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ABSTRACT: An Irish Rail intercity train was instrumented for a period of one month with inertial 

sensors. In this paper, a novel calibration algorithm is proposed to determine, with reasonable accuracy, 

vehicle model parameters from the measured vehicle response data. Frequency domain decomposition 

(FDD) is used to find the dominant frequencies in the captured data. Randomly chosen 2 km data 

segments are chosen from a number of datasets, thereby averaging out the effects of variations in track 

longitudinal profile, track stiffness, signal noise and other unknowns. The remaining dominant peaks 

are taken to be vehicle frequencies. An optimisation technique known as Cross Entropy is used to find 

vehicle mass and stiffness properties that best match modal vehicle eigenfrequencies identified in the 

frequency analysis. Finally, the calibrated vehicle is run over a measured track profile and the resulting 

model output is compared to measured data to validate the results. 

 

Keywords: Calibration; Measurement; Frequency Domain Decomposition; Railway Vehicle 

Dynamics; Cross Entropy; Optimisation. 

 

 

 

 

 

1. INTRODUCTION  

Measurement of the inertial response of in-service trains has the potential to provide real-time railway 

track condition information to owners of the track asset. The increase in the frequency of measurement 

provided by using in-service trains can aid maintenance planning and reduce the cost of repair through 

timely intervention. As a result, there is increased interest in this area of research recently 



(Malekjafarian et al. 2019; Weston et al. 2015). Xiao et al. (2020) proposed a Kalman filter algorithm 

for identifying railway track profile using vehicle dynamic responses. De Rosa et al. (2019) employed 

vehicle responses in the time and frequency domains to estimate the lateral and cross alignment in a 

railway track.  

Numerical models are used to predict the interaction between the vehicle, railway track and bridges to 

investigate a variety of problems (Malekjafarian et al. 2017). Zhai et al. (2009) give fundamentals on 

the topic while Lou (2007) presents a complete analytical description of a 2D model using finite 

elements. Other authors use the same 2D numerical model to investigate ground vibrations (Francois et 

al. 2012; Kouroussis and Verlinden 2013) and bridge response under dynamic load (Azimi 2011). In 

the technique presented by OBrien et al. (2017), it is hypothesised that numerical vehicle models can 

be used in an inverse technique to find track profile. The simulated ‘measured’ response of a railway 

vehicle is used as input to an optimisation technique where a track longitudinal profile is inferred by 

finding output from the numerical vehicle model that best fits the measured data. The actual track profile 

can be inferred through this technique, enabling fault detection through comparison with the past 

profile. It is also hypothesised that this method can be used to find railway bridge damage (Quirke 

2017). A new Kalman filter algorithm is proposed by Xiao et al. (2020) to identify the track irregularities 

of railway bridges using responses measured on in-service trains. The model includes bridges as the 

high-speed rail lines in China mainly consist of bridges. Xu et al. (2020) developed a fully coupled 

model for vehicle-track-subgrade interaction where the system interactions are simultaneously 

deliberated and solved using mathematical matrix formulations. They have improved the computational 

stability and infinite-length-computation problem with their model. 

To enable these methods in practice, accurate calibration of a numerical vehicle model representing the 

in-service train is required. Several researchers (Xu and Zhai 2019a, 2019b; Zhai et al. 2013a; Zhai et 

al. 2013b) have developed 3D numerical models in recent years. Using 3D models seems to be required 

when the problem of train track bridge interaction is investigated. However, when only train track 

interaction is considered, use of a 2D model reduces the computational effort involved in executing the 

thousands of simulations required to return an inferred profile. Nguyen et al. (2014) compare the 



dynamic responses for both 2D and 3D models and conclude that the 2D vehicle response provides a 

‘sufficiently accurate assessment’ of the vertical response in the 3D model. In practice, numerical 

models are generally created using theoretical values for properties which are often unconfirmed in 

reality. Numerical models should be, in so far as possible, a true representation of how mass, stiffness 

and damping are distributed in the physical model and should provide an accurate representation of the 

physical response of the vehicle and infrastructure (Absi and Mahadevan 2016). Modelling errors can 

be categorised into three types: a) Model form errors - i.e. due to incorrect assumptions regarding the 

actual physics of the system, particularly when the response exhibits non-linear behaviour. b) 

uncertainty in model parameters and c) model order errors as a result of discretisation of complex 

systems (Mottershead and Friswell 1993). Throughout the literature, linear 2D car models are used to 

estimate the response of railway vehicles with good comparison to measured responses generally 

achieved, for instance see (Ferrara 2013; Sun and Dhanasekar 2002). Therefore the multi-body vehicle 

model appears to satisfy the criteria for a) and b) above. This leaves uncertainty in model parameters as 

the most likely cause of error in numerical railway vehicle/track models. 

In typical vehicle modal identification experiments, particularly in the automotive industry, excitement 

of the vehicle is achieved by means of a shaker or some other measurable input. The response of the 

vehicle is measured and, through frequency analysis, the known input is eliminated from consideration. 

Frequency response functions are employed to identify the modes of the vehicle. It is difficult to use 

this technique on railway vehicles due to their size and heavy damping properties (Ahmadian 2005). 

Operational Modal Analysis (OMA) is a modal identification method commonly used in situations 

where the system input or excitation frequency cannot be determined (L. Zhang et al. 2005). Calibration 

of railway vehicle properties through experimental measurement is investigated by Ribeiro et al. (2013). 

Frequencies and mode shapes of 13 vibration modes of an Alfa Pendular railway vehicle are found 

through dynamic testing. Genetic algorithms are used in an iterative method to determine 17 parameters 

of a representative 3D numerical vehicle model. Good correlation is found between calibrated model 

outputs and experimental measurement. The authors use a finite-element vehicle model so that local 

vibration modes can be identified. Excitation of vibration modes is achieved by means of the impact 



loading effect of people jumping in the car body. Li et al. (2007) use the Rao-Blackwellized particle 

filter method to estimate vehicle parameters to aid condition monitoring. Diana et al. (2002) compare 

the simulated results of a rigid multi-body vehicle and flexible finite element model before comparing 

both to measured data. A better match to the finite element model is achieved in the car body and it is 

concluded that this model type should be considered for the car body when assessing passenger comfort. 

Bogie flexible modes were found above 25 Hz. Non-contact laser vibrometers are used in another study 

to determine car body bending modes using a 1/10th scale model of a metro vehicle (S. Popprath et al. 

2006). Ahmadian (2005) uses both peak-picking and Frequency Domain Decomposition (FDD) to 

identify rigid and flexible car body vibration modes in the 0–10 Hz range using measured data from 20 

accelerometers. Stribersky et al. (2002) use experimental modal analysis to validate a virtual vehicle 

system, achieving good agreement between measured and simulated data. However, there is a 

significant challenge where the train is not available for full experimental testing and only the data 

measured from the train running on track is available for calibration. This is illustrated in Figure 1.  

 

Figure 1. The research gap addressed in this paper. 

This paper presents a novel method whereby the measured inertial response of a railway vehicle can be 

used, with prior knowledge of some vehicle mechanical properties, to calibrate a 2D numerical vehicle 

model. In this case, due to operational requirements the train was not made available for sufficient time 

to conduct a full experimental modal analysis, meaning OMA was required for calibration. Budget 

constraints and limitations on possible sensor locations limited the scope of the testing and the number 

of sensors used. To address these issues, a new method is proposed using an adapted FDD technique to 

identify dominant frequencies in the measured train data. A numerical model of train track interaction 



is developed using the finite element method. An in-service train was instrumented using several inertial 

sensors. The train measurements were recorded over a period of two month when the train was in service 

between Dublin and Belfast. A large data set including the in-service measurements was used to 

calibrate the train numerical model. It is assumed that by analysing a large amount of data from different 

sections of track, the effect of variability in vehicle speed and variation in track profile and track 

stiffness is averaged out and the vehicle frequencies begin to dominate the frequency spectrum. The use 

of a large number of datasets also reduces the effect of signal noise. Several data samples are selected 

from the data set and subjected to a filtering process. Then, the proposed FDD algorithm is used for 

vehicle frequency identification. Cross Entropy (CE) optimisation (Rubinstein and Kroese 2013) is 

employed to find the vehicle properties following frequency identification. This algorithm is chosen 

due its robustness when solving multi-variate problems and its insensitivity to local minima. CE uses 

Monte Carlo simulation to generate a population of trial solutions from a mean and standard deviation 

for each variable being sought. Finally, the proposed algorithm is validated by comparing the recorded 

data to those generated using the calibrated model.  

The paper is structured as follows. Firstly, the 2D car vehicle model used in modal analysis and in the 

validation is described in section 2. A description of the field testing and measurement apparatus is 

given in section 3. Following this, some samples of the raw data, frequency analysis and justification 

of filtering techniques used to de-noise the data are presented in section 4. Vehicle frequency 

identification through FDD analysis and results are presented in section 5. Next, using the identified 

vehicle frequencies, the results of a Cross Entropy optimisation to identify matching 2D vehicle model 

eigenfrequencies is presented in section 6. Finally, in section 7 the outputs of a simulation where the 

calibrated vehicle is run over a measured track are compared to measured data. 

2. MODEL DESCRIPTION 

A 2D car model, shown in Figure 2, is used in the calibration process to find vehicle eigenfrequencies 

which match observed frequencies in the measured data. Following calibration, the model is run over a 

section of track with a measured profile, the outputs of which are compared to the measured data in 

order to validate the model. The main car body is represented by a rigid bar with mass, 𝑚𝑣, and mass 



moment of inertia, 𝐽𝑣. Similarly, the two vehicle bogies are modelled as rigid bars with masses (𝑚𝑏1, 

𝑚𝑏2) and mass moments of inertia  (𝐽𝑏1, 𝐽𝑏2). Bogie connections are located 𝐿𝑣1 and 𝐿𝑣2 from the car 

body centre of mass for bogie 1 and bogie 2 respectively. The vehicle axles are modelled as point masses 

(𝑚𝑤1, 𝑚𝑤2, 𝑚𝑤3, 𝑚𝑤4) and are spaced at 𝐿𝑏1 and 𝐿𝑏2 apart for bogie 1 and bogie 2 respectively. 

Primary and secondary suspension systems are represented by springs (𝑘𝑝, 𝑘𝑠) and dampers (𝑐𝑝, 𝑐𝑠). 

Nonlinearities are not considered in either suspension system. 

Figure 2. 2D Car model. 

The model has 10 degrees-of-freedom (DOF); however, when the vehicle is coupled to the track, the 

axle masses are rigidly connected to the DOF of the rail (Lin and Trethewey 1990). This method of 

coupling leaves 6 vehicle DOF to be considered: vertical translation, 𝑢𝑣, and rotation, 𝜃𝑣, of the car 

body and vertical translation (𝑢𝑏1, 𝑢𝑏2) and rotation (𝜃𝑏1, 𝜃𝑏2) of the two individual bogies. Each of 

these DOFs has an associated mode of vibration: car body bounce, car body pitch, bogie bounce and 

bogie pitch. More detailed descriptions of the vehicle model, including equations of motion and model 

matrices, can be found in the following texts (Azimi 2011; Lei and Noda 2002; Sun and Dhanasekar 

2002). 

Vehicle model eigenfrequencies are determined by calculation of eigenvalues and eigenvectors through 

modal analysis of the vehicle mass and stiffness matrices. Due to similarities in the mass and stiffness 



properties of the bogies, it is assumed that the model can be accurately described by 4 eigenfrequencies: 

bounce and pitch of both the car body and the bogie. 

3. DESCRIPTION OF TEST  

In December 2015 Irish Rail procured the installation of sensors on a Hyundai-Rotem InterCity fleet 

car 22337. Set 37, a 5-car train set, was chosen as it was configured to run in both the Republic of 

Ireland and Northern Ireland Railways. This configuration setting meant that the train would remain on 

the Dublin-Belfast line until its next maintenance examination, providing the maximum repeatability 

possible for the short duration of the test. 

The sensor locations are shown in Figure 3. The sensors were attached to the trailer (non-powered) 

bogie to avoid contamination of signals with noise due to frequencies associated with the power train. 

A tri-axial accelerometer and tri-axial gyrometer were attached to the Electronic Train Protection and 

Warning System (E-TPWS) unit, the closest possible mounting location to the centre of gravity of the 

bogie frame (see Figure 4(a)). The inertial measurement unit used to record the bogie angular velocity 

was capable of measuring accelerations but an additional accelerometer was actually used to record the 

accelerations. 

A uniaxial accelerometer, measuring vibration in the vertical direction, was placed on the underside of 

each axle box, in line with the centreline of the axle (See Figure 4(b)). The properties of all sensors used 

in the test are provided in Table 1. The system sampling frequency was variable but set to 500 Hz for 

the majority of the testing. 



 

Figure 3. Sensor installation locations on trailer bogie (dimensions in mm). (CAD drawing sourced from Tokyu Car 
Corporation). 

Table 1. Properties of sensors 

Sensor Location Type Name Range 

Axle box – Bounce Uniaxial Accelerometer Disynet-DA2201-050g ±50 g 

Bogie – Bounce Triaxial Accelerometer Disynet-DA3802-015g ±15 g 

Bogie – Pitch Triaxial Gyrometer Crossbow VG400CC-200 ±200 °/s 

a) b) c) 

 
 

  

Figure 4. a) Bogie mounted gyrometer and accelerometer; b) Uniaxial accelerometer clamped to axle box; c) Data logger 

(HBM Somat eDAQ lite) housed in disused train coupler box in close proximity to sensors 

The system power supply was taken from a spare circuit breaker on the train, avoiding the need for 

batteries. A back-up battery was provided to ensure the system remained in stand-by mode if the main 

train power was switched off. A Global Positioning System (GPS) antenna recorded the vehicle position 

at a sampling frequency of 5 Hz.  

The system was configured to begin recording once train movement was detected by the GPS. The data 

was collected and stored in a HBM Somat eDAQ-lite data logger located in a disused coupler box 

underneath the train in close proximity to the trailer bogie (see Figure 4(c)). The logger was capable of 



storing 32GB of data with the aid of an external storage system. A secure Wi-Fi router enabled operators 

to sit on board and download recorded data from the eDAQ on a weekly basis. Testing was carried out 

on the Dublin-Belfast line from 13 January to 3 February, 2016. The trainset made 57 journeys on the 

line during this period. The Irish Rail network is measured in miles and yards however, distances are 

presented in km throughout this paper. A conversion factor of 1 mile = 1.60934 km can be used if 

required. 

4. SAMPLE DATA AND FILTERING 

In this section samples of raw data are presented in the time domain and analysed in the frequency 

domain to determine the appropriate filtering actions required prior to FDD analysis. A sample of an 

unfiltered bogie angular velocity signal is shown in Figure 5(a). There is clearly an offset and drift in 

the raw signal as it does not oscillate about 0 as expected. This problem may be associated with 

temperature changes due to the exposed siting of the sensor (Weston et al. 2015). In addition, an issue 

with the sensor calibration arising from the offset of the sensor from the bogie pivot point was identified 

post-measurement. A 6th order Butterworth high-pass filter is applied to remove content below 0.25 Hz, 

thereby removing this drift. In addition, a calibration factor of 23.9, determined through a post-

measurement calibration test, is applied to the data to account for the offset from the bogie centre of 

mass. The measured output is converted from °/s to rad/s to match numerical model units for 

comparison to numerical model output as detailed in section 7. On the other hand, the recorded vertical 

acceleration signals provided reliable and correct response. A sample of the raw data is given in Figure 

6(a). 



 

Figure 5. Bogie angular velocity signal (pitch velocity) as a function of distance from the start point (Dublin); a) Unfiltered 
signal; b) Band-pass filtered signal (0.25-25 Hz) 

 

Figure 6. Bogie vertical acceleration signal as a function of distance from the start point (Dublin); a) Unfiltered signal; b) 
Band-pass filtered signal (0.25-25 Hz) 



The power spectral densities (PSD) of a number of signals are shown in Figure 7. Three datasets are 

chosen through the track section between 68.4 km and 69.2 km. Datasets with distinct differences in 

vehicle mean forward velocity are chosen in order to separate out frequencies in the data related to this 

parameter. In Figure 7(a) it can be observed that a frequency of 77.64 Hz exists in all 3 datasets, meaning 

that data contained within the signal at this frequency is independent of vehicle velocity. This frequency 

may be associated with the Electronic Train Protection and Warning System (E-TPWS) receiver to 

which the gyrometer was attached. 

Figure 7(b) shows the PSD of three samples of bogie vertical acceleration for varying vehicle forward 

velocity. A detailed view of the results between 45 Hz and 60 Hz is shown in Figure 7(c). It can be 

observed that the dominant frequency in the 3 datasets increases from 50.29-57.62 Hz. These 

frequencies are clearly dependent on vehicle forward velocity as the peaks are different for each speed. 

These dominant peaks are associated with the frequency of track sleeper spacing. Irish Rail prefabricate 

39 m track panels with sleepers spaced at 0.7 m centres. The welds joining these panels introduce 

imperfections in the rail and this can be observed as regular spikes in the raw data. It is observed that 

there is low power in the 25–50 Hz region of both spectra. 

From the literature, typical vehicle eigenfrequencies range from 0.5–15 Hz. Therefore a 6th order 

Butterworth bandpass filter (0.25–25 Hz) is applied to all data channels prior to FDD analysis. The 

chosen band retains the frequencies of interest, removes drift/error, the influence of the track sleeper 

spacing and other unwanted noise. Examples of filtered signals for bogie angular velocity and vertical 

acceleration are shown in Figure 5(b) andFigure 6(b) respectively. 



 

Figure 7. Power spectral density of captured signals. a) Bogie angular velocity 0–100 Hz; b) Bogie vertical acceleration 0–
100 Hz; c) Detailed view of bogie vertical acceleration 45–60 Hz. 

5. VEHICLE FREQUENCY IDENTIFICATION 

Following the filtering process, a frequency analysis is carried out to determine the dominant vehicle 

frequencies. Frequency domain decomposition is an OMA technique used to identify modal parameters 

(natural frequencies and mode shapes) of a structure from measured responses which are typically 

recorded at several locations on the structure at the same time (see Figure 8(a)) (Brincker et al. 2001). 

Sensors are typically placed in pre-determined locations to identify the mode shapes of the structure. It 

applies singular value decomposition (SVD) to the power spectral density (PSD) matrix of the measured 

responses (Malekjafarian and OBrien 2014). If applied to measured output from a bridge for example, 

stochastic excitations due to traffic loading or wind are filtered out and frequencies associated with the 

bridge, common to all data segments, are identified. 

When applied to data measured on the bogie of an in-service train, the section of data chosen for analysis 

is associated with a section of track. In this case the influence of the track is not random and has an 

influence on all data channels. Therefore frequencies associated with the track may obscure the 

frequencies associated with the vehicle which are typically in the same range. In addition, as the forward 

velocity of the vehicle changes, the vehicle will be excited at different frequencies.   

Typical 2D vehicle model eigenfrequencies are listed in Table 2, calculated by applying modal analysis 

using published vehicle properties for a variety of 2D vehicle models found in the literature. Most 



vehicle types found are either locomotives or unpowered coaches. No 2D vehicle model information 

for a diesel multiple unit similar to the Irish Rail 22000 train could be found. It can be observed that the 

typical frequencies for the vehicle modes of vibration range between 0.52–1.36 Hz for car body bounce, 

0.67–2.07 Hz for car body pitch, 3.85–8.55 Hz for bogie bounce and 3.38–12.50 Hz for bogie pitch. 

  



Table 2. Eigenfrequencies of 2D railway vehicle models (in Hz) 

Vehicle Source 
Body 

Bounce 

Body 

Pitch 

Bogie 

Bounce 

Bogie 

Pitch 

ETR500Y Locomotive Liu et al. (2009)  0.65 0.72 4.83 5.91 

ETR500Y Coach Liu et al. (2009)  0.52 0.67 3.85 6.07 

Eurostar Kouroussis et al. (2011)  1.36 2.07 8.55 12.50 

ICE2 Locomotive Domenech et al. (2014) 1.21 1.48 6.59 5.01 

ICE2 Coach Domenech et al. (2014) 0.67 0.81 5.84 8.31 

Manchester Benchmark Iwnick (1998)  1.07 1.28 7.47 11.68 

Pioneer – R Antolin et al. (2013)  0.63 0.72 4.57 5.71 

Pioneer – M Antolin et al. (2013) 0.69 1.24 3.94 3.38 

Shinkansen Lin et al. (2005)  0.76 1.03 6.62 8.27 

TGV Lin et al. (2005)  0.74 1.22 6.74 8.20 

Unidentified Diana et al. (2002)  1.02 1.38 5.71 9.07 

 

The method employed to determine vehicle eigenfrequencies from the measured data, is a type of 

‘segmental’ FDD, where input data is sampled from different sections of track and from multiple 

datasets. This random selection method is illustrated in Figure 8(b). Track profile, stiffness and vehicle 

speed will vary in the different data segments allowing the vehicle frequencies to dominate the 

frequency spectrum. Singular values output from the FDD analysis can therefore be more confidently 

associated with the vehicle.  

 

Figure 8. FDD Methodology; a) Traditional FDD: data sampled over same time period from a number of channels; b) 
Segmental FDD: data sampled randomly from multiple datasets, in this case multiple train trips. 

This segmental FDD method is used here to identify vehicle eigenfrequencies. The signal samples, each 

2 km in length, are randomly selected from 30 datasets. It was not recorded whether these segments 

were from straight or curved sections of track. Given this uncertainty, it is important to note that the 



approach may not work well when track is curved. Each dataset contains six measured output channels 

giving the response of the vehicle bogie and axles over a 90 km section of the Dublin-Belfast railway 

line. The analysis is repeated a number of times for each mode of interest. The results of the FDDs are 

then summed, further filtering out frequencies not associated with the vehicle. The number of FFD 

results used in each analysis are listed in Table 3. 

  



Table 3. Number of FDD results used in analysis 

Analysis No. of Sensors No. of FDDs Summed 

Axle 1 Bounce 2 20 

Axle 2 Bounce 2 20 

Bogie Bounce 1 50 

Bogie Pitch 1 50 

System (All Bounce) 5 20 

Singular values for the frequency range of interest produced from FDD analysis of vertical acceleration 

measured on axle 1 and axle 2, are shown in Figure 9(a) and (b) respectively. The dominant frequencies 

in these spectra are 7.46 Hz for axle 1 and 7.71 Hz for axle 2. Both of these frequencies can be found 

across a plateau in the bogie vertical acceleration singular values shown in Figure 9(c). A dominant 

peak of 6.53 Hz remains when the frequencies associated with axle bounce are not considered. There is 

also a significant peak occurring at 5.45 Hz. 

Singular values for bogie angular velocity about the Y-axis (pitching) is shown in Figure 9(d). There is 

a dominant peak occurring at 4.31 Hz. The bogie rigid pitch mode is expected to be present in the 

accelerometer bounce spectrum due to the offset of the sensor from the bogie centre of gravity. 

Additional frequencies may be due to flexible bending modes in the bogie frame itself however it is 

impossible to confirm this without the installation of additional sensors. 



 

Figure 9. Sum of singular values from FDD analysis of 30 datasets (2 km signal segments). a) Axle 1 vertical acceleration; 
b) Axle 2 vertical acceleration; c) Bogie vertical acceleration; d) Bogie angular velocity.  

The frequencies identified as being the most likely to be related to the vehicle and their specific modes 

are summarised in Table 4. It is assumed that these dominant frequencies are the rigid body vibration 

modes of the vehicle. These values are used as target frequencies to find vehicle parameters that return 

a 2D numerical model with matching eigenfrequencies. 

Table 4. Summary of dominant vehicle frequencies 

Mode Frequency (Hz) 

Car Body Bounce 1.08 

Car Body Pitch 2.19 

Bogie Bounce 6.53 

Bogie Pitch 4.31 

 

6. DETERMINATION OF VEHICLE PARAMETERS FOR 2D MODEL 

6.1 Vehicle properties from train manufacturer 

As described in Section 3, inertial sensors were attached to the bogie of an in-service Irish Rail train, a 

Hyundai-Rotem 22000 series vehicle. A selection of vehicle properties are known to be within certain 

ranges following analysis of information gathered from the vehicle manufacturer. These properties 



include vehicle body mass (which can vary due to passenger load, fuel tank load, water tank load, and 

foul tank load), bogie mass, primary suspension properties, secondary suspension properties and some 

information on primary dampers.  

It is acknowledged that properties for the primary dampers appear to be bi-linear, and the stiffness and 

damping of the air springs comprising the secondary suspension system are highly non-linear in nature. 

The properties of this active suspension system are varied according to the position of the vehicle main 

body relative to the bogie frame and air is pumped into or released from the air spring to increase or 

decrease the internal pressure accordingly. 

Due to uncertainty in the values of all stated vehicle properties and the uncertainty in using a 2D model 

to characterise a 3D vehicle, an optimisation technique is used to find the best-fit properties. Uncertainty 

in possible property values is varied according to the confidence in the value which is influenced by 

factors such as its linear or non-linear nature. Upper and lower limits on the parameter trial values are 

specified to account for this uncertainty and to avoid the generation of unrealistic estimates. 

Vehicle properties gathered from manufacturers’ drawings and technical specifications are summarised 

in the tables below. Table 5 provides a breakdown of the assumed contribution of various mass 

components to the mass of the vehicle car body. There are no records of patronage or tank loading 

available for the duration of the test. Therefore loading estimates are required within the ranges stated 

in the table. Manufacturers’ values for other required vehicle properties, and ranges based on 

uncertainty in the values, are listed in Table 6. 

Table 5. Mass properties of car body 

Contribution Mass at full 

capacity 

(kg) 

Range  

(Low) 

Mass  

(Low) 

(kg) 

Range  

(High) 

Mass  

(High) 

(kg) 

Tare Load Condition 35 032 - 35 032 - 35 032 

Passenger (54 × 80 kg)  4 320 25 % 1 080 75 % 3 240 

Wheelchair  300 0 % - 100 % 300 

Luggage  188 25 % 47 75 % 141 

Fuel tank  1 612 25 % 403 75 % 1 209 

Waste tank  650 25 % 163 75 % 488 

Water tank  500 25 % 125 75 % 375 

Total 42 602  36 850  40 644 

 



Table 6. Manufacturers’ vehicle properties and uncertainty ranges 

Component Value 

 

Range 

(Low) 

Value 

(Low) 

Range 

(High) 

Value 

(High) 

Trailer bogie mass (kg) 3 087 90 % 2 778 125 % 3 859 

Drive bogie mass (kg) 2 916 90 % 2 624 125 % 3 645 

Primary suspension spring constant 

(N/m) 
465 000 95 % 441 750 125 % 581 250 

Primary suspension piled rubber 

spring constant (N/m) 
245 000 85 % 208 250 125 % 306 250 

Primary suspension damping 

constant (Ns/m) 
29 400 - - - - 

Secondary suspension air spring 

constant – Inflated (N/m) 
360 000 75 % 270 000 150 % 540 000 

Secondary suspension air spring 

damping (Ns/m) 
*45 000 - - - - 

* Value for secondary suspension air spring damping taken from literature [9] 

6.2 Calibration through optimisation 

In this section, an optimisation technique is used to find those vehicle properties that generate vehicle 

eigenfrequencies that most-closely match the dominant frequencies. Cross Entropy (CE) optimisation 

is used here to generate a population of trial combinations of the vehicle properties from vector means 

and standard deviation. An ‘elite set’ of well-performing parameters is identified and its mean and 

standard deviation used to create a new generation of parameters. The process continues through several 

generations until convergence.  

In this case, the six parameters influencing the vehicle mass and stiffness matrices are chosen as 

variables for the optimisation. Initial mean values, standard deviations, and upper and lower uncertainty 

limits for each of the parameters are listed in Table 7. The initial mean value is taken as the stated value 

of the property, as indicated on component drawings provided by the train manufacturer (listed in Table 

5 Table 6). Initial mean values for the car body and bogie mass moment of inertia, are randomly chosen 

values based on typical values found in the literature. Initial values for standard deviation are chosen to 

reflect the uncertainty in the stated value of the parameter and are also influenced by its typical order 

of magnitude. 

Table 7. Vehicle parameters - initial values for mean, standard deviation and range 

Vehicle 

Parameter 

Unit Initial 

mean 

(σ) 

Initial 

Standard 

Deviation (µ) 

Lower Limit Upper Limit Convergence 

Range 

(±) 
% Value % Value 

𝑚𝑣 kg 38 747 103 95 % 36 850 105 % 40 644 50 

𝐽𝑣 kg m2 611 000 105 - - - - 1 000 

𝑚𝑏 kg 3 087 103 90 % 2 778 125 % 3 859 25 



𝐽𝑏 kg m2 3 500 104 - - - - 25 

𝑘𝑝 N/m 2 840 000 106 92 % 2 600 000 125 % 3 550 000 5 000 

𝑘𝑠 N/m 720 000 106 75 % 540 000 150 % 1 080 000 5 000 

A population of 500 trial solutions are generated for each vehicle parameter using the vector mean and 

standard deviation. Distributions are truncated within the range of the limits. The parameter values in 

each trial solution are used to calculate mass and stiffness matrices for the vehicle. A modal analysis is 

carried out to calculate vehicle eigenfrequencies. An objective function, 𝑂, is used to rank each trial 

solution according to how well they fit to the target frequencies: 

𝑂 = (𝑓𝑣𝑏 − 𝑓𝑣𝑏
° )

2
+ (𝑓𝑣𝑝 − 𝑓𝑣𝑝

° )
2

+ (𝑓𝑏𝑏 − 𝑓𝑏𝑏
° )

2
+ (𝑓𝑏𝑝 − 𝑓𝑏𝑝

° )
2

 (1) 

where 𝑓𝑣𝑏, 𝑓𝑣𝑝, 𝑓𝑏𝑏, 𝑓𝑏𝑝 are the eigenfrequencies of the car body bounce, car body pitch, bogie bounce 

and bogie pitch respectively. Target eigenfrequencies determined in the FDD analysis are denoted with 

the superscript ‘°’. The lowest 10% of objective function values are used to define the elite set of vehicle 

parameters. The elite set is then used to update the vector mean and standard deviation and an updated 

population of trial values is generated for the next generation. The optimisation technique iterates until 

the convergence value, 𝐶𝑔, the sum of the differences between consecutive vehicle parameter means, 

(defined in Equation (2)), falls below a threshold. The convergence threshold value is taken as 1% of 

the sum of the convergence range values listed in Table 7, in this case, a value of 111. 

𝐶𝑔 =  |𝜎𝑚𝑣,𝑔 − 𝜎𝑚𝑣,𝑔−1| + |𝜎𝐽𝑣,𝑔 − 𝜎𝐽𝑣,𝑔−1| + |𝜎𝑚𝑏,𝑔 − 𝜎𝑚𝑏,𝑔−1| + |𝜎𝐽𝑏 ,𝑔 − 𝜎𝐽𝑏 ,𝑔−1|

+ |𝜎𝑘𝑝,𝑔 − 𝜎𝑘𝑝 ,𝑔−1| + |𝜎𝑘𝑠,𝑔 − 𝜎𝑘𝑠,𝑔−1| 
(2) 

where 𝑔 is the generation number. Following satisfaction of the convergence criterion, the optimisation 

restarts. This is carried out to ensure that premature convergence to an incorrect solution has not taken 

place. The population of estimates for the first iteration following a restart is generated using the mean 

value from the previous iteration and the initial standard deviation. Restarts continue until all vehicle 

parameters are found consecutively within the convergence range stated in Table 7. 

The optimisation is executed 10 times and results are averaged. Table 8 lists the resulting vehicle 

eigenfrequencies found in each run. The inferred vehicle parameters found in each run are listed in 

Table 9.  



Table 8. Vehicle eigenfrequency targets and results. 

 

 

  

Run Body 

Bounce 

Body 

Pitch 

Bogie 

Bounce 

Bogie 

Pitch 

𝒇𝒗𝒃
°  = 1.08 𝒇𝒗𝒑

°  = 2.19 𝒇𝒃𝒃
°  = 6.53 𝒇𝒃𝒑

°  = 4.31 

1 1.08 2.19 6.53 4.31 

2 1.08 2.19 6.53 4.31 

3 1.07 2.19 6.53 4.31 

4 1.08 2.19 6.53 4.31 

5 1.07 2.19 6.53 4.31 

6 1.08 2.19 6.53 4.31 

7 1.08 2.19 6.53 4.31 

8 1.07 2.19 6.53 4.31 

9 1.08 2.19 6.53 4.31 

10 1.07 2.19 6.53 4.31 



Table 9. Optimised vehicle parameter results. 

Run 𝒎𝒗 (kg)  𝑱𝒗 (kg m2) 𝒎𝒃 (kg) 𝑱𝒃 (kg m2) 𝒌𝒑 (N/m) 𝒌𝒔 (N/m) 

1 36 851 563 743 3 905 9 996 2 771 415 998 708 

2 36 852 564 818 3 899 9 972 2 765 009 1 001 119 

3 36 851 555 866 3 921 10 075 2 793 281 982 377 

4 36 852 563 712 3 925 10 057 2 788 522 997 787 

5 36 851 552 341 3 936 10 130 2 808 581 976 691 

6 36 853 566 315 3 922 10 039 2 783 245 1 002 765 

7 36 853 567 182 3 909 9 991 2 770 168 1 005 658 

8 36 851 552 355 3 926 10 106 2 801 895 973 514 

9 36 852 567 039 3 905 9 981 2 767 279 1 005 466 

10 36 851 556 992 3 923 10 077 2 793 843 983 675 

Average 36 852 560 342 3 910 10 024 2 779 145 991 748 

In all cases the mass of the car body converges to the minimum allowed by the range. This is at the 

limit of what would be considered realistic. The mass centre of gravity is assumed to be at the 

geometrical centre of the rigid bar representing the car body which is unconfirmed in reality and could 

introduce inaccuracies. Moreover, the mass of the car body is uncertain due to variability in the 

passenger numbers and fuel loads especially. The distribution of the seated passengers affects the centre 

of gravity and hence the response of the vehicle. The convergence of this parameter to the limit of its 

range would suggest that the car body mass is lower than the assumed range. However, this contravenes 

anecdotal evidence regarding vehicle passenger numbers and fuel loads. This tendency to an unrealistic 

result may be due to the inaccurate identification of the car body bounce target frequency found through 

the FDD analysis. This could be solved by improving the design of the band-pass filter so that the power 

of frequencies close to the cut-off frequency are not lowered significantly to hide a possible alternative 

car body bounce frequency. An additional sensor installed in the car body would have also been 

beneficial. 

The mass of the bogie increases approximately 20% above its initially stated mass. There are some 

additional equipment attached to the bogie such as the E-TPWS which would add to the stated mass. 

However the inferred value for the bogie mass would appear to be greater than expected. This increase 

in value may also be explained by assumptions made in the numerical modelling of the suspension. 

Suspension properties in a numerical model are generally considered to be massless and are not 

considered in the manufacturers’ stated mass. Good agreement is found with stated manufacturers’ 

values for primary stiffness. The value for secondary stiffness features the most variation between 



restarts. This may be due to the high nonlinearity of this property. Nonetheless, the inferred value is in 

a range typically used in 2D linear representations of secondary suspension systems found in a number 

of sources, for example in (Iwnick 1998; Lei and Zhang 2010). 

The progression of the optimisation technique through the generations is shown in Figure 10 for ‘Run 

1’. The population of estimates are represented as a range of dots for each generation. Each heavy black 

line represents the population mean value for each parameter throughout the 112 generations. It can be 

seen that there is initially a lot of variability (high standard deviation). As the elite sets are identified 

and used to generate new generations, the standard deviations tend to reduce.  

The sum of the differences between consecutive vehicle parameter means throughout the optimisation 

for this run is illustrated in Figure 11. To prevent premature convergence, the process is restarted at, for 

example, generation no. 27. In this run, four restarts are required before the parameter values converge 

to the criterion required.  

 

Figure 10. Cross Entropy optimisation for vehicle parameters (Run 1). a) Car body mass; b) Bogie mass; c) Car body mass 
moment of inertia; d) Bogie mass moment of inertia; e) Primary stiffness; f) Secondary stiffness. 



 

Figure 11. Optimisation convergence value vs generation number (Run 1). 

7. VALIDATION TEST ON TRV PROFILE 

To access the accuracy of the inferred mechanical properties of the vehicle, this section compares 

recorded signals to simulated responses. Due to the complexity of railway vehicle dynamics and 

vehicle-track interaction, it is beneficial to validate the simulation output from the vehicle models 

against the on-track measurements (Carlbom 2001). A 404 m (quarter-mile) section of track on the 

Dublin-Belfast railway line was used to verify the numerical response from the calibrated vehicle. This 

section of track is situated on a straight through a rock cutting and is therefore an area of assumed good 

subgrade strength. Trains generally travel at full line speed (144 km/h) through the section which is 

located from 68.54–68.94 km. 

The track longitudinal level, shown in Figure 12, was measured by the Irish Rail Track Recording 

Vehicle (TRV) on the 4th April, 2016. The track longitudinal profile is an average of the left and right 

longitudinal profile in the D1 wavelength range (3–25 m) measured in accordance with EN13848 

(EN13848-1 2003). The profile was measured approximately 2 months after the instrumented train 

collected data on this railway line; therefore the assumed level of the track at the time of data collection 

is represented here. According to Irish Rail records, no works were undertaken on this section of line 

in the time between data collection and measurement by the TRV.  



 

Figure 12. Track Longitudinal Profile (D1) as measured by TRV, 4th April 2016. 

The vehicle model is run over this section of track. No track model is considered in the interaction, i.e. 

the track profile is deemed to be supported by an infinitely stiff track. The average measured train 

velocity is used as the constant vehicle velocity in the simulation. The bogie vertical acceleration and 

angular velocity numerical outputs are compared to the actual measured data in Figure 13. A fair match 

is found between the numerical and measured signals.  

The power spectral density plots for the bogie angular velocity and bogie vertical acceleration signals 

presented in Figure 13 are shown in Figure 14. Only fair agreement is found between the measured and 

simulated outputs; however there are clearly corresponding peaks of similar magnitude in the 0–10 Hz 

frequency range for both measurements. The differences between the signal power are larger for the 

angular velocity which may be a result of inaccuracies arising from the need to apply a sensor calibration 

factor to the raw data in order to account for the sensor offset. 

 



 

Figure 13. Comparison of measured data and output from calibrated vehicle run over track profile: a) Bogie angular 
velocity; b) Bogie vertical acceleration. 

 

Figure 14. Power spectral density of measured data and output from calibrated vehicle run over track profile; a) Bogie 
angular velocity, 0–25 Hz; b) Bogie vertical acceleration, 0–25 Hz. 

In spite of the fair correlation between the measured vehicle response and the calibrated numerical 

response within the track section considered, the calibrated vehicle is successfully used to infer track 

longitudinal profiles. Figure 15 shows a sample result from this work. A track longitudinal profile, 



inferred through optimisation from measured vehicle response, is compared to a level survey undertaken 

on a section of track between 78.0 km and 78.2 km on the Dublin-Belfast railway line.  

The optimisation approached proposed by OBrien et al. (2018) is employed here to infer the track profile 

from the vehicle responses. This is an inverse technique in which the train inertial measurements are 

used to find the longitudinal track profile that generated the vibration. In this method, CE optimisation 

is used to find track longitudinal profile from the measured inertial response of the train. A population 

of trial track longitudinal profiles is generated for both axles on the leading bogie of the vehicle model. 

Numerical outputs, generated by running the vehicle over the profiles in the population of estimates, 

are compared to measured data to find an elite set of profiles. This set is used to improve the population 

of estimates until the method converges to the solution. The details of the process of inferring the track 

profile from the vehicle responses are given in (OBrien et al. 2018; Quirke et al. 2017).  The profiles 

have been filtered between the wavelengths of 3–25 m. A good estimation of most changes in track 

level is found however there is a poor match in elevation. This proves that the method has good potential 

and has benefitted from the calibration exercise described in this paper. 

 

Figure 15. Comparison of track filtered track level survey and filtered inferred track longitudinal profile. 

8. SUMMARY AND CONCLUSIONS  

Accurate estimation of vehicle parameters in idealised numerical models is essential for the generation 

of realistic outputs. In this paper, an experimental calibration of a 2D numerical vehicle model is carried 



out to match the measured responses of a railway vehicle. Multiple inertial sensors were installed on an 

Irish Rail intercity train for a period of 1 month.  

Following a filtering process, segmental FDD analysis is used to determine the dominant frequencies 

common to different datasets from randomly selected segments of data, each 2 km in length. By 

choosing signals from a number of datasets, the effects of noise, rail profile and other excitations are 

filtered out and the rigid modes associated with the vehicle dominate. 

The vehicle rigid body frequencies identified in this process are used in an optimisation technique to 

calibrate a 2D rigid body vehicle model. Six parameters are found in the optimisation which matches 

the numerical vehicle eigenfrequencies to the frequencies found through the FDD analysis. Prior 

knowledge of some component properties are used as initial values in the optimisation where possible. 

While inferred values for most parameters are within expected ranges, the car body mass value is 

unrealistic. This may be due to incorrect identification of its modes of vibration due to limitations on 

the number of sensors used in the experiment and rigid body modelling assumptions. 

Finally the inferred vehicle parameters are chosen as the calibrated vehicle properties. The calibrated 

vehicle is run over a surveyed track profile. The output from the numerical model is then compared to 

a sample set of the measured data from the field. A fair match in signal amplitude is found between the 

model outputs and the measured data. Fair agreement in signal frequency is also found for both signals 

analysed. The calibrated properties found using this method are used in a technique to find longitudinal 

track profile from measured vehicle response with encouraging results. This will be the topic of a 

forthcoming paper. 
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Figures: 

Figure 16. The research gap addressed in this paper. 

Figure 17. 2D Car model. 

Figure 18. Sensor installation locations on trailer bogie (dimensions in mm). (CAD drawing sourced from Tokyu Car 
Corporation). 

Figure 19. a) Bogie mounted gyrometer and accelerometer; b) Uniaxial accelerometer clamped to axle box; c) Data 

logger (HBM Somat eDAQ lite) housed in disused train coupler box in close proximity to sensors 

Figure 20. Bogie angular velocity signal (pitch velocity) as a function of distance from the start point (Dublin); a) 
Unfiltered signal; b) Band-pass filtered signal (0.25-25 Hz) 

Figure 21. Bogie vertical acceleration signal as a function of distance from the start point (Dublin); a) Unfiltered signal; b) 
Band-pass filtered signal (0.25-25 Hz) 

Figure 22. Power spectral density of captured signals. a) Bogie angular velocity 0–100 Hz; b) Bogie vertical acceleration 
0–100 Hz; c) Detailed view of bogie vertical acceleration 45–60 Hz. 

Figure 23. FDD Methodology; a) Traditional FDD: data sampled over same time period from a number of channels; b) 
Segmental FDD: data sampled randomly from multiple datasets, in this case multiple train trips. 

Figure 24. Sum of singular values from FDD analysis of 30 datasets (2 km signal segments). a) Axle 1 vertical acceleration; 
b) Axle 2 vertical acceleration; c) Bogie vertical acceleration; d) Bogie angular velocity.  

Figure 25. Cross Entropy optimisation for vehicle parameters (Run 1). a) Car body mass; b) Bogie mass; c) Car body mass 
moment of inertia; d) Bogie mass moment of inertia; e) Primary stiffness; f) Secondary stiffness. 

Figure 26. Optimisation convergence value vs generation number (Run 1). 

Figure 27. Track Longitudinal Profile (D1) as measured by TRV, 4th April 2016. 

Figure 28. Comparison of measured data and output from calibrated vehicle run over track profile: a) Bogie angular 
velocity; b) Bogie vertical acceleration. 

Figure 29. Power spectral density of measured data and output from calibrated vehicle run over track profile; a) Bogie 
angular velocity, 0–25 Hz; b) Bogie vertical acceleration, 0–25 Hz. 

Figure 30. Comparison of track filtered track level survey and filtered inferred track longitudinal profile.  

 

 


