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Perinatal derivatives (PnD) are birth-associated tissues, such as placenta,

umbilical cord, amniotic and chorionic membrane, and thereof-derived cells

as well as secretomes. PnD play an increasing therapeutic role with

beneficial effects on the treatment of various diseases. The aim of this

review is to elucidate the modes of action of non-hematopoietic PnD on

inflammation, angiogenesis and wound healing. We describe the source and

type of PnD with a special focus on their effects on inflammation and

immune response, on vascular function as well as on cutaneous and oral

wound healing, which is a complex process that comprises hemostasis,

inflammation, proliferation (including epithelialization, angiogenesis), and

remodeling. We further evaluate the different in vitro assays currently used

for assessing selected functional and therapeutic PnD properties. This

review is a joint effort from the COST SPRINT Action (CA17116) with the

intention to promote PnD into the clinics. It is part of a quadrinomial series

on functional assays for validation of PnD, spanning biological functions,

such as immunomodulation, anti-microbial/anti-cancer activities, anti-

inflammation, wound healing, angiogenesis, and regeneration.
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1 Introduction

Stem and progenitor cells from various tissues are

increasingly being used in regenerative medicine and

immunotherapies. For the expansion of these strategies, many

researchers are putting effort on developing methods and

technologies based on perinatal derivatives (PnD), which

comprise perinatal tissues and thereof derived cells and

secretomes. Besides perinatal mesenchymal stromal cells

(MSC), also other perinatal tissues and cells, such as human

amniotic membrane epithelial cells (hAEC), human amniotic

fluid cells (hAFC), human parietal decidua (hPD) cells, or

processed membranes (human amniotic membrane (hAM) or

human amnio-chorionic membrane (hACM)) were already used

or are under investigation for therapeutical treatment. Perinatal

endothelial cells (EC) are predominantly isolated from the

human umbilical vein (HUVEC), due to easier obtention and

higher yield (Silini et al., 2020). Consequently, research using

HUVEC is gaining momentum in the PnD field for the

development of technologies useful for the vascular

component regeneration and as an in vitro platform to

validate the functional role of other PnD in the context of

inflammation and angiogenesis (Pipino et al., 2022).

PnD portrait important advantages over products obtained

from adults regarding their naïvity, availability and accessibility.

This review aims to address the most widely studied PnD with a

special focus on their functional in vitro validation in the field of

inflammation, angiogenesis and cutaneous as well as oral wound

healing to support their use in specific pre-clinical and clinical

settings.

The anti-inflammatory properties of PnD make them highly

attractive for treating inflammatory, autoimmune, and

degenerative diseases (Silini et al., 2013; Cargnoni et al., 2021;

Yang et al., 2021). Inflammation is the body’s defense mechanism

to harmful stimuli, such as pathogens or damaged tissues. When

the immune system is activated, inflammatory cells transmigrate

from the vessels into damaged tissues (Medzhitov, 2008). There

are two types of inflammation, acute inflammation characterized

by a rapid response and chronic inflammation, which is a

persistent but slowly evolving response. Immune cells from

both, innate and adaptive response, play important roles in

the pathogenesis of inflammatory diseases (Marshall et al.,

2018). Chemokines as produced by damaged tissue recruit

different immune cells, including eosinophils, macrophages,

neutrophils, and T lymphocytes, contributing to inflammation.

The resolution of inflammation is carried out by acting at

different levels, such as through a decrease in the proliferation

and maturation of immune cells, an increase in phagocytosis and

apoptosis of immune cells, and an inhibition of the secretion of

proinflammatory mediators. To behave as an anti-inflammatory

agent, PnD should sense the inflammatory conditions, express

and secrete anti-inflammatory molecules, and interact with

immune cells. Accumulating evidence from preclinical and

clinical trials indicates that PnD exert anti-inflammatory

therapeutic effects in numerous autoimmune and

inflammatory diseases such as graft versus host disease

(GVHD), rheumatoid arthritis, multiple sclerosis, systemic

lupus erythematosus, and respiratory diseases (Ringden et al.,

2018; Yang et al., 2021; Ma et al., 2022).

Inflammation and angiogenesis, the formation of new blood

vessels, are critical steps in the complex process of wound

healing. Hemostasis, the first phase of wound healing, leads to

vasoconstriction and the formation of a blot clot that stops

bleeding. The following inflammatory phase leads to the

accumulation of neutrophils and macrophages at the wound

to defend bacteria and remove foreign substances, respectively. In

addition, the adaptive immune system is activated. In the

subsequent proliferative phase, fibroblasts multiply and

deposit extracellular matrix, and angiogenesis, a critical

component of acute wound healing, occurs. Re-

epithelialization takes place as epithelial cells migrate from the

periphery to the center of the wound. Further extracellular matrix

deposition leads to a transition of the inflammatory state to a

growth state, and a cross-linking of collagen, as well as scar

maturation, finally leads to remodeling (Diegelmann and Evans,

2004; Dash et al., 2018). Similar processes have also been

described in mucosal wound healing. Delayed wound healing

is often due to insufficient blood supply based on impaired

wound revascularization (Demidova-Rice et al., 2012).

Further, chronic, non-healing wounds are detained in a self-

perpetuating inflammatory stage that hinders progression to

proliferation (Stojadinovic et al., 2008). Thus, chronic wounds

are still a challenge to treat, although already more than a

hundred years ago the hAM was used as a biological dressing

for treating burns and skin ulcerations. Since then, while its use

for the treatment of e.g. ocular ulcers is popular worldwide, its

suitability for the management of skin ulcers is less well-

recognized (Castellanos et al., 2017).

Improved techniques for tissue preservation, as well as

advances in isolation and culture procedures for PnD cells

facilitate the way for early phase clinical trials in diverse

indications, such as the application of PLacental-eXpanded

(PLX-PAD) stromal cells for the muscle recovery after hip

arthroplasty (Winkler et al., 2022), multiple sclerosis (Lublin

et al., 2014), pulmonary fibrosis (Chambers et al., 2014), and also

COVID-19 (Hashemian et al., 2021; Sadeghi et al., 2021).

The focus of this review lies in the functional in vitro testing

of PnD, which should be carried out before their application in
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animal models and subsequent clinical studies, to produce a

treatment which is safe, effective and available for patients.

2 Mechanism of action

2.1 PnD effects on inflammation and the
immune response

PnD can downregulate inflammation by acting on several key

players in innate and adaptative immunity. PnD reduce

inflammatory conditions in vitro by suppressing the

proliferation, secretion of inflammatory cytokines, and

cytotoxic activity of different immune cell subpopulations, as

well as by inducing T cells and monocytes to acquire anti-

inflammatory functions. These anti-inflammatory effects can

be measured in vitro in cell-to-cell contact studies between

PnD and immune cells (Erkers et al., 2013; Vellasamy et al.,

2013), in non-contact transwell studies via secretion of soluble

factors or by using conditioned medium (CM) of PnD cultures

(Magatti et al., 2008; Gu et al., 2013). It is also important to

understand that PnD can act constitutively (Magatti et al., 2008;

Rossi et al., 2012; Pianta et al., 2015), and they can react to local

inflammatory stimuli. To functionally assess this, an in vitro

inflammatory environment created by the addition of Interferon

γ (IFNγ) and/or Tumour Necrosis Factor (TNF), Interleukin (IL)

1β, IL6, granulocyte-macrophage- colony stimulating factor

(GM-CSF) or a mixture of all of these can be used to see if

the cell morphology, size, immunophenotype and proliferation

capabilities of PnD are altered (Mebarki et al., 2021).

Furthermore, this simulated pro-inflammatory environment

can be used to study the inhibitory capacity of PnD on T cell

proliferation (Mebarki et al., 2021).

2.1.1 Assessment of PnD effects on the innate
immune response

Innate immune cells, such as macrophages, neutrophils,

dendritic cells, and natural killer cells can be regulated by

PnD (Abumaree et al., 2017; De La Torre et al., 2018; Edinger

et al., 2018; Torre and Flores, 2020). Anti-inflammatory assays

are focused on the evaluation of cell viability, maturation and/or

activation of immune cells.

Macrophages play an important role in the initiation,

preservation, and cessation of inflammation through

production of several cytokines and growth factors. Generally

based on their cytokine profile and cell surface markers (see

below) macrophages show two different phenotypes: the

predominantly pro-inflammatory M1 phenotype and the

generally anti-inflammatory M2 phenotype The macrophage

activity switches from pro-inflammatory (M1) to anti-

inflammatory (M2) during the inflammatory process, and an

imbalance of this change at the end of an inflammatory process is

associated with a range of inflammatory diseases (Fujiwara and

Kobayashi, 2005; Lee, 2018). Some studies have reported that

PnD can induce anti-inflammatory effects by regulating

macrophage functions. To study whether direct or indirect

contact of PnD with macrophages induces a switch to an M2-

like anti-inflammatory phenotype, a transwell chamber

membrane culture system can be used. The effects of adding

CM of unstimulated PnD to differentiated monocytes can also be

evaluated. Firstly, CD14+ monocytes are isolated from peripheral

blood mononuclear cells (PBMC) and differentiated into

M1 macrophages by the addition of GM-CSF or

lipopolysaccharide (LPS). Secondly, macrophages and PnD are

co-cultured in the transwell chamber system and the

M2 phenotype can be characterized by flow cytometric

analyses of morphological changes and the expression of

M2 cell surface markers (CD14, CD36, CD86, CD163, CD204,

CD206, B7-H4 and CD11 b), the co-stimulatory molecules

(CD40, CD80 and CD86) and the co-inhibitory molecules

(CD273, CD274 and B7-H4), and major histocompatibility

complex (MHC-II) molecules (Abumaree et al., 2013; Huang

et al., 2019). The anti-inflammatory phenotype in M2-like

macrophages can also be evaluated by qRT-PCR looking for

an increased expression of the M2 cell surface markers, and by

Enzyme-Linked Immunosorbent Assay (ELISA) examining

increased secretion of IL-10 and arginase (Arg)-1, and

decreased secretion of IL-1β, IL-12 (p70) and MIP-1α, TNF,
inducible nitric oxide synthase (iNOS), and IL-6 (Abumaree

et al., 2013; Huang et al., 2019). Furthermore, since the

clearance of apoptotic cells is critical for the resolution of

inflammation, it is possible to assess whether PnD increase

the phagocytic activity of M2 macrophages. Phagocytosis of

apoptotic cells is then evaluated by fluorescence microscopy

(Abumaree et al., 2013) or the ability of M2 macrophages to

take up zymosan particles as measured with the CytoSelect™
Phagocytosis Kit (Abumaree et al., 2013). The immortalized

human monocyte/macrophage cell line THP-1 is another

useful cell model system to study the effect of PnD on

activated macrophages (He et al., 2012). THP-1 cells are pre-

treated with phorbol-12-myristate-13-acetate (PMA) to induce

macrophage differentiation and then activated with LPS (Shu

et al., 2015). After direct coculture with PnD or their CM,

Western blot can be used to detect diminished levels of the

proinflammatory cytokines TNF and IL-1β, and the inhibition of

the mitogen-activated protein kinase (MAPK)/NF-κB signaling

pathway (Hu et al., 2013). Macrophages can induce changes in

the phenotype of PnD, and these changes can be evaluated by

flow cytometry as an induction in secretion of the inflammatory

proteins IL8, IL-12, and Monocyte Chemoattractant Protein 1

(MCP-1), and of anti-inflammatory proteins IL-10, indoleamine-

pyrrole-2,3-oxygenase (IDO) and B7H4 (Abumaree et al., 2013).

Neutrophils along with macrophages provide the innate cell-

mediated immunity and inflammatory responses at sites of

injury. Indeed, cytokines secreted by macrophages attract

neutrophils to the injured area to initiate the inflammatory
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response that in turn will recruit additional innate immunity cells

and molecules. To assess the role of PnD in neutrophil and

macrophage migration in vitro, their chemotactic activity

towards recombinant macrophage inflammatory protein

(MIP)-2 could be tested in the presence of CM of PnD using

migration assay chambers (Li et al., 2005). To study whether PnD

induce neutrophil-like N2-type polarization in an inflammatory

environment, a trans-well system is used under stimulation of

neutrophils with pro-inflammatory LPS. In these in vitro

systems, two different cell models of neutrophils can be used,

neutrophils freshly isolated from human blood, and the human

leukemia cell line (HL-60) that is an incomplete differentiated

cell line that must undergo differentiation to become functional

neutrophils (Babatunde et al., 2021), HL-60 cells differentiate

into neutrophils with DMSO, and subsequent stimulation with

LPS induces a polarized N1 phenotype. qPCR and Western blot

are used to determine the neutrophil surface molecules associated

with a polarized N2-phenotype as well as the levels of secreted

pro-inflammatory and anti-inflammatory factors (Wang et al.,

2020). Furthermore, PnD also have direct effects on major

functions of neutrophils. Co-culture of freshly isolated human

blood neutrophils with PnD can serve to demonstrate the

increased phagocytic capacity of neutrophils and, at the same

time, their decreased oxidative burst capacity as another method

to validate the anti-inflammatory function of PnD (Magatti et al.,

2018; Alipour et al., 2020). However, there are not many studies

addressing the anti-inflammatory role of PnD on neutrophils

despite the increasing evidence revealing unsuspected roles of

neutrophils in many physiological and pathological processes

(Nicolas-Avila et al., 2017), and more studies are needed.

As part of the anti-inflammatory effects of PnD, the

inhibition of the differentiation and maturation of monocytes

to dendritic cells (DC) has been reported. Monocytes isolated

from peripheral blood are differentiated to immature dendritic

cells (iDC) in the presence of IL-4 and GM-CSF, and iDCs

develop into mature dendritic cells (mDC) in the presence of

LPS. Both processes are inhibited by PnD, by direct or indirect

contact with the DC using a transwell culture system, or by the

addition of CM of PnD (Magatti et al., 2009; Croxatto et al., 2014;

Abomaray et al., 2015). Furthermore, PnD induce the switch to

an anti-inflammatory phenotype in both iDC and mDC. This

change can be measured by flow cytometry, observing a decrease

in the expression of co-stimulatory molecules (CD40, CD80,

CD83 and CD86) and an increase in the expression of co-

inhibitory molecules (B7H3, B7H4, CD273, CD274), and of

the immunosuppressive enzyme IDO (Abomaray et al., 2015).

Likewise, PnD block the production of pro-inflammatory

cytokines by iDC and mDC such as TNF, IL-6, IL-12 and IL-

23, IFNγ, C-X-C motif chemokine ligand 10 (CXCL10),

CXCL9 and chemokine C-C motif ligand (CCL5) while the

secretion of IL-10 is increased, as determined in cell culture

supernatants using the ELISA assay (Magatti et al., 2009;

Abomaray et al., 2015; Magatti et al., 2015). Phagocytic

activity of iDC is essential for the elimination of the cellular

components released after a tissue injury, which -if accumulated-

would cause inflammation. Phagocytic activity of iDC is induced

by PnD and can be determined by CytoSelect™ phagocytosis

functional assay (Abomaray et al., 2015). DC are antigen

presenting cells capable of inducing an efficient T cell

response to specific antigens, being an important mediator of

the innate and adaptive immune response. To directly determine

the impact of DC co-cultured with PnD on T-cell proliferation, a

mixed lymphocyte reaction (MLR) is used, and T cell

proliferation can be quantified by 3H thymidine uptake

(Croxatto et al., 2014; Magatti et al., 2015; Talwadekar et al.,

2015). Then, PnD induce an anti-inflammatory phenotype on

DC which will down-regulate the activity and proliferation of

T cells, presenting in vitro evidence of their role in modulating

the immune response in immunological diseases.

In most of these studies, monocytes are isolated from human

PBMC, and only few of them used an established cell line model.

Although it is well known that the composition of human PBMC

depend on the donor’s physiological status and its use supposes a

high variability across donors (Kleiveland, 2015), they are the

gold standard tool for isolating monocytes to investigate the role

of immune cells in inflammatory diseases. However, although

monocyte-like cells do not fully replicate the genotypic and

phenotypic properties of human peripheral blood monocytes

(Riddy et al., 2018), they represent a simplified surrogate and

readily available cell model, especially when human blood is not

available, whichmakes them a valuable and convenient model for

repeated testing.

Natural killer cells (NK cells) are large granular lymphocytes

with cytotoxic activity against injured cells, and their activation

results in the secretion of pro-inflammatory cytokines, suggesting

that NK cells can either drive inflammation or restrain adaptive

immune responses to prevent excessive inflammation or even

autoimmunity (Brandstadter and Yang, 2011; Zitti and Bryceson,

2018; Moloudizargari et al., 2021). Analysis of cellular crosstalk

between PnD and NK cells has yielded contradictory results

probably due to either the different origin of PnD and the

different microenvironmental conditions to which the cells are

exposed during pregnancy (Abumaree et al., 2019) or due to

different PnD:NK and NK/tumor cells ratios used in each study

(Moloudizargari et al., 2021), or to the different cell type used for

cytotoxicity testing (Boissel et al., 2008). Despite this, it is

valuable to know how PnD interact with NK cells in culture.

It is possible to determine whether the coculture modulates NK

cell proliferation, NK-activated receptor expression (NKp30,

NKp44, NKp46, NKG2D, and CD69) and/or NK cell

cytotoxicity on tumor cell lines (Chatterjee et al., 2014;

Croxatto et al., 2014; Li et al., 2015). Furthermore, the profile

of cytokine production by NK cells may be affected by coculture

with PnD resulting in changes in the expression of pro-

inflammatory molecules that can be measured by RT-PCR

and/or ELISA assay (Li et al., 2015; Abumaree et al., 2019).
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Furthermore, the suppressive activity of PnD can be measured by

their release of anti-inflammatory molecules such as IL-10 and

prostaglandin E2 (PGE2) when cocultured with NK cells

(Chatterjee et al., 2014; Li et al., 2015). Interestingly, IL-2

preactivated NK cells exert cytotoxic effects on PnD despite

expressing high levels of HLA-I, whereas nonactivated NK

cells did not lyse the PnD, suggesting that an inflammatory

environment is necessary for the NK cytolytic activity against

PnD (Abumaree et al., 2018; Abumaree et al., 2019).

2.1.2 Assessment of PnD effects on the
adaptative immune response

PnD have anti-inflammatory properties acting on the

adaptive response and these are measured as their ability to

inhibit the proliferation and cytokine production of T

lymphocytes as well as their ability to modulate T cell

differentiation. The anti-inflammatory properties of PnD can

be studied using in vitromodels of inflammatory diseases, such as

ocular allergic inflammation (Solomon et al., 2005),

inflammation of human middle ear epithelial cells (HMEEC)

by airway pollutants (Kim et al., 2019; Kim et al., 2020), atopic

dermatitis (Kim et al., 2020) or demyelinating diseases (Bravo

et al., 2016). The anti-inflammatory effects of PnD after co-

culture can be analyzed by fibroblast proliferation measured with

the [3H]-thymidine incorporation assay (Solomon et al., 2005) or

T cell proliferation measured by the MTT assay (Bravo et al.,

2016). The inhibitory effects can be analyzed by RT-PCR and

ELISA showing the down-regulation of inflammatory cytokines

released by fibroblasts, such Trasnforming Growth Factor

(TGF)-β1, GM-CSF, IL-8, IL6, TNF, IL1β, and thymus as well

as activation-regulated chemokines (TARC) (Solomon et al.,

2005; Kim et al., 2019; Kim et al., 2020) or down-regulation

of the inflammatory cytokine IL17 released by T cells (Bravo

et al., 2016). In addition, the levels of PnD-expressed anti-

inflammatory genes in these inflammatory systems, such as

PGE2, TGFβ, and Vascular Endothelial Growth Factor

(VEGF), can also be measured (Kim et al., 2019).

As described throughout this chapter, the anti-inflammatory

potential of PnD is primarily assessed by determining self-

secreted cytokines, as well as the production of pro- and anti-

inflammatory cytokines by immune cells. ELISA and flow

cytometry are the most widely used and best validated

methods to measure cytokines and other inflammatory

mediators. However, these methods are time-consuming,

require a long sample preparation time, and do not allow the

measurements of multiple cytokines at the same time in the same

sample and in real-time. Recently, multiplex arrays (Luminex-

based) have been developed from traditional ELISAs which

allows the measurement of multiple cytokines in the same

sample at the same time, and using only a small volume

(Leng et al., 2008). Other commonly used immunoassays

include Meso Scale Discovery (MSD), cytometric bead array

(CBA), time-resolved fluorescence resonance energy transfer

(TR-FRET), AlphaLISA, and FirePlex which have different

sensitivities and multiplexing capabilities (Platchek et al.,

2020). These technologies could represent more reliable and

simpler strategies to assess the effect of PnD on immune cells.

2.2 PnD effects on inflammation and the
vascular function

Among PnD, endothelial cells derived from the placenta (hP-

EC) and umbilical cord, such as HUVEC represent a precious

easy access ex vivo model of the human vasculature (Silini et al.,

2020). HUVEC applications range from cardiovascular to

metabolic as well as wound healing and angiogenesis-related

diseases (Medina-Leyte et al., 2020). In addition, Gestational

Diabetes (GD)-HUVEC exposed in vivo even transiently (during

pregnancy) to hyperglycemia, exhibit some epigenetics

modifications leading to a durable pro-inflammatory

phenotype (Di Fulvio et al., 2014; Di Pietrantonio et al.,

2021). HUVEC have been used to study the pro- and anti-

atherogenic effect of several molecules in the early stages of

atherosclerosis (Di Tomo et al., 2015; Di Pietro et al., 2020).

Therefore, they represent a valuable in vitro model to assess the

role of PnD in the above diseases through the following

functional assays.

Due to a pro-oxidant state of Gestational Diabetes (GD)-

HUVEC can be stimulated with an oxidative stress agent and

compared to control HUVEC. O2- production and intracellular

accumulation of reactive oxygen species (ROS) are measured to

assess the antioxidant effect of PnD. While these methods allow

to assess the general oxidative status, more integrative

approaches evaluating potential antioxidant effects with higher

sensitivity as well as the identification of permanent markers of

oxidative stress are required (Pipino et al., 2020). Therefore, the

levels of DNA/RNA damage, lipid peroxidation, and protein

oxidation/nitration such as nitrotyrosine expression associated

with impaired vascular nitric oxide (NO) secretion and

availability may give a more reliable scenario regarding

alteration of the oxidative balance (Di Fulvio et al., 2014;

Alshabibi et al., 2018; Di Pietrantonio et al., 2021).

In endothelial dysfunction, the early stage of atherogenesis,

there is a close interaction between oxidative stress and

inflammation. Increased monocyte adhesion to the

endothelium is among the mechanisms predisposing to

endothelial dysfunction, the early predictor of plaque

formation and atherosclerosis. The Monocyte-HUVEC

Adhesion Assay can be performed in C- and GD-HUVEC in

the basal state and after incubation with PnD before stimulation

with an inflammatory stimulus such as low doses of TNF.

Subsequently, cells from the monocytic cell line U937 are

added to evaluate their adhesion to HUVEC monolayers (Di

Tomo et al., 2015). Moreover, by qPCR and western blot/flow

cytometry any inflammation-related gene and protein, such as
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Vascular Cell Adhesion Molecule 1 (VCAM-1) and Intercellular

Adhesion Molecule 1 (ICAM-1), can be evaluated. Indeed, it is

noteworthy that the level of these adhesion molecules increases

during inflammation. More importantly, VCAM-1 and ICAM-1

membrane exposure, the main mechanism behind the

interaction between monocytes and endothelial cells, can be

analyzed by flow cytometry (Di Tomo et al., 2015).

Furthermore, it is accepted that impaired NO synthesis and/

or its availability in HUVEC may result in endothelial

dysfunction (Pandolfi and De Filippis, 2007). To assess NO

bioavailability, the intracellular cGMP level, a biological target

of NO activity, is mainly evaluated by using a commercial

enzyme immunoassay (EIA) kit (Di Pietro et al., 2020). It has

been demonstrated that HUVEC chronically exposed to high

glucose and inflammation, as well as treated with the

proinflammatory stimulus TNF-α, display decreased levels of

cGMP (Ucci et al., 2019) Therefore, this assay is useful to assess

the role of PnD in changes of NO bioavailability, which is

involved in the modulation of the Nuclear Factor kappa-light-

chain-enhancer of activated B cells (NF-κB) nuclear

translocation, relevant to further evaluate the potential ability

of PnD in inhibiting the inflammatory pathway (Ucci et al.,

2019). However, accurate NO detection and quantification are

critical to understanding health and disease. Consequently, more

than one of the aforementioned assays should be performed for a

clear comprehension of anti-inflammatory PnD effects.

Although these assays are widely used for reproducible

determinations, the results obtained may be partially affected

by the passage number and donor variability of endothelial cells.

To overcome these issues, experiments may be performed on

multiple endothelial cell strains or immortalized endothelial cells,

showing a more uniform response.

Moreover, in some inflammatory diseases, the release of

several pro-inflammatory chemokines may inhibit

neovascularization. The capability of PnD to regulate the

chemokine environment by inhibiting the pro-

inflammatory chemokines and/or by increasing the pro-

angiogenic ones, may enhance new vessel formation. The

most conventional way of assessing PnD’ capacity in

decreasing inflammation while improving endothelial cell

network-like structures is the Matrigel tube formation assay

(Ma et al., 2021; Nensat et al., 2021). This assay, together with

the evaluation of cell migration through a scratch assay

(Bernabe-Garcia et al., 2017), can be performed to assess

the potential therapeutic efficacy of PnD in angiogenesis-

related disease, such as diabetic foot ulcers (Castellanos

et al., 2017). Besides the rapid and easy well-established

method and the comparably easy cell culture and

measurement, this assay is only partially representative of

real cell environments. Although many laboratories

commonly use this method to obtain first evidence of

angiogenic and antiangiogenic agents, some limitations may

occur such as difficult in vessel quantification through a

specific plugin of ImageJ software as well as

standardization due to Matrigel lot-to-lot variability

(Nowak-Sliwinska et al., 2018). The latter may be prevented

by selecting a specific lot with preferred protein and endotoxin

concentrations.

Overall, all the HUVEC assays mentioned here were recently

published in a study performed to assess the anti-inflammatory

and pro-angiogenic role of hAM in GD-HUVEC. The results

obtained strongly elucidate the mechanisms through which hAM

can affect inflammation, migration, and angiogenesis thus

providing additional validation for ongoing clinical trials in

diabetic foot ulcer (Pipino et al., 2022).

In addition, to overcome limitations of 2D cell culture assays,

HUVEC can be used in vitro to create 3D spheroid structures for

functional screening purposes (Kocherova et al., 2019) or blood

vessel tissue engineering (Moby et al., 2007; Paternotte et al.,

2013). Finally, endothelial cells and the anti-inflammatory

influence of PnD can also be analyzed even more

physiologically under shear stress conditions in dedicated flow

chambers with a computer-guided pump system and video

microscopy (Zantl and Horn, 2011; Munir et al., 2015).

However, all these methods do not acknowledge the

multicellularity in the perivascular microenvironment. An

in vitro solution to this problem would be vascularized

spheroids or organoids which are currently under investigation.

2.3 PnD effects on cutaneous wound
healing

Substantial evidence from several clinical trials shows how the

application of hAM or other PnD on wounds and ulcers of diverse

etiology has proven to be of benefit (Colocho et al., 1974; Singh et al.,

2004; Hasegawa et al., 2007; Mermet et al., 2007; Silini et al., 2015).

Additionally, a combination of PnD or even extra-cellular vesicles

from PnD have been used for chronic wounds (Bakhtyar et al., 2018;

Hashemi et al., 2019). All that evidence makes hAM and derived

products the most researched so far in terms of wound healing

treatment. Nevertheless, to fully understand the capabilities of hAM

and other PnD to promote wound healing, several in vitro systems

have been developed. Most chronic wounds show decreased

proliferation and migration, mainly affecting keratinocytes, but

also fibroblasts and endothelial cells. In consequence, those

experimental settings mainly focus on evaluating the pro-

proliferative, pro-migratory and pro-angiogenic effects that hAM

or other PnD may have.

In addition, in vivo wound healing assays using animal

models constitute an integrative benchmark in which PnD′
effects on inflammation and the immune component, such as

angiogenesis and dermal as well as epidermal cell migration and

proliferation, have to cooperate to show real functional

effectiveness. The application of human PnD in animal

studies of cutaneous wound healing was extensively reviewed
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TABLE 1 Functional tests on perinatal cells.

Perinatal cells

PnD Cell type Functional in vitro
tests

Outcome Reference

hAFSC Establishment of skin
equivalent

hAFSC differentiated into keratinocytes expressing K5, K14, K10, and involucrin after 30 days of
culture in a keratinocyte-inducing medium and formed a complete pluristratified skin epithelium
under air-liquid culture conditions on a collagen matrix with integrated HDF.

(Sun et al., 2015)

hAMSC Cell adhesion on a scaffold hAMSC were grown on Matriderm and PCL/PLA scaffolds. PCL/PLA yielded a higher number
of attached cells and more favorable growing conditions for hAMSC than Matriderm.

(Vonbrunn et al.,
2020)

hUC-MSC (i) Cell proliferation assay c-Jun silencing in hUC-MSC inhibited (i) cell proliferation and (ii) migration, while c-Jun
overexpression enhanced proliferation but not migration of hUC-MSC.

(Yue et al., 2020)

(ii) Scratch wound assay

Cell differentiation assay hUC-MSC were transfected with a lentivirus expressing HOXA4 and cultured for 21 days.
Expression of the epidermal cell-specific markers, cytokeratins 14 and 18, was detected by
immunohistochemistry and flow cytometry.

(He et al., 2015)

Establishment of skin
equivalent

hUC-MSC were seeded on the surface of fibrin gel scaffolds and cultured for 7–10 days. The
established equivalent resembled the normal skin architecture.

(Montanucci et al.,
2017)

(i) Cell proliferation assay (i-iii) SAP improved the survival, proliferation, and migration of the hUC-MSC encapsulated in
Pluronic F-127 hydrogel (drug delivery scaffold).

(Deng et al., 2020)

(ii) Cell viability assay

(iii) Scratch wound assay

(i) Cell proliferation (i, ii) Activation of the Wnt signaling pathway promoted survival of hUC-MSC (proliferation,
viability) seeded on a CCLDADM scaffold. (iii) Cells attached and grew uniformly when seeded
onto the CCLDADM scaffold.

(Han et al., 2019)

(ii) Cell viability assay

(iii) Cell adhesion on a
scaffold

(i) Cell proliferation assay 455-nm blue light exposure effectively promoted (i) proliferation, (ii) migration, and (iii) tube
formation of HUVEC co-cultured with hUC-MSC.

(Yang et al., 2019)

(ii) Scratch wound assay

(iii) Tube formation assay

Chemotaxis assay hUC-MSC seeded in 3D alginate gel gradually migrated from the top to the bottom of the gel, but
could not migrate out from the gel during 7 days of observation.

(Wang et al., 2016b)

Soft agar tumorigenicity
test

Even after repeated passaging the cells have not acquired tumor formation capabilities. (Sabapathy et al.,
2014)

a) hUC-MSC (i) Cell proliferation assay hUC-MSC-End showed increased (i) proliferation, (ii) migration and (iii) vasculogenesis
compared to hUC-MSC.

(Kaushik and Das,
2019)

b) hU-MSC-End (ii) Chemotaxis assay

(iii) CAM assay

hPMSC Transwell co-culture assay Co-culturing of hPMSC with HDF inhibited LPS-induced activation of NF-ĸB signal in HDF. (Wang et al., 2016a)

Chemotaxis assay hPMSC expressing PDGFR-β exhibited enhanced chemotactic migration compared to hPMSC
without expressing PDGFR-β.

(Wang et al., 2018)

a) hAEC b)
hUC-MSC

Cell differentiation assay hAEC and hUC-MSC were able to differentiate into keratinocytes and fibroblasts, respectively,
after 15 days of culturing in an inducing medium. This was shown by the expression of various
specific markers by immunolabeling and RT-PCR.

(Mahmood et al.,
2019)
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by Pichlsberger et al. (Pichlsberger et al., 2021). In approximately

50% of the included studies (Pichlsberger et al., 2021) the PnD

were functionally tested in vitro before they were applied to

animal wounds. Herein we focus on the in vitro functional assays

used in these studies. The outcome of these in vitro assays, the

types and combinations of the PnD applied as well as the

references are outlined in detail in Tables 1–5. As naming and

abbreviations of the PnD types in the reviewed studies varied due

to the authors’ discretion, we harmonized terms according to the

recently published consensus nomenclature for PnD to improve

the comparability of data (Silini et al., 2020). Among the included

studies, the majority of the in vitro tested PnD were cells (38%)

mainly MSC isolated from the umbilical cord, amnion, amniotic

fluid, placenta, but also cells derived from the amniotic fluid, and

the amniotic epithelium. Further functional tests were performed

on cellular secretomes (29%), followed by cell-derived small

extracellular vesicles (sEVs, 15%) derived from MSC of the

umbilical cord or decidua, tissue extracts (13%) and tissue

membranes (amnion or amnion/chorion, 6%) (Figure 1A).

We did not discriminate between the different subtypes of

extracellular vesicles (EV) including exosomes etc., but chose

the term sEVs instead, according to the recommendations of the

International Society for Extracellular Vesicles to use an

operational term for EV subtypes unless their endosomal

origin was proven (Van Deun et al., 2017; Thery et al., 2018).

Overall, these studies used twenty different functional assays to

evaluate PnD in vitro (Figure 1B). The most frequently

performed functional assays were: 1) cell proliferation assay,

2) scratch wound assay, 3) chemotaxis assay and 4) angiogenesis

assays. These assays are considered the gold standard for the

evaluation of wound healing in vitro since they analyze important

processes that occur during wound healing, such as proliferation

and migration of the cells at the wound edges and the re-

epithelialization of the wound surface.

From the pathological point of view, an important limiting

factor for wound healing could be the development of an altered

keratinocyte behavior (Raja et al., 2007). In that sense, many authors

have measured the ability of amnion or other PnD in promoting

keratinocyte migration in vitro. Next to the well-known Boyden

chamber migration assay (Mcquilling et al., 2019), the wound

healing scratch assay is frequently used. By design, based on

measuring the gap generated by mechanically tearing a cultured

cell monolayer, the scratch assay allows for easy monitoring and

quantification of cell migration and wound closure (Liarte et al.,

FIGURE 1
Perinatal derivatives and in vitro functional assays used for cutaneous wound healing in animals (A) The schematic presentation of PnD
functionally tested in vitro and (B) frequency of use of in vitro functional assays in animal studies of cutaneous wound healing. The most frequently
used functional assays are highlighted in blue.

Abbreviations: CCLDADM: collagen–chitosan laser drilling acellular dermal matrix, hAEC: human amniotic membrane epithelial cells, hAFSC: human amniotic fluid stem cells, hAMSC:

human amniotic membrane mesenchymal stromal cells, HDF: human dermal fibroblasts, hPMSC: human placenta mesenchymal stromal cells, hUC-MSC: human umbilical cord

mesenchymal stromal cells, hU-MSC-End: human umbilical cord mesenchymal stromal cells -endothelial transdifferentiated, HUVEC: human umbilical cord vein endothelial cells, LPS:

lipopolysaccharides, NF-ĸB: nuclear factor kappa-light-chain-enhancer of activated B-cells, PCL/PLA: Poly(caprolactone)/poly(L-lactide), PDGFR-β: platelet derived growth factor receptor
β, SAP: sodium ascorbyl phosphate.
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TABLE 2 Functional tests on perinatal cell-conditioned medium (CM) alone or compared to/or combined with perinatal cells.

Perinatal cell-conditioned medium (CM)

PnD Functional in vitro
tests

Outcome Reference

hAEC-CM scratch wound assay hAEC-CM substantially accelerated the migration of HDF. (Jin et al., 2016)

hPMSC-CM (i) Cell proliferation assay Hypoxic hPMSC-CM inhibited the (i) proliferation and (ii) migration of HDF compared to normal
medium and normoxic CM.

(Du et al., 2016)

(ii) Scratch wound assay

hUC-
MSC-CM

(i) Cell cycle analysis (i) hUC-MSC-CM caused a G0/G1-phase cell cycle arrest of HUVEC. (ii) HUVEC treated with hUC-
MSC-CM had a significantly down-regulated expression of genes for IFN, TNF, IL-1, and IL-6, while
the key genes involved with angiogenesis (VEGF, EGF, bFGF, and KDR) were up-regulated. (iii) hUC-
MSC-CM significantly increased the proliferation of HUVEC.

(Sun et al., 2019)

(ii) Cell differentiation assay

(iii) Cell proliferation assay

Cytotoxicity assay 50 and 100% (V/V) concentrations of the hUC-MSC-CM had a cytotoxic effect on HDF, contrary to
25% CM.

(Sabzevari et al.,
2020)

hAMSC-CM (i) Scratch wound assay (i) hAMSC-CM significantly increased the migration rate of HDF and HUVEC. (ii) HUVEC treated
with hAMSC-CM formed significantly longer tubes compared to untreated controls.

(Kim et al., 2012b)

(ii) Tube formation test

Perinatal cell-conditioned medium (CM) compared to / or combined with perinatal cells

PnD Functional in vitro
tests

Outcome Reference

a) hAMSC (i) Cell apoptosis assay hAMSC and hAMSC-CM (i) inhibited heat stress-induced apoptosis in HaCAT cells and HDF
through activation of PI3K/AKT signaling and (ii) promoted their proliferation by activating GSK3β/
β-catenin signaling. (iii) Higher HaCAT and HDF cell migration was observed in the presence of
hAMSC and hAMSC-CM as compared to the control medium. (iv) hAMSC did not display
tumorigenicity in vitro. (v) hAMSC-CM promoted HUVEC tube formation.

(Li et al., 2019)

b) hAMSC-CM (ii) Cell proliferation assay

(iii) Scratch wound assay

(iv) Soft agar tumorigenicity
test

(v) Tube formation assay

a) hUC-MSC (i) Chemotaxis assays (i,ii, iv) Raw264.7 macrophages activated by hUC-MSC-CM enhanced chemotaxis, migration and
angiogenesis of HUVECwith diabetic dysfunction. (iii) hUC-MSC and hUC-MSC-CM are capable of
switching macrophages from the M1 phenotype to the M2 phenotype. The action of hUC-MSC-CM
on macrophages or endothelial cells was inhibited by neutralizing antibodies against PGE2 or by the
inhibition of PGE2 secretion from hUC-MSC.

(Zhang et al., 2020)

b) hUC-
MSC-CM

(ii) Scratch wound assay

(iii) Transwell co-culture
assay

(iv) Tube formation assay

(i) Cell metabolic activity
assay

(i, ii) hUC-MSC seeded on scaffolds maintained higher metabolic activity than adipose tissue MSC
during 48 h serum starvation. (iii, iv) hUC-MSC-CM promoted angiogenesis.

(Edwards et al.,
2014)

(ii) Cell adhesion on a
scaffold

(iii) Tube formation test

(iv) CAM assay

(Continued on following page)
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2018). The unique advantage of this assay is the fact that cells at the

wound edge can be studiedmicroscopically at any time, allowing for

the characterization of distinct morphology and topological changes

in living cultures, along with the precise detection of the expression

of key factors involved in wound healing on fixed cultures (Bernabe-

Garcia et al., 2017). Of note, the wound healing scratch assay can be

applied on almost any cell line growing in monolayers. For instance,

in the specific case of skin wounds,most of the preclinical experience

with amnion and other PnD is based on the effects of well stablished

human keratinocyte cell lines, such as the spontaneously

transformed aneuploid immortal human cell line HaCaT

(Boukamp et al., 1988). However, several reports also apply the

scratch method onto human fibroblasts (Bakhtyar et al., 2018;

Rahman et al., 2019). In the case of keratinocytes, HaCaT offers

unparalleled characteristics by being phenotypically similar to

primary keratinocytes, while still allowing routine culture

procedures (Boukamp et al., 1988). Numerous papers show that

HaCaT keratinocytes had not only allowed to certify the benefits of

amnion on migration (Alcaraz et al., 2015; Kitala et al., 2019;

Rahman et al., 2019) but also to understand how amnion

treatment effects appear to be restricted to the edge of the

artificial wound in vitro (Ruiz-Canada et al., 2018). These results

support the notion thatmigration effects of amnion are not systemic,

but local. This is in line with clinical observations that the effects of

amnion treatment of human patients’ wounds were limited to the

wound edge (Insausti et al., 2010). Moreover, the HaCaT scratch

assay in combination with immunological methods allows for the

precise detection of key proteins participating in the migration

machinery, such as Paxilline H, demonstrating that among its

effects, amnion treatment triggers focal adhesion molecule

rearrangement in cells at the very edge of the wound and is thus

promoting local cell migration (Bernabe-Garcia et al., 2017).

Altogether, the possibilities provided by the wound healing

scratch assay offer uncontested capacity to obtain high quality

data in a comprehensive manner, opening opportunity for

precise correlations between what is macroscopically observed in

the chronic wounds and the behavior of cells observed in vitro, as

shown for the HaCaT cells, (Ruiz-Canada et al., 2021).

A proper development of the underlying dermal tissue is a

prerequisite for keratinocyte proliferation as an important

limiting factor for correct healing and wound closure.

Therefore, fibroblast and endothelial cell proliferation also

needs to be assessed. Using different methodologies, from

image analysis to comparative cell counting, including cell

cycle analysis and cell suspension absorbance determination,

numerous papers evaluate the effects of amnion treatment and

coincide in finding positive effects on keratinocyte and

fibroblast proliferation (Alcaraz et al., 2015; Murphy et al.,

2017; Kitala et al., 2019; Rahman et al., 2019).

In contrast, comparably little is known about the effects of

amnion or other PnD on endothelial cell proliferation.

However, studies assessing this component mostly apply

methods based on the analysis of in vitro tube formation

and branching by endothelial cells in culture (Hu et al., 2018;

Bullard et al., 2019). Tube formation assay, an in vitro

angiogenesis assay, is often used in wound healing

experiment designs since the formation of new vessels

significantly contributes to tissue recovery. The 3D-tube

formation assay on gelled basement membrane extract is a

powerful in vitro technique for evaluating angiogenesis. This

assay involves endothelial cell adhesion, migration, protease

activity, and tube formation (Arnaoutova and Kleinman,

2010). Also, 2D co-culture models are meaningful assays to

evaluate the functionality of the respective PnD type. For

example, endothelial cells showed a significantly increased

formation of vessel-like structures in direct co-culture with

MSC derived from placental blood vessels as compared to

human amniotic membrane mesenchymal stromal cells

TABLE 2 (Continued) Functional tests on perinatal cell-conditioned medium (CM) alone or compared to/or combined with perinatal cells.

Perinatal cell-conditioned medium (CM) compared to / or combined with perinatal cells

PnD Functional in vitro
tests

Outcome Reference

a) hAEC-CM (i) Cell cycle analysis (ii) hAEC-CM accelerated the migration and proliferation of keratinocytes and induced increased
activity of phospho-ERK, phospho-JNK, and phospho-AKT. The blockade of phospho-AKT
inhibited migration induced by hAEC-CM. (i, iii) Coculturing of keratinocytes with hAEC promoted
keratinocyte proliferation by up-regulation of Cyclin D1, Cyclin D3 and Mdm2.

(Zhao et al., 2016)

b) hAEC (ii) Scratch wound assay

(iii) Transwell co-culture
assay

Abbreviations: bFGF: basic fibroblast growth factor, CAM: chick chorio allantoic membrane, CM: conditioned medium derived from hAEC, hAMSC, hPMSC, hUC-MSC, hUC-MSC-End,

EGF: epidermal growth factor, HaCAT: immortalized human keratinocytes, hAEC: human amniotic membrane epithelial cells, hAMSC: human amniotic membrane mesenchymal stromal

cells, HDF: human dermal fibroblasts hPMSC: human placenta mesenchymal stromal cells, hUC-MSC: human umbilical cord mesenchymal stromal cells, hU-MSC-End: human umbilical

cord mesenchymal stromal cells-endothelial transdifferentiated, HUVEC: human umbilical cord vein endothelial cells, IL-1, IL-6: interleukin-1, -6, KDR: kinase insert domain receptor,

PGE2: prostaglandin E2, TNF: tumor necrosis factor, VEGF: vascular endothelial cell growth factor. Perinatal cell-conditioned medium (CM).
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TABLE 3 Functional tests on Perinatal cell-derived small extracellular vesicles (sEV) alone or compared to perinatal cell-conditioned medium (CM).

Perinatal cell-derived small extracellular vesicles (sEV)

PnD Functional in vitro tests Outcome Reference

hUC-
MSC-sEV

(i) Cell differentiation assay (i) hUC-MSC-sEV inhibited α-SMA and collagen I and III
expression in HDF cultivated at high cell density. (ii) hUC-MSC-sEV
restrict HaCaT and HDF proliferation at high cell densities, but
promote cell proliferation at low densities.

(Zhang et al.,
2016)(ii) Cell proliferation assay

(i) Cell proliferation assay hUC-MSC-sEV promoted the (i, ii) proliferation, (iii, v) migration,
and (iv) tube formation of a HUVEC-derived cell line in a dose-
dependent manner.

(Zhang et al.,
2015)

(ii) Cytotoxicity assay

(iii) Scratch assay

(iv) Tube formation assay

(v) Chemotaxis assay

(i) Cell proliferation assay hUC-MSC-sEV promoted (i) the proliferation, (ii) migration and
(iii) tube-formation of HUVEC. hUC-MSC-sEV contained Ang-2,
and treatment with hUC-MSC-sEV enhanced the expression of the
Ang-2 in HUVEC through exosome-mediated Ang-2 transfer.

(Liu et al., 2021)

(ii) Chemotaxis assay

(iii) Tube Formation Assay

Perinatal cell-derived small extracellular vesicles (sEV) compared to perinatal cell-CM

PnD Functional in vitro tests Outcome Reference

a) hUC-
MSC-sEV

(i) Cell apoptosis assay hUC-MSC-CM and hUC-MSC-sEV (i) decreased H2O2-induced cell
apoptosis of HaCaT by inhibiting AIF and upregulating PARP-1 and
poly ADP-ribose, (ii) increased HaCaT proliferation, in contrast to
hUC-MSC-sEV-dp. (iii) hUC-MSC-CM improved the viability of
HaCaT. (iv, vi) hUC-MSC-sEV and hUC-MSC-CM promoted cell
migration relative to the hUC-MSC-sEV-dp. (vi) (v) ROS intensity
in the hUC-MSC-sEV group and hUC-MSC-CM group was lower
than in the control group.

(Zhao et al.,
2020)

b) hUC-
MSC-CM

(ii) Cell proliferation assay

(iii) Cell viability assay

(iv) Chemotaxis assay

(v) ROS generation assay

(vi) Scratch wound assay

(i) Cell proliferation assay (i) hUC-MSC-sEV/Pluronic F-127 hydrogel promoted HUVEC
proliferation better than hUC-MSC-sEV and hUC-MSC-CM. (ii)
hUC-MSC-sEV and CM groups showed greater cell migration than
the Pluronic F-127 hydrogel and control group. The hUC-MSC-
sEV/Pluronic F-127 hydrogel group exhibited the best performance.

(Yang et al.,
2020)

(ii) Scratch wound assay

a)
hDMSC-sEV

Cell cycle assay Cell differentiation assay Cell proliferation assay
Scratch wound assay Senescence assay ROS generation assay

(i) hDMSC-sEV enhanced proliferation of HG aged HDF, (iv)
increased their migration rate, (ii) promoted differentiation of HG-
aged HDF into myofibroblasts (increased α-SMA and collagen I
protein expression), (v) inhibited senescence associated β-
galactosidase expression and (vi) inhibited ROS generation in HG
aged HDF. hDMSC-CM improved (iii) proliferation and (iv)
migration of HDF. The sEV blocker GW4869 reduced both effects,
indicating that hDMSC-sEV in hDMSC-CM probably enhance the
proliferation and migration abilities of HDF.

(Bian et al.,
2020)

b)
hDMSC-CM

Abbreviations; Ang-2: angiopoietin-2, AIF: apoptosis-inducing factor, α-SMA: alpha-smooth muscle actin, CM: conditioned medium derived from hDMSC, hUC-MSC, HaCAT:

immortalized human keratinocytes, HDF: human dermal fibroblast, hDMSC: human decidua mesenchymal stromal cells, HG: high glucose, hUC-MSC: human umbilical cord

mesenchymal stromal cells, PARP-1: poly ADP, ribose polymerase 1, ROS: reactive oxygen species, sEV: small extracellular vesicles derived from hDMSC, hUC-MSC, sEV-dp: conditioned

medium depleted from small extracellular vesicle. Perinatal cell-derived small extracellular vesicles (sEV).
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(hAMSC) (Konig et al., 2015). The angiogenic properties of

PnD were also evaluated by the chorioallantoic membrane

(CAM) assay (Edwards et al., 2014; Rameshbabu et al., 2018;

Kaushik and Das, 2019). The CAM assay is an intermediate

step between in vitro and the in vivo models. It is minimally

invasive to the chick embryo, and it is therefore a potential

approach to refinement of animal experimentation (Moreno-

Jimenez et al., 2016).

In the context of wound healing, the cell differentiation assay

should also be a reasonable method of choice. However, it was not

well represented in our dataset, with only 5% of studies investigating

the ability of PnD to promote skin cell differentiation in vitro. The

same is true for the cytotoxicity and viability assays, which would

also be useful before the application of the PnD in vivo in preclinical

and clinical studies.

In general, the PnD treatment showed favorable effects in terms

of cutaneous wound healing since it promoted cell proliferation,

migration, and differentiation of cells in vitro and showed no

cytotoxic effects (Table 1, Table 2, Table 3, Table 4, Table 5). In

this regard, the functional assays demonstrated considerable

potency, since the results from the preclinical studies also

show a promoting effect of PnD on cutaneous wound healing

(Pichlsberger et al., 2021). Nevertheless, evaluating the

potency of the in vitro functional assays turned out to be

delicate as the PnD tested in vitro were often not the same as

those applied in vivo. For example, in the same study the PnD-

derived CM was functionally tested in vitro, but whole

perinatal cells were applied to the animal wound (Kim

et al., 2012a; Edwards et al., 2014; Jin et al., 2016). For the

development of more effective PnD therapies, this will need to

be considered in future studies.

2.4 Oral wound healing versus cutaneous
wound healing

Special PnD, i.e. hAM, chorion and human Amnio-

Chorionic Membrane (hACM) have been widely used for

wound healing in oral reconstruction (Fenelon et al., 2018;

Gulameabasse et al., 2020). For instance, hAM as a scaffold

enhanced re-epithelialization of the oral cavity and reduced

the contracture effects in moderate-sized defects (Lawson,

1985). The hAM has also been proven as useful biodegradable

graft material for clinical vestibuloplasty. One week after the

surgical intervention, epithelium started to migrate over the

graft area from the margins, and the underlying connective

tissue showed the formation of granulation tissue. The hAM

completely degenerated after 3 weeks. Three months post

intervention, epithelial tissue was restored and completely

covered the graft area (Samandari et al., 2004). Measurement

of blood flow to grafts used in vestibuloplasty revealed an

increased blood flow to hAM grafts, whereas palatal grafts had

a reduced blood flow during the same time period. Thus,

angiogenesis was induced by hAM within 10–15 days, and the

blood flow returned to normal by 30 days after surgery (Guler

et al., 1997). These favorable effects of the hAM may be due to

growth factors present in the amnion, such as basic Fibroblast

Growth Factor (bFGF), Epidermal Growth Factor (EGF),

TGFβ and IL-1 (Dadkhah Tehrani et al., 2020).

A corresponding animal study revealed that hAM

transplanted on rabbit’s gingival wound accelerated the

formation of granulation tissue at day 10 by significantly

increasing the number of both fibroblasts and blood vessels.

Thus, hAM induced rapid epithelialization and both granulation

TABLE 4 Functional tests on perinatal tissues.

Perinatal tissues

PnD Functional in vitro
tests

Outcome Reference

Dehydrated hAM/chorion
(EpiFix®)

(i) Cell proliferation assay (i) Dehydrated hAM/chorion extracts caused a dose-dependent increase in HDF
proliferation. (ii) Dehydrated hAM/chorion tissue allografts promoted migration of
hMSC. (iii) Growth factors such as EGF, bFGF and TGF-1 were able to elute from
dehydrated hAM/chorion into the saline.

(Koob et al., 2013)

(ii) Chemotaxis assay

(iii) ELISA assay

Dehydrated hAM/chorion
(EpiFix®)

(i) Cell proliferation assay (i) Dehydrated hAM/chorion extract promoted HMVEC proliferation. (ii) Dehydrated
hAM/chorion tissue recruited migration of HUVEC. (iii) Dehydrated hAM/chorion
extract increased endogenous production of over 30 angiogenic factors by HMVEC,
including GM-CSF, angiogenin, TGF-β3, and HB-EGF Heparin-binding EGF-like growth
factor.

(Koob et al., 2014)

(ii) Chemotaxis assay

(iii) ELISA assay

hAM Cytotoxicity assay Decellularized hAM enhanced the viability of hUC-MSC seeded onto the epithelial surface
of hAM.

(Hashemi et al.,
2020)

Abbreviations: bFGF: basic fibroblast growth factor, EGF: epidermal growth factor, GM-CSF: granulocyte macrophage colony-stimulating factor, hAM: human amniotic membrane, HB-

EGF: Heparin-binding EGF-like growth factor, hMSC: human mesenchymal stromal cells, HMVEC: human microvascular endothelial cells, hUC-MSC: human umbilical cord

mesenchymal stromal cells, TGF-1: transforming growth factor 1, TGF-β3: transforming growth factor β3.
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TABLE 5 Functional tests on perinatal tissue extracts alone or combined with conditioned medium (CM).

Perinatal tissue extracts

PnD Functional in vitro
tests

Outcome Reference

hAM extract (i) Cell apoptosis assay (i) Higher concentrations of hAM extract increased the percentage of apoptotic and necrotic
HDF. (ii, iii) hAM extract promoted HDF proliferation and migration.

(Momeni et al.,
2018)(ii) Cell proliferation assay

(iii) Scratch wound assay

Placental laminin (i) Cell differentiation assay (i) Placental laminin purified from hP extract promoted neuronal differentiation of neuronal cell
line PC12 (ii) Non-toxic concentration of placental laminin for PC12 cell treatment was
determined (0.17 lg/ml). (iii) Placental laminin accelerated migration and motility of mouse
embryonic fibroblasts. (iv) Blocking of integrin receptor retarded neurite outgrowth in laminin
treated PC12 cells.

(Mukherjee et al.,
2020)

(ii) Cell viability assay

(iii) Scratch wound assay

(iv) Receptor antagonist
assay

a) hAM powder (i) Biocompatibility assay (i) Heparinized human blood biocompatibility assay showed intact blood cells upon incubation
with hAM powder or hAM powder + AV gel. (ii, iii) Media containing hAM powder + AV gel
promoted HaCaT and HDF cell attachment and proliferation. (iv) hAM powder + AV
significantly accelerated migration of HaCaT.

(Rahman et al.,
2019)

b) hAM powder
+ AV

(ii) Cell attachment assay

(iii) Cell proliferation assay

(iv) Scratch wound assay

Solubilized hAM (i) Cell proliferation assay (i) hAM-hyaluronic acid hydrogel accelerated proliferation of HDF and keratinocytes compared
to controls. (ii) Keratinocytes and HDF remained viable following hAM-hyaluronic acid
hydrogel encapsulation.

(Murphy et al., 2017)

(ii) Cell viability assay

hWJ-ECM (i) Cell proliferation assay (i) The HDF cell line HSF-PI 18 attached to, infiltrated into and proliferated on hWJ-ECM
scaffolds. (ii) hWJ-ECM was not cytotoxic.

(Beiki et al., 2017)

(ii) Cytotoxicity assay

hWJ-ECM (i) Cell differentiation assay (i) hWJ-ECM promoted differentiation of HDF into myofibroblasts (confirmed by upregulation
of α-SMA expression). (ii) hWJ-ECM treatment did not affect cell proliferation or (iii) cell
viability of HDF. (iv) hWJ-ECM enhanced HDF migration.

(Bakhtyar et al.,
2017)

(ii) Cell proliferation assay

(iii) Cell viability assay

(iv) Scratch wound assay

Perinatal tissue extracts combined with conditioned medium

PnD Functional in vitro
tests

Outcome Reference

a) hP–ECM (i) Cell apoptosis assay (i) hP-ECM-silk fibroin scaffolds-CM had no detrimental effect on hEK, (ii) provided a non-
cytotoxic environment for HDF, hEK and hAMSC to adhere, infiltrate and proliferate, (iii) and
promoted vascularization. (iv) Scaffold-CM promoted the migration of HDF and hEK.

(Rameshbabu et al.,
2018)

b) hP-
ECM-CM

(ii) Cytotoxicity assay

(iii) CAM Assay

(iv) Scratch wound assay

Abbreviations: α-SMA: alpha-smooth muscle actin, AV: aloe vera, HaCaT: immortalized human keratinocytes, hAM: human amniotic membrane, hAMSC: human amniotic

mesenchymal stromal cells, HDF: human dermal fibroblasts, hEK: human epidermal keratinocytes, hP: human placenta, hP-ECM: human placenta extracellular matrix, hUC-WJ-ECM:

human umbilical cord Wharton´s jelly extracellular matrix.
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tissue and collagen formation, and suppressed inflammation i. e.,

the migration of polymorphonuclear cells at the wounded

gingival site (Rinastiti et al., 2006).

In oral wound healing, the anti-adhesive properties of hAM in

contact with healthy tissue are useful to prevent tissue adhesion in

surgical procedures. The hAM transplant may function as an

anatomical barrier towards fibrous tissue proliferation (Samandari

et al., 2004; Fenelon et al., 2018), but further models are needed to

improve understanding of this mechanism of action.

An interesting aspect in the context of wound healing is that

oral wounds mainly heal without scarring. The keratinized

epidermis of the skin shares some similarities with the oral

mucosa, such as the stratified epithelium. In addition, also

certain regions of the oral mucosa (gingiva, palate) show signs

of keratinization, while the nonkeratinized floor of the mouth and

buccal regions do not produce a stratum corneum (Wertz, 2021).

The main difference between skin and the keratinized regions

of the oral mucosa is the relatively dry cutaneous surface, which is

covered by the secretion products of sweat glands. Hair follicles can

be found in most cutaneous regions except the palms and foot

soles, and the apical surface is additionally covered by sebum. In

contrast, the oral mucosa is constantly moist and well protected by

the continuous secretion of mucous glands. The humidmilieumay

be one of the reasons that the healing of oral mucosal wounds is

faster with minimal to no scar formation. There is a smaller

inflammatory response with less neutrophils, macrophages, and

FIGURE 2
Schematic presentation of the major in vitro functional assays performed to validate the mechanisms of action of perinatal derivatives (PnD) in
the context of inflammation, angiogenesis and remodeling during the complex process of wound healing. The figure was created using
Biorender.com.
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T-cell infiltration, and the proliferation and migration rate of

keratinocytes from oral mucosa is much more rapid as

compared to skin keratinocytes (Turabelidze et al., 2014).

During the healing period of adult skin wounds rapid

angiogenesis occurs leading to many more capillaries than in

normal tissue. Compared to that, healing wounds of oral mucosa

have a reduced angiogenic network but are composed of more

mature vessels providing better oxygenation. As inflammatory cells

produce a variety of proangiogenic factors, it can be assumed that

the selective reduction of inflammation and angiogenesis may help

to prevent excessive scarring (Dipietro, 2016).

Covering wounds with various types of dressings may help to

keep the wound area in a humid milieu that allows controlled

regeneration processes without excessive scarring. Most current

in vitro assays are performed under fluid conditions, where the

cells are exposed to culture medium. Functional assays on cell

cultures using air-liquid-interface (ALI) would be helpful to

mimic physiologic conditions even more closely.

3 Summary and conclusion

In this review, we addressed studies in which PnD were

functionally tested in vitro before being applied to pre-clinical or

clinical care with respect to inflammation, angiogenesis and

wound healing (Figure 2). We have focussed on the types and

combinations of PnD and the functional assays used as well as on

the outcomes of the in vitro assays.

Inflammation is a complex physiological mechanism involving

different types of immune cells, protein mediators, and metabolites,

making it difficult to study the role of PnD in inflammation in vitro.

Our analysis indicates that most of the available assays to determine

the ability of PnD to control inflammation study the interaction of

different types of PnD with a single type of immune cells. These

in vitro studies are mainly based on transwell co-cultures of PnD

with immune cells, or treatment of immune cells with PnD CM,

allowing to differentiate between cell-to-cell contact or paracrine

signaling, respectively. The following functional assays are the most

frequently used for evaluating immune cell activity: cell proliferation

assay, cytokine secretion assay, surfacemarkers expression indicative

of acquisition of an anti-inflammatory phenotype, cytotoxicity and

phagocytosis assay. Oxidative burst capacity is another assay that has

been used to validate the anti-inflammatory role of PnD over

neutrophils. All specialized phagocytes i.e., neutrophils and

macrophages, have the capacity to generate the respiratory burst

(Dahlgren et al., 2007), and this assay could be included as an in vitro

functional test of the anti-inflammatory capacity of PnD over these

other phagocytic cells. Moreover, the role of PnD on vascular

inflammation can be assessed by means of several functional

assays using HUVEC as a valuable in vitro model of human

vasculature (Pipino et al., 2022).

Among the different functional assays available, the following

four assay types are considered as the gold standard for assessing

wound healing in vitro: the cell proliferation, the scratch wound, the

chemotaxis, and the angiogenesis assay. Of note, in vitromodels with

characteristics closer to those cells in chronic wounds are needed to

attain all the benefits of the application of PnD to non-healing ulcers

(Liarte et al., 2020b). Indeed, while chronic wound fluids are known

to be rich in proinflammatory cytokines, such as the anti-proliferative

TGFß, it has been shown that AM can inhibit TGFß signaling,

restoring keratinocyte proliferation and migration (Ruiz-Canada

et al., 2018; Ruiz-Canada et al., 2021). Recently, HaCaT cells had

been shown to represent a phenotype better resembling the state of

keratinocytes in chronic wounds (Liarte et al., 2020a).

Inflammation, angiogenesis, and wound healing are thoroughly

regulated processes that play an important role in tissue

regeneration. If the balance of these regulatory mechanisms is

disturbed, excessive inflammatory reactions, misguided

angiogenesis, delayed wound healing or excessive scarring can

occur. A promising therapeutic option is treatment with PnD. To

understand the mode of action of PnD, various functional assays are

carried out. Furthermore, there is a certain risk that the PnD sample

may be of varying quality due to donor variability. Thus, functional

assays are also important for checking the quality of the PnD

compound prior to preclinical and clinical use.

As the gap between cell culture experiments and a complete

organism is difficult to bridge, animal models are needed to resolve

questions about toxicology or pharmacology. We strongly suggest

that functional in vitro testing of PnD is routinely performed before

their application to animal models and patients. This helps to

minimize animal numbers in animal experimentation in line

with the Replacement, Reduction, and Refinement (3R)

principles for more ethical use of animals in research (Strech and

Dirnagl, 2019) and to ensure the safety and efficacy of the PnD

applied to patients.

The present review is in line with the aims of the COST

SPRINT Action (CA17116) (Silini et al., 2020) and will

contribute to the establishment of guidelines for methods

applied to cells and tissues to enable scientifically sound and

reproducible research data to promote PnD into clinics.
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