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VARIATIONS OF ANDREWS-BECK TYPE CONGRUENCES

SONG HENG CHAN, RENRONG MAO, AND ROBERT OSBURN

In memory of Freeman Dyson

Abstract. We prove three variations of recent results due to Andrews on congruences for
NT (m, k, n), the total number of parts in the partitions of n with rank congruent to m modulo
k. We also conjecture new congruences and relations for NT (m, k, n) and for a related crank-
type function.

1. Introduction

A partition λ of a natural number n is a non-increasing sequence of positive integers whose
sum is n. For example, the 5 partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

In 1944, Dyson [12] introduced the rank of a partition as the largest part `(λ) minus the number
of parts n(λ) and, based on numerical evidence, conjectured that this statistic gives a combinato-
rial explanation of Ramanujan’s congruences for the partition function modulo 5 and 7. In 1954,
Atkin and Swinnerton-Dyer [5] confirmed Dyson’s conjecture by proving explicit formulas for
the generating function of rank differences. Recently, Andrews employed these rank differences
to prove some intriguing congruences (conjectured by Beck) for NT (m, k, n), the total number
of parts in the partitions of n with rank congruent to m modulo k. Specifically, we have (see
Theorems 1 and 2 in [3]) for all n ∈ N
NT (1, 5, 5n+ i)−NT (4, 5, 5n+ i) + 2NT (2, 5, 5n+ i)− 2NT (3, 5, 5n+ i) ≡ 0 (mod 5) (1.1)

where i = 1 or 4 and

NT (1, 7, 7n+ i)−NT (6, 7, 7n+ i) +NT (2, 7, 7n+ i)−NT (5, 7, 7n+ i)

−NT (3, 7, 7n+ i) +NT (4, 7, 7n+ i) ≡ 0 (mod 7) (1.2)

for i = 1 or 5.
It is now well-known that Dyson’s rank is a special case of a general notion of rank which is

defined on overpartition pairs [7]. Recall that an overpartition λ of n is a partition of n in which
the first occurrence of a number may be overlined. For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,

2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

Date: November 5, 2020.
2010 Mathematics Subject Classification. 11P81, 05A17.
Key words and phrases. Andrews-Beck type congruences, rank for overpartition pairs, Dyson’s rank for over-

partitions, M2-rank for overpartitions, M2-rank for partitions without repeated odd parts.
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An overpartition pair (λ, µ) of n is a pair of overpartitions where the sum of all of the parts is
n. We order the parts of (λ, µ) by requiring that for a positive integer k,

kλ > kλ > kµ > kµ,

where the subscript indicates to which of the two overpartitions the part belongs. The rank of
an overpartition pair (λ, µ) is

`((λ, µ))− n(λ)− n(µ)− χ((λ, µ)), (1.3)

where n(·) is the number of overlined parts only and χ((λ, µ)) is defined to be 1 if the largest part
of (λ, µ) is non-overlined and in µ, and 0 otherwise. When µ is empty and λ has no overlined
parts, (1.3) becomes the rank of a partition. To illustrate, the rank of the overpartition pair
((6, 6, 5, 4, 4, 4, 3, 1), (7, 7, 5, 2, 2, 2)) is 7−8−1−1 = −3, while the rank of the overpartition pair
((4, 3, 3, 2, 1), (4, 4, 4, 1)) is 4−5−1−0 = −2. In addition to recovering Dyson’s rank, three other
special cases of (1.3) have turned out to be of significant interest: the rank of an overpartition
[19], the M2-rank of a partition without repeated odd parts [6], [21] and the M2-rank of an
overpartition [20]. We recall these cases now. First, Dyson’s rank extends in an obvious way to
overpartitions. Second, the M2-rank of a partition λ without repeated odd parts is defined as

M2-rank (λ) =

⌈
l(λ)

2

⌉
− n(λ).

Finally, the M2-rank of an overpartition π is given by

M2-rank (π) =

⌈
`(π)

2

⌉
− n(π) + n(πo)− χ(π)

where πo is the subpartition consisting of the odd non-overlined parts and χ(π) = 1 if the largest
part of π is odd and non-overlined and χ(π) = 0 otherwise.

The purpose of this paper is to prove that instances of (1.1) and (1.2) also occur in these three
additional situations. Let NT2(b, k, n) denote the total number of parts in the overpartitions of
n with M2-rank congruent to b modulo k. Our first result is the following.

Theorem 1.1. For all n ∈ N, we have

NT2(1, 5, 5n+ 2)−NT2(4, 5, 5n+ 2)

+ 2NT2(2, 5, 5n+ 2)− 2NT2(3, 5, 5n+ 2) ≡ 0 (mod 5). (1.4)

If we let NT (b, k, n) be the total number of parts in the overpartitions of n with rank congruent
to b modulo k, then our second result is as follows.

Theorem 1.2. For all n ∈ N, we have

NT (1, 3, 3n)−NT (2, 3, 3n) ≡ NT2(1, 3, 3n)−NT2(2, 3, 3n) (mod 3) (1.5)

and

NT (1, 3, 3n+ 1)−NT (2, 3, 3n+ 1) ≡ NT2(1, 3, 3n+ 1)−NT2(2, 3, 3n+ 1) (mod 3). (1.6)

Finally, if NT2(b, k, n) is the total number of parts in the partitions of n without repeated
odd parts with M2-rank congruent to b modulo k, then our third result is the following.
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Theorem 1.3. For all n ∈ N, we have

NT2(1, 5, 5n+ 1)−NT2(4, 5, 5n+ 1)

+ 2NT2(2, 5, 5n+ 1)− 2NT2(3, 5, 5n+ 1) ≡ 0 (mod 5). (1.7)

The paper is organized as follows. In Section 2, we establish the generating function for the
rank of an overpartition pair which also keeps track of the total number of parts. Upon appropri-
ate specializations, this result leads to the generating functions for NT2(b, k, n), NT (b, k, n) and
NT2(b, k, n). We also record a key result necessary for the proof of Theorem 1.2. In Section 3,
we prove Theorems 1.1–1.3. In Section 4, we make some concluding remarks concerning future
directions.

2. Preliminaries

We first recall the standard q-hypergeometric notation

(a)n = (a; q)n :=

n∏
k=1

(1− aqk−1),

(a1, . . . , am)n = (a1, . . . , am; q)n := (a1)n, · · · (am)n

and

[a1, . . . , am]n = [a1, . . . , am; q]n = (a1, q/a1, . . . , am, q/am)n,

valid for n ∈ N ∪ {∞}.
Let N(r, s, t,m, n) be the number of overpartition pairs (λ, µ) of n with rank m, such that

r is the number of overlined parts in λ plus the number of non-overlined parts in µ, s is the
number of parts in µ and t is the total number of parts in (λ, µ).

Lemma 2.1. We have

N (d, e, x, z; q) :=
∑

r,s,t,n≥0
m∈Z

N(r, s, t,m, n)dresxtzmqn =
∑
n≥0

(−1/d,−1/e)n(xdeq)n

(zq, xq/z)n
. (2.1)

Proof. We follow the proof of Proposition 2.1 in [7]. We split the overpartition pairs into four
cases, depending on whether the largest part is overlined or not and whether it is in λ or µ to
get four series. For example, the series∑

n≥1

exqnzn−1(−qex/z,−qdx/z)n−1
(xq/z)n−1(xedq)n

is the generating function for overpartition pairs whose largest part n is in µ and overlined,
where the exponent of q is the number being partitioned, the exponent of z is the rank, the
exponent of d is the number of overlined parts in λ plus the number of non-overlined parts in
µ, the exponent of e is the number of parts in µ and the exponent of x is the total number of
parts in (λ, µ). Combining this with the other three cases, we obtain∑

r,s,t,n≥0
m∈Z

N(r, s, t,m, n)dresxtzmqn
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= 1 +
∑
n≥1

exqnzn−1(−qex/z,−qdx/z)n−1
(xq/z)n−1(xedq)n

+
∑
n≥1

dexqnzn−1(−qex/z,−qdx/z)n−1
(xq/z)n−1(xedq)n

+
∑
n≥1

dxqnzn−1(−qex/z)n(−qdx/z)n−1
(xq/z, xedq)n

+
∑
n≥1

xqnzn−1(−qex/z)n(−qdx/z)n−1
(xq/z, xedq)n

= 1 + (x+ dx)

∑
n≥1

eqnzn−1(−qex/z,−qdx/z)n−1
(xq/z)n−1(xedq)n

+
∑
n≥1

qnzn−1(−qex/z)n(−qdx/z)n−1
(xq/z, xedq)n


= 1 + (x+ dx)

∑
n≥1

qnzn−1(−qex/z,−qdx/z)n−1
(xq/z)n−1(xedq)n

(
e+

1 + qnex/z

1− qnx/z

)

= 1 + (x+ dx)(1 + e)
∑
n≥1

qnzn−1(−qex/z,−qdx/z)n−1
(xq/z, xedq)n

= 1 + (x+ dx)(1 + e)
∑
n≥0

qn+1zn(−qex/z,−qdx/z)n
(xq/z, xedq)n+1

= 1 +
(x+ dx)(1 + e)q

(1− xq/z)(1− xedq)
∑
n≥0

qnzn(−qex/z,−qdx/z)n
(xq2/z, xedq2)n

. (2.2)

Replacing (a, b, c, d, e) by (q,−qdx/z,−qex/z, q2x/z, deq2x) in [15, Eq. (3.27)], we find that∑
n≥0

qnzn(−qex/z,−qdx/z)n
(xq2/z, xedq2)n

=
(dexq, q2z)∞
(dexq2, qz)∞

∑
n≥0

(dexq)n(−q/d,−q/e)n
(xq2/z, q2z)n

. (2.3)

Substituting (2.3) into (2.2), we obtain∑
r,s,t,n≥0

m∈Z

N(r, s, t,m, n)dresxtzmqn

= 1 +
(x+ dx)(1 + e)q

(1− xq/z)(1− xedq)
(dexq, q2z)∞
(dexq2, qz)∞

∑
n≥0

(dexq)n(−q/d,−q/e)n
(xq2/z, q2z)n

= 1 +
(x+ dx)(1 + e)q

dexq(1 + 1/d)(1 + 1/e)

∑
n≥0

(dexq)n+1(−1/d,−1/e)n+1

(xq/z, qz)n+1

=
∑
n≥0

(dexq)n(−1/d,−1/e)n
(xq/z, qz)n

.

�

Next, we prove the following result which generalizes [3, Theorem 3].

Proposition 2.2. We have∑
n≥0

(−1/d,−1/e)n(xdeq)n

(zq, xq/z)n
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= 1− (−xqd,−xqe)∞
(xq, xqde)∞

∑
n≥1

(xq,−1/d,−1/e)nq
n(n+3)/2(−dex)n

(q)n−1(−xdq,−xeq)n

(
1

qn(1− zqn)
+

xz−1

1− xqn/z

)
.

(2.4)

Proof. Recall the limiting case of [15, Eq. (2.5.1)]:∑
n≥0

(aq/bc, d, e)n(aq/de)n

(q, aq/b, aq/c)n

=
(aq/d, aq/e)∞
(aq, aq/de)∞

∑
n≥0

(a,
√
aq,−

√
aq, b, c, d, e)n(−a2q2)nqn(n−1)/2

(q,
√
a,−
√
a, aq/b, aq/c, aq/d, aq/e)n(bcde)n

. (2.5)

Replacing (a, b, c, d, e) by (x, x/z, z,−1/d,−1/e) in (2.5), we have∑
n≥0

(−1/d,−1/e)n(xdeq)n

(zq, xq/z)n

=
(−xqd,−xqe)∞

(xq, xqde)∞

∑
n≥0

(x,
√
xq,−

√
xq, x/z, z,−1/d,−1/e)n(−xdeq)nqn(n+1)/2

(q,
√
x,−
√
x, qz, xq/z,−xqd,−xqe)n

.

After simplifying, we find that∑
n≥0

(−1/d,−1/e)n(xdeq)n

(zq, xq/z)n

=
(−xqd,−xqe)∞

(xq, xqde)∞

1 +
∑
n≥1

(xq)n−1 (−1/d,−1/e)n (−xde)nqn(n+3)/2(1− z)(1− x/z)(1− xq2n)

(q,−xdq,−xeq)n(1− zqn)(1− xqn/z)

 .

(2.6)

Noting that

(1− z)(1− x/z)(1− xq2n)

(1− zqn)(1− xqn/z)

= −(1− qn)(1− xqn)

(
1

qn(1− zqn)
+

xz−1

1− xqn/z

)
+

1− xq2n

qn
,

we deduce from (2.6) that∑
n≥0

(−1/d,−1/e)n(xdeq)n

(zq, xq/z)n

= −(−xqd,−xqe)∞
(xq, xqde)∞

∑
n≥1

(xq,−1/d,−1/e)n (−xde)nqn(n+3)/2

(q)n−1(−xdq,−xeq)n

(
1

qn(1− zqn)
+

xz−1

1− xqn/z

)

+
(−xqd,−xqe)∞

(xq, xqde)∞

1 +
∑
n≥1

(xq)n−1 (−1/d,−1/e)n (−xde)nqn(n+1)/2(1− xq2n)

(q,−xdq,−xeq)n

 . (2.7)
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Replacing (a, b, c, d) by (x,−1/d,−1/e,∞) in [15, Eq. (II.20), p.356], we obtain

1 +
∑
n≥1

(xq)n−1 (−1/d,−1/e)n (−xde)nqn(n+1)/2(1− xq2n)

(q,−xdq,−xeq)n
=

(xq, xqde)∞
(−xqd,−xqe)∞

,

which together with (2.7) gives (2.4). �

Let NNT (r, s, b, k, n) denote the total number of parts in the overpartition pairs (λ, µ) of n
with rank congruent to b modulo k, such that r is the number of overlined parts in λ plus the
number of non-overlined parts in µ, s is the number of parts in µ. Proceeding as in the proof
of [3, Corollary 4], one can obtain the following generalization of [3, Corollary 4] by applying
Proposition 2.2.

Corollary 2.3. For 1 ≤ b ≤ k − 1, we have∑
r,s,n≥0

(
NNT (r, s, b, k, n)−NNT (r, s, k − b, k, n)

)
dresqn

= − ∂

∂x

∣∣∣∣
x=1

(−xqd,−xqe)∞
(xq, xqde)∞

∑
n≥1

(xq,−1/d,−1/e)nq
n(n+3)/2(−dex)n

(q)n−1(−xdq,−xeq)n

·

(
q(b−1)n − qn(k−b−1)

1− qkn
+
xk−bq(k−1−b)n − xbq(b−1)n

1− xkqkn

)
.

Finally, we prove a key Lemma required in the proof of Theorem 1.2.

Lemma 2.4. We have

[q3; q9]3∞(q9; q9)2∞
[−q3; q9]2∞(−q9; q9)2∞

= 2
∑
n∈Z

(−1)nq9n
2+6n

1 + q9n
− 2

∑
n∈Z

(−1)nq9n
2+12n+3

1 + q9n+3

+ 4
(−q9; q9)2∞
[−q3; q9]∞

∑
n∈Z

(−1)nq9n
2+18n+9

1 + q9n+6
.

Proof. Setting r = 1 and s = 3 in [9, Theorem 2.1], we see that

[a]∞(q)2∞
[b1, b2, b3]∞

=
[a/b1]∞

[b2/b1, b3/b1]∞

∑
n∈Z

qn(n+1)

1− b1qn

(
ab1
b2b3

)n
+

[a/b2]∞
[b1/b2, b3/b2]∞

∑
n∈Z

qn(n+1)

1− b2qn

(
ab2
b1b3

)n
+

[a/b3]∞
[b1/b3, b2/b3]∞

∑
n∈Z

qn(n+1)

1− b3qn

(
ab3
b1b2

)n
.

Replacing q by q9 and setting (a, b1, b2, b3) = (q6,−1,−q3,−q6), we find that

[q6; q9]∞(q9; q9)2∞
[−1,−q3,−q6; q9]∞

=
[−q6; q9]∞

[q3, q6; q9]∞

∑
n∈Z

(−1)nq9n
2+6n

1 + q9n
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+
[−q3; q9]∞

[q−3, q3; q9]∞

∑
n∈Z

(−1)nq9n
2+12n

1 + q9n+3

+
[−1; q9]∞

[q−3, q−6; q9]∞

∑
n∈Z

(−1)nq9n
2+18n

1 + q9n+6
.

Multiplying both sides by 2[q3; q9]2∞/[−q3; q9]∞ and simplifying completes the proof. �

3. Proofs of Theorems 1.1–1.3

We are now in a position to prove Theorems 1.1–1.3.

Proof of Theorem 1.1. We first consider the following special case of (2.1):

N (1, 1/q, x, z; q2) =
∑
n≥0

(−1,−q; q2)n(xq)n

(zq, xq/z; q2)n
.

By [20, Theorem 1.2], the coefficient of xtzbqn in∑
n≥0

(−1,−q; q2)n(xq)n

(zq, xq/z; q2)n

is equal to the number of overpartitions of n with t parts and M2-rank b. By Corollary 2.3, we
have for 1 ≤ b ≤ k − 1∑

n≥0

(
NT2(b, k, n)−NT2(k − b, k, n)

)
qn

= − ∂

∂x

∣∣∣∣
x=1

(−xq)∞
(xq)∞

∑
n≥1

(xq2,−1,−q; q2)nqn(n+2)(−x)n

(q2; q2)n−1(−xq2,−xq; q2)n

·

(
q2(b−1)n − q2(k−b−1)n

1− q2kn
+
xk−bq2(k−1−b)n − xbq2(b−1)n

1− xkq2kn

)
. (3.1)

Using (3.1) with b = 1 and k = 5, we obtain∑
n≥0

(
NT2(1, 5, n)−NT2(4, 5, n)

)
qn

= − ∂

∂x

∣∣∣∣
x=1

(−xq)∞
(xq)∞

∑
n≥1

(xq2,−1,−q; q2)nqn(n+2)(−x)n

(q2; q2)n−1(−xq2,−xq; q2)n

(
1− q6n

1− q10n
+
x4q6n − x
1− x5q10n

)

= − ∂

∂x

∣∣∣∣
x=1

(−xq)∞
(xq)∞

∑
n≥1

(xq2,−1,−q; q2)nqn(n+2)(−x)n

(q2; q2)n−1(−xq2,−xq; q2)n

· (x− 1)(q2n − 1)(xq2n − 1)(xq4n − 1)

(1− q10n)(1− x5q10n)

· {1 + q2n + q4n + q2nx+ 2q4nx+ q6nx+ q4nx2 + q6nx2 + q8nx2}.
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Noting that

∂

∂x

∣∣∣∣
x=1

(1− x)F (x, q, z) = −F (1, q, z), (3.2)

we find∑
n≥0

(
NT2(1, 5, n)−NT2(4, 5, n)

)
qn

=
2(−q)∞

(q)∞

∑
n≥1

(−1)nqn(n+2)(q2n − 1)3(q4n − 1)

(1 + q2n)(1− q10n)2
{1 + 2q2n + 4q4n + 2q6n + q8n}. (3.3)

Similarly, one can prove that∑
n≥0

(
NT2(2, 5, n)−NT2(3, 5, n)

)
qn

=
2(−q)∞

(q)∞

∑
n≥1

(−1)nqn(n+2)(q2n − 1)3(q4n − 1)

(1 + q2n)(1− q10n)2
{2q2n + q4n + 2q6n}. (3.4)

Equations (3.3) and (3.4) give∑
n≥0

(
NT2(1, 5, n)−NT2(4, 5, n) + 2NT2(2, 5, n)− 2NT2(3, 5, n)

)
qn

=
2(−q)∞

(q)∞

∑
n≥1

(−1)nqn(n+2)(q2n − 1)3(q4n − 1)

(1 + q2n)(1− q10n)2
{1 + 6q2n + 6q4n + 6q6n + q8n}

≡ 2(−q)∞
(q)∞

∑
n≥1

(−1)nqn(n+2)(q2n − 1)2(1− q4n)

(1 + q2n)(1− q10n)
(mod 5)

=
2(−q)∞

(q)∞

∑
n≥1

(−1)nqn(n+2)(1− q2n)3

1− q10n

=
2(−q)∞

(q)∞

∑
n∈Z
n 6=0

(−1)nqn(n+2)(1− 3q2n)

1− q10n

=
2(−q)∞

(q)∞

(
S̄2(1) + 3S̄2(3)

)
, (3.5)

where

S̄2(b) : =
∑
n∈Z
n 6=0

(−1)nqn
2+2bn

1− q10n
.

By [22, Eq. (4.9)], we have∑
n≥0

{
N2(1, 5, n)−N2(2, 5, n)

}
qn

(q)∞
2(−q)∞

= −S̄2(1)− 3S̄2(3), (3.6)
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where N2(b, k, n) denotes the number of overpartitions of n whose M2-rank is congruent to b
modulo k. Equations (3.5) and (3.6) imply∑

n≥0

(
NT2(1, 5, n)−NT2(4, 5, n) + 2NT2(2, 5, n)− 2NT2(3, 5, n)

)
qn

≡
∑
n≥0

{
N2(2, 5, n)−N2(1, 5, n)

}
qn (mod 5),

which together with [22, Eq. (1.10)] yields (1.4). �

Proof of Theorem 1.2. Setting e = 0 and d = 1 in (2.1), we obtain

N (1, 0, x, z; q2) =
∑
n≥0

(−1)nx
nqn(n+1)/2

(zq, xq/z)n
.

By [19, Proposition 1.1], the coefficient of xtzbqn in∑
n≥0

(−1)nx
nqn(n+1)/2

(zq, xq/z)n

is equal to the number of overpartitions of n with t parts and rank b. By Corollary 2.3, we have
for 1 ≤ b ≤ k − 1 ∑

n≥0

(
NT (b, k, n)−NT (k − b, k, n)

)
qn

= − ∂

∂x

∣∣∣∣
x=1

(−xq)∞
(xq)∞

∑
n≥1

(xq,−1; q)nq
n(n+1)(−x)n

(q; q)n−1(−xq; q)n

·

(
q(b−1)n − q(k−b−1)n

1− qkn
+
xk−bq(k−1−b)n − xbq(b−1)n

1− xkqkn

)
. (3.7)

Proceeding as in the proof of Theorem 1.1, after applying (3.1), (3.2) and (3.7), we obtain∑
n≥0

(
NT (1, 3, n)−NT (2, 3, n)

)
qn =

2(−q)∞
(q)∞

∑
n≥1

(−1)nqn
2+n(qn − 1)4

(1− q3n)2

≡ 2(−q)∞
(q)∞

∑
n≥1

(−1)nqn
2+n(1− qn)

1− q3n
(mod 3)

and ∑
n≥0

(
NT2(1, 3, n)−NT2(2, 3, n)

)
qn =

2(−q)∞
(q)∞

∑
n≥1

(−1)nqn
2+2n(q2n − 1)4

(1− q6n)2

≡ 2(−q)∞
(q)∞

∑
n≥1

(−1)nqn
2+2n(1− q2n)

1− q6n
(mod 3).

Thus, we have ∑
n≥0

(
NT (1, 3, n)−NT (2, 3, n)−NT2(1, 3, n) +NT2(2, 3, n)

)
qn
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≡ 2(−q)∞
(q)∞

∑
n≥1

(−1)nqn
2+n(1− 2qn + 2q3n − q4n)

1− q6n

≡ 2(−q)∞
(q)∞

∑
n≥1

(−1)nqn
2+n(1 + qn)

1 + q3n
(mod 3). (3.8)

Now, from [10, Eq. (2.1)], we have

(−q)∞
(q)∞

=
(q18; q18)3∞

[q3; q18]8∞(q6; q6)4∞[q9; q18]∞

(
1 + 2q

[q3; q18]∞
[q9; q18]∞

+ 4q2
[q3; q18]2∞
[q9; q18]2∞

)
=

(q18; q18)3∞
[q3; q18]8∞(q6; q6)4∞[q9; q18]∞

(
1 + 2q

(−q9; q9)2∞
[−q3; q9]∞

+ 4q2
(−q9; q9)4∞
[−q3; q9]2∞

)
. (3.9)

Next, note that∑
n≥1

(−1)nqn
2+n(1 + qn)

1 + q3n
= −1

2
+
∑
n∈Z

(−1)nqn
2+n

1 + q3n

= −1

2
+
∑
n∈Z

(−1)nq9n
2+6n

1 + q9n
−
∑
n∈Z

(−1)nq9n
2+12n+3

1 + q9n+3
+
∑
n∈Z

(−1)nq9n
2+18n+8

1 + q9n+6
. (3.10)

Invoking (3.9) and (3.10) into (3.8) and collecting only terms where the power q is divisible by
3 yields

(q18; q18)3∞
[q3; q18]8∞(q6; q6)4∞[q9; q18]∞

(
− 1 + 2

∑
n∈Z

(−1)nq9n
2+6n

1 + q9n

− 2
∑
n∈Z

(−1)nq9n
2+12n+3

1 + q9n+3
+ 4

(−q9; q9)2∞
[−q3; q9]∞

∑
n∈Z

(−1)nq9n
2+18n+9

1 + q9n+6

)
.

Applying Lemma 2.4, the expression in parenthesis then becomes

−1 +
[q3; q9]3∞(q9; q9)2∞

[−q3; q9]3∞(−q9; q9)2∞
= −1 +

(q3; q3)3∞(−q9; q9)∞
(−q3; q3)3∞(q9; q9)∞

≡ −1 + 1 = 0 (mod 3).

This shows that the coefficients of q3n in (3.8) are divisible by 3, which then implies (1.5). Sim-
ilarly, congruence (1.6) can be proved in exactly the same way, by showing that the coefficients
of q3n+1 in (3.8) are also divisible by 3. �

Proof of Theorem 1.3. Replacing (q, d, e) by (q2, 0, 1/q) in (2.1), we obtain

N (0, 1/q, x, z; q2) =
∑
n≥0

(−q; q2)nxnqn
2

(zq, xq/z; q2)n
.

Noting that partitions without repeated odd parts correspond to overpartitions in which the
odd parts are all overlined and even parts are all non-overlined, we deduce from [20, Theorem
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1.2] that the coefficient of xtzbqn in ∑
n≥0

(−q; q2)nxnqn
2

(zq, xq/z; q2)n

is equal to the number of partitions without repeated odd parts of n with t parts and M2-rank
b. By Corollary 2.3, we have for 1 ≤ b ≤ k − 1∑

n≥0
(NT2(b, k, n)−NT2(k − b, k, n)) qn

= − ∂

∂x

∣∣∣∣
x=1

(−xq; q2)∞
(xq2; q2)∞

∑
n≥1

(xq2,−q; q2)nq2n
2+n(−x)n

(q2; q2)n−1(−xq; q2)n

·

(
q2(b−1)n − q2(k−b−1)n

1− q2nk
+
xk−bq2(k−1−b)n − xbq2(b−1)n

1− xkq2kn

)
. (3.11)

Again, proceeding as in the proof of Theorem 1.1, after applying (3.2) and (3.11), we obtain∑
n≥0

(NT2(1, 5, n)−NT2(4, 5, n)) qn

=
(−q; q2)∞
(q2; q2)∞

∑
n≥1

(−1)nq2n
2+n(q2n − 1)3(q4n − 1)

(1− q10n)2
{1 + 2q2n + 4q4n + 2q6n + q8n} (3.12)

and ∑
n≥0

(NT2(2, 5, n)−NT2(3, 5, n)) qn

=
(−q; q2)∞
(q2; q2)∞

∑
n≥1

(−1)nq2n
2+n(q2n − 1)3(q4n − 1)

(1− q10n)2
{2q2n + q4n + 2q6n}. (3.13)

Equations (3.12) and (3.13) give∑
n≥0

(NT2(1, 5, n)−NT2(4, 5, n) + 2NT2(2, 5, n)− 2NT2(3, 5, n)) qn

=
(−q; q2)∞
(q2; q2)∞

∑
n≥1

(−1)nq2n
2+n(q2n − 1)3(q4n − 1)

(1− q10n)2
{1 + 6q2n + 6q4n + 6q6n + q8n}

≡ (−q; q2)∞
(q2; q2)∞

∑
n≥1

(−1)nq2n
2+n(q2n − 1)2(1− q4n)

(1− q10n)
(mod 5)

=
(−q; q2)∞
(q2; q2)∞

∑
n≥1

(−1)nq2n
2+n(1− 2q2n + 2q6n − q8n)

1− q10n

=
(−q; q2)∞
(q2; q2)∞

∑
n∈Z
n 6=0

(−1)nq2n
2+n(1− 2q2n)

1− q10n
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=
(−q; q2)∞
(q2; q2)∞

(S2(1)− 2S2(3)) , (3.14)

where

S2(b) : =
∑
n∈Z
n 6=0

(−1)nq2n
2+bn

1− q10n
.

By [21, Eq. (5.7)], we have∑
n≥0
{N2(1, 5, n)−N2(2, 5, n)} qn (q2; q2)∞

(−q; q2)∞
= −S2(1) + 2S2(3), (3.15)

where N2(b, k, n) denotes the number of partitions without repeated odd parts of n whose M2-
rank is congruent to b modulo k. Equations (3.14) and (3.15) imply∑

n≥0
(NT2(1, 5, n)−NT2(4, 5, n) + 2NT2(2, 5, n)− 2NT2(3, 5, n)) qn

≡
∑
n≥0
{N2(2, 5, n)−N2(1, 5, n)} qn (mod 5),

which together with [21, Eq. (1.7)] gives (1.7). �

4. Concluding Remarks

There are several directions for future study. First, Dyson also conjectured in [12] the exis-
tence of a partition statistic called the crank which would combinatorially explain Ramanujan’s
congruences for the partition function modulo 5, 7 and 11. In [4], this statistic was defined and
Dyson’s conjecture was proven. The crank of a partition is either the largest part, if 1 does
not occur, or the difference between the number of parts larger than the number of 1’s and the
number of 1’s, if 1 does occur. Let Mω(m, k, n) denote the number of ones in the partitions
of n with crank congruent to m modulo k. It appears that there are further congruences and
relations for NT (m, k, n) and Mω(m, k, n). For example, using the techniques from [3], one can
prove that for i = 1, 3, 4, 5,

NT (1, 7, 7n+ i)−NT (6, 7, 7n+ i) + 2NT (3, 7, 7n+ i)− 2NT (4, 7, 7n+ i) ≡ 0 (mod 7)
(4.1)

and for i = 0, 1, 5,

NT (2, 7, 7n+ i)−NT (5, 7, 7n+ i) + 4NT (3, 7, 7n+ i)− 4NT (4, 7, 7n+ i) ≡ 0 (mod 7).
(4.2)

The details are left to the interested reader. We note that for i = 1, 5, (4.1) and (4.2) follow
from [3, Theorem 2] and [11, Corollary 1.4]. In addition, we make the following

Conjecture 4.1. For all n ∈ N, we have∑
n≥0

(NT (1, 7, 7n+ 5)−NT (6, 7, 7n+ 5) + 3NT (2, 7, 7n+ 5)− 3NT (5, 7, 7n+ 5))qn
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=
−7(q7; q7)3∞(q3, q4; q7)∞
(q, q6; q7)∞(q2, q5; q7)2∞

, (4.3)∑
n≥0

(NT (1, 7, 7n+ 4)−NT (6, 7, 7n+ 4) + 2NT (3, 7, 7n+ 4)− 2NT (4, 7, 7n+ 4))qn

=
−7(q7; q7)3∞(q3, q4; q7)2∞
(q, q6; q7)∞(q2, q5; q7)3∞

, (4.4)

NT (1, 11, 11n+ 6)−NT (10, 11, 11n+ 6) + 3NT (2, 11, 11n+ 6)− 3NT (9, 11, 11n+ 6)

− 4NT (3, 11, 11n+ 6) + 4NT (8, 11, 11n+ 6) + 3NT (4, 11, 11n+ 6)− 3NT (7, 11, 11n+ 6)

+ 3NT (5, 11, 11n+ 6)− 3NT (6, 11, 11n+ 6) ≡ 0 (mod 11), (4.5)

NT (1, 11, 11n+ 1)−NT (10, 11, 11n+ 1)− 3NT (2, 11, 11n+ 1) + 3NT (9, 11, 11n+ 1)

+ 5NT (3, 11, 11n+ 1)− 5NT (8, 11, 11n+ 1)− 2NT (4, 11, 11n+ 1) + 2NT (7, 11, 11n+ 1)

+ 4NT (5, 11, 11n+ 1)− 4NT (6, 11, 11n+ 1) ≡ 0 (mod 11), (4.6)

NT (1, 13, 13n+ 1)−NT (12, 13, 13n+ 1) +NT (2, 13, 13n+ 1)−NT (11, 13, 13n+ 1)

+ 6NT (3, 13, 13n+ 1)− 6NT (10, 13, 13n+ 1) + 3NT (6, 13, 13n+ 1)− 3NT (7, 13, 13n+ 1)

≡ 0 (mod 13), (4.7)

NT (1, 13, 13n+ 3)−NT (12, 13, 13n+ 3) + 3NT (3, 13, 13n+ 3)− 3NT (10, 13, 13n+ 3)

− 4NT (4, 13, 13n+ 3) + 4NT (9, 13, 13n+ 3) +NT (5, 13, 13n+ 3)−NT (8, 13, 13n+ 3)

− 2NT (6, 13, 13n+ 3) + 2NT (7, 13, 13n+ 3) ≡ 0 (mod 13), (4.8)

Mω(1, 5, 5n+ 4)−Mω(4, 5, 5n+ 4) = 2Mω(3, 5, 5n+ 4)− 2Mω(2, 5, 5n+ 4), (4.9)

Mω(1, 5, 5n+ i)−Mω(4, 5, 5n+ i) + 2NT (2, 5, 5n+ i)− 2NT (3, 5, 5n+ i) ≡ 0 (mod 5)
(4.10)

for i = 0, 4,

Mω(1, 5, 5n+ 2)−Mω(4, 5, 5n+ 2) = 2NT (3, 5, 5n+ 2)− 2NT (2, 5, 5n+ 2), (4.11)

NT (1, 5, 5n+ i)−NT (4, 5, 5n+ i) + 2Mω(2, 5, 5n+ i)− 2Mω(3, 5, 5n+ i) ≡ 0 (mod 5)
(4.12)

for i = 1, 2,
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n≥0

(
NT (1, 5, 5n+ 4)−NT (4, 5, 5n+ 4) + 2Mω(2, 5, 5n+ 4)− 2Mω(3, 5, 5n+ 4)

)
qn

=
−5(q5; q5)4∞

(q)∞
, (4.13)

Mω(1, 5, 5n+ 4)−Mω(4, 5, 5n+ 4) = 4NT (4, 5, 5n+ 4)− 4NT (1, 5, 5n+ 4), (4.14)

Mω(1, 7, 7n+ i)−Mω(6, 7, 7n+ i) + 2Mω(3, 7, 7n+ i)− 2Mω(4, 7, 7n+ i) ≡ 0 (mod 7)
(4.15)

for i = 0, 2, 5, 6,

Mω(2, 7, 7n+ i)−Mω(5, 7, 7n+ i)− 3Mω(3, 7, 7n+ i) + 3Mω(4, 7, 7n+ i) ≡ 0 (mod 7)
(4.16)

for i = 0, 1, 4, 5.

Here, (4.9) implies [11, Corollary 1.5]. Second, do similar congruences and/or relations exist
for total number of parts functions associated to other partitions statistics, for example, ranks
of Durfee symbols [2], the first and second residual crank for overpartitions [8] and dth residual
crank for overpartitions [1], the k-rank [13] or the Md-rank for overpartitions [18], [24]? Finally,
a mock modular perspective (such as in [14], [16], [17] or [23]) which explains the occurrences of
(1.1), (1.2), (1.4)–(1.7) and (4.3)–(4.16) would be most welcome.
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