
Title An advanced binary slime mould algorithm for feature subset selection in structural health 

monitoring data

Authors(s) Ghiasi, Ramin, Malekjafarian, Abdollah

Publication date 2022-08-26

Publication information Ghiasi, Ramin, and Abdollah Malekjafarian. “An Advanced Binary Slime Mould Algorithm for 

Feature Subset Selection in Structural Health Monitoring Data.” CERAI, 2022.

Conference details The 2022 Civil Engineering Research in Ireland (CERI) and Irish Transportation Research 

Network (ITRN) Conference, Dublin, Ireland, 25-26th August 2022

Publisher CERAI

Item record/more 

information

http://hdl.handle.net/10197/26013

Downloaded 2024-05-27 09:26:24

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-0-9573957-5-6&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F26013


ABSTRACT: Feature selection (FS) is an important task for data analysis, pattern classification systems, and data mining 

applications. In this paper, an advanced version of binary slime mould algorithm (ABSMA) is introduced for feature subset 

selection to enhance the capability of the original slime mould algorithm (SMA) for processing of measured data collected from 

monitoring sensors installed on structures. In the first step, structural response signals under ambient vibration are pre-processed 

according to statistical characteristics for feature extraction. In the second step, extracted features of a structure are reduced using 

an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. Finally, 

the optimized feature vectors are used as inputs to the surrogate models based on radial basis function neural network (RBFNN). 

A benchmark dataset of a wooden bridge model is considered as a test example. The results indicate that the proposed ABSMA 

shows better performance and convergence rate in comparison with four well-known metaheuristic optimizations. Furthermore, it 

can be concluded that the proposed feature subset selection method has the capability of more than 80% data reduction. 

KEY WORDS: Feature selection; Binary slime mould algorithm; Surrogate model, Data reduction. 

1 INTRODUCTION 

Vibration-based structural health monitoring (SHM) has been 

widely explored over the past decades. Avci et al. [1] and Das 

et al. [2] presented a comprehensive review of various 

vibration-based damage detection methods and their 

applications to civil structures and infrastructures. Recently, 

with the fast development in sensing technologies [3], [4], 

signal processing techniques [5], [6], and machine learning [7], 

[8], a number of advanced methods have been proposed 

[10,11]. Gharehbaghi al. [9] recently reviewed the new 

development of SHM for civil engineering structures.  

In vibration-based SHM, damage identification is performed 

from vibration signals measured simultaneously at different 

locations of the structure [10]. Damage detection can be 

performed in the time domain from the raw sensor data or in 

the feature domain, in which damage-sensitive features are first 

extracted from the time series, This process is referred to as 

feature extraction [11]. 

Another importing step in extracting the useful information 

and signal processing is FS [12], [13]. FS is generally used in 

machine learning, especially when the learning task involves 

high-dimensional datasets. The primary purpose of FS is to 

choose a subset of available features, by eliminating features 

with little or no predictive information and also redundant 

features that are strongly correlated [12]–[14]. The availability 

of large amounts of data represents a challenge to classification 

analysis. For example, the use of many features may require the 

estimation of a considerable number of parameters during the 

classification process. Ideally, each feature used in the 

classification process should add an independent set of 

information. Often, however, features are highly correlated, 

and this can suggest a degree of redundancy in the available 

information which may have a negative impact on 

classification accuracy (CA) [12]. Thus, the FS approaches is 

needed to tackle these problems.  

For a large number of features, evaluating all states is 

computationally non-feasible and therefore metaheuristic 

search methods are required. Due to the inefficiency of 

traditional search approaches in solving complex combinatorial 

optimization problems various metaheuristics have been 

proposed, such as Particle Swarm Optimization (PSO)[15], 

Genetic Algorithm (GA)-based attribute reduction [16], 

Gravitational Search Algorithm (GSA) [17]. 

 The metaheuristic algorithms above-mentioned strengths 

motivated us to present a metaheuristic-based method for FS in 

SHM. SMA [18] is a novel and robust metaheuristic algorithm 

proposed to solve continuous problem and it’s inspired by the 

propagation and foraging of the slime mould and includes a 

unique mathematical model. However, considering that the FS 

is a combinatorial optimization problem, a binary version of 

SMA is used [19], and its performance is improved by 

incorporating two new operators in algorithm: mutation and 

crossover. 

The main focus of this research is facilitating the processing 

of large data set in SHM [20]. Accordingly, the integrated 

system consists of three blocks is used in this paper. Firstly, 

statistical characteristics of structural response signals under 

ambient vibration are extracted, and feature vectors are 

obtained. Subsequently, the best feature subset is selected by 

the ABSMA algorithm based on desirability index using F-

score [21]. In the final step, selected feature is employed for 

training the surrogate model based on RBFNN. 

The proposed method’s performance is evaluated 

statistically on benchmark dataset of wooden bridge model 

[22]. Furthermore, the efficacy of using ABSMA as the main 

algorithm for FS is compared to Binary Particle Swarm 

Optimization (BPSO) [15], binary Harris hawks 
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optimization(BHHO) [23], binary whale optimization 

algorithm (BWOA) [24] and binary farmland fertility 

optimization algorithm (BFFA) [25]. Moreover, the impact of 

various transfer functions on accuracy of ABSMA is also 

accessed 

2 DAMAGE DETECTION PROCEDURE BASED ON THE 
PROPOSED ALGORITHM 

Figure 1 presents a summary of the method employed in this 

paper for an optimal feature subset selection and health 

monitoring of structures. The method consists of three main 

blocks: 

(A) The Feature Extraction Block, (B) The FS Block and (C) 

The Feature Classification Block. 

 

Figure 1. Summary of damage detection approach 

 

 Feature Extraction block: Statistical Features (SF) 

Time-domain vibrational signals collected from sensors can be 

pre-processed to form feature vectors using the functions 

shown in Table 1. The features of each sensor are: root mean 

square, variance, skewness, kurtosis, crest factor, the maximum 

and range of acceleration response signal of each sensor [26].  

 

Table 1. Time-domain features 
Feature Function 

Root mean square 𝑟𝑚𝑠 = √∑ (𝑥(𝑛))
2𝑁

𝑛=1

𝑁
 

Variance 𝑣𝑎𝑟 = 𝜎2 =
∑ (𝑥(𝑛) − 𝑚𝑒𝑎𝑛(𝑥))2𝑁
𝑛=1

(𝑁 − 1)
 

Skewness 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑥(𝑛) − 𝑚𝑒𝑎𝑛(𝑥))3𝑁
𝑛=1

(𝑁 − 1)𝜎3
 

Kurtosis 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑥(𝑛) − 𝑚𝑒𝑎𝑛(𝑥))4𝑁
𝑛=1

(𝑁 − 1)𝜎4  

Crest factor 𝑐𝑟𝑒𝑠𝑡 =
max⁡ |𝑥(𝑛)|

𝑟𝑚𝑠
 

Maximum value 𝑚𝑎𝑥 = max⁡ |𝑥(𝑛)| 

Range 𝑟𝑎𝑛𝑔𝑒 = max|𝑥(𝑛)| − min|𝑥(𝑛)| 

    These features represent the energy, the vibration amplitude 

and the time series distribution of the signal in time-domain 

[26]. 

 FS Block: ABSMA  

In second block, the best subset of extracted features will be 

selected using ABSMA based on the objective function that 

will describe in next subsection. SMA is proposed by [18] 

based on the oscillation mode of slime mould in nature. The 

proposed SMA has several features with a unique mathematical 

model that uses adaptive weights to simulate the process of 

producing positive and negative feedback of the propagation 

wave of slime mould based on bio-oscillator and to form the 

optimal path for connecting food with excellent exploratory 

ability and exploitation propensity. For complete details, please 

refer to main paper by Li et al.  [18]. The logic of SMA is shown 

in Figure 2. 

 

Figure 2. The overall steps of SMA [18]. 

2.2.1 Binary Slime mould algorithm (BSMA) 

All meta-heuristics start with the initialization step to spread 

the solutions within the search space of the optimization 

problem. Accordingly, the proposed algorithm is initialized by 

creating a population of 𝑛 moulds. Each mould which 

represents a solution to the optimization process that has 𝑑 

dimensions equal to the number of features in the used dataset. 

The FS problem is considered a discrete problem as it is based 

on choosing a number of features that provides the machine 

learning methods with better CA. Therefore, for each 

dimension, the proposed algorithm is randomly initialized with 

a value of 1 for the accepted feature or 0 as the rejected one as 

shown in Figure 3. This provides the representation of an initial 

solution for the FS. Then, at the end of each iteration, each 

mould has a solution in the form of a binary vector with the 

same length as the number of the features, where 1 means 

selecting and 0 means deselecting the corresponding feature. 

This process continues for all iterations and at last, the best 

feature subset with the least classification error of the classifier 

is suggested as the best result. 

 

Figure 3. An initial solution to the FS. 
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It should be noted that, the values generated by the standard 

SMA are continuous, but the features in FS problems are 

binary: 0 (selected feature) and 1 (not selected) values. 

Therefore, a wide range of transfer functions belonging to the 

family of the V-Shaped and S-Shaped functions [19] has been 

supposed to convert continuous values into binary.  

Selected V-Shaped and S-shaped transfer functions are listed in 

Table 2. A transfer function receives a real value from the 

standard SMA as an input and then normalizes this value 

between 0 and 1 using one of the formulas in Table 2. The 

normalized value is then converted to a binary value using Eq. 

(2) [19] . 

 

𝑆𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑓(𝑥) {
1, 𝑖𝑓⁡𝑆(𝑎) > 0.5
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

Table 2. V-Shaped and S-shaped transfer function.   

V-Shaped S-Shaped 

V1,𝐹(𝑎) = |
2

𝜋
tan−1(

𝜋

2
𝑎)| S1, 𝐹(𝑎) =

1

1+𝑒−𝑎
 

V2,𝐹(𝑎) = |tanh(𝑎)| S2, 𝐹(𝑎) =
1

1+𝑒−2𝑎
 

V3,𝐹(𝑎) = |
𝑎

√1+𝑎2
| S3, 𝐹(𝑎) =

1

1+𝑒
−
𝑎
2

 

V4,𝐹(𝑎) = |erf(
√𝜋

2
𝑎)| S4, 𝐹(𝑎) =

1

1+𝑒
−
𝑎
3

 

2.2.2 Fitness Function 

The fitness function (FF) is an important factor for the speed 

and the efficiency of ABSMA algorithm. In this study, the 

fitness function of ABSMA is developed based on the surrogate 

model accuracy and the efficiency of selected subset of 

features. The surrogate model (RBFNN) accuracy is obtained 

by the evaluation of the test data classification using the trained 

model. In addition, efficiency of the selected subset of features 

are evaluated using the F-score to measure desirability of the 

features. ABSMA selects the vector with the smallest fitness 

value when the completion conditions are satisfied.  The fitness 

function of ABSMA is formed as follows: 

𝐹𝐹 = 1 − [𝑊 × (𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛⁡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

+ (1 −𝑊) × (
1

n
∑𝐹𝑠𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

)] 

(2) 

where W is weighting factor between 0 to 1 and 𝑛 is the total 

number of features. 

2.2.3 Measure the desirability of features: F-score 

A desirability value, for each feature generally represents 

the attractiveness of the features, and can be any subset 

evaluation function like an entropy-based measure or rough set 

dependency measure [27]. In this paper, F-score will be used as 

index for measuring the desirability of the features. The F-score 

is a measurement to evaluate the discrimination ability of the 

feature 𝒊. Eq. (3) defines the F-score of the⁡𝒊𝒕𝒉 feature. The 

numerator specifies the discrimination among the categories of 

the target variable, and the denominator indicates the 

discrimination within each category. A larger F-score implies 

to a greater likelihood that this feature is discriminative [21]. 

𝐹𝑠𝑐𝑜𝑟𝑒𝑖 =
∑ (𝑥̅𝑖

𝑘 − 𝑥̅𝑖)
2𝑐

𝑘=1

∑ [
1

𝑁𝑖
𝑘 − 1

∑ (𝑥𝑖𝑗
𝑘 − 𝑥̅𝑖

𝑘)
2𝑁𝑖

𝑘

𝑗=1 ]𝑐
𝑘=1

 
(3) 

where 𝑐 is the number of classes and n is the number of 

features; 𝑁𝑖
𝑘  is the number of samples of the feature 𝑖 in class 

𝑘, (𝒌⁡ = ⁡𝟏, 𝟐,… , 𝒄; ⁡𝒊⁡ = ⁡𝟏, 𝟐,… , 𝒏), 𝑥𝑖𝑗
𝑘   is the 𝒋-th training 

sample for the feature 𝒊 in class 𝑘, (𝑗⁡ = ⁡1,2, … , 𝑵𝒊
𝒌 ), 𝒙𝒊 is the 

mean value of feature 𝒊 of all classes and 𝑥𝑖𝑘 is the mean value 

of feature 𝒊 of the samples in class 𝒌 [21]. 
It should be mentioned that the features selected by the 

proposed algorithms are evaluated with the well-known metrics 

precision, recall, accuracy, F1- score and Feature-Reduction 

index (𝐹𝑟). In this paper, the CA is used to define the quality 

function of a solution, which is the percentage of samples 

correctly classified and evaluated as Eq. (4):  

𝐶𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑡𝑎𝑘𝑒𝑛⁡𝑓𝑜𝑟⁡𝑒𝑥𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 (4) 

Another parameter which is used for comparison is the 

average feature reduction 𝐹𝑟 , to investigate the rate of feature 

reduction: 

𝐹𝑟 =
𝑛 − 𝑝

𝑛
 (5) 

where 𝑛 is the total number of features and 𝑝 is the number of 

selected features by the FS algorithm 𝐹𝑟  is the average feature 

reduction. The more it is close to 1, the more features are 

reduced, and the classifier complexity is less. 

2.2.4 Advanced version of binary slime mould algorithm 

In the proposed BSMA, two ideas from GA [28] are 

implement on the BSMA to enhances its capability for the FS 

and solve low population diversity. The new solutions in GA 

are created by the two operators: crossover and mutation. In the 

crossover operator, two solution sets are selected randomly and 

some portions are exchanged, thereby creating two new 

solutions. In the mutation operator, a randomly selected bit of 

a particular solution is mutated; means the 1 is changed to 0 and 

0 is changed to 1. Therefore, in the first step of proposed 

method, a random solution is generated, and then a crossover 

operation is applied to the randomly generated solution and the 

best solution. Next, the solution obtained from the crossover 

operation is given as inputs to the mutation operation. The main 

intention of these operations is increase population diversity 

and escapes from local optimal points and improve solutions’ 

quality. 

 Feature Classification Block: RBFNN 

In the final block of the employed framework, a well-trained 

surrogate model is applied to classify various condition of the 

structure. In these models, the input matrix will include the 

selected features and the outputs are the corresponding damage 

conditions. In recent years, many neural network models have 

been proposed or employed for various components of SHM in 

order to perform pattern classification, function approximation, 

and regression [29], [30]. Among them, the RBF network is a 

type of feed forward neural networks that learns using a 

supervised training technique. Lowe and Broomhead [31] were 



the first researchers that exploited the use of the RBF for 

designing neural networks. Radial functions are a type of 

function in which the response reduces or grows monotonically 

with the distance from the center point.  It has been shown that 

the RBF networks are able to approximate any reasonable 

continuous function mapping with a satisfactory level of 

accuracy [32].  

3 EXPRIMENTAL RESULTS 

In this section, a benchmark data set is used to show the 

effectiveness of the proposed FS algorithm. The data set 

collected in the laboratory of Helsinki Polytechnic Stadia [22], 

[33] is employed in this paper. The structure was a timber 

bridge model as shown in Figure 4. In order to excite the lowest 

modes, a random excitation was generated with an 

electrodynamic shaker to activate the vertical, transverse, and 

torsional modes. The response was measured at three different 

longitudinal positions by 15 accelerometers. The frequency of 

sampling was 256 Hz and the measurement period was 32 s. 

The data were filtered below 64 Hz and re-sampled for 

sufficient redundancy. The measurements were repeated 

several times and it was noticed that the dynamic properties of 

the structure vary due to the environmental changes. The main 

influencing factors were assumed to be the changes in the 

temperature and humidity.  

In the SHM community, there are various schemes for 

modelling damage scenarios, mainly damage modelled by 

decreasing the modulus of elasticity or the stiffness parameter 

of elements [8]. Moreover, some researchers used additional 

mass as an indicator of damage [34]. In the case of experimental 

case studies, using an additional mass is popular mainly 

because of its simplicity. In the benchmark data set that is used 

in this paper, Kullaa [22] modelled damage by adding mass.  As 

described in the original paper [22] five artificial damage 

scenarios were introduced by adding small point masses of 

different sizes on the structure. The mass sizes were 23.5, 47.0, 

70.5, 123.2 and 193.7 gr. The point masses were attached on 

the top flange, 600 mm left from the midspan (Figure 4). The 

added masses were relatively small compared to the total mass 

of the bridge (36 kg), where the highest mass increase was only 

0.5 %. The total number of experiments were carried out on the 

structure was 273.  The 190 measurements were selected as the 

training data. The test data consisted of both healthy and 

abnormal systems measurements. It is worth mentioning that 

the total number of extracted features for each experiment 

based on Table 1 is: 15 sensors ×7 features=105 features.  

 

 

(a) Wooden bridge model 

 
(b) Wooden bridge with the locations of sensors and damage 

(D) are indicated [22]. 

Figure 4. Wooden bridge 

 Impact of transfer functions on the ABSMA 

In this subsection, the impact of the transfer functions on the 

ABSMA’s performance is investigated. For providing the 

stochastic behaviour of metaheuristic optimization algorithms 

(MOAs), the performance of the algorithms is compared using 

the best, worst, average and standard deviation (SD) of the 

obtained fitness values over 20 independent runs in Table 3. 

Columns ABSMA-V1, ABSMA-V2, ABSMA-V3, ABSMA-

V4, ABSMA-S1, ABSMA-S2, ABSMA-S3, and ABSMA-S4 

gives the results of the transfer functions V1, V2, V3, V4, S1, 

S2, S3, and S4, respectively. 

As stated above, MOAs have stochastic nature and in each 

independent run, they may have slightly different results. 

Therefore, for comparing their performance, researchers [12], 

[13] consider the best, worst, average, and standard deviation 

of fitness values. Therefore, according to the results of Table 3, 

ABSMA-V2 has shown better performance in most indexes 

(best, average, and worst) in comparison with other transfer 

functions. Therefore, V2 is selected as the transfer function in 

this study. 

 

Table 3. The best fitness values under eight different transfer 

functions 

 ABSMA-

V1 

ABSMA-

V2 

ABSMA-

V3 

ABSMA-

V4 

Best 

Average 

Worst 

SD 

0.07 

0.11 

0.14 

0.02 

0.04 

0.07 

0.12 

0.02 

0.09 

0.11 

0.13 

0.01 

0.1 

0.13 

0.15 

0.02 

 
ABSMA-

S1 

ABSMA-

S2 

ABSMA-

S3 

ABSMA-

S4 

Best 

Average 

Worst 

SD 

0.11 

0.13 

0.14 

0.01 

0.1 

0.12 

0.14 

0.01 

0.07 

0.09 

0.11 

0.01 

0.05 

0.07 

0.1 

0.01 

 CA of metaheuristic optimization algorithms 

In this section, the accuracy and effectiveness of the 

proposed framework for feature extraction/selection in SHM 

domain is evaluated. Furthermore, the results obtained by the 

proposed ABSMA algorithm are compared to BPSO [15], 

BHHO [23], BWOA [24], and BFFA [25] which are reported 

to be good algorithms in FS [19]. The parameters need to be set 

in these algorithms are set to the best values are reported in the 



original papers. The population size for all the algorithms is 50 

and the maximum iterations is set to be 200.  The weighting 

factor W in the fitness function is varied from 0.6 to 0.9 to get 

the different sets of features. The results are averaged over 20 

independent runs in each data set and by every algorithm. 

Table 4 gives the mean of the CA, best, worst, average and 

SD of the results for each algorithm. The number in the brackets 

in each table slot shows the ranking of each algorithm. A 

comparison of the average precision, recall, F1 score and the 

amount of 𝐹𝑟  for other algorithms are given in Table 5. It can 

concluded from these tables that the proposed ABSMA 

algorithm can obtain, in most of cases, better CA using a 

smaller feature set, compared to other algorithms 

 

Table 4. CA of each algorithm for the tested datasets of Wooden 

bridge 
 ABSMA BHHO BPSO BWOA BFFA 

Mean of 

CA 

(Rank) 

0.94 

(1) 

0.87 

(2) 

0.81 

(4) 

0.86 

(3) 

0.8 

(5) 

Best  

Average 

Worst 

SD 

0.04 

0.07 

0.12 

0.02 

0.09 

0.13 

0.16 

0.02 

0.12 

0.17 

0.22 

0.03 

0.09 

0.13 

0.16 

0.02 

0.13 

0.19 

0.23 

0.03 

 

Table 5. Comparison of the performance (precision, recall, F1-

score and Fr) of the algorithms on Wooden bridge 

Metrics ABSMA BHHO BPSO BWOA BFFA 

Precision 0.94 0.88 0.83 0.87 0.81 

Recall 0.96 0.92 0.87 0.91 0.86 

F1-score 0.95 0.90 0.85 0.89 0.83 

Fr 0.81 0.714 0.667 0.743 0.619 

 

The extended results are also shown in Figures 5-6. From these 

figures, one may admit that ABSMA not only finds smaller 

feature subsets than the other algorithms, but also the number 

of selected features also decreases much faster. 

It can be concluded that the ABSMA provides a higher 

degree of exploration than the other algorithms, which enables 

it to explore the search space to find a solution that selects a 

smaller number of features and better performance. 

 

 

 
Figure 5. Number of selected features of each optimization 

algorithms  

 
Figure 6. Average of Fr for each optimization algorithms with 

respect to number of iterations  

 

It is worth to note that, the FS method proposed in this study 

is a supervised wrapper-based FS method [13]. Generally, in 

comparison with the filter model, the wrapper model could 

achieve a higher CA and tend to have a smaller subset size; 

however, it has high time complexity [12]. 

Finally, according to the results shown, adding desirability 

index, mutation and crossover operators to the BSMA increases 

the exploration of the search and guide the algorithm to more 

salient features. 

4 CONCLUSIONS 

In this paper, a new framework is presented for the FS for 

SHM problems. Furthermore, an ABSMA is presented for 

enhance capability of SMA in this domain. The mutation and 

crossover operators are employed in the original BSMA to the 

proposed ABSMA which could increase diversity and prevent 

excessive convergence during the optimization process, and 

local optimal trap escape. A data set collected from a timber 

bridge is employed in this paper. The ABSMA is initially 

evaluated using eight transfer functions that convert continuous 

solutions to binary ones, in which the best transfer function 

(transfer function V2) is selected. The results obtained from the 

proposed algorithm were compared with 4 state-of-the-art 

metaheuristic-based algorithms including BHHO, BPSO, 

BWOA and BFFA. The results of the experiments indicate that 

a significant improvement in the proposed algorithm compared 

to other ones. Moreover, the proposed framework can remove 

the irrelevant and redundant information by choosing useful 

features as the input of the surrogate model. It is shown that the 

proposed FS approach based on the ABSMA optimization 

algorithm reaches a better feature set in terms of CA and the 

number of selected features.  
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