Research Repository UCD

Title

Semantic network management for next-generation networks

Authors(s)

Matheus, Christopher J., Boran, Aidan, Carr, Dominic, Collier, Rem, Kroon, Barnard, Murdoch,
Olga, Lillis, David, O'Grady, Michadl J., O'Hare, G. M. P. (Greg M. P.)

Publication date

2019-05

Publication information

Matheus, Christopher J., Aidan Boran, Dominic Carr, Rem Collier, Barnard Kroon, Olga
Murdoch, David Lillis, Michael J. O’ Grady, and G. M. P. (Greg M. P.) O’ Hare. “ Semantic
Network Management for next-Generation Networks® 35, no. 2 (May, 2019).

Publisher

Wiley

Item record/more
information

http://hdl.handle.net/10197/25824

Publisher's statement

Thisisthe peer reviewed version of the following article: Matheus, CJ, Boran, A, Carr, D, et al.
Semantic network management for next generation networks. Computational Intelligence. 2019;
35: 285 309, which has been published in final form at https://doi.org/10.1111/coin.12180. This
article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions
for Self-Archiving.

Publisher's version (DOI)

10.1111/coin.12180

Downloaded 2024-05-27 10:46:09

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Semantic+network+management+for+next-...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F25824

Semantic Network Management for Next
Generation Networks

Christopher J. Matheus, Aidan Boran
Bell Labs, Blanchardstown, Ireland

Dominic Carr
School of Computing, National College of Ireland, Dublin, Ireland

Rem W. Collier, Barnard Kroon, Olga Murdoch
David Lillis, Michael J. O’Grady, Gregory M. P. O’Hare
School of Computer Science, University College Dublin, Ireland

Abstract

To accommodate the proliferation of heterogeneous network models and proto-
cols, the use of semantic technologies to enable an abstract treatment of net-
works is proposed. Network adapters are employed to lift network specific data
into a semantic representation. Semantic reasoning integrates the disparate
network models and protocols into a common data model by making intelligent
inferences from low-level network and device details. Automatic discovery of
new devices, monitoring of device state and invocation of device actions in a
generic fashion that is agnostic of network types is enabled. A prototype sys-
tem called SNOMAC is described that employs the proposed approach operating
over UPnP, TR-069 and heterogeneous sensors. These sensors are integrated by
means of a sensor middleware named SIXTH that augments the capabilities of
SNoMAC to allow for intelligent management and configuration of a wide vari-
ety of sensor devices. A major benefit of this approach is that the addition of
new models, protocols or sensor types merely involves the development of a new
network adapter based on an ontology. Additionally, the semantic representa-
tion of the network and associated data allows for a variety of client interfaces
to facilitate human input to the management and monitoring of the system.

Keywords: semantic computing, sensing web, network monitoring, home
area networks

1 Introduction

By the year 2021, the Internet of Things (IoT) is expected to encompass 3.5
times as many connected devices as there are people on earth [1]. In addition
to the sheer volume of devices, there is the added complexity of dealing with
the unchecked proliferation of new network data models and protocols. To deal
with these issues, network and active media applications will not only require
high performance and scalability but will also need the means for quickly and
dynamically evolving to accommodate the changing universe of devices. Doing
this effectively necessitates a new approach for integrating network models and
protocols that facilitates the intelligent management of devices across layers and
at various levels of abstraction. This allows devices to be handled generically
as collections while maintaining the specifics necessary to monitor and control
them individually. This paper advocates an approach to solving this problem
that leverages the benefits afforded by semantic web technologies, combined
with the advantages of intelligent middleware. This automates much of the
organisation and integration of heterogeneous devices and provides a platform
upon which a wide variety of applications can be built.

Semantic web technologies enable the definition of formal data models called
“ontologies” that provide a number of conceptual and computational benefits.
This includes data model alignment, heterogeneous data integration, built-in
data abstraction mechanisms, automated inferencing, dynamic meta-modelling
and automatic consistency checking. These ontologies form the base upon which
semantic tools such as SPARQL [2], SWRL [3] and OWL [4], or a hybrid of these,
can make intelligent inferences about both devices themselves and their network
topology. This is achieved by means of techniques such as inheritance and prop-
erty reasoning, in addition to using chainable or transitive properties to infer
entire network topologies from individual descriptions of internet-based devices
and their connections. For systems involving heterogeneous network monitoring
and control, such intelligent inference systems are crucial in capturing essential
domain knowledge from the underlying ontologies.

Intelligent middleware is essential when a developer or service provider is
tasked with dealing with a variety of heterogeneous devices. In addition to
concentrating on those network-enabled devices that make up the IoT, other
categories of devices provide sensing capabilities either as individual sensors,
wireless sensor networks, legacy sensor networks or sensor-equipped mobile de-
vices. An intelligent middleware automatically handles the discovery and man-
agement of such sensors, while providing a unified interface through which they
can be configured and accessed. SIXTH is an intelligent middleware system for
the Sensor Web that incorporates not only physical sensors but also provides
access to web-based data sources through “cyber sensors” [5]. Embedded intel-
ligence allows for the autonomic management of sensors to deal with issues such
as power and bandwidth restrictions, and data management.

This paper provides an overview of the SNoMAC approach to semantic web
management. It also describes a functioning prototype that detects, monitors
and controls devices in a home area network that involves UPnP [6], TR069 [7]

and sensors that are incorporated using SIXTH. This integration of SNoMAC
and SIXTH results in a “system of systems” that enables the automatic dis-
covery of the configuration, state and capability data of both internet-enabled
devices and sensors. This then provides an intuitive interface through which
a network of devices can be monitored and managed. In so doing, it removes
the burden from users of configuring devices for use within the system. More
generally, the SNoMAC architecture facilitates intelligent reasoning systems to
co-operate at different levels, from in-network intelligence operating on individ-
ual network devices to intelligent data analysis and monitoring implemented
within the middleware. Since the primary feature of SNoMAC is as a service
producing semantic descriptions of networked devices and sensors upon which
other applications can be developed, it also facilitates the integration of an intel-
ligent management level in the future. This hybrid approach to the integration
of various intelligence technologies has great potential in the area of network
automation, for example for within a home area network. It also allows for
the addition of other services such as intelligent user interfaces and personal-
isation and so facilitates the rapid development of human-centric computing
applications. The work presented in this paper is an extension of that described
in [§].

The primary novelty of the SNoMAC approach is the ability to “lift” device
data into a semantic representation automatically. This facilitates more complex
intelligent reasoning about devices in the system while requiring minimal user
input. Unlike similar systems (discussed in Section 4), this does not depend on
the prior existence of the semantics.

This paper is structured as follows. Section 2 begins by presenting an illus-
trative example of the SNoMAC system, in addition to outlining how it generates
ontologies and how this can be leveraged by a variety of semantic technologies.
Following this, Section 3 describes a further all-level prototype that has been
created in the area of Home Area Network management. This prototype gives
particular focus to how it integrates with the SIXTH sensor middleware platform
to integrate both physical and cyber sensors into the system. The combination
of SIXTH and SNoMAC offers a full platform from low-level device integration
to a high-level user interface. A discussion of related work is presented in Sec-
tion 4. Finally, this is followed in Section 5 by details of evaluations that have
been carried out on the system’s components thus far, as well as future work
directions. Section 6 concludes the paper.

2 SNoMAC Overview

SNoMAC is a research prototype from Bell Labs that demonstrates the use
of semantic approaches to enable dynamic monitoring, analysis and control of
heterogeneous network devices. It allows applications be written against SNo-
MAC’s formal semantic API, which removes the need to deal with lower-level
details that may change as standards evolve and new standards are integrated
into the system. To demonstrate this concept, Bell Labs worked with researchers

at University College Dublin (UCD) to integrate SNoMAC with their SIXTH
sensor middleware.
SNoMAC is designed with a number of specific aims in mind:

e Facilitate the automatic discovery of new devices that are contactable via
a network.

e Allow for the configuration of the functionality of such devices by enabling
the remote setting of state variables associated with them.

e Where these devices are capable of executing commands, route these from
client applications to appropriate devices for execution.

e Perform basic network analysis to ascertain the topology and configuration
of the network.

An overview of the SNoMAC concept and architecture is depicted in Fig-
ure 1. This architecture consists of a number of devices that are to be discovered
and managed, the SNOMAC server itself, and a client interface that allows users
to interact with the server in order to control and manage connected devices.

Network Adapters operate in a two-way fashion, to interface with the net-
work to “lift” device data into a semantic representation before sending it to the
server and also to invoke device-specific commands coming from the client via
the server. They also have a responsibility to listen for user-defined events on
the network. Separate network adaptors are required for each supported proto-
col. Currently, SNoMAC supports UPnP and TR069, in addition to interfacing
with the SIXTH sensor middleware (discussed in detail in Section 3.1).

These network adapters interface with the SNoMAC server through two sim-
ple REST-based web service APIs supported by the server’s Listener-Controller
Interface. The API implemented by the network adapter is for processing re-
quests issued by the server, such as to get/set state variables associated with
devices (e.g. the rate at which data is sent to the server), or invoke commands
on them. The other API is implemented by the server to receive pushed updates
from the adapters as the devices in the network change. The information that is
exchanged is in the form of RDF annotations based on a network-specific ontol-
ogy that is aligned with the NetCore ontology (i.e. all network ontology classes
and properties are sub-classes or sub-properties of entities defined in NetCore).
The NetCore ontology is discussed in Section 2.1.

The SNoMAC server initiates connections with available network adapters
by requesting information for all known devices and issuing a request to be in-
formed of subsequent device changes (i.e. node additions, deletions and state
updates). Information about devices is stored in the Semantic Layer which in-
cludes an RDF data store plus the means by which to intelligently infer new
information about the devices based upon meta data stored in their correspond-
ing ontologies.

A significant challenge that must be addressed is the heterogeneous nature
of the devices that can be integrated into such a system. To overcome this,
the Data Lifting Layer converts data from each device to RDF using an XML

Devices

A

SNoMAC

Lifting Engine

Data Alignment

Data Query
Data Management

Template
Library

Data Reasoning

RDF Store

Network Adaptor Layer Data Lifting Layer Semantic Layer

SNoMAC Client

SNOMAC - Semantic Network Monitoring and Control - Integrating UPnP, TR069 and SIXTH devices.

Home View Device View Poople View Network View SBOX Mgt View

Tom's Bedroom Aimee's Bedroom | Master Bedroom

]
Y

Living Room Office

;?‘, .:-,,J E;J @ @ 2 1IN

Figure 1: Conceptual Overview of SNoMAC.

1. Parse partial xmi snippet to
JAXB bindings

2. For Each XML element
2.1 Search for translation

2.2 Run translation

2.3 Insert RDF

Figure 2: Data Lifting Approach.

binding and visitor design pattern approach (illustrated in Figure 2). The lifted
data is inserted into an RDF triple store in the Semantic Layer. This provides
a fast and flexible approach for system designers to create translations from
native device models to RDF.

This data lifting process involves identifying the entities as they are described
in their supported protocol and matching this against an appropriate template
to facilitate translation to RDF. Once this translation has occurred, it can be
passed to the Semantic Layer for storage.

The lifted data can now be aligned with the NetCore model (discussed in
Section 2.1). Alignments are expressed as SPARQL queries, which construct
NetCore instances from the underlying RDF device data. Web-based clients
connect to the SNoMAC server through the Client Manager. Communication
from the server to the client includes device information, action results and event
notifications triggered by changes in the network. The clients communicate back
to the server using “action requests” representing device-specific commands that
are automatically propagated to the designated device, where they are executed.
Users interact with devices by clicking on their graphical representations in the
client interface to bring up a menu of available commands. These commands
include getting and setting device variables (e.g. volume levels) and device-
appropriate actions (e.g. increase/decrease volume).

2.1 Ontologies

In Computer Science, an ontology is described as “a specification of a con-
ceptualization” [9]. Within the context of this paper, the term is used more
specifically to refer to RDFS [10] and OWL [4] data models. These formally
define the classes, properties, individuals and their interrelationships relevant
to a particular problem domain (e.g. networks in an IoT scenario).

SNoMAC is built around the NetCore ontology shown in Figure 3. This

formal OWL 2 ontology is designed to describe arbitrary networks at the highest
level of abstraction, and as such consists of a relatively small number of primary
classes: Network, Node, Link, State and Action.

- ~
-~ ~
-~ ~

networkNodé Eetworijnk

(ObjectProperty) (ObjectProperty)
linkedTo /I nodeTolink \\

“ (ObjectProperty) *
| ===: e o o =~ &
=== AN == linkToNode =~
1
|
1
\

|
ObjectP
connectedTo (=>=>) y, \\ (Objecteroparty) ,’
]
N)

. | P :l
nodeAction actionsNode nodeStatus linkStatus
(ObjectProperty) (ObjectProperty) (ObjectProperty) — (ObjectProperty)

\\ yV; \\ |
\ f . !
$4 W 4
_ —_ actionTemplate
(DataTypeProperty)
7/ N 7 N
| 7 N
actionInput actionOutput |
(ObjectProperty) (ObjectProperty) |
\ / |

~ N
statusTime statusValue

(DataTypeProperty) DataTypeProperty)

\ / I
4 ¥ v v v
xsd:string [xsd:dateTimeJ xsd:string
7 <

arguement\;alue argaementType
(DataTypeProperty) (ObjectProperty)
| |

v v

[xsd:string] [rdfs:Datatype]

Figure 3: Base Classes and Properties of the NetCore OWL Ontology.

The Node and Link classes make up the essential core of the ontology and
are used to represent individuals that constitute network nodes and connections
between them, respectively. Individual Node and Link instances are identi-
fied as members of one or more Networks through the networkNode and net-
workLink properties. Links can be represented as instances of the Link class,
which allows them to be annotated with additional information (e.g., band-
width, isActive). Alternatively, they can also be represented using the symmet-
ric property linkedTo, which allows them to be treated as OWL properties and
thus can leverage optional property characteristics (e.g., symmetry, property-
Chains). The linkedTo property is defined as a sub-property of connectedTo,

which means that a node that is linked To another node is also connectedTo that
node. Unlike linkedTo, the connectedTo property is transitive, meaning that if
nl is connectedTo n2 and n2 is connectedTo n3 then it can be inferred that ni
is connectedTo n3. This captures the distinction between a direct link between
nodes and a path between nodes that may be routed through intervening linked
nodes.

To go beyond basic network topology, the ontology includes State and Action
classes that represent state variables (for Nodes or Links) and executable actions
(for Nodes), respectively. State variables may be read-only or both readable
and writable (i.e. configuration variables). Actions represent parameterised
functions that can be executed on a node, with the actionTemplate representing
the functions call signature.

The NetCore ontology is intended to be extended and specialised to en-
compass various telecommunication networks. It is the inheritance afforded by
the alignment of the upper-level NetCore ontology and the lower level telecom-
munications ontologies that permits applications to deal with specific telecom-
munication devices in a generic fashion, ignoring low-level details until they are
required to invoke some action. The details of the low level models and protocols
are handled by the specific network adapters that employ their own ontologies.
As an example, the base classes and properties for the partial TR069 ontology
developed at Bell Labs for SNoMAC is shown in Figure 4. The UPnP ontology
used in SNoMAC comes from [11], which has been aligned with the NetCore
ontology. An ontology has also been developed for SIXTH, which is discussed
in Section 3.1.3.

2.2 Benefits of a Semantic Approach

Formal ontologies are used in SNoMAC to provide a number of benefits, which
are illustrated in the sections that follow:

e a formal API that can help ensure that programmers interpret the model
consistently through automated consistency checking and a precise defini-
tion of what can be inferred from data;

e hierarchical abstractions that can more easily hide or reveal low-level mod-
elling and implementation details;

e automated inferencing of class and property membership that makes it
trivial to inherit higher abstractions;

e ability to encode certain types of axioms that automatically detect specific
conditions.
2.2.1 Abstraction and Specialisation

Inheritance is the cornerstone of semantic reasoning and is heavily leveraged in
SNoMAC. Simply put, it involves automatically inferring an individual’s class or

Device

]
hasDeviceModel

v

DeviceModel!

isa

ServiceModel ComponentModel
I]

:
]
fashideiClmeant hasModelElement

/!
4 3
ModelElements

isa

T S

[Component] [Object] [Parameterj

Figure 4: Base Classes and Properties of the TR-069 Ontology.

property membership based on an ontology’s class and property hierarchies. For
example, an ontology may state that FemtoCell is a subclass of TR069:Device
and TR069:Device is a subclass of NetCore:Node. If we then state that femto-
celll is a member of the class of FemtoCell then it can automatically be inferred
that femtocelll is both a TR069:Device and a NetCore:Node, even if this infor-
mation is not explicitly stated in the data description of femtocelll. This kind
of subsumption reasoning can also be used to infer property membership as in
the example described in Section 2.1 of how all linkedTo relationships imply a
similar connectedTo relationship.

This form of inheritance reasoning provides the primary mechanism for sup-
porting abstraction and data integration in SNoMAC. By aligning the NetCore
class and property hierarchies with those of the network protocol specific ontolo-
gies, all devices can be treated as NetCore devices regardless of which network
protocol they use. The fact that a low-level device is in fact an abstract Net-
Core device is automatically inferred by the system through the alignment of
NetCore with the specified network ontologies.

2.2.2 Transitivity

As described in the connectedTo example in Section 2.1, a transitive property
allows a reasoner to infer a property relationship between two entities (e.g.,
connectedTo) if they can be related through intermediary entities using the

10

same property. The transitive characteristic of the connectedTo property allows
for minimal specification of node connectivity in the data (specifically only the
direct connections need be provided by means of linkedTo relationships) while
permitting the automatic inferencing of total network connectivity if and when
needed.

2.2.3 Property Chaining

Similar to transitive properties, property chains allow properties to be defined
by defining a path of property connections chained from one entity to another.

The classic example of this is the definition of the relationship uncleOf as
the chaining of the brotherOf and parentOf properties: if Bob is the brotherOf
John and John is the parent of Sue then Bob is the uncleOf Sue. In NetCore, a
property chain is used to relate the property linkedTo to the chained properties
nodeToLink and linkToNode.*

Accordingly, two nodes n! and n2 are automatically inferred to be linked To
each other [that connects the two by the relationships ni1 nodeToLink | and [
linkToNode n2. Because linkedTo is a sub-property of connectedTo, this prop-
erty chain also allows the automatic inferencing of full network connectivity (as
defined by connectedTo) without ever mentioning either linkedTo or connectedTo
in the data representation of the network.

2.2.4 Complex Axioms

It is possible to define complex axioms in OWL from which more interesting
and useful relationships can be inferred. In the following example, a technique
referred to as “man-man” [12] is used to automatically infer actual functional
connectivity (as opposed to the logically stated connectivity of the network
design). Such a relationship can be instrumental in identifying and isolating
network faults.

ActiveThing = isActive some true (1)

ActiveThing C isActiveSelf some sel f (2)

connectedTo o isActiveSelf o connectedTo C activelyConnected (3)
n2 isActive true (4)

nl connectedTo n2 (5)

n2 connectedTo n3 (6)

nl activelyConnectedT o n3 (7)

Figure 5: Axiom Inferences

L Although not graphically depicted in Figure 3 this property chain is defined in the NetCore
OWL ontology.

11

The axioms shown in Figure 5 specify that two nodes are activelyConnected
(line 7) if all of the intervening nodes along the logical path that connects them
(i.e., the connectedTo path) are actually active (line 3). This is accomplished by
creating a property called isActiveSelf that takes on the value of an individual
node in the event that the node is an ActiveThing (line 2). An ActiveThing is
any thing (such as a node) that has the property isActive equal to true (line
1). This isActiveSelf property is an ObjectProperty and as such can be used in
a property chain with connectedTo to define what it means for two nodes to be
activelyConnected (line 3).

Then, whenever a node n2 is know to be active (line 4) and the logical
connections between nl & n2 and n2 & n3 are declared (lines 5 and 6) it can
be inferred that nl and n3 are activelyConnected.

2.3 Device Integration using SNoMAC

To demonstrate the flexibility of the SNoMAC system in incorporating a va-
riety of devices, the management of two radically different TR069 devices was
incorporated into the system. TR069 is a Broadband Forum (formerly known as
DSL Forum) standard for the management of remote devices. The two TR069
devices used in this illustration were a Femto Cellular base station (femtocell?)
and a remote-controlled car. Femtocells were designed for use in a home or
small business to improve localised cellular service and offload bandwidth usage
from macrocells (i.e. traditional cell towers). Both of these devices made use of
the same NetCore abstraction.

TRO69 provides a framework to describe devices in terms of “managed ob-
jects”. Managed objects are logical representations of physical aspects of the
device serialised in XML. Figure 6 shows a snippet of XML data for a femtocell
for the Femto Access Service. This illustrates how capabilities of a TR069 device
may be defined. In this instance, the GPSFEquipped parameter is used to indi-
cate whether or not the Femtocell Access Point (FAP) is equipped with a GPS
receiver. In this example, a number of object and parameter definitions have
been hidden from view. The GPSEquipped parameter is expanded to illustrate
its definition in its entirety.

There are three major parts to this definition that should be noted: the
object description and attributes within the “object” element, the parameters
associated with this objects within the “parameter” element and finally the “ac-
tiveNotify” attribute. The latter specifies whether this device will raise events
when the parameter value changes. The data lifting layer is responsible for
translating the incoming XML data into a TRO069 ontology using the XML
bindings approach.

A second TR069 device was implemented to demonstrate the ability to carry
out actions on the device. A model remote control car had a TR069 model imple-
mented to allow remote management of its electric motor and lights. These were
presented as “Motor”, “Brake” and “Lights” managed objects with a TR069

2http://networks.nokia.com/products/small-cells

12

87 v| <model name="FAPService:2.8" isService="true"s>
8 <parameter name="FAPServiceNumberOfEntries" access="readOnly">@B</parameter>
<object name="FAPService.{i}." access="readOnly" minEntries="0"
maxEntries="unbounded" numEntriesParameter="FAPServiceNumberOfEntries">@</object>
<object name="FAPService.{i}.Capabilities." access="readOnly" minEntries="1" maxEntries="1">
<description>This object contains parameters relating to the hardware capabilities of the FAP device.</description>
<parameter name="GPSEquipped" access="readOnly">
<description>Indicates whether the FAP is equipped with a GPS receiver of not.</description>
<syntax>
<boolean />
</syntax>
</parameter>
<parameter name="MaxTxPower" access="readOnly">@8B</parameter>
<parameter name="SupportedSystems" access="readOnly" activeNotify="canDeny">@B</parameter>
<parameter name="Beacon" access="readOnly" activeNotify="canDeny">@8B</parameter>
</object>
<object name="FAPService.{i}.Capabilities.UMTS." access="readOnly" minEntries="1" maxEntries="1">@B</object>

Figure 6: Snippet from Femto TR069 Specification (TR196).

agent software running on an Arduino controller to interface with the motor
and lighting circuitry on the remote control car. In this case, the car is rep-
resented as a NetCore node, with actions for the motor and lights. As shown
in Figure 7, the state of the car itself can either be on or off, while actions
allow the car to be driven forward or backwards and allow lights and brakes to
be turned on or off. Through the SNoMAC server, a client application can be
informed of changes in the state of the car, in addition to invoking any of the
available actions. A particular implementation of a web-based client application
is discussed in Section 3.

coloff: on
Actions

Metor-Farverd
Moror-bach vard
BraharOn

Bewh a-OM
Uighkz On
LighksOff

Figure 7: Simple TR069 Device Management.

2.4 Intelligent Performance Data Processing for Femto-
cells

The integration of a femtocell into the prototype allows for the illustration of the
intelligent data processing that is fundamental to SNoMAC. During operation,
femtocells (as well as most other network elements) produce many low-level
performance metrics (e.g. number of successful handovers, number of call ini-
tiation attempts) across a range of performance categories (e.g. packet data

13

performance, handover performance) [13, 14]. This Performance Management
(PM) data is periodically captured and stored as XML, either temporarily on
the femtocell or to a network management application for subsequent analysis.
In the case of the femtocell test bed used in the prototype, an XML document
representing a single recording on a femtocell contains 128 numeric values with
a mixture of integer and floating-point numbers.

The “health” status of network nodes (femtocells) can be intelligently in-
ferred from the low level performance management schema in an automated
manner. This is intended to facilitate a scenario whereby network managers or
applications programmers wish to develop simple abstractions of complex under-
lying network data collected from femtocells. Figure 8 illustrates this process.
Firstly, the raw PM data (expressed in XML) is “lifted” into an ontology-based
RDF representation so it can be processed by other semantic tools (step 1).
Based on the lifted metrics, the Key Performance Indicators (KPIs) of the fem-
tocells must be calculated (step 2). Finally, the health class of the femtocells
themselves can be inferred from this data (step 3).

 SE—
Femto Leve Femto Classification
—

3
S

KPI Level
—
2
M)
PM Level
S

1
S

Raw
Counters PM raw data (XML)

——

PM Counter level (RDF)

Figure 8: Femtocell PM Data Processing in a Semantic Context.

Because of the representation as RDF, the latter step can be carried out
using OWL axioms, SPARQL queries or SWRL rules. SPARQL queries have
been found to process this type of classification more efficiently [15].

As an example, a number of range-based classification functions are defined
that determine the health of a femtocell. Figure 9 shows a definition of a High-
Health class (similar classes are possible for MediumHealth and LowHealth).
For simplicity, the names of the KPIs have been anonymised.

A SPARQL query for the HighHealth class can be seen in Figure 10. This
consists of three parts: a construct template containing the inferred rdf:type

14

HighHealth(x) = true if ((80 <= KPI1(x) < 100) and

(80 <= KPI2(x) < 100) and
(80 <= KPI3(x) < 100) and
(80 <= KPI4(x) < 100) and
(80 <= KPI5(x) < 100) and
(80 <= KPI6(x) < 100))

false otherwise

Figure 9: Definition of the HighHealth classification.

triple representing the new classification information, a basic graph pattern
that selects femtocells along with the appropriate KPI data values and a filter
expression to filter only those femtocells that can be classified as HighHealth.

CONSTRUCT { 7femto a :HighHealth . }

WHERE { ?femto :KPI1 ?vl ; :KPI2 ?v2 ; :KPI3 ?7v3 ;
:KPI4 7?v4 ; :KPI5 ?vb ; :KPI6 7v6 .

FILTER(80 <= ?vl && ?7vl < 100 &&

80 <= 7v2 && ?7v2 < 100 &&
80 <= ?7v3 && 7v3 < 100 &&
80 <= ?7v4 && 7v4 < 100 &&
80 <= 7vb && ?7v5 < 100 &&
80 <= ?7v6 && ?v6 < 100) }

Figure 10: HighHealth represented as a SPARQL query

If the data values of a femtocell are in the specified ranges, then a new triple,
classifying the femtocell as HighHealth, is constructed. The fact that the RDF
representation of the underlying devices supports a variety of semantic tools
allows for a wide range of reasoning to occur about the devices, their network
topology and their states, even when such information is not readily available
from the raw data.

3 The SNoMAC Prototype

A SNoMAC prototype has been developed that targets the task of monitor-
ing and controlling a Home Area Network that includes UPnP devices, TR069
devices and an array of heterogeneous sensors managed by SIXTH (discussed
in Section 3.1 below). This prototype is a stepping stone towards achieving
the vision of an Ambient Assisted Living (AAL) environment, where intelligent
decision-making can be carried out based on standardised access to information
about the home [16]. This information can come either directly from UPnP
or TR069-enabled devices or via sensors that are either physically embedded
within the home or gather information from online sources. A user is provided
with a client that automatically reflects the availability of devices, people and
other entities within a home, and that facilitates action requests being sent to
appropriate devices so as to control them.

15

At the lower level, specific use cases that the system can handle include
discovering when new devices are added or removed, remotely getting and set-
ting device state variables, issuing commands to specific devices followed by
processing their results and seamlessly handling the addition of new network
types through the introduction of additional network adapters. The core of
the prototype has been implemented as a node.js® application that connects to
independent network adapters through a Web service API using JSON-LD* to
exchange serialised RDF data about the networked devices. Clients connect to
the server via websockets and pass event-driven messages using JSON-LD.

An RDF datastore and SPARQL engine (based on the node.js module rdfs-
tore®) has been installed in the prototype and loaded with the NetCore ontology.
OWL 2 inference rules have been implemented as SPARQL queries to enable
the reasoning required to support semantics built into NetCore.

SNoMAC - Semantic Network Monitoring and Control

Home View | Device View People View Network View SBOX Mgt View

Tom's Bedroom Aimee's Bedroom | Master Bedroom
Array (0]
- ' - i
States

on/off: on
rate: 10 min > y,
= Actions

F

p : Array(e]

5 >_p __: Object

S0 rese N Toto. T Object

S Office Topzee o
b1

> _proto_: Object

5 ,I;] — !r—l__] Bz | Q| O)] <o irame i | <oaielbd
j : J -) = - i P .
- 4 y.

Figure 11: SNoMAC Prototype Client: Home View.

A desktop web interface for the prototype has been implemented using
HTML5 and JavaScript. The interface has been designed to provide four views
on the network (Home, Device, Network and People). The Home View, which is
shown in Figure 11, depicts the devices distributed across the rooms of a house.
The set of devices depicted by the interface currently includes temperature sen-
sors, lamps, femtocells, WiFi router, a media server, computers, printers and
the car discussed in Section 2.3. The image contains an inset showing the SNo-
MAC console that is used to display the JSON-LD RDF objects relating to the
various devices.

Shttp://nodejs.org
4http://json-1d.org
Shttps://github.com/antoniogarrote/rdfstore-js

16

A context menu is activated by mousing over a device. It permits the viewing
and setting of state variables as well as the invocation of device specific actions.
This can be seen in Figure 11 where a context menu has been activated for
a temperature sensor located in “Tom’s Bedroom”. This indicates two state
variables for the device: one indicates whether the sensor is turned on or off,
while the other shows the rate at which the sensor captures data. Changing
either of these through the submenu in the GUI (indicated by the arrows) will
result in a command being sent back to the server where it is forwarded to the
appropriate network adaptor. In the case of a temperature sensor, this will
ultimately trigger a (re)tasking message to be sent through SIXTH, which will
cause the state of the device to change. An action message can also be triggered
to reset the device, which is also routed through SIXTH in this case.

For other devices connected via different network adaptors, state changes and
action messages are sent through the SNoMAC server directly, as illustrated in
the remote control car example from Section 2.3. In each case, when the state
of the device changes the network adapter pushes the updated state back to the
server and it is passed on to the client where the state of the device changes
accordingly (e.g. in the case of turning off a lamp, it turns the state variable to
“off” and the icon goes dark).

The other views are intended to allow client access to other entities. The
Network View shows the topology of the network, so that the connections be-
tween entities known to the SNoMAC server can be visualised. The People View
is used to indicate the presence of people in various locations. This view and
its implementation is discussed in more detail in Section 3.1 to focus on how
SIXTH augments the capabilities of SNoMAC.

The use of SNoOMAC in such a prototype allows for the intelligent reasoning
about the presence and connectedness of entities to be handled automatically
without the need for user interaction or configuration. Adding and removing
new devices, sensors or people of interest causes the interface to update auto-
matically. Similarly, the framework allows for client applications to easily route
action messages and device state change requests to the appropriate location
based on its ontological specification in the underlying triple store.

3.1 SIXTH Sensor Middleware

SIXTH is an extensible, scalable and intelligent sensor middleware based upon
the Open Services Gateway initiative framework (OSGi)® [5]. SIXTH is targeted
toward dynamic and reconfigurable sensor networks. It provides connection into
both physical (e.g. SunSPOT, Shimmer) and cyber (e.g. Twitter 7, Foursquare
8 Xively?) sensing networks. These sources can be mined in concert to create
a wider context for detected activity. SIXTH has previously been utilised in

Shttp://www.osgi.org/

"http://www.twitter.com

8http://www.foursquare.com

9Provides a web-based gateway to access IoT devices: http://xively.com

17

a variety of application domains, including mobile sensing with Augmented
Reality [17] and personal health monitoring [18].
The primary SIXTH components include:

e A properties-based sensor model for control of and access to sensing de-
vices.

e Adaptors that provide sensor specific implementations to a standardised
interface.

e Higher level APIs for access to SIXTH’s core functionality covering data
access.

e Retasking, notification, security and discovery services.
e Data processing service layers which build upon the APIs.

e Integrated multi-agent system to support in-situ reasoning and wireless
sensor network management.

Within SIXTH, extensibility is provided by allowing for the dynamic addi-
tion of new components to the middleware during runtime. Such components
may include a new adaptor layer. Adaptors are responsible for providing the
communication and translation mechanisms for connection with heterogeneous
data sources. In a similar way to how SNoMAC adopts the adaptor design pat-
tern for internet protocols, SIXTH integrates various sensors and sensor plat-
forms using dedicated adaptors also. Other functionality may be injected at
run-time such as a custom sensor data retention policy (to indicate for how
long and under what circumstances historical sensor data should be retained),
or a new service (e.g. to allow JmDNS-based communication across SIXTH
deployments).

SIXTH encompasses the sensing of data from online resources (cyber-sensing)
as a first-class citizen alongside direct sensing of physical world phenomena. This
provides a more unified view of Sensor Web resources that encompasses data
from multiple disparate sources. Cyber-sensing streams can be dynamically con-
figured and the details and differences between these and their physical sensing
counterparts are hidden from the end user. SIXTH is primarily a gateway-side
middleware (software resides on a host machine). This decision was made to
easily support heterogeneous hardware. As such, even in the case where the
network has been programmed independently, within SIXTH an adaptor can be
defined for that network.

To augment these abilities, efforts have been invested in augmenting SIXTH’s
core benefits with intelligent, agent-driven, sensor network deployments. Exist-
ing work includes running Agent Factory Micro Edition (AFME) directly on
sensor motes to provide in-network intelligence [19], using AFME on the mid-
dleware gateway to react to sensor data [20] and also in the use of intelligent
agents for the autonomic management of the sensor middleware itself [21]. In
some cases, it is important for intelligence to be incorporated towards the edges

18

of the network, on or near the nodes themselves. This includes handling issues
such as coping with limited bandwidth, battery preservation and dealing with
computationally restricted devices [22]. This approach allows for the embedding
of intelligent agents into all levels of the system, which is consistent with the
vision of SNoMAC.

I Applications I

1 SIXTH Resource Access
-Query Push Data *
Management Services
Temp=31.23,
oxY) Pipes for Data
Transformation

Data Broker
Notifiable _
Service Factory
D;t;g:::y f Assigns Query
Pipe Adaptor

Filtered Data

e s M e
apioy ’A\ Adaptors Factories
C e | ——
Sensing
Sensor Node B Adaptors

g Push Data

Resource Registration

Inform

Sensing Network Adaptors

Foursquare
API

Figure 12: The SIXTH Sensor Middleware System Architecture.

The SIXTH system architecture can be seen in Figure 12. Within this high
level architecture several important concepts are to be seen. The Data Broker
module is collectively responsible for distribution and management of sensor
data. The discovery sub-system provides notification of resource status (e.g.
node timeout, adaptor creation etc.) and management notice dissemination
based upon credentialed security policies. The service registry provide access to
service modules (e.g. sensor transformation services, aggregation services etc.).

Whereas SNoOMAC supports devices that communicate using various IoT
communications protocols, SIXTH augments these capabilities with a unified
mechanism by which a multitude of heterogeneous sensing devices, both physical

19

and cyber, can be utilised. SIXTH can be deployed in a distributed fashion on a
wide variety of devices, and so provide access to built-in sensors (in the case of
mobile devices), sensors attached via USB, wireless sensor networks accessible
through a base-station node, sensors that communicate using other protocols
(e.g. Bluetooth) and web-based resources that are made available through cyber
sensors using HTTP.

3.1.1 SIXTH Integration with SNoMAC

To aid with the development of the SNoMAC prototype, it was necessary to use
Arduino and Foursquare adaptors to connect networks of these sensor types to
the SIXTH middleware. Foursquare was used specifically for the “People View”
component of the prototype, which can be seen in Figure 13. This informs the
system of where relevant users are through data from real-time Foursquare user
sensors. Foursquare users of interest to the system are monitored by these cyber
sensors, which report updated user and location information for new ‘check-
ins’. For the Home View of the SNoMAC prototype discussed in Section 3, the
representation of lights is implemented by means of Arduino devices equipped
with light sensors. A further Arduino device was used for to enable discovery
and control of the remote controlled car.

SNoMAC - Semantic Network Monitoring and Control

Home View Device View People View Network View SBOX Mgt View

®

Figure 13: SNoMAC Prototype Client: People View.

20

© 0 N e oW N R

A e e
R I S O Oy S O}

3.1.2 SIXTH/SNoMAC Communication Bridge

To create a communication bridge between SIXTH and SNoMAC, a software
component was developed conforming to the SNoMAC Network Adapter API.
The Restlet!'? engine for Java 5 was used to enable RESTful communication.

GET /nodes

returns an collection of nodes with 1) ids, 2) their RDF
types (as defined by a specific network ontology) and 3) the
current value of the node’s "status" variable (as defined
by NetCore)

e.g. [

{"@id":"n1","@type": "upnp:mediaServer", "ncStatus":"yellow"},
{"@id":"n2","@type":"upnp:light", "ncStatus":"green"},
{"@id":"n3","@type": "upnp:light", "ncStatus":"green"}

]

Figure 14: Snippet of the SNoMAC RESTful API.

Figure 14 shows an extract from the SNoMAC RESTful API which spec-
ifies the JSON to be returned to show all nodes which are held by a SIXTH
deployment acting as a SNoMAC network adaptor. Listing 1 shows the SIXTH
implementation of this method within the Restlet component. References to
the current SIXTH adaptor set are retrieved and using the NodeDiscovery com-
ponent all the Sensor Nodes are extracted and passed out for abstraction and
serialization into JSON format. This helps to illustrate how the programming
framework associated with SIXTH facilitates the rapid development of client
systems to access its components, in this case sensor nodes.

Listing 1: Accessing the Tasking Service

public class NodesResource extends ServerResource {

@Get ("text | json")

public String represent () {

IDiscovery discovery = SIXTHMonitor.getDiscovery(

new Credentials ("SnoMac", "SnoMac", UUID.randomUUID ()));
ISixthDeployment locDep = discovery.getLocalDeployment ();
List<ISensorNetworkAdaptor > adap = locDep.getSensorAdaptors();
NodeDiscovery nodeDiscovery = new NodeDiscovery(adap);

return SIXTHSerializer.toJSON(nodeDiscovery.getSensorNodes());

}
}

Ohttp://wuw.restlet.org/

21

3.1.3 SIXTH Ontology

A SIXTH sensor device ontology was developed in alignment with NetCore,
which can be seen in Figure 15. In this model, both queries and sensors are
defined as having optional “Modality” and “Location” properties. For a sensor,
this represents the sensing modality capability of the sensor and the location of
the sensed modality respectively. When used as properties of a query, these rep-
resent the requirements imposed on the requested sensor data, in terms of their
modality and location. Similarly, these requirements can specify a particular
source sensor also, which indicates that the sensor is capable of providing data
that will satisfy the query. This property is inferred using a custom SPARQL
rule.

* @ Modality \" Location

+
Sensor

Figure 15: SIXTH Sensor Ontology.

Since SIXTH treats all sensors as equal citizens, regardless of origin and form,
the same ontology facilitates the use of both physical and cyber sensors. The
initial development effort took less than three days and resulted in a complete
working system capable of passing the entire suite of API tests except action
commands. While this work represents just one case study, it does provide
support for the claim that the addition of new network models/protocols to
SNoMAC, thereby leveraging the semantic benefits that accrue, is a relatively
simple and straightforward process.

A significant advantage associated with using SIXTH alongside SNoMAC is
that it provides access to a wide variety of heterogeneous, commodity sensing
platforms in a uniform and consistent manner. The use of a Foursquare cyber
sensor illustrates the added capability of accessing data made available through
web APIs, which is not a feature native to SNoMAC. By providing the commu-
nications bridge between the SNoMAC prototype server and SIXTH, it provides
access to a sensor network that can be distributed over a wide area, connecting
to a multitude of sensing capabilities. Finally, since SIXTH supports intelligent
agents at several levels, this opens the possibility of supporting autonomic re-
configuration of the sensor network, thus augmenting the intelligent reasoning
capabilities of SNoMAC itself.

22

4 Related Work

The utility of ontologies within sensor-based information systems was estab-
lished by Liu and Zhao [23]. In this work, an ontological abstraction is used
to facilitate the optimisation of collecting, storing and processing data. It also
allows for resource-aware execution of service composition and the building of a
sensor information hierarchy. Further work by Whitehouse et al. [24] augments
this by allowing end users to pose declarative queries that can be applied to
semantic interpretations of sensor data, thus creating much more powerful and
flexible access to data above working merely with raw streams.

A number of projects have carried out various types of reasoning using se-
mantic descriptions of devices expressed in various languages. The work of
Tran et al. [25] focuses on the dynamic composition of sensors and sensor data
transformation services to create workflows that transform raw sensor data into
data specified by user requests. This work focuses on the underlying semantic
ontology [26], which acts as the main reasoning engine for enabling the dy-
namic composition of the various resources. OWL ontologies are combined with
SPARQL and description logic to achieve the dynamic composition.

Broring et al. [27] have undertaken similar work from the perspective of the
Open Geospatial Consortium’s (OGC) Sensor Web Enablement (SWE) initia-
tive [28] and present a framework that uses semantically-enabled matchmak-
ing to allow plug-and-play usage of sensors within a network using SensorML
standards. To enable this they have focused on the semantic matchmaking
functionality and offer a system to facilitate the declarative description of the
sensor interfaces, which allows the advertised and requested characteristics of
the system to be specified in a formal language supporting inferencing.

Further initiatives have been documented within the context of OGC stan-
dards. OpenSensorHub!! is an open source software stack built on SWE and
IoT standards. It promotes the seamless integration of all kinds of sensors into
sensor webs while providing a suite of common services for sensor management,
for example, discovery, visualisation and so forth. Cloud-Hosted Real-time Data
Services for the Geosciences (CHORDS) [29] is a project of the NSF EarthCube
initiative: this project seeks to deliver a real-time cyber-infrastructure that en-
ables the seamless acquisition and distribution of sensor data via the cloud.
Standardised data and metadata formats, including XML and JSON, are essen-
tial to achieving the CHORDS vision of broadening access to real-time data for
the geosciences community.

It is also important to note that these semantic technologies are seen by
many researchers as key enablers for the Internet of Things (IoT). Soldatos et
al. propose a semantic IoT platform built on the SSN for the semantic interop-
erability it enables [30], and this approach is echoed in the advocacy of Sheth
et al. [31]. Desai et al. continue this trend by using semantic annotation, built
on the SSN ontology, for interoperability and automated conversion between
different messaging protocols such as XMPP, CoAP and MQTT [32].

Hhttps: //opensensorhub.org/

23

Maarala et al. demonstrate the use of semantic IoT data for reasoning
on actionable knowledge [33]; this research is of particular relevance to this
discussion on SNoMAC in that it considers characteristic loT-specific challenges
of resource constraints, dynamics, scalability, and real-time processing.

Similarly, Wu et al. propose a semantic Web of Things (WoT) framework
for Cyber Physical Systems (CPS) to address the complex relationships between
devices where dynamic composition and collaboration are the norm [34]. In
each of these situations, ontology-based semantic reasoning is seen as the means
to securing interoperability between diverse devices by facilitating intelligent
reasoning about an underlying network to achieve higher-level application goals.

Although SNoMAC leverages a similar semantic approach (using NetCore
ontologies, RDF stores and SPARQL), what sets it apart and marks it as novel
is the aim to present the relevant semantic information to the end user through
the interface as per Figure 11. This allows the end user to navigate the network
at the appropriate level of abstraction, and allows them to make well informed
changes at the best possible level. In addition, SNoMAC does not assume pre-
existing ontologies that have been manually created. Instead, the Data Lifting
Layer discussed in Section 2 uplifts the known information about the devices
into RDF, after which it is further aligned with the NetCore model.

In terms of its outlook and aims, perhaps the most similar work to that
presented in this paper is that of Aloulou et al. [35]. They also present an OSGi-
based framework that is focused on enabling plug and play sensor integration
with a semantic reasoning engine. In this case, the usefulness of the system is
demonstrated within an Ambient Assisted Living scenario. This framework is
designed to operate in a dynamic environment, where new sensors and devices
can be added as the scenario evolves with the patient’s changing needs, and
mainly focuses on the reasoning engine supporting this dynamic environment in
a seamless manner. As with the above-referenced works, this also depends on a
pre-existing ontology being present (represented in “Notation 3” (N3)).

While the above has focused on more general technological research, the true
benefits of these semantic approaches comes from their wide applicability in a
variety of smart scenarios. Case studies include parking garage management [24,
23], oil spills [36], real-time geoscience [29] and ambient assisted living [35].

At the building level, semantic technologies have been leveraged to allow
sensor data from various sources to be integrated, ingested, and reasoned about
for automated building monitoring [37]. Similarly, Ahmadi-Karvigh et al. har-
ness semantic reasoning for activity monitoring, so as to lead to greater energy
efficiency within buildings [38].

Smart cities also provide a platform to demonstrate the potential of semantic
technologies. Bischof et al. use the Semantic Sensor Network (SSN) ontology
to promote interoperability in this context [39]. Also within the smart cities
domain, D’Aniello et al. present a semantic-driven architecture for supporting
cross-domain decision-making at operational, tactical and strategic levels [40].

SIXTH can be considered to be a gateway-side middleware platform. This
means that it does not run on sensor nodes themselves, but instead communi-
cates with individual sensors and devices through gateways into wireless sensor

24

networks. Numerous sensor middleware platforms exist, and in-depth discus-
sions of these can be found in [41, 42].

As discussed in Section 3.1, one particular feature that sets SIXTH apart
from the majority of sensor middleware platforms is its ability to provide intel-
ligent reasoning through integration with agent programming languages. Some
other middleware offerings also support intelligent reasoning. Agilla [43] and
In-Motes [44] both allow software agents to be injected into the sensor network
to run the nodes on behalf of the user. These agents provide autonomous con-
trol of the network by behavioural evaluation in response to shifting constraints
(e.g. lessening battery life).

Generic Role Assignment (GRA) targets the issue of network configuration,
particularly as it pertains to the large scale [45]. Within such networks the user
cannot realistically assign tasks to each node. Nodes in the GRA systems tune
their behavioural set autonomously, informed partly by the status and capabil-
ities of neighbouring nodes. To accomplish this, nodes expose their capabilities
and remaining resources to aid co-ordination in accomplishing the application
goal.

While agent technologies have been used to at the fringes of the sensor
network, higher level frameworks may also utilise such technology to provide
control and co-ordination. One example of this is IrisNet [46], within which the
use of agents is two-fold. One set of agents manage the collection of sensor data
while another set is responsible for the storage and organisation of data across
a distributed database.

Clearly, intelligence is seen as a desirable property for many middleware plat-
forms. The principal feature of SIXTH that sets it apart from these offerings is
that it is intended to support heterogenous sensor types, and also be extensible.
This extensibility allows for the addition of new adaptors at runtime that can
dynamically add new sensor types to the system without requiring a shutdown.

A related approach to intelligent agents is the smart objects framework de-
scribed by Lépez et al. [47]. This paradigm has much in common with agent-
based reasoning. The key features of a smart object lie in their ability to make
decisions regarding their own actions and communicate collaboratively with
other smart objects [48].

5 Evaluation and Future Work

Recent work has focused on augmenting SIXTH in terms of its core functional-
ity so as to deliver the practical but seamless approach to heterogeneous device
discovery envisaged by SNoMAC. Three broad categories of evaluation have
resulted from this endeavour. Firstly, its versatility and extensibility are illus-
trated by extensions that have been made to the core platform. An extension
to SIXTH to develop cyber adaptors for the gathering of data from online re-
sources such as Twitter and Facebook is described in [49]. SIXTH has also been
extended and ported to Android devices, where it operates as an in-network
middleware [50]. This approach is similar to the usage of GSN [51] as the basis

25

for the MOSDEN [52] middleware for Android. In addition to its integration
with SNoMAC, SIXTH has also been linked with an intelligent Agent-Oriented
Programming (AOP) runtime platform [21]. In this scenario the data gathered
by SIXTH-connected devices provides the intelligent software agents with an
abstraction of their physical environment. In each of these situations, SIXTH
has been demonstrated to adapt easily to new data sources and additional sub-
systems.

Secondly, SIXTH has been deployed in several application scenarios, which
demonstrates its capability of servicing real-time, real-world applications. One
such scenario is WAIST [53], which utilises Wireless Sensor Network technology
in the detection of illegal waste disposal during transit. Herein, SIXTH acts as
the data provider for the reasoning engine, which detects anomalous movement
of waste materials to provide an indication of improper disposal. SIXTH has
also been used as a data provider and reconfiguration engine in two home energy
management systems [54, 55]. Additionally, it has been used as a framework for
citizen sensing, leveraging the ubiquity of modern smart phones and wearables
to provide detailed observations of remote physical locations [56].

The third evaluation focus is on code quality metrics and user evaluations [41].
The static analysis of the code base yielded favourable results when compared
to that of two similar middleware offerings: GSN [51] and WSNWare [57]. The
metrics utilised are long established and specified in [58]. A user evaluation
study using the System Usability Scale (SUS) also resulted in SIXTH obtain-
ing positive scores when evaluated in accordance with work done by Bangor et
al. [59] and by Sauro [60].

In terms of future work, it is planned to continue developing the UPnP and
TRO069 ontologies to increase the level of coverage over the functionality of the
devices based on those models/protocols. It is also intended to further explore
the extent to which the SNoMAC approach can be seamlessly applied to other
network models/protocols (e.g. ZigBee, Bluetooth, Bonjour and OMA-D). This
future work will include experiments to help quantify the level of effort required
to add new network adapters to SNoMAC. Network analysis using semantic
techniques will also be explored more deeply.

The prototype presented in this paper featured a web-based client to allow
a user to interact with the system. However, since this client interacts with
the SNoMAC prototype server through a RESTful interface, this architecture
is extensible to a wide variety of user interface paradigms to facilitate human
control over a device network. Further investigation is required as to the form
these interfaces may take, including the possibility for mobile/tablet and aug-
mented reality interfaces. A further extension is the integration of an intelligent
management system to implement techniques to relieve the user of the responsi-
bility of direct control over devices. In this way, we move from a system-centric
paradigm to a human-centric paradigm. This type of system is a natural ex-
tension of SNoMAC, as the semantic descriptions of the configuration, state
and capabilities of heterogeneous devices are presented in a consistent, uniform
manner.

26

6 Conclusion

The rapid evolution of communication networks presents challenges that require
a new approach to network monitoring and control. Semantic technologies offer
the means to encapsulate network details at various levels of abstraction making
it easier to develop solutions that can adapt to changing data models and pro-
tocols. Ontological descriptions of data sources and devices have shown great
promise in the literature in allowing systems to reason about their resources to
satisfy user needs. With appropriate ontologies, such reasoning can be intelli-
gently performed within the systems themselves, without the requirement for
direct human intervention. SNoMAC, and the NetCore ontology on which it is
predicated, provide an example of how this can be effectively achieved today, at
least in the domain of home area networks. Furthermore, the uplift approach
taken eliminates the need for the prior existence of semantic descriptors, as
these are generated when needed, and can then be further enhanced by loading
existing semantic resources associated with these descriptors.

Incorporating the SIXTH sensor middleware widens the range of available
devices yet further, beyond telecommunication devices and the IoT into the
realm of physical sensing devices and cyber sensors. Furthermore, the combi-
nation of the intelligent capabilities of both SNoMAC and SIXTH provides a
powerful basis upon which a variety of next generation human-centric applica-
tions can be developed. In combination, they provide an end-to-end platform
that encompasses the ability to gather data from heterogeneous devices that can
be added and removed at runtime; the automated uplifting of device information
into a queryable ontology that reflects hierarchical abstractions; the provision
of intelligent reasoning capabilities through agent programming languages; and
the offering of a user interface to allow users to explore and manage all aspects
of their systems.

ACKNOWLEDGMENT

This work was part funded by Science Foundation Ireland under grant number
07/CE/11147 and also by the Industrial Development Authority of Ireland.

References

[1] Cisco Systems . Cisco Visual Networking Index: Forecast and Methodology,
2016-2021 2017.

[2] Harris S, Seaborne A, Prud’hommeaux E. SPARQL 1.1 Query Language
http://www.w3.org/TR/sparqll1l-query/ 2013.

[3] Horrocks I, Patel-Schneider PF, Boley H, Said T, Grosof B, Dean M.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML
http://www.w3.org/Submission/SWRL/ 2004.

27

[4]

[5]

[13]

[14]

[15]

W3C OWL Working Group . OWL 2 Web Ontology Language Document
Overview (Second Edition) https://www.w3.org/TR/owl2-overview/ 2012.

O’Hare GMP, Muldoon C, O’Grady MJ, Collier RW, Murdoch O, Carr
D. Sensor Web Interaction International Journal on Artificial Intelligence
Tools. 2012;21:1240006.

Contributing Members of the UPnP Forum . UPnP Device Architecture
1.0 http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.1.pdf 2008.

Cruz T, Simoes P, Batista P, Almeida J, Monteiro E, Bastos F. CWMP
Extensions for Enhanced Management of Domestic Network Services in
Proceedings of the 2010 IEEE 35th Conference on Local Computer Net-
worksLCN ’10(Washington, DC, USA):180-183IEEE Computer Society
2010.

Matheus CJ, Boran A, Carr D, et al. Semantic Network Monitoring and
Control over Heterogeneous Network Models and Protocols Active Media
Technology. 2012;7669:433—-444.

Gruber TR. A translation approach to portable ontology specifications
Knowledge Acquisition. 1993;5:199-220.

Brickley D, Guha RV. RDF Vocabulary Description Language 1.0: RDF
Schema http://www.w3.org/TR/rdf-schema/ 2004.

Togias K, Goumopoulos C, Kameas A. Ontology-Based Representation of
UPnP Devices and Services for Dynamic Context-Aware Ubiquitous Com-
puting Applications International Conference on Communication Theory,
Reliability, and Quality of Service. 2010;0:220-225.

Tsarkov D, Sattler U, Stevens M, Stevens R. A solution for the Man-
Man problem in the Family History Knowledge Base in Proceedings of the
6th International Conference on OWL: Ezxperiences and Directions-Volume

529:69-78 2009.

Kreher R. UMTS Performance Measurement: a Practical Guide to KPlIs
for the UTRAN Environment. Wiley 2006.

Technical Standard 3GPP 32.403. Telecommunication Management. Per-
formance Management (PM). UMTS Performance Measurements and Com-
bined UMTS/GSM http://www.3gpp.org/ftp/Specs/html-info/32403.htm
2005.

Boran A, Bedini I, Matheus CJ, Patel-Schneider PF, Bischof S. An Empir-
ical Analysis of Semantic Techniques Applied to a Network Management
Classification Problem in Proceedings of the 2012 IEEE/WIC/ACM In-
ternational Joint Conferences on Web Intelligence and Intelligent Agent
Technology - Volume 01:90-96 IEEE Computer Society 2012.

28

[16]

[17]

[18]

22]

23]

[26]

[27]

Van Den Broek G, Cavallo F, Wehrmann C. AALIANCE Ambient Assisted
Living Roadmap. Amsterdam, The Netherlands: 10S Press 2010.

Kroon B, Gorgii L, Russell S, et al. SIXTH: Cupid for the Sensor Web
in Proceedings of the Seventh Annual Irish Human Computer Interaction
Conference (iHCI 2013) 2013.

Carr D, O’Grady MJ, O’Hare GMP, Collier RW. SIXTH: A Middleware
for Supporting Ubiquitous Sensing in Personal Health Monitoring in Pro-
ceedings of the 3rd International Conference on Wireless Mobile Commu-
nication and Healthcare (MobiHealth 2012)(Paris, France):421-428 2013.

Tynan R, Muldoon C, O’Hare GMP, O’Grady MJ. Coordinated Intelli-
gent Power Management and the Heterogeneous Sensing Coverage Problem
Comput. J.. 2011;54:490-502.

Lillis D, O’Sullivan T, Holz T, Muldoon C, O’Grady MJ, O’Hare GMP.
Smart Home Energy Management in Recent Advances in Ambient Intelli-
gent and Context-Aware Computing (Curran K. | ed.):155-168 IGI Global
2015.

Lillis D, Russell S, Carr D, Collier RW, O’Hare GMP. Intelligent Decision-
Making in the Physical Environment in Ambient Intelligence (Augusto JC,
Wichert R, Collier R, Keyson D, Salah AA, Tan AH. , eds.);8309 of Lecture
Notes in Computer Science:235-240Springer International Publishing 2013.

O’Grady MJ, O’'Hare GMP, Chen J, Phelan D. Distributed network in-
telligence: A prerequisite for adaptive and personalised service delivery
Information Systems Frontiers. 2008;11:61-73.

Liu J, Zhao F. Towards semantic services for sensor-rich information sys-
tems in 2nd International Conference on Broadband Networks (BroadNets

2005):967-974 2005.

Whitehouse K, Zhao F, Liu J. Semantic streams: A framework for declar-
ative queries and automatic data interpretation Microsoft Research. 2005.

Tran KN, Compton M, Wu J, Gore R. Short Paper: Semantic Sensor Com-
position in Proceedings of the 3rd International Workshop on Semantic
Sensor Networks 2010.

Compton M, Neuhaus H, Taylor K, Tran KN. Reasoning about Sen-
sors and Compositions in Second International Semantic Sensor Networks

Workshop:33-48 2009.

Broring A, Maué P, Janowicz K, Niist D, Malewski C. Semantically-
Enabled Sensor Plug and Play for the Sensor Web Sensors. 2011;11:7568—
7605.

29

28]

[29]

[30]

Botts M, Percivall G, Reed C, Davidson J. OGC Sensor Web Enable-
ment: Overview and High Level Architecture in GeoSensor Networks (Nit-
tel S, Labrinidis A, Stefanidis A. , eds.);4540 of Lecture Notes in Computer
Science:175-190Springer Berlin / Heidelberg 2008.

Kerkez B, Daniels M, Graves S, et al. Cloud Hosted Real-time Data Services
for the Geosciences (CHORDS) Geoscience Data Journal. 2016;3:4-8.

Soldatos J, Kefalakis N, Hauswirth M, et al. Openiot: Open source internet-
of-things in the cloud in Interoperability and open-source solutions for the
internet of things:13-25Springer 2015.

Sheth A. Internet of things to smart iot through semantic, cognitive, and
perceptual computing IEEE Intelligent Systems. 2016;31:108-112.

Desai P, Sheth A, Anantharam P. Semantic gateway as a service architec-
ture for iot interoperability in Mobile Services (MS), 2015 IEEE Interna-
tional Conference on:313-3191EEE 2015.

Maarala AI, Su X, Riekki J. Semantic reasoning for context-aware Internet
of Things applications IEEE Internet of Things Journal. 2017;4:461-473.

Wu Z, Xu Y, Yang Y, Zhang C, Zhu X, Ji Y. Towards a Semantic Web
of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning
Framework for Cyber-Physical System Sensors. 2017;17:403.

Aloulou H, Mokhtari M, Tiberghien T, Biswas J, Kenneth L. A Semantic
Plug&Play Based Framework for Ambient Assisted Living in Impact Anal-
ysis of Solutions for Chronic Disease Prevention and Management (Don-
nelly M, Paggetti C, Nugent C, Mokhtari M. , eds.);7251 of Lecture Notes
in Computer Science:165-172Springer Berlin / Heidelberg 2012.

Broring A, Echterhoff J, Jirka S, et al. New Generation Sensor Web En-
ablement Sensors. 2011;11:2652-2699.

Ploennigs J, Schumann A, Lécué F. Adapting semantic sensor networks for
smart building diagnosis in International Semantic Web Conference:308—
323Springer 2014.

Ahmadi-Karvigh S, Ghahramani A, Becerik-Gerber B, Soibelman L. Real-
time activity recognition for energy efficiency in buildings Applied Energy.
2018;211:146-160.

Bischof S, Karapantelakis A, Nechifor CS, Sheth AP, Mileo A, Barnaghi P.
Semantic modelling of smart city data in Proceedings of the W3C Workshop
on the Web of Things 2014.

D’Aniello G, Gaeta M, Orciuoli F. An approach based on semantic stream
reasoning to support decision processes in smart cities Telematics and In-
formatics. 2018;35:68-81.

30

[41]

[42]

[43]

Carr D. The SIXTH Middleware: sensible sensing for the sensor web. PhD
thesisUniversity College Dublin (Ireland) 2015.

Ngu AH, Gutierrez M, Metsis V, Nepal S, Sheng QZ. IoT middleware: A
survey on issues and enabling technologies IEEE Internet of Things Jour-
nal. 2017;4:1-20.

Fok CL, Roman GC, Lu C. Agilla: A mobile agent middleware for self-
adaptive wireless sensor networks ACM Transactions on Autonomous and
Adaptive Systems (TAAS). 2009;4:16.

Georgoulas D, Blow K. In-motes: an intelligent agent based middleware for
wireless sensor networks in Proceedings of the 5th WSEAS International
Conference on Application of Electrical Engineering:225-231 2006.

Romer K, Frank C, Marrén PJ, Becker C. Generic role assignment for wire-
less sensor networks in Proceedings of the 11th workshop on ACM SIGOPS
European workshop:2ACM 2004.

Gibbons PB, Karp B, Ke Y, Nath S, Seshan S. Irisnet: An architecture for
a worldwide sensor web Pervasive Computing, IEEE. 2003;2:22-33.

Lépez TS, Ranasinghe DC, Harrison M, McFarlane D. Adding sense to the
Internet of Things Personal and Ubiquitous Computing. 2012;16:291-308.

Lépez TS, Ranasinghe DC, Patkai B, McFarlane D. Taxonomy, tech-
nology and applications of smart objects Information Systems Frontiers.
2011;13:281-300.

Murdoch O. Middleware and Programming Support Bridging the Cyber-
Physical-Social Divide. PhD thesisUniversity College Dublin 2014.

Gorgu L, Kroon B, Campbell AG, OHare GMP. Enabling a Mobile, Dy-
namic and Heterogeneous Discovery Service in a Sensor Web by Using
AndroSIXTH in Ambient Intelligence (Augusto JC, Wichert R, Collier R,
Keyson D, Salah A, Tan AH. , eds.);8309 of Lecture Notes in Computer
Science:287-292Springer International Publishing 2013.

Aberer K, Hauswirth M, Salehi A. Global Sensor Networks in School Com-
put. Commun. Sci., Ecole Polytechnique Federale de LausanneLausanne,
Switzerland: EPFL 2006.

Perera C, Jayaraman PP, Zaslavsky A, Christen P, Georgakopoulos D.
Mosden: An internet of things middleware for resource constrained mo-
bile devices in System Sciences (HICSS), 2014 47th Hawaii International
Conference on:1053-1062IEEE 2014.

Russell S. Real-time monitoring and validation of waste transportation us-
ing intelligent agents and pattern recognition. PhD thesisUniversity College
Dublin 2014.

31

[54]

[55]

[60]

O’Sullivan T, Muldoon C, Xu L, O’Grady M, O’Hare GMP. Deployment of
an autonomic home energy management system in 18th IEEE International
Symposium on Consumer Electronics (ISCE 2014) 2014.

Kazmi AH, O’Grady MJ, O’Hare GMP. Energy Management in the Smart
Home in Ubiquitous Intelligence and Computing, 2018 IEEE 10th Interna-
tional Conference on and 10th International Conference on Autonomic and
Trusted Computing (UIC/ATC):480-486IEEE 2013.

O’Grady MJ, Muldoon C, Carr D, Wan J, Kroon B, OHare GMP. In-
telligent Sensing for Citizen Science Mobile Networks and Applications.
2016;21:375-385.

Viani F, Robol F, Polo A, Rocca P, Oliveri G, Massa A. Wireless architec-
tures for heterogeneous sensing in smart home applications: Concepts and
real implementation Proceedings of the IEEE. 2013;101:2381-2396.

Martin R. OO design quality metrics An analysis of dependencies. 1994.

Bangor A, Kortum PT, Miller JT. An Empirical Evaluation of the Sys-
tem Usability Scale International Journal of Human—Computer Interac-
tion. 2008;24:574-594.

Sauro J. Measuring usability with the system usability scale (SUS) 2011.

32

