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Abstract 
This paper presents a methodology map built on a thorough comparison of approaches that can be used to address 
decision-making under uncertainty based on the level of uncertainty considered. The methodology map is provided 
to help researchers and practitioners on the selection of the most convenient approach for their specific context. An 
overview of different approaches for decision-making under uncertainty is provided. Approaches are then compared 
to each other, where requirements, limits, pros, cons and different circumstances under which each approach is more 
appropriate are discussed. Four different approaches are studied, the cost-benefit analysis (CBA), Probabilistic 
decision tree (PDT), Robust decision-making (RDM), and Dynamic adaptation policy pathway (DAPP).  
Results show that different considerations are expected to rule the selection process. It should depend on the problem 
in-hand (e.g. type of uncertainty, the number of alternatives) and enclose a rationale that addresses its limitations 
(e.g. available time, fund).  
The developed work is expected to support researchers and practitioners in the selection of convenient approaches 
to inform decision-making based on available knowledge, with awareness of the implications of the selected 
approach over the final output that will support holistic decisions. 
 
Keywords: Decision-making, deep uncertainty, cost-benefit ratio, probabilistic decision tree, robust decision making, 
dynamic adaptive policy pathway

 

1. Introduction 

Making decision under uncertainty is a challenge 
that can be addressed using systematic decision-
making approaches. The complexity of 
identifying the most adequate approach for 
specific problem settings can result in a sub-
optimal decision or require large efforts if aspects 
such as problem’s complexity (e.g., uncertainty, 
number of alternatives, flexibility), limitations 
(e.g., time), and resources (e.g., budget) are not 
considered.  

So far, several different approaches for 
decision-making under uncertainty have been 
developed, studied, and applied such as robust 
decision making, dynamic adaptation pathways, 
and Bayesian network. A particular topic of 
interest in this regard is to address decision 
making under climate change’s uncertainty (Ryu 
et al. 2017; Norton et al. 2019; Williams et al. 
2020; Linquiti and Vonortas 2012; Zheng, Egger, 

and Lienert 2016). Decision-makers need to find 
the most suitable adaptive strategy to be able to 
adapt their systems to climate change. However, 
the uncertainties of climate change and the 
number of possible adaptive strategies are a 
challenge to decision makers. Having a systematic 
approach in this regard is of interest. The present 
work studies different approaches to address the 
decision-making under uncertainty that are 
adequate to adapt infrastructure systems to 
climate change. While comparing methodologies 
is not exclusively new, and works can be found 
that  compare approaches in a case study 
(Bartholomew and Kwakkel 2020; Kwakkel, 
Haasnoot, and Walker 2016), the current work 
pursues to go a step ahead by establishing 
guidance in this regard. For such, climate change-
related uncertainty is discussed in Section 2; 
Sections 3, 4 and 5 discuss different approaches 
and their implementation in a representative case 
study; and Section 6 draws the conclusions of this 
analysis.  
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2. Uncertainty associated with climate 
change 

Uncertainty due to climate change can be 
categorized in different forms, and in the present 
work and context of implementation, uncertainty 
is classified into two main categories: 

� Probabilistic uncertainty: applied when 
future circumstances are uncertain, but it is 
possible to project possible scenarios and 
assign a probability to each.  

� Deep uncertainty: applied when decision 
makers cannot predict or agree on possible 
future scenarios or their probabilities. 

In a broad sense, uncertainty may be defined 
simply as state of limited knowledge. According 
to the IPCC (IPCC 2014) there are five main 
sources of uncertainty in climate change: 

� Climate response to greenhouse gas (GHG) 
emissions, and their associated impacts. 

� Stocks and flows of carbon and other GHGs.  
� Technological systems. Deployment of 

technologies as a driver of GHG emissions. 
� Market behavior and regulatory actions.  
� Individual and firm perceptions to climate 

change. 

These are complex, and it is challenging to assign 
probabilities and predictions to each; which 
makes decision-making schemes also complex. 
According to the IPCC (IPCC 2018), providing 
different probable scenarios to uncertainty is 
approach-dependent. In the literature some studies 
considered it as probabilistic (Ekholm 2018; 
Farber 2015; Nassopoulos, Dumas, and Hallegatte 
2012; Rabl and van der Zwaan 2009) and other as 
deep (Buurman and Babovic 2016; Shortridge, 
Aven, and Guikema 2017; Walker, Marchau, and 
Swanson 2010; Lawrence, Haasnoot, and 
Lempert 2020; Helmrich and Chester 2020; 
Workman et al. 2020).  

3. Implementation 

A simple virtual case study was developed in the 
context of the main objective of comparing and 
discussing how uncertainty considerations merge 
with decision-making schemes. 

A municipality’s water distribution system 
obtains its water supply from a surface-water 
reservoir. Municipal demands include residential 
demand for 100,000 Households (constant over 

time). The reservoir receives inflow from the 
natural watershed and is operated to maintain 
flows downstream. Fig. 1 shows an illustrative 
model of the system. 

 
 

Fig. 1. Illustrative model of the system. 
 
Watershed runoff (Rt) at time t is given by: 

 (Berglund 2015) (1) 

where Rt is the runoff (thousand m3), Pt the 
average monthly precipitation (cm), St the average 
monthly watershed coefficient (cm) and Ct, the 
runoff coefficients (thousand m3/cm). The volume 
of water in the reservoir is based on demands, 
runoff, spill, and release, Eqs. (2)-(4). Release (Lt) 
is the monthly volume of water released to 
maintain flow in the river downstream of the 
reservoir. 

    (2) 

with Vt being the volume in the reservoir at time t 
and Vt-1 is that at the previous time period (it is 
previous year in this study). Spill (Spt) is the 
amount of water released to ensure that the 
reservoir does not overtop. It is given by: 

 (3) 

where maximum reservoir’s volume (MV) is 239 
million m3 and RDt, residential demands, is the 
average monthly demand ( ) times the number 
of households. Maximum volume of spill (MSP) 
is 12 million m3. Any quantity larger than it will 
result in excess running water (ERW),  

   (4) 

The reservoir volume, Vt, in each time t is 

  (5) 

The initial reservoir volume is 177 million m3 
and the average monthly values at the starting year 
are: 

Watershed Reservoir 
(L)

Runoff (R)

Households

Precipitation

Downstream 
river

Excess running 
water (ERW)
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� Pt=0 (cm) = 8.9. 
�  (L/Household) = 23,940 
� Ct=0 (thousand m3/cm) = 18,970. 
� St=0 (cm) = 7.1. 

Future rainfall increase uncertainty: It is 
assumed that due to climate change the average 
monthly rainfall might increase between 0.1% and 
1% per year. Adaption is required for a period of 
50 years. 

Adaptation measures: Four different 
adaptation measures are considered, Table 1. 
These adapt the system to withstand a maximum 
amount of ERW that if exceeded will cause 
damage to it.  

Table 1. Adaptation measures information. 
Adaptatio
n measure 

Cost 
(Billio
n €) 

Implementatio
n time (years) 

ERW 
threshol
d 
(million 
m3) 

M1 9 1 10 
M2 21 3 30 
M3 58 5 55 
M4 89 8 100 

It is noted that if two measures are 
implemented, ERW will increase by the largest 
number. In case of exceedance of the threshold, 
every extra m3 will damage the system by 
€100,000. It is assumed that the budget will be 
spent equally each year and the implementation 
t=0; e.g., M2 will cost 3M€ in 3 years, i.e., 1M€ 
per year. 

4. Decision-making  

The four different approaches considered are now 
discussed. 

4.1. Cost-benefit analysis 
Cost-benefit analysis (CBA) estimates monetary 
costs and benefits of pursuing a course of action 
by translating non-monetary costs and benefits 
into monetary units. Optimal decision is the one 
that maximizes a cost-benefit ratio. It can appear 
in literature as a methodology or decision 
criterion, and is generally used to assess 
profitability of investments (Williams et al. 2020). 
Costs and benefits include financial, 
environmental, and social effects. Its 
implementation goes as follows: 

1: Describe problem settings, uncertainties, and 
objectives. In the present implementation, the 
setting is the case study, uncertainties include 

future’s climate, and objectives include deciding 
on ERW protection. In practice, different possible 
scenarios with assigned probability are assumed; 
five are considered (Table 2). 

2: Find every alternative action. Implementation 
should find every possible action that can help to 
reach the project objectives under the 
uncertainties considered (Table 1). 

Table 2. Future possible scenarios. 

Scenario 
no 

Rainfall 
increase 
(%/year) 

Rainfall 
increase 
after 50 
years 
(%) 

Probability 
(%) 

ERW 
(million 

m3) 

Sc1 0.1 5.1 45 3 
Sc2 0.4 22.1 25 25.9 
Sc3 0.6 34.9 15 43.7 
Sc4 0.8 48.9 10 63.9 
Sc5 1 64.5 5 86.7 

3: Describe and calculate benefits and costs for 
each action. In CBA it is necessary to monetarize 
costs and benefits. To account for time in a fair 
comparison, costs should be transferred to their 
present value. The present value of the 
implementation cost (ICp) and damage cost (DCp) 
are weighted using Eqs. (6) and (7), respectively. 

  (6)    (7) 

where r is the annual inflation ratio, and y is the 
year of the ERW event. The total present cost of 
each adaptation measure (TCp) is therefore: 

  (8) 

where all the investments (i) for adaptation and 
expected ERW event (f) are considered at present 
t. The benefit of an adaptation strategy is the 
improvement achieved by the applied action, i.e., 
potential damage by an ERW event that was 
prevented: 

    (9) 

where Bp is the present value of benefit and Bf is 
its value of at the time of ERW (at year yf). 
Finally, the cost-benefit ratio (CBR) is,  

    (10) 
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4: Find the most suitable action. The simplest way 
to make a decision in this regard is to weigh CBR 
by the probabilities, obtaining a PCBR. The 
adaptation decision will have the highest PCBR. 

According to Fig. 2, M2 has the highest 
PCBR, followed by M4. Moreover, it is 
interesting to infer the lower robustness of M2 in 
comparison with M4 regarding the CBR for 
different scenarios, which remarks the need to 
discuss adaptation decision-making on a more 
holistic and probabilistic form.  

 
Fig. 2. Adaptation measures’ performances. 

 
4.2. Probabilistic decision tree 

A decision tree is a decision support tool that uses 
a tree-like model of decisions and consequences, 
including event outcomes, resource costs, and 
utility (Cartwright et al. 2013). It uses a diagram 
of options and assigned probabilities to identify 
optimal actions. It is implemented as follows: 

1: Describe problem settings, uncertainties, and 
objectives.  Multiple time periods are required to 
enable its capability of identifying a flexible 
outcome (two 25-year time spans are assumed, 
with an increase of ERW threshold by half of the 
original value, see Table 3 for adaptation 
measures). It demands assumption of future 
scenarios and two are considered for such in this 
section (lowest and highest rainfall increase).  

2: Build the decision tree: it consists of three 
elements (see Fig. 3). Decision nodes: show a 
decision to be made; illustrated by squares. 
Chance nodes: show a group of possible 
outcomes; illustrated by circles. Each possible 
alternative flows from a decision node to a chance 
node. Outcomes: represents the sum of the costs 
and benefits of each path through the tree and are 
shown by triangles. 

3: Eliminate unrealistic outcomes: Measures that 
do not have an acceptable performance should be 
crossed off.  

Table 3. Adaptation measures. 
From year 0 to year 25 

Measures Cost (billion €) 
ERW threshold 

increase (million 
m3) 

M1,1 4.5 5 
M2,1 10.5 15 
M3,1 29 27.5 
M4,1 44.5 50 

From year 25 to year 50 

Measures Cost (billion €) 
ERW threshold 

increase (million 
m3) 

M1,2 4.5 5 
M2,2 10.5 15 
M3,2 29 27.5 
M4,2 44.5 50 

 
Fig. 3.  Example of decision tree structure. 

4: Select the most suitable outcome. Each 
outcome represents a possible adaptation pathway 
that can be chosen by the decision-makers. There 
are different methods to choose the most suitable 
combination of measures, being the simplest 
finding outcomes with most probable 
combination of scenarios and choose the outcome 
with the optimum measures’ combination (lowest 
cost) amongst them. The most probable in this 
Case Study is scenario Sc1,1 and Sc1,2 with 
probability of 72.25%, and the optimal adaptation 
for this scenario is the combined M1,1 and M1,2. 
 

4.3. Robust decision-making 
RDM is an iterative decision analytic framework 
that aims identifying potential robust adaptation 
strategies, characterizes their vulnerabilities, and 
evaluate the trade-offs among them (Croskerry 
2009; Lempert and Collins 2007). RDM will 
usually identify a robust alternative within 1 or 2 
iterations. It evaluates the performance of options 

Decision 
node

Decision 
nodes

Chance 
nodes

Chance 
nodes Outcomes

Outcome 
1,1,1,1,

Outcome 
1,1,1,2 
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under a range of future occurrences to determine 
which options perform in multiple. The goal of it 
is not to find the optimum alternative, but to find 
the alternative that has the lowest sensitivity to 
changes. RDM is implemented as follows: 

1: Define strategy and context: In this step any 
involved parties fill a so-called XLRM matrix, 
Fig. 4. The performance metric (M) aims to 
making the system resistant, in the present case 
that would be protecting against ERW. The 
uncertain factor (X) addresses future rainfall 
increase. There are four different adaptation 
measures, which are policy levers (L). Finally, 
Eqs. (1)-(5) define the relationship (R). 

 
Fig. 4. XLRM matrix. 

2: Stress tests: based on the information from the 
previous step, the system will be evaluated under 
multiple representative different potential future 
scenarios. Larger numbers of possible scenarios 
improve the implementation. For representative 
purposes, 10 different future scenarios are 
considered that include rainfall increases in 
[0.1%, 0.2%, … 1%]. Results of the stress test in 
the example studied are shown in Fig. 5. 

 
Fig. 5. Case study’s summarized stress test. 

3: New and revised strategies: this step involves 
making the decision and choosing the robust 
alternative. To do so clusters (a) “plan meets 
goals” and (b) “plan misses goal” are discussed 
for ERW resistance and cost of adaptation (see 
Table 4). 

 

Table 4. RDM Adaptation measures in a) and b). 

Measure 
a)Plan meets goals b)Plan misses goals 

Resist? Cost Resist? Cost
M1 Yes Low No High 
M2 Yes > M1 No Slightly <M1 
M3 Yes High No Low 
M4 Yes V. high n/a <M3

As defined, M3 resists in the first cluster with a 
high cost and fails in the second cluster with a low 
cost. According to Fig. 5, possible future area that  
M3 fails in, around 40% of possible future area, is 
smaller than the area that it resist in, which means 
it fails only if extreme events occurs in the future. 
M4 does not fail in any cluster, however, its cost 
is very high in the first cluster and lower than M3 
in the second cluster. Therefore, M4 can be 
chosen in projects that resistance is the most 
important factor, and M3 can be chosen in projects 
that try to avoid overspending their budget while 
trying to be as much resistant as possible. In 
conclusion, M3 and M4 can be chosen as the 
robust alternatives.  

4.4. Dynamic adaptive policy pathway 
DAPP aims to support the development of an 
adaptive plan to deal with deep uncertainties. This 
approach identifies potential actions and 
thresholds at which actions should be taken or 
future decisions made. It identifies pathways, 
monitors their evolution and when thresholds are 
met, triggers a new pathway (Haasnoot et al. 
2013). DAPP is implemented as follows: 

1: Describe problem settings, objectives, and 
uncertainties. Problem setting (current situation) 
is described in Section 3, the only objective is 
making the system resistance against ERW, and 
the only uncertainty is in the rainfall increase. 
Rainfall is assumed to increase from 0.1% to 1% 
per year for the next 50 years. In a form of deep 
uncertainty, two different scenarios should be 
considered: the optimistic and pessimistic that use 
respectively the 0.1% and 1% range limits.  

2: Identify and assess all actions: that is, the 
adaptation measures of Table 1. Adaptation 
tipping points are identified, i.e., the time at which 
the action can no longer be useful to ensure its 
goals and there is a need to implement another 
action. With the total rainfall increase (TRIy) and 
average monthly rainfall precipitation (Pt) in each 
year defined as: 

   (12) 

Uncertain factors (X)

What uncertain factors affect the project 
which are not under our control?

Policy levers (L)

t What alternative do we have 
to achieve the project’s goals

Relationships (R)

How might levers (L) and uncertainties 
(X) affects the project’s goals (M)
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   (13) 

where IPY is the rainfall increase per year, y is the 
year that the calculations are for, and P0 is the 
average monthly rainfall precipitation in Year 0 
(8.9 cm). Other parameters are calculated using 
the equations in the previous sections. The year 
that each measure will fail (i.e., adaptation tipping 

points) should be found for the two defined 
scenarios, the low rainfall increase (LRI) and the 
high rainfall increase (HRI). Results in Table 5  

shows that in LRI, none of the measures reaches 
its tipping point. In HRI, M1, M2, and M3 reach 
their tipping points in year 10, 23, and 36, 
respectively, while M4 does not reach its tipping 
point. 

3: Develop adaptation pathways and subway map: 
Different pathways are assembled using the 
information provided in step 2 and a dynamic 
adaptive pathways map is established (Fig. 6). 
There are multiple pathways that can be chosen by 
the system’s decision-makers.  

 
Fig. 6. Dynamic adaptive pathways map. 

Therefore, it should be explained why a decision-
maker may choose to start measures that reach a 
tipping point. Although starting with M1, M2, or 
M3 reaches a tipping point much sooner than M4, 
choosing those less costly alternatives grants 
enough time to observe the future, freeing budget 
for planning alternatives with higher resistance, or 
to overcome other potential problems. 

4: Evaluate different pathways: After establishing 
all pathways, these should be analyzed and 

evaluated by their performance. Some pathways 
will dominate other, and all the non-dominated 
pathways are used to develop a set of promising 
pathways. For instance, if M2 is selected at the 
start, when reaching its tipping point, other 
alternatives may be implemented based on the 
updated information about the climate, the 
project’s expected budget at the moment, and any 

other relevant information. M2 raises the ERW 
threshold three times more than M1 and helps the 
system resist much longer in HRI, admitting that 
the cost of M2 is not a problem, it can be said that 
M2 dominates M1 in Year 0. Hence, the set of 
promising pathways include: M2→M3→M4, 
M2→M4, M3→M4, and M4), see Figure 7. 

5: Select the preferred pathways: a specified 
number of pathways should be kept for reference. 
The preferred pathways require different 
perspectives to be evaluated. If a decision-maker 
pursues a large resistance pathway and budget is 
not a limitation at the start, M4 is the preferred 
choice (First perspective). If there is a limitation 
in budget or will to postpone implementing M3 or 
M4, hence, gaining more information about the 
future trends, M2 should be chosen in Year 0. 
After M2 reaching its tipping point, the pathway 
should continue with M2, M3 if the updated 
predictions about the future are closer to LRI.  If 
M3 is implemented and then identified to reach a 
tipping point, M4 should be implemented (Second 
perspective). And, so on for M2, M4 if closer to 
HRI (Third perspective). Finally, if budget is not 
a limitation it is decided that at start the most 
expensive measure is not of interest, M3 should be 
chosen in Year 0 and if it reaches a tipping point, 
M4 should be implemented (Fourth perspective). 

10

M1

M2

M3

M4

ERW (billion L)
20 30 40

LRI (year)

10 23
HRI (year)

50

50 55

36

50

Table 5. Adaptation tipping points. 

Adaptation 
measures 

ERW threshold 
(million m3) 

LRI HRI 

year TRI (%) Pt 
(cm) 

ERW 
(million m3) year TRI (%) Pt 

(cm) 
ERW 
(million m3) 

M1 10 >50 n/a n/a n/a 10 10.5 9.8 10.12 
M2 30 >50 n/a n/a n/a 23 25.7 11.2 30.9 
M3 55 >50 n/a n/a n/a 36 43.1 12.7 55.5 
M4 100 >50 n/a n/a n/a >50 n/a n/a n/a 
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Fig. 7. Preferred pathways from four different 
perspective. 

5. Comparative overview 

Application of CBA demands the quantification 
of the probability of future events. It is highly 
efficient when the problem settings are clear and 
well characterized. The same applies to PDTs if 
probabilities are assigned to each outcome. PDTs 
are visual, simple to understand and interpret, 
which is of interest to inform stakeholders and all 
parties involved in the decision processes. 
Moreover, these can determine worst, best and 
expected scenarios. However, small changes in 
the data can lead to a large change in the structure 
of the tree. In this regard, CBA is less onerous in 
terms of effort, and is easily changed in systematic 
way (just needs to reassess the analysis metrics). 
A comprehensive RDM requires a significant 
amount of work and time to access expertise in 
relevant fields, constructing questionnaires to 
minimize cognitive biases, and administering and 
applying consistency checks (Kwakkel, Haasnoot, 
and Walker 2016). Computational costs may also 
be large. It avoids assigning probabilities to 
scenarios, and it is expected to perform under deep 
uncertainty. DAPP results in an adaptation 
pathway that can be changed conditional on the 
future. The outcome is not a static optimal plan. It 
works well under deep uncertainty (Haasnoot et 
al. 2013). DAPP emphasizes dynamic adaptation 
over time, and thus offers a natural way for 

handling the identified vulnerabilities (Kwakkel, 
Haasnoot, and Walker 2016).  However, DAPP 
takes more time than other approaches that use a 
static adaptation strategy as the outcome. 

6. Conclusion 

Different adaptation approaches perform in 
different circumstances. These depend on the 
characteristics of the alternative actions being 
considered, the data available, and the time and 
skills available. Incorrect implementation of an 
adaptation approach may lead to bad management 
of resources. 
Considering climate change as probabilistic or as 
deep uncertainty depends on the amount of 
information available, the approach to decision 
and loss (i.e. risk), and its limitations. Table 6 
summarizes scenarios that were found to suit each 
approach. Different strategies are identified as 
optimal based on the approach. 

To select a decision-making approach, first 
there is a needed to consider the type of 
uncertainty. It depends on accessible resources 
(budget, time, expertise), importance of the 
project, and other potential considerations. Then, 
required flexibility in the outcomes should be 
considered. In other words, the decision-makers 
need to decide if rigid or flexible implementation 
is of interest attending the resource available. It is 
noted that CBA and RDM can suggest flexible 
pathways as well, but check points need to be set 
up in a period for such. DAPP and PDT are 
intrinsically suggestive in terms of establishing 
flexible paths.   

If uncertainty is to be considered probabilistic 
CBA is of interest. Moreover, if the outcome is to 
be accessed and analyzed by local officials or 
citizens, then PDTs are of interest. However, if the 
uncertainty is considered deep and there are no 
limits on the time of the decision-making process, 
budget, and hiring experts, RDM or DAPP can be 
of interest. Nonetheless, if flexibility is required 
as well, then the most suitable approach is DAPP. 

10

M2

M3

M4

ERW (billion L)
20 30 40

50
LRI (year)

10 23
HRI (year)

50

50 55

36
First perspective
Second perspective

Third perspective
Fourth perspective

Table 6. Considerations and properties of each approach. 

Approaches Uncertainty Flexibility Input 
parameters Outcome Understandable for Suggested 

measure 

CBA Probabilistic No Monetary Single Experts M2 

PDT Probabilistic Yes Several Single and multiple Non-experts M1 

RDM Deep No Several Single Experts M3 or M4 

DAPP Deep Yes Several Multiple Experts Pathways 
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