffuant, 2004). An example 
where this group framework may be suitable relates to the opinion formation 
dynamics of a population consisting of fashionistas and non-fashionistas. The 
group of fashionistas (say, group 1) typically has a smaller population size than 
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the group of non-fashionistas (group 2). Roughly speaking, fashionistas have 
a relatively high degree of attention to fashion-related issues (“What shape 
should glasses have?”) than non-fashionistas, in our framework reflected by 
c11 þ c12�c21 þ c22. Also, fashionistas typically look for a style that differs from 
the mainstream one (c12 < 0), while non-fashionistas have the tendency to 
adopt the new styles of the fashionistas (c21 > 0). The matrix of attentiveness 
degrees C then has unequal values of attentiveness and, with “sufficiently 
strong” stubborn and open-minded interaction, the result we found for the 
two agent population in Subsection 4.3.3 suggests that the population may 
show asymptotic periodic behavior. These dynamics could help interpret, for 
example, the recurrence of different colors and styles in the fashion industry 
over the past decades.

Figure 5 shows the result of a simulation of opinion formation dynamics 
where agents are divided into two groups according to the agents’ attentive-
ness but still are well-connected. The blue bars represent the fashionistas and 
the orange bars the non-fashionistas. After 1 unit of time, the opinions are 
more or less uniformly distributed around the origin, two time units later 
agents within the groups are showing signs of consensus formation, and again 
two time units later the agents within the groups have reached a consensus. 
From 6 time units onward, the stubborn group moves toward the origin 
because it wants to move away from the opinion of the open-minded agents. 
Depending on the exact entries in the matrix A, this can play out as complex 
cyclic dynamics in the bounded relative opinion space, in which fashionistas 
move away from non-fashionistas, while non-fashionistas follow the fashion-
istas. In absolute opinion space, however, such dynamics could eventually 
move away from any finite interval.

5.2. Transfer of group’s asymptotic behavior

Even in the restricted setting of two groups, it is complicated to analytically 
investigate the asymptotic opinion formation dynamics of a population with 
arbitrarily many agents. One way to still gain insight into the asymptotic 
dynamics of a two-group population is by decomposing the intragroup effect 
from intergroup effects. Indeed, we express the eigenvalues of the influence 
matrix A of the entire population, in terms of (i) the eigenvalues of the 
intragroup matrices A11 and A22 as if they were stand-alone populations, 
and (ii) the influence between the groups as described by the attentiveness 
degrees in C.

As explained in Subsection 4.1, the largest eigenvalue of A (in absolute 
terms, that is) in Equation (2) determines the asymptotic opinion formation 
behavior. Thus, being able to express the eigenvalues of the entire population 
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in terms of the eigenvalues of the intragroup matrices implies that the asymp-
totic behavior of the entire population is fully determined by the asymptotic 
behavior of its groups.

An example is a company that is divided into a group of leaders and a group 
of employees, together constituting the population of agents. In the hypothe-
tical case that employees do not have any preference to follow a specific leader 
(in that they tend to follow the opinion of the group of leaders as a whole), the 
employees eventually will have an opinion that aligns with that of the leaders. 
However, it is possible that within the group of leaders, some are stubborn and 
argue regularly, which results in polarization within the group of leaders. As 
a reaction, the employees will also polarize since they follow the opinions of 
the leaders. And, since the population considered consists of leaders and 

Figure 5. Histogram of opinions of two “well-connected” groups at different moments in time. The 
blue bars depict group 1 of size 500 representing a group that repels the opinion of the other 
group (e.g. fashionistas), the Orange bars depict group 2 of size 500 representing a group that 
follows the opinion of the other group (e.g. non-fashionistas). Opinion vectors are scaled such that 
the sum of its absolute entries equals 1000. The entries of the intragroup 1-equal attentiveness 
matrices P11, P22 and intergroup 1-equal attentiveness matrices P12, P21 are chosen uniformly 
between � 0:38 and 0:62, i.e., with a slight positive drift. Each row is then scaled to satisfy the 1- 
equal attentiveness condition. The matrix of attentiveness degrees C has entries c11 ¼ 1:5, 
c12 ¼ � 0:3, c21 ¼ 0:5, and c22 ¼ 1.
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employees only, the company becomes polarized. In this example, one may 
argue that the dynamics within the group of leaders is dominant for the 
asymptotic opinion dynamics. From a mathematical perspective, one would 
expect that the largest eigenvalue (in absolute terms) of the influences between 
leaders plays a crucial role in the largest eigenvalue of the entire population.

Another example concerns the interaction between fashionistas and non- 
fashionistas, as illustrated in Figure 5. Group members tend to reach 
a consensus with fellow group members, while fashionistas have the inclina-
tion to move away from the opinion of non-fashionistas, a behavior also called 
“individualization” in Mäs et al. (2010). The resulting asymptotic periodic 
behavior of the entire population follows from the interaction between groups 
as described by the attentiveness degrees in C. Mathematically, it is expected 
that in this case the largest eigenvalue of A is predominantly the result of the 
largest eigenvalue of C.

It follows from Theorem A.7 in the appendix that in the special case where 
fellow group members are influenced identically by members of the other 
group at each time period, the eigenvalues of A can be expressed in terms of 
the eigenvalues of P11, P22 and C. Mathematically, the condition of being 
influenced identically by members of the other group corresponds to P12 or 
P21 being matrices with identical columns. One can interpret this as follows. 
Each fellow member of one group is not in individual contact with members of 
the other group. Rather, the influence from non-group members is channeled 
through a central source such as a spokesperson or mass media.

Arguably, in real life typically the condition of identical influences by 
members of the other group does not hold exactly. Still it provides insights 
into how group behavior may propagate to the entire population. The sensi-
tivity analysis presented in Appendix A.6, where the identical columns of A12 
are increasingly perturbed by a noise factor of up to 120 percent of its 
attentiveness degree, shows that the eigenvalues are still transferred from 
P11, P22 and C. Another sensitivity analysis on the effects of the equal atten-
tiveness assumption on A11, A12, A21 and A22 has been performed, where the 
sums of rows differed up to 3 percent of its attentiveness degree. Also in this 
case, the transfer of eigenvalues was robust. Thus, even in cases in which the 
identical influences condition is not exactly met, our model still provides an 
accurate reflection of the asymptotic behavior.

We also explored the case where agents of different groups do not interact 
directly, but they follow media that in turn interact with media followed by the 
other group. Simulations show that the intragroup matrices of At (i.e., A multi-
plied t � 1 times with itself), for time t larger or equal than 3 effectively satisfy 
the condition of identical influence by members of the other group. Only after 
more than 3 time periods the media starts to transfer the opinion of its group. In 
this case, it is possible to construct a population that polarizes into two opinions 
as a result of the interaction between media sources. In fact, when media are the 
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sole source of influence of agents in a group by another group, any type of 
asymptotic dynamics is possible, depending on the type of interaction between 
the media sources (as described by C). The analytical result of Theorem A.7 
effectively reveals that more influence by media results in a more pronounced 
transfer of the asymptotic dynamics from the groups to the entire population.

For symmetry reasons, we expected that any condition on the transfer of 
eigenvalues of the groups to the entire population is bilateral, which implies in 
this case that identical influence should go both ways. It is therefore rather 
unanticipated that unilateral identical influence of group members (which is 
a condition on either P12 or P21) is already sufficient. This suggests the 
hypothesis that in settings where members of one of two interacting groups 
perceive influences from those of the other group as if they come from 
a unitary source (each member of the other group being a unitary source), 
for example through stereotyping or media influence, this forces the other 
group into a pattern where influences from members of the former group are 
likewise responded to as if they come from a unitary actor. A tentative inter-
pretation of this could be that unilateral stereotyping of an outgroup in a two- 
group setting result in behavior similar to what can be expected under mutual 
stereotyping.

The analytical result (Theorem A.7) on the “transferability” of asymptotic 
dynamics shows that asymptotic dynamics of a two-group population may be 
predominantly caused by either the interaction within the groups or the 
interaction between the groups. Evidently, in models with a more involved 
structure (rather than two groups), one could encounter intrinsically more 
complex behavior.

6. Discussion

An outstanding research problem in the field of opinion formation processes 
concerns finding an elementary linear framework that is capable of reprodu-
cing the main large-scale phenomena of opinion dynamics (viz. polarization, 
consensus formation, and periodicity) in settings in which the population is 
“well-connected” and “aperiodic”. In this paper, we contributed to addressing 
this challenge: we have developed a relative opinion model that exhibits all 
desired large-scale phenomena while still working with a linear update rule.

In addition, the relative opinion model allows to identify stable patterns in 
opinion formation that occur over a longer time scale, even when, seen from 
a particular point in time, opinions shift outside a fixed range (as represented 
by scales like those typically used in opinion surveys). Such longer term shifts 
may occur because, for example, societal norms on certain issues change over 
time so that opinion distributions keep shifting to different sections of the 
same underlying opinion dimension. Models representing only absolute opi-
nions cannot readily describe patterns that are stable despite those shifts.
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The main technical reason for the richness of the relative opinion model’s 
dynamics is the inclusion of the possibility of a repulsive force between agents 
while remaining in a linear framework. In established models, this generally 
leads to unrealistic unbounded development of opinions. Our remedy, also the 
main idea of this article, is the consideration of relative opinions. As 
a consequence of considering only relative opinions, the model with N agents 
effectively evolves in a subspace of dimension N � 1.

The interaction on which opinion formation is based in the relative opinion 
model is assumed to be constant over time. This is a major simplification of 
reality. In order to assess time-dependent interactions, it is expected that one 
should rely on simulation techniques. Still, a constant influence structure over 
time may be an approximation of short-term or very long-term opinion 
formation processes. One could imagine that the influence structure changes 
incrementally in the short term, meaning that a constant influence structure is 
still a good proxy for the opinion dynamics. In the long term, it may be 
reasoned that on average agents stick to a repetitive contact structure with 
established friends and family. As a remedy for the intermediate term one may 
consider to approximate the time frame by a collection of short-term intervals 
that can be approximated by a constant influence pattern.

The idea of modeling relative opinions instead of opinions measured 
according a predefined scale can be applied to a broad set of established 
models. In the case of agent-based models, the fact that the relative opinion 
model has an elementary linear update rule may lead to relatively low simula-
tion effort. In the case of models that allow for analytical solutions the idea of 
relative opinions may extend the options for analytical investigation.

We anticipate that the material presented in this paper is only the tip of the 
iceberg of the analytical insights that the relative opinion model can provide. 
A vast body of matrix theory, e.g. theory involving symmetric matrices, 
positive matrices, and block matrices, may be applied to the relative opinion 
model, possibly providing new insights. As a research direction one may 
consider the relative opinion model from a stochastic perspective. Another 
direction is the behavior of the relative opinion model when opinions are 
treated as an object that is higher than 1-dimensional as considered by many 
models in the literature (Baldassarri & Bearman, 2007; Flache & Macy, 2011; 
Schweighofer et al., 2020), or when a different equivalence relation is chosen 
than the one considered in this paper.

From an empirical point of view, it is notable that data based on 
a predefined opinion scale, e.g., a scale from 1 to 10 (the Likert scale), can be 
directly inserted in the relative opinion model. One could also aim to validate, 
in situations where the underlying assumptions are expected to be approxi-
mately met, our results for two groups, so as to predict the asymptotic opinion 
behavior of the population from the intragroup and intergroup dynamics.
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We feel that the idea of relative opinions is a useful additional instrument in the 
toolkit of theoretical models of opinion formation. Most of all, when this idea is 
applied to a DeGroot-like or discrete-time Altafini-like model, we obtain a model 
that unites, in a single simple but general setting, the three major empirical 
phenomena of polarization, consensus formation, and periodicity.
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Appendix A. Probabilistic arguments

The complete Matlab code and datasets used in generating the figures in this article are publicly 
available through https://www.comses.net/codebase-release/14f7267a-e6e5-493c-9fc5- 
954a1d37f928/. 

A.1. Notation & definitions. 

A.1.1. Notation. In the sequel we use the following notation:
• Each vector v is a column vector.
• jMj is the determinant of matrix M.
• TrðMÞ is the trace of matrix M.
• With z ¼ aþ bi denoting a complex number, we denote its absolute value by jzj, defined as 
jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

.
• I is the square identity matrix.
• 1n is the n-dimensional all-ones vector. 

A.1.2. Definitions. As mentioned in Footnote 9, agents with opinion 0 are excluded from the 
definition of relative opinions (until this opinion becomes non-zero due to influences by other 
agents). It is worth noting that 0-entries of opinion vectors yðtÞ (notation as in Equation (2)) 
only appear for very specific choices of A and yð0Þ; the settings in which relative opinions are 
not defined can be seen as “pathological” (i.e., occurring only for very specific instances, where 
it is in addition noted that the issue is resolved by a small perturbation of the problematic 
instance).

Another setting where 0-entries play a role is when relative opinions between two agents 
approach 0 over time. For example, when agent 1‘s opinion (denoted by yðtÞ1 ) is constant and 
agent 2‘s opinion (denoted by yðtÞ2 ) is strictly increasing then – from the perspective of agent 2 – 
the opinion of agent 1 (i.e., yðtÞ1 =yðtÞ2 ) approaches 0 as t !1. However – from the perspective 
of agent 1 – the opinion of agent 2 (i.e., yðtÞ2 =yðtÞ1 ) takes arbitrarily large values as t !1. This 
example shows that, in the context of relative opinions “approaching 0” is equivalent to “taking 
arbitrarily large values.” The concepts of convergence and asymptotic behavior have 
a meaningful interpretation in situations for which the corresponding values cannot become 
arbitrarily large. In the definition of convergence below we take a similar approach; we restrict 
the notion of convergence to vectors with non-zero entries only. Similarly, in the definition of 
asymptotic behavior, we exclude opinion vectors of which its entries take the 0-value arbitrarily 
often over time.
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Relative opinions. Consider the N-dimensional real-valued vector y with non-zero entries. 
The relative opinions of y are defined through 

yij ¼
yi

yj
; i; j ¼ 1; . . . ;N:

Convergence under the equivalence relation ;. Consider the N-dimensional real-valued 
vectors a tð Þ, t ¼ 0; 1; 2; . . . , and b. Assume that b has non-zero entries only. Let aijðtÞ and bij, 
i; j ¼ 1; . . . ;N denote the relative opinions corresponding to aðtÞ and b respectively. If aijðtÞ
converges to bij for i; j ¼ 1; . . . ;N then we say that aðtÞ converges under ; to b. We write 
limt!1 aðtÞ;b.

Asymptotic behavior. Consider the N-dimensional real-valued vectors aðtÞ and bðtÞ, 
t ¼ 0; 1; 2; . . . . Assume the existence of a T 2 N such that bðtÞ only has non-zero entries for 
t > T. Let aijðtÞ and bijðtÞ, i; j ¼ 1; . . . ;N denote the relative opinions corresponding to aðtÞ and 
bðtÞ. If 

lim
t!1
jaijðtÞ � bijðtÞj ! 0 

for all i; j ¼ 1; . . . ;N, then we say that aðtÞ behaves asymptotically as bðtÞ.

A.2. General derivations. By t times iterating Equation (2), we obtain yðtÞ ¼ Atyð0Þ. When A is 
diagonalizable, the eigenvectors of A, denoted by v1; v2; . . . ; vN corresponding to eigenvalues 
λ1; λ2; . . . ; λN , are linearly independent. As a consequence, V ¼ ðv1 jv2 j . . . jvNÞ is invertible. 
Define Λ as the diagonal matrix with λ1; λ2; . . . ; λN on its diagonal. Then by definition 
AV ¼ VΛ, hence A ¼ VΛV � 1.

We write yð0Þ in the basis of the eigenvectors: yð0Þ ¼ b1v1 þ . . .þ bNvN ¼ Vb with 
b ¼ ðb1; . . . ; bNÞ

`
2 C

N . In this paper we assume for convenience that all entries of b corre-
sponding to yð0Þ are non-zero. For the general case, all mathematical reasonings can be 
replicated with slight adjustments. Without loss of generality, let all eigenvalues of A be 
indexed in a descending order (i.e., jλ1j � jλ2j � . . . � jλN j). Now: 

yðtÞ ¼ Atyð0Þ ¼ VΛtV � 1Vb ¼ λt
1b1v1 þ . . .þ λt

NbNvN

¼ jλ1j
t
ð λ1
jλ1j
Þ

tb1v1 þ ð
λ2
jλ1j
Þ

tb2v2 þ . . .þ ð λN
jλ1j
Þ

tbNvN

� �

;ð λ1
jλ1j
Þ

tb1v1 þ ð
λ2
jλ1j
Þ

tb2v2 þ . . .þ ð λN
jλ1j
Þ

tbNvN :

(8) 

When A has n � N largest eigenvalues (in absolute terms, that is), yðtÞ under the equivalence 
relation behaves asymptotically as 

ð
λ1

jλ1j
Þ

tb1v1 þ ð
λ2

jλ1j
Þ

tb2v2 þ . . .þ ð
λn

jλ1j
Þ

tbnvn:

If n ¼ 1 and λ1 2 Rþ, then yðtÞ converges to v1. Likewise, if n ¼ 1 and λ1 2 R � , but in this case, 
the opinion vector changes sign each time period. If n ¼ 1 and λ1 2 CnR , then the opinion 
dynamics are asymptotically periodic according to Theorem A.3. For n ¼ 2; 3; . . . , the asymp-
totic behavior of yðtÞ is a weighted mix of the aforementioned dynamics. When A is a stochastic 
matrix – as in the DeGroot model – one of the largest eigenvalues is λ1 ¼ 1 with corresponding 
eigenvector 1N . In DeGroot (1974) and Anthonisse and Tijms (1977) conditions are discussed 
that ascertain n ¼ 1 and thus consensus formation in the long run, relying on concepts such as 
irreducibility and aperiodicity.
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If A is not diagonalizable, then Equation (8) is invalid because V is not invertible. However, 
a comparable equation can be obtained by extending the reasoning with notions such as Jordan 
normal form and generalized eigenvectors. The rate of convergence is in this case typically 
a mixture of exponential and polynomial.

A.3. Derivations for N ¼ 2. The following theorem reveals the asymptotic behavior of the 
relative opinions as a function of the trace of the matrix A in a two agent population with 
positive equal attentiveness.

Theorem A.1. Consider relative opinions as described by yðtÞ in equation (2), implying that the 
equivalence relation holds; yðtÞ denotes any vector γyðtÞ with γ 2 Rþ. Let A ¼ faijg be a 2� 2 
real-valued k-equal attentiveness matrix, with k 2 Rþ. Let v1; v2 be the eigenvectors correspond-
ing to the eigenvalues λ1, λ2. Denote yð1Þ by the limit (t !1) of yðtÞ, meaning the limit of the 
fractions as described by Equation (1), if it exists. An eigenvalue of A is λ1 ¼ k with eigenvector 
v1 ¼ 12. The following holds under the equivalence relation: 

(i) If TrðAÞ< 0 and y 0ð Þ 6; 12 then yðtÞ behaves asymptotically with exponential rate as 
yðtÞ;� ð� 1Þtv2, with the sign determined by the choice of yð0Þ.
(ii) If 0<TrðAÞ< 2k and y 0ð Þ 6; v2 then yðtÞ converges exponentially to yð1Þ;� 12, with the 
sign determined by the choice of yð0Þ.
(iii) If TrðAÞ > 2k and y 0ð Þ 6; 12 then yðtÞ converges exponentially to yð1Þ;� v2, with the sign 
determined by the choice of yð0Þ. If (i) a11 > k and a22 > k then v2 has entries of opposite signs, if 
(ii) a11 ¼ k or a22 ¼ k then v2 has an entry equal to 0, and if (iii) otherwise then v2 has entries 
of equal signs.
(iv) If TrðAÞ ¼ 0 and y 0ð Þ 6; 12 and y 0ð Þ 6; v2 then19 yðtÞ behaves as yðtÞ;ðb1v1 þ ð� 1Þtb2v2Þ

for some real constants b1; b2 that is determined by the choice of yð0Þ.
(v) If TrðAÞ ¼ 2k, y 0ð Þ 6; v2 and not a12 ¼ a21 ¼ 0 then20 yðtÞ converges with rate Oðt� 1Þ to 
yð1Þ;� 12, with the sign determined by the choice of yð0Þ.

Proof of Theorem A.1. Since A is a k-equal attentiveness matrix, an eigenvalue of A must be 
λ1 ¼ k with corresponding eigenvector 1N . Hence, 

λ1 ¼ k and λ2 ¼ TrðAÞ � k; (9) 

since the sum of the eigenvalues of A equals its trace. Note that the eigenvalues are real-valued 
and distinct unless TrðAÞ ¼ 2k. Thus, A is diagonalizable for TrðAÞ�2k. By the same reasoning 
as in (8): 

yðtÞ ¼ λt
1b1v1 þ λt

2b2v2

;ð λ1
jλ1j
Þ

tb1v1 þ ð
λ2
jλ1j
Þ

tb2v2;ð λ1
jλ2j
Þ

tb1v1 þ ð
λ2
jλ2j
Þ

tb2v2;
(10) 

with b1; b2 the scalars of yð0Þ when expressed in the basis of the eigenvectors of A. If 
yð0Þ;v1 ¼ 12, then b2 ¼ 0; if yð0Þ;v2, then b1 ¼ 0.

(i) If TrðAÞ< 0 then jλ2j> jλ1j with λ2 < 0. Equation (10) then equals 

19The case of A being periodic is included here: a12 ¼ a21 ¼ k.
20The case of A with a12 ¼ a21 ¼ 0 represents a disjoint population.
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jλ2j
t
ð

λ1

jλ2j
Þ

t
b1v1 þ ð� 1Þtb2v2

� �

:

Hence, yðtÞ behaves asymptotically as � ð� 1Þtv2 if b2 is non-zero.
(ii) If 0<TrðAÞ< 2k then jλ1j > jλ2j, clearly ðλ2=jλ1jÞ

t converges exponentially to 0, hence 
yð1Þ;� v1 if b1 is non-zero or, equivalently, y 0ð Þ 6; v2.

(iii) If TrðAÞ > 2k then λ2 > λ1 > 0, thus ðλ1=λ2Þ
t converges exponentially to 0, therefore 

yð1Þ;� v2 when b2 is non-zero. Combining Equation (9) and the definition of 
eigenvectors yields

v2½2�ðk � a11Þ ¼ � v2½1�ðk � a22Þ (11)

where v2½1�; v2½2� are the first and second entries of eigenvector v2. Clearly, v2½1� and v2½2� are 
of opposite signs when a11 > k and a22 > k, and of equal sign otherwise.

(iv) If TrðAÞ ¼ 0 then λ2 ¼ � λ1, hence yðtÞ ¼ jλ1j
t
ðb1v1 þ ð� 1Þtb2v2Þ, and yðtÞ behaves as 

b1v1 þ ð� 1Þtb2v2.
(v). If TrðAÞ ¼ 2k then λ1 ¼ λ2 ¼ k, A is therefore not necessarily diagonalizable as it does 

not have distinct eigenvalues. First, we prove that the geometric multiplicity of the 
eigenvalue k is 1 unless a12 ¼ a21 ¼ 0. By definition, the geometric multiplicity of an 
eigenvalue λ is the dimension of the nullspace of ðA � λIÞ. Clearly, the ðA � λIÞ matrix 
is the 0-matrix if and only if a12 ¼ a21 ¼ 0. Hence, the dimension of the nullspace of 
ðA � λIÞ – or the geometric multiplicity – is 2 if and only if a12 ¼ a21 ¼ 0. In this 
situation A represents a disjoint population, which is a trivial case. Now, since the 
geometric multiplicity of k must be larger than 0 it must be 1 when a12 ¼ a21 ¼ 0 does 
not hold. For convenience, we write λ ¼ λ1 ¼ λ2. Now, for not a12 ¼ a21 ¼ 0 we have 

y tð Þ ¼ λtb1 þ λt� 1 t
1

� �

b2

� �

v1 þ λtb2v2

¼ λt b1v1 þ b2v2ð Þ þ λt� 1 t b2v1 ¼ λt b1v1 þ b2v2 þ
t
λ b2v1

� �

; t b1v1þb2v2
t þ b2v1

λ

� �
; b1v1þb2v2

t þ b2v1
λ ;

(12) 

with v2 a generalized eigenvector. The first equality in (12) follows from a known result that 
involves the Jordan normal form, which is applicable because λ is of geometric multiplicity 1. 
Clearly, ðb1v1 þ b2v2Þ=t ! 0 as t !1, hence yð1Þ;� v1 if b2 is non-zero, or equivalently 
y 0ð Þ 6; v2.

This completes the proof.                                                                                           □

In Theorem A.3 we apply a well-known lemma from linear algebra that describes the basis of 
real-valued vectors. For the sake of completeness, we provide the lemma here.

Lemma A.2. Let fv1; v2; . . . ; vl;w1; �w1; . . . ;wm; �wmg be N ¼ lþ 2m linearly independent 
vectors of dimension N with v1; . . . ; vl and w1; . . . ;wm real-valued and non-real complex-valued 
vectors respectively. If x is a real-valued vector of dimension N then x can be written in the form: 

x ¼ p1v1 þ . . . plvl þ q1w1 þ �q1 �w1 þ . . .þ qmwm þ �qm �wm; (13) 

where p1; . . . ; pl are real and q1; . . . ; qm are complex numbers.

Proof of Lemma A.2. Since v1; v2; . . . ; vl, w1; �w1; . . . ;wm; �wm are N linearly independent N- 
dimensional vectors they form a basis of C

N . Hence, unique complex numbers p1; . . . ; pl, 
q1; . . . ; qm, r1; . . . ; rm exist such that 
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x ¼ p1v1 þ . . . plvl þ q1w1 þ r1 �w1 þ . . .þ qmwm þ rm �wm: (14) 

Since x and v1; . . . ; vl are real-valued, the complex conjugate of the previous equation is 

x ¼ �p1v1 þ . . . �plvl þ �q1 �w1 þ �r1w1 þ . . .þ �qm �wm þ �rmwm: (15) 

Since this decomposition is unique, the factors corresponding to the vectors must be identical. 
Hence, pi, i ¼ 1; 2; . . . ; l are real numbers and rj ¼ �qj, j ¼ 1; . . . ;m.

Theorem A.3. Consider yðtÞ in Equation (2), let A be a real-valued diagonalizable matrix. 
Assume yð0Þ has only non-zero complex-valued coordinates b1; b2; . . . ; bN in the basis of eigen-
vectors, v1; . . . ; vN of A. Let non-real and complex-valued λ1 and its conjugate be the absolute 
largest eigenvalues. Denote by θ the argument of λ1. If the entries of Reðeiθtb1v1Þ only take non- 
zero values for t ¼ 0; 1; 2; . . . then yðtÞ behaves asymptotically as 

yðtÞ;Reðeiθtb1v1Þ: (16) 

Proof of Theorem A.3. Since A is diagonalizable, Equation (8) holds. As A is real-valued, the 
complex conjugate of the eigenvalue equation Av1 ¼ λ1v1 is A�v1 ¼ �λ1�v1, thus �λ1 is also an 
eigenvalue of A with eigenvector �v1 with jλ1j ¼ j�λ1j. Let λ2 in Equation (8) be the complex 
conjugate of λ1, then  

yðtÞ ¼ λt
1b1v1 þ �λt

1
�b1�v1 þ � � � þ λt

NbNvN

¼ jλ1j
t
ðcosðθtÞ þ i sinðθtÞÞb1v1 þ jλ1j

t
ðcosðθtÞ � i sinðθtÞÞ �b1�v1 þ � � � þ λt

NbNvN

¼ jλ1j
t
½2Re ððcosðθtÞ þ i sinðθtÞÞb1v1Þ þ ð

λ3

jλ1j
Þ

tb3v3 þ � � � þ ð
λN

jλ1j
Þ

tbNvN �

;2ReððcosðθtÞ þ i sinðθtÞÞb1v1Þ þ ð
λ3

jλ1j
Þ

tb3v3 þ � � � þ ð
λN

jλ1j
Þ

tbNvN ;

where the �b1 in the first equality follows from Lemma A.2. The second and third equalities are 
obtained by expressing λ1 in polar coordinates with 0< θ< 2π and using that the addition of 
a complex vector with its conjugate is two times the real part of the complex vector, respec-
tively. The result follows from Euler’s formula and the assumption that entries of Reðeiθtb1v1Þ

do not take non-zero values for t ¼ 0; 1; 2; . . . (where we remark that the assumption is 
discussed in detail in the two paragraphs immediately after this proof).                             □

We like to note that yðtÞ as in Theorem A.3 may behave differently from Reðeiθtb1v1Þ when 
Reðeiθtb1v1Þ can consistently attain 0-entries for t ¼ 0; 1; 2; . . . . It is stressed, though, that such 
scenarios can be seen as “pathological”, in that very specific parameter values have to be chosen, 
and that in addition the issue is resolved when slightly perturbing these parameters.

As an illustration, consider the situation where A and yð0Þ are chosen such that two entries of 
yðtÞ (notation as in the proof of Theorem A.3) are equivalent to functions of the form cosðθt þ
ϕ1Þ þ e� t and cosðθt þ ϕ2Þ þ e� 2t (θ is the argument of λ1, ϕ1 and ϕ2 are arguments of 
different entries of v1 and e� t , e� 2t follow from specific values of the expressions ðλj=jλ1jÞ

t , 
j ¼ 3; . . . ;N). Further, when parameters are chosen such that ϕ1 ¼ ϕ2 ¼ π=2, then the relative 
opinions equal 

cosðθt þ π=2Þ þ e� 2t

cosðθt þ π=2Þ þ e� t ;
cosðθt þ π=2Þ þ e� t

cosðθt þ π=2Þ þ e� 2t

� �

:

THE JOURNAL OF MATHEMATICAL SOCIOLOGY 37



Now, in the case that θ ¼ π the relative opinions equal ½e� t; et� since cosðθt þ π=2Þ ¼ 0. 
However, when θ is a value such that θt�πk for all k ¼ 1; 2; . . . and t ¼ 0; 1; 2; . . . then 
evidently cosðθt þ π=2Þ�0 for all t ¼ 0; 1; 2; . . . so that the relative opinions converge to ½1; 1�
as t !1. Thus, for very specific parameters the relative opinions behave as ½e� t; et�, whereas 
in “normal” situations the relative opinions converge under the equivalence relation to ½1; 1�. In 
Theorem A.3 it is therefore assumed that Reðeiθtb1v1Þ attains only non-zero entries for t ¼
0; 1; 2; . . . being a sufficient condition to exclude the “pathological” settings as described above.

Proposition A.4. Let A ¼ faijg be a 2� 2 real-valued matrix. Then, A has non-real and 
complex eigenvalues if and only if 

ða11 � a22Þ
2 < � 4a12a21: (17) 

Proof of Theorem A.4. The determinant D of the quadratic characteristic polynomial is 

D ¼ ða11 þ a22Þ
2
� 4ða11a22 � a12a21Þ

¼ a2
11 þ a2

22 � 2a11a22 þ 4a12a21

¼ ða11 � a22Þ
2
þ 4a21a12:

(18) 

The eigenvalues of A are non-real and complex-valued if and only if D< 0.                       □

A.4. Derivations for a two-group population. Before showing the proof of Theorem A.7 
which substantiates various statements in Section 5, we present for the sake of completeness the 
well-known Schur complement and a useful lemma on the determinant of matrices.

Lemma A.5 (Schur (1917)). Let the square matrix A be partitioned in the block matrices E, F, 
G, H with square matrices on the diagonal. Let the matrix E be invertible, then 

Aj j ¼ E F
G H

�
�
�
�

�
�
�
� ¼ Ej j H � GE� 1F

�
�

�
� (19) 

Proof of Lemma A.5. We may write 

A ¼ E F
G H

� �

¼
E 0
G I

� �
I E� 1F
0 H � GE� 1F

� �

; (20) 

taking determinants we obtain (19).                                                                                □

Lemma A.6 (Ding and Zhou (2007)). Consider an invertible matrix M and vectors u and v. 
Then 

jM þ uv`j ¼ ð1þ v`M� 1uÞjMj: (21) 

Proof of Lemma A.6. For the special case, M ¼ I we have 

I 0
v` 1

� �
I þ uv` u

0 1

� �
I 0
� v` 1

� �

¼
I u
0 v`uþ 1

� �

; (22) 

taking determinants we obtain jI þ uv`j ¼ ð1þ v`uÞ. For the general case, we have 

jM þ uv`j ¼ jMj � jI þM� 1uv`j ¼ jMjð1þ v`M� 1uÞ: (23) 

This proves the claim.                                                                                                   □

The following theorem substantiates the claims on the population’s asymptotic dynamics as 
a result of its groups’ asymptotic dynamics.
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Theorem A.7. Let C ¼ ðcijÞ be a 2� 2, P11 a m1 �m1 and P22 a m2 �m2 complex matrix. 
Assume P12 ¼ 1m1 vT, v 2 C

m2 , a m1 �m2 complex matrix with all columns linear dependent, 
and P21 a m2 �m1 complex matrix. Let Pij; 1 � i; j � 2 be 1-equal attentiveness matrices and 
denote the eigenvalues of c11P11 and c22P22 by α1 ¼ c11; α2; . . . ; αm1 and β1 ¼ c22; β2; . . . ; βm2 

respectively. Then, the set of eigenvalues of the matrix21 

A ¼ c11P11 c121m1 v`

c21P21 c22P22

� �

(24) 

equals the eigenvalues of C and α2; . . . ; αm1 , β2; . . . ; βm2
.

Proof of Theorem A.7. The ideas underlying this proof are similar to the ones as described in 
Ouellette (1981). The characteristic polynomial pðλÞ is 

p λð Þ ¼
c11P11 � λI c121m1 v`

c21P21 c22P22 � λI

�
�
�
�

�
�
�
�

¼ c11P11 � λI �j jc22P22 � λI � c21P21 c11P11 � λIð Þ
� 1c121m1 v`

�
�

�
�;

(25) 

using Lemma A.5 for λ 2 C not eigenvalue of c11P11.
We have ðc11P11 � λIÞ1m1 ¼ ðc11 � λÞ1m1 , hence ðc11P11 � λIÞ� 11m1 ¼ ðc11 � λÞ� 11m1 . So, 

pðλÞ ¼ jc11P11 � λIj � c22P22 � λI � c21c121m2 v`

c11 � λ

�
�
�

�
�
�

¼ jc11P11 � λIj � jc22P22 � λIj � I � c21c121m2 v`

ðc11� λÞðc22� λÞ

�
�
�

�
�
�

(26) 

for λ not eigenvalue of c22P22, using P211m1 ¼ 1m2 . From Lemma A.6 and v`1m2 ¼ 1 we obtain 

pðλÞ ¼ jc11P11 � λIj � jc22P22 � λIj � 1 �
c21c12

ðc11 � λÞðc22 � λÞ

� �

(27) 

¼
Ym1

i¼2
ðαi � λÞ

 !
Ym2

j¼2
ðβj � λÞ

 !

½ðc11 � λÞðc22 � λÞ � c12c21�: (28) 

We have shown Equation (28) for λ not eigenvalue of c11P11 and c22P22, but since each complex 
polynomial is continuous in C , Equation (28) must hold for all λ 2 C: □

Theorem A.7 suggests that the asymptotic development of relative opinions in a group- 
structured population as defined in Subsection 5.2 – under non-trivial conditions – can be fully 
determined by the eigenvalues of the intragroup influences and the influences between groups 
as determined by the matrix C. When the (assumed) unique largest eigenvalue of A is an 
eigenvalue of C, it is easy to verify that the corresponding eigenvector of A is a “higher 
dimension” version of the corresponding eigenvector of C. Hence, in a way, asymptotic 
dynamics of C are transferred to the entire group-structured population. In fact, when the 
asymptotic dynamics of the stand-alone population with driving matrix C would lead to 
polarization, for example under one of the conditions as stated in Theorem A.1, then the 
entire population would show consensus formation within the groups and simultaneously 
polarization between the groups in the long run. The situation in which the dynamics of the 
entire population can be decomposed occurs under a non-trivial condition. Namely, for one of 
the groups, its members must be influenced identically by the members of the other group 
(P12 ¼ ym1

v`), while the other group can be influenced in any way (P21 can be any matrix).

21Matrix A may be referred as the so-called Khatri-Rao product of C and P, where P is the block matrix consisting of 
blocks Pij; 1 � i; j � 2
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A.5. Methodology behind the generation of Figure 1. In order to produce a figure that 
depicts two subpopulations with a desired asymptotic behavior, matrix A is considered under 
the conditions of Theorem A.7. If the (in absolute terms, that is) largest eigenvalue arises from 
the matrix C, then it is ascertained that the asymptotic behavior of C is transferred to the entire 
population. Matrix C is chosen to be an 1:2-equal attentiveness matrix; the choice of 1:2, 
a number larger than 1, is to ensure a positive drift in the opinion development of the 
population. C is chosen such that it represents a mini-population with a stubborn and an open- 
minded agent when viewed as a stand-alone system. The parameters of C are such that 
asymptotic polarization at one side of the sign follows from Theorem A.1. The entries of the 1- 
equal attentiveness matrices P11, P12, P21, and P22 are uniformly sampled from the interval 
½� 0:2; 0:8�, and each row is corrected by a multiplication factor such that each row sums up to 
1. Intuitively, the positive drift when choosing the entries makes sure that P11 and P22 as stand- 
alone systems move to consensus asymptotically, or, mathematically, that the dominant 
eigenvalue is 1.

A.6. Sensitivity analyses of Theorem A.7. Theorem A.7 considers the situation of a two- 
group population wherein agents of one group are identically influenced by agents of the other 
group. In this situation, the qualitative asymptotic opinion development equals the qualitative 
asymptotic development of the first group, second group, or the interaction of the groups as 
described by C, as stand-alone populations.

It is expected in real-life that agents of one group are never identically influenced by agents 
of the other group. Also, agents within one group do not always have identical attentiveness 
degrees. Sensitivity analyses are performed showing to what degree the outcomes of Theorem 
A.7 still hold when we slightly deviate from the mentioned conditions.

The results of the sensitivity analyses are depicted in Figure 6. At every iteration step, P11 and 
P22 remain constant, while entries of P12 and P21 are chosen uniformly between ½� 0:5; 0:5�
before correction by a multiplication factor to enforce equal attentiveness. Before performing 
the sensitivity analyses, P12 satisfies the condition of Theorem A.7, i.e., it has identical values in 
each column, but possibly different values between columns. Figure 6a shows how the 
eigenvalues of A remain constant even while P12 and P21 are sampled at each iteration step, 
as predicted by Theorem A.7.

Figure 6b suggests that Theorem A.7 still roughly holds, even when agents of one group are 
not (exactly) identically influenced by members of the other group. It shows the simulation 
results in the case that to each entry of P12, a noise is added that is uniformly sampled from 
½� 0:02j; 0:02j�, with j the jth iteration step; this means that by iteration 60, noise parameters are 
added that are uniformly sampled from ½� 1:2; 1:2�. Note that after the addition of noise, P12 is 
neither a 1-equal attentiveness matrix nor a matrix with identical values in each column 
anymore.

Figure 6c suggests that essentially the qualitative outcomes of Theorem A.7 still hold, even 
when agents belonging to the same group do not have identical degrees of attentiveness toward 
their own and the other group, but the degrees of attentiveness match only approximately. Each 
row of each inter- and intragroup matrix is multiplied by a uniformly sampled factor from 
½1 � 0:0005j; 1þ 0:0005j�, where j is the jth iteration step. Thus, by iteration step 60, attentive-
ness degrees varies between 0:97 and 1:03. Note that after the multiplication by a noise factor, 
the inter- and intragroup matrices typically are not equal attentiveness matrices anymore, and 
in addition P12 is not a matrix with identical values in each column.
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(a) P12 satisfies the condition
of Theorem A.7, P12 and P21
are uniformly sampled around
0 at each iteration.

(b) Add noise to each entry
of P12; noise is uniformly sam-
pled from [−0.02j, 0.02j] where
j represents the jth iteration.

(c) Multiplying each row of the
inter- and intragroup matrices
by a noise factor sampled from
[1 − 0.0005j, 1 + 0.0005j] where
j represents the jth iteration.

Figure 6. Three types of sensitivity analyses of Theorem A.7.
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