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Abstract
This paper presents the software tools developed for the research project Advanced
Modelling for Power System Analysis and Simulation (AMPSAS) funded by Science
Foundation Ireland from 2016 to 2021. The main objective of AMPSAS was the
development of novel analytical and computational tools to understand, efficiently design,
and optimise ever‐changing modern power systems and smart grids, through model‐
based approaches. In particular, the paper discusses (i) stochastic differential equations
for modelling power systems, which are subject to large stochastic perturbations (e.g.
wind and solar generation); (ii) the effect of controller and modelling imperfections, for
example, delays, discontinuities, and digital signals, on both local and area‐wide regulators
in power systems; and (iii) the stability analysis and dynamic performance of power
systems modelled through stochastic, delay and hybrid implicit differential‐algebraic
equations. The software tool developed during the execution of AMPSAS integrates
areas of applied mathematics, automatic control, and computer science. Several imple-
mentation features and open challenges of this software tool are also discussed in the
paper. A variety of examples that illustrates the features of this software tool are based on
a dynamic model of the all‐island Irish transmission system.

1 | INTRODUCTION

1.1 | Motivations

A combination of technical innovation and the increasing
presence of renewable and non‐conventional generation in
actual electrical networks all over the world highlights the
necessity of studying several aspects related to the modelling,
regulation, and stability of power systems [1, 2].

Among the several factors affecting the behaviour of the
electrical energy supply, it is worthwhile mentioning the vola-
tility of some primary energy sources, such as wind and solar.
This volatility is mainly due to the stochastic nature of the
weather conditions that determine the wind speed and solar
radiance. Moreover, the power consumed by a consumer is
intrinsically affected by uncertainty. In most cases, this volatility
can have a negative impact on the quality of the power supply

and can reduce network security. As a matter of fact, the power
fluctuations of wind power plants can potentially even help
stabilise the system [3]. Proper modelling of stochastic pro-
cesses can lead to surprising and counterintuitive conclusions.
For these reasons, a systematic approach that properly con-
siders stochastic models is highly desirable [4].

An immediate consequence of the presence of intermittent
generators in transmission and distribution networks is the
need to improve existing controllers and, in most cases, instal
new local and/or area regulation systems (see, for example,
Ref. [5]). While local regulation is typically appropriate to
maximise electrical energy production from renewable sources
(e.g. the maximum power point tracker), area regulators are
intended for advanced control of resources (e.g. smart grids),
minimising the negative effects of the volatility previously
described. The goal is that all network users, that is, generators
and consumers, can be regulated in order to guarantee the
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maximum cost effectiveness, quality, security, and stability of
the electrical energy supply. Any control strategy, in particular
with the case of area controllers, requires a communication
network that can send the measured signals to control centres.
These communication processes can be affected by delays,
noise, discontinuities (e.g. gaps and discretisation of digital
signals) and/or loss of information. In particular, delays and
loss of information, just like the stochastic variations present in
wind speed and solar radiance, are sources of instability and
significantly increase the nonlinearity of the equations that
describe the power system [6].

The knowledge of the behaviour of power systems, real‐
world data, measurements and mathematical theory form the
conceptual and practical bases of this paper (see Figure 1).
These are translated into efficient software tools through
which all modelling, stability analysis, and control design are
implemented and tested. Figure 1 also shows the three strands
of the developed software tool: (i) Stochastic Differential‐
Algebraic Equations (SDAEs), (ii) Delay Differential‐
Algebraic Equations (DDAEs), and Hybrid Differential‐
Algebraic Equations (HDAEs), respectively.

This paper aims at defining a methodological paradigm for
the modelling, stability analysis and control of power systems
and smart grids. The paper also discusses the formalism to
describe the diversity of phenomena and events that compose
an electrical power system. The result is the proposal of a
power system model based on stochastic, functional, and
hybrid implicit DAEs.

1.2 | Literature review

This section describes the state of the art, at the time of the
beginning of the initial development of the software tool, of
each strand, namely formalism for stochastic, functional and
HDAEs.

1.2.1 | Stochastic Differential‐Algebraic
Equations

Power system variables evolve in different time scales. To take
into account this behaviour, power systems are traditionally
modelled as a set of DAEs. Due to the stiffness of this model,
implicit numerical methods should be used in simulations to
avoid numerical instability. On the other hand, if Stochastic
Differential Equations (SDEs) are used to model random
perturbations in power systems, the system model becomes a
set of SDAE. Therefore, solving SDAE models involves
dealing with both stochastic terms and stiffness. Observe that
the numerical integration of SDAEs is much more complex
and computationally demanding than in the case of SDEs.
With this regard, in Ref. [7], the adequacy of different implicit
fixed step size numerical methods for SDAEs is discussed. In
the context of electronic circuit simulation, Ref. [8] shows that
implicit numerical methods with fixed step size used to solve
SDEs are also suitable for being applied to SDAEs.

For the reasons outlined above, the literature on power
system analysis is mostly limited to SDEs. Traditionally, the
focus has been on modelling load behaviours [9–11]. In Ref.
[12] SDEs are used as a planning tool for power systems. In
particular, SDEs are used to model small perturbations in
both system loads and transmission line parameters. A
similar approach is used in Ref. [13, 14] to analyse power
system dynamics, where discrete perturbations are considered
in switching events due to the operation of tap‐changing
transformers. The effect of stochastic processes on power
system voltage stability is studied in Ref. [15–17]. In Ref.
[18], both load and wind power production are modelled
with SDEs to address the problem of power system supply–
demand balance in an hourly time frame. More recently, in
Ref. [19] random loads are modelled through SDEs, which
are included directly in the algebraic equations of a power
system model. The problems related to the appearance of
singularities in the model resulting from this approach are
investigated in Ref. [20]. Finally, stochastic transient stability
is discussed in Ref. [4], and the application of SDEs to wind
speed modelling is analysed in Ref. [21]. In the same context,
in Ref. [22] an implicit variable step size scheme for SDAEs
is proposed. More recently, an implicit fixed step size
method for SDAEs with stiffness in both the deterministic
and the stochastic parts of the model has been proposed in
Ref. [23].

1.2.2 | Delay Differential‐Algebraic Equations

Time delays arise in a wide variety of physical systems and their
effects on stability have been carefully investigated in several
engineering applications, such as, signal processing and circuit
design [24, 25]. Nevertheless, thus far, research has been
lacking on the effects of time delays on power system stability.
As a matter of fact, time delays are generally ignored. An
exception to this rule is Ref. [26], which presents a model of
long transmission lines in terms of DDAEs.

In recent years, wide measurement areas and the recent
application of Phasor Measurement Unit (PMU) devices make
remote measurements necessary, which has led to some
research on the effects of measurement delays. For example,
Ref. [27, 28] present a robust control scheme, considering the

F I GURE 1 Architecture of the proposed software tool for power
system analysis
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effect of time delays, for wide‐area Power System Stabilisers
(PSSs), and Ref. [29] tackles the issue of time domain inte-
gration of DDAEs. The effects on small signal stability of
delays due to PMU measurements are studied in Ref. [30],
based on a probabilistic approach.

Existing studies on stability and control of delayed power
system equations can be divided into two main categories: (i)
time‐domain methods and (ii) frequency‐domain methods.

Time‐domain methods: These methods are based on
Lyapunov–Krasovskii stability theorem and Razumikhin the-
orem. The application of time‐domain methods allows for
the definition of robust controllers (e.g. H∞ control) and the
capability to deal with uncertainties and time‐varying delays.
However, the conditions of the Lyapunov–Krasovskii stability
theorem and Razumikhin theorem are only sufficient and
cannot be used to find the delay stability margin. Moreover, it
is necessary to find a Lyapunov functional, or according to
Razumikhin theorem, a Lyapunov function that bounds the
Lyapunov functional. Hence, in the non‐linear case, the
applicability of time‐domain methods strongly depends on
the ability to define a Lyapunov function (i.e. the same lim-
itation as in the case of DAE systems). The application to
power system analysis are limited to small linearised test
systems [31, 32]. If the DDAE is linear or is linearised about
an equilibrium point, finding the Lyapunov function, in turn,
implies finding the solution of a Linear Matrix Inequality
problem [33, 34]. A drawback of this approach is that the size
and computational burden associated with LMIs drastically
increases with the size of the DDAEs. As a matter of fact,
LMI‐based analysis has become computationally tractable
only in the last 2 decades [34]. However, despite their large
computational burden, in recent years, LMI‐based approaches
have been applied to several practical problems (see, for
example, Ref. [6]).

Frequency‐domain methods: These methods mainly
involve the evaluation of the roots of the characteristic
equation of the retarded system [30, 35, 36]. This approach,
in principle, is exact, but due to the difficulty in determining
the roots of the characteristic equation, the analysis is limited
to one‐machine infinite‐bus systems. Although an exact
explicit analytic method based on the Lambert W function
can be applied to simple cases [37], the analytic solution of
the eigenvalue problem of delayed systems cannot be found
for practical power systems. Thus, frequency‐domain
methods rely on approximated numerical techniques. A
possible approach is based on the discretisation of the so-
lution operator of the characteristic equation [38]. Other
methods estimate the infinitesimal generator of the solution
operator semi‐group [39], and the solution operator ap-
proaches via linear multi‐step time integration of retarded
systems without any distributed delay term [40]. Yet, other
approaches apply a discretisation scheme based on Cheby-
shev nodes [41, 42]. These methods are based on a dis-
cretisation of the Partial Differential Equation (PDE)
representation of the DDAEs. The implementation of such
discretisation is surprisingly simple while results proved to be
accurate. The idea is to transform the original DDAE

problem into an equivalent PDE system of infinite di-
mensions. Then, instead of computing the roots of retarded
functional differential equations, one has to solve a finite,
though possibly large, matrix eigenvalue problem of the
discretised PDE system.

1.2.3 | Hybrid differential‐algebraic equations
(Hybrid Differential‐Algebraic Equations)

An area that appears of particular relevance for power systems
that heavily rely on telecommunications is the study of the
effect of discontinuities (e.g. breaker operations, tap changer
positions and power electronics switching) on power system
behaviour. Pioneering work in this field was provided by
Hiskens, which outlines a formalisation of grazing bifurcations
[43, 44].

The study of HDAEs, that is, dynamic equations with both
continuous and discrete variables, can be roughly divided in to
two categories: (i) equations with discontinuous right‐hand
side, where the discrete variables are due to structural
changes, such as the hard limits of the controllers and (ii)
behavioural models, that is, equations where the discrete var-
iables approximate a complex model whose details and dy-
namics are not relevant for capturing the overall system
dynamic, that is, the modelling of MOSFETS as simple
switches.

Differential equations with discontinuous right‐hand side:
The analysis of differential equations with discontinuous right‐
hand sides has been a subject of intense research, and well‐
established techniques were developed in this area in the sec-
ond half of the past century (see, for example, Ref. [45–47]). In
particular, some fundamental work in this area was the
formalism introduced by Filippov in Ref. [46] for dynamic
systems with switching manifolds. Filippov equations are a
powerful tool to define discontinuities as well as the imperfect
behaviour of measured control signals (e.g. gaps and loss of
information). Attempts to introduce the rigorous formalism by
Filippov into power systems have not been conducted thus far.
The implementation of a software tool with this capability will
allow for a better understanding of the behaviour of the impact
of discontinuities on power system operation.

Behavioural models: The well‐assessed formalism based
on Discrete‐Event systems (DEVS) and the resultant exten-
sions to hybrid continuous and discrete‐event systems has
formed the source of an extremely vast and diverse literature
[48, 49]. A similar approach, based on behavioural variables
is that used in electronic circuit analysis and hardware
description languages (HDL), for example, Verilog HDL [50]
and notably, Verilog‐A that mixes analogue and digital models
[51]. Discrete‐events and/or behavioural models are a
convenient and efficient way to describe digital systems.
Recently, experts in DEVS have been studying power systems
and their implementations using the DEVS formalism [52,
53]. A relevant example is the software tools implemented at
the Oak Ridge National Laboratory, USA, as well as refer-
ences in Ref. [54].
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1.3 | Contributions

This work proposes the formulation of power systems as a set
of Stochastic Functional Hybrid Implicit Differential‐Algebraic
Equations (SFHI‐DAEs) and describes a variety of modelling
and efficient simulation techniques to integrate, study the
stability and design robust controllers for this kind of dynamic
models. The main contributions of this paper are the following.

� To provide a novel paradigm for the analysis and simulation
of power systems. This goal is achieved by modelling power
systems as a set of discrete‐event, behavioural, stochastic,
functional, discontinuous implicit DAEs as opposed to the
conventional classical model that is based on deterministic
continuous DAEs.

� To remove some conventional simplifications and hypoth-
eses that were assumed in power system models several
decades ago and then seldom discussed again. These are, for
example, the effect of discontinuities, digital signals, sto-
chastic processes etc. Apart from technical complexity, there
is also the challenge to make practitioners aware of common
simplifications that are made and of the importance of re‐
evaluating commonly accepted models.

� To combine concepts from applied mathematics (e.g. frac-
tional calculus) and non‐linear control theory (e.g. utilisation
of delays to improve the stability of the system) as well as
concepts from computer science and in particular, modern
modelling and simulation techniques to reformulate the ar-
chitecture and the basis on which power system simulators
are built.

� To discuss modelling limitation, implementation challenges
and numerical issues of the proposed SFHI‐DAE formu-
lation as well as a vision for future work in the field of power
system modelling and simulation.

All contributions are supported with simulations based on
a dynamic model of the All‐Island Irish Transmission System
(AIITS). These simulations are obtained with the software tool
Dome [55].

1.4 | Organisation

The remainder of this paper is organised as follows. Section 2
describes the proposed power system model as a set of SFHI‐
DAEs. Section 2 also provides relevant remarks on the pro-
posed model, including methodological approaches, challenges
encountered during the development of the software tool and
open questions and unresolved issues for future implementa-
tion and research. With this aim, this section provides relevant
references where the interested reader can find additional ex-
amples and case studies carried out by the authors that illus-
trate the techniques discussed in this paper. Section 3 presents
a variety of case studies, based on the AIITS that illustrates the
various features and capabilities of the proposed SFHI‐DAE‐
based power system model. Finally, Section 4 summarises the
main conclusions and the lesson learnt from the project

Advanced Modelling for Power System Analysis and Simula-
tion (AMPSAS) and draws relevant recommendations for
future work.

2 | MODELLING

The conventional power system model for transient stability
analysis consists of a set of explicit DAEs [56–58]:

_x ¼ f ðx ; y ; tÞ;

0¼ gðx ; y ; tÞ;
ð1Þ

where x ∈ Rn and y ∈ Rm denote the state and algebraic
variables, respectively, and f and g are non‐linear differential
and algebraic equations, respectively.

Equations (1) represent the model, with various degrees of
simplifications and with various techniques, has been utilised
for more than a century for the transient stability analysis of
power systems. This model is specifically designed to account
for the time scales of the electromechanical dynamic response
of synchronous machines and their primary controllers while
neglecting electromagnetic transients.

Model (1) is often referred to as Root‐Mean Square or
Quasi‐Steady State (QSS) model because voltages and currents
are assumed to be slowly varying phasors. This is one of the
main idiosyncrasies of (1), namely the fact that the frequency is
assumed to be constant in the definition of admittances and
impedances, but phasors have variable (algebraic) phases and
synchronous machines’ rotor angles and speeds are state var-
iables. This apparent inconsistency often confuses researchers
coming from circuit analysis and control theory but is, in ef-
fect, a very sensible approximation for conventional power
systems whose dynamics are dominated by the synchronous
machines and their primary controllers [59].

2.1 | Intepretation of algebraic variables and
equations

2.1.1 | Singular perturbation approach

There are various ways to interpret the algebraic equations and
variables in (1). Probably the most intuitive one is to consider y
as demoted state variables, that is, states with an infinitely fast
response. This might be often the case, especially when thinking
of the voltages and current in transmission lines as these, in
principle, are the states of the shunt capacitive charging and
series inductive elements, respectively, of the lines. This inter-
pretation justifies the singular perturbation approach [10, 60]:

_x ¼ f ðx ; y ; tÞ;
ϵ� _y ¼ gðx ; y ; tÞ;

ð2Þ

where ϵ ∈ Rm is a vector of small positive numbers, and � is
the element‐by‐element product. This interpretation, however,
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does not take into account ‘auxiliary’ variables, that is, variables
and equations that are introduced in the model only to simplify
the formulation, for example, in rectangular coordinates, it is
often needed to define the magnitude of the voltage, hence the
equation:

0¼ v2r − v2i − v2; ð3Þ

where vr and vi are the real and imaginary components of the
QSS voltage phasor and v, its magnitude. Of course, one can
invent a dynamic for this equations by defining:

ϵ _v¼ v2r − v2i − v2; ð4Þ

but this dynamic is not physical and constitutes, in effect, an
arbitrary modification of the overall system dynamic behaviour.
This might not be an issue if ϵ is sufficiently small, but using
very small values for ϵ also contributes to the stiffness (i.e. the
spread of the time scales of the dynamics of the system) of the
differential equations and in turn, can make their numerical
integration more challenging.

2.1.2 | Algebraic equations as constraints

Another, often useful interpretation of g is as constraints of
the differential equations. According to this interpretation, the
purpose of algebraic variables y, thus, is that of reducing the
domain of x to a subset X ∈ Rn, which is not known a priori
but depends on the equations g. This interpretation has its
natural ally in the implicit function, which suggests that at least
in theory the algebraic equations can be expressed as:

y ¼ g−1ðx ; tÞ; ð5Þ

which allows rewriting (1) as a set of Ordinary Differential
Equations (ODEs):

_x ¼ f x ; g−1ðx ; tÞ; t
� �

: ð6Þ

In practice, as it has to be expected, (5) can almost never be
found explicitly. Interestingly, from the numerical point of
view, being able to find g−1 is not necessary nor, in fact,
desirable. This can be easily understood considering a linear
system in the form:

_x ¼ Fx x þ Fy y ;

0¼Gx x þGy y :
ð7Þ

This system can be obtained as an approximation of (1) or
more commonly, its linearisation at a stationary point. In the
latter case, the variables are effectively the variations around
the stationary point rather than the actual variable of (1). If Gy
is not singular, y can be expressed as a function of x and (7)
can be written as:

_x ¼ Fx − Fy G−1
y Gx x ¼ A0 x ; ð8Þ

While apparently the resulting system has smaller size than
(7), from the numerical point of view, (8) is often more
computationally demanding because G−1

y , and hence, A0 tends
to be dense, even if all original matrices are very sparse. This is
the common situation in power systems. In turn, for what
concerns numerical performance, the order of the system is
much less important than the sparsity of the (Jacobian) matrices
that describe the system itself. This appraisal is one of the ra-
tionales for the proposals of an implicit formulation in this
paper. On the other hand, the discussion above does not imply
that one should arbitrarily define auxiliary algebraic variables
just for the sake of increasing sparsity. The optimal balance
between the size of m and the sparsity degree of the Jacobian
matrices of the system is still an open question and, for now, is
often solved heuristically, for example, by trial and error.

2.1.3 | Singular differential equations

A third and more mathematical way to interpret (1) is as sin‐
gular differential equations, that is, differential equations for
which some of the coefficients of the time derivatives are null.
In the case of (1), the null coefficients are those that multiply
the vector _y , namely:

1� _x ¼ f ðx ; y ; tÞ;
0� _y ¼ gðx ; y ; tÞ;

ð9Þ

This is the approach utilised in some monographs on
differential equations and, very recently, on matrix pencils,
which often do not distinguish between states and algebraic
variables [61]. This interpretation promotes the utilisation of
the set of DAEs in (1) as is, thus, preserving the total order of
n + m of the system. This is the approach utilised in this paper.

One can argue that (1) is the stiffest system possible as it
includes infinitely fast dynamics, but this is in fact not a major
problem if the DAEs are integrated simultaneously rather than
sequentially. Moreover, this interpretation allows assigning an
index to the DAE. Simply stated, ODEs are index 0, whereas
DAE are index 1 if the first time derivative of g leads to well‐
defined ODEs as follows:

_x ¼ f ðx ; y ; tÞ;
0¼ gx ðx ; y ; tÞ _x þ gy ðx ; y ; tÞ _y ;

ð10Þ

where gy ¼ ∇T
y g and gx ¼ ∇T

x g . Equations (10) can be
rewritten implicitly as:

_x ¼ f ðx ; y ; tÞ;

_y ¼ −g−1
y ðx ; y ; tÞ gx ðx ; y ; tÞ f ðx ; y ; tÞ;

ð11Þ

which, of course, can be defined only if g−1
y is never singular. If

g−1
y , then one can derive the second of (10) again. The index is
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in turn the number of times the DAEs have to be derived to
obtain a set of ODEs. It is important to note that the actual
calculation of (11), even if possible, is not needed and is never
efficient (for the reason discussed above on the dense nature of
g−1

y ). The formal definition of 11, on the other hand, is crucial
for the ability of numerical methods to integrate efficiently (1).

Interestingly, the non‐singularity of gy always holds in
practical computer implementations and is assumed in all de-
velopments discussed in this paper. The statement ‘gy is full
rank in practice’ is based on the experience of the authors,
despite the relative large number of studies that has focussed
on the discussion of the points at which gy is singular (e.g. Ref.
[62, 63]). In the numerical analysis of power systems, in fact,
the singularity of gy is really never encountered by accident
during a time domain simulation or at an equilibrium point.
This is principally due to the representation of floating point
numbers. Moreover, anyone that has ever implemented an
Newton–Raphson algorithm knows that the golden rule,
whenever the factorisation of a matrix is involved, is to add to
its diagonal a small number (10−24 works well for 64‐bit
floating point number q representation) to avoid numerical
issues. For this reason, in the remainder of this paper, gy is
always assumed to be full rank.

2.1.4 | Semi‐implicit and implict formulations

Equations (10) can be rewritten as:

_x ¼ f ðx ; y ; tÞ;
−gy ðx ; y ; tÞ _y ¼ gx ðx ; y ; tÞ f ðx ; y ; tÞ;

ð12Þ

or equivalently:

I n 0
0 −gy ðx ; y ; tÞ

" #
_x

_y

� �

¼
f ðx ; y ; tÞ

gx ðx ; y ; tÞ f ðx ; y ; tÞ

� �

; ð13Þ

or equivalently:

Tðz ; tÞ _z ¼ ψðz ; tÞ; ð14Þ

where z = (x, y) and T and ψ are the left and right terms that
appear in (13). Equations (14) is a semi‐implicit form of (1).

It is important to note that one can write any device model
in a semi‐implicit form and that this does not imply necessarily
having to differentiate the algebraic equations g. This is
thoroughly discussed in Ref. [64], which also discusses how the
semi‐implicit formulation can be useful to increase the sparsity
of the Jacobian matrices of the system without introducing any
simplification.

It is also important to note that T, which can be interpreted
as a sort of generalised mass matrix, does not need to be full
rank for (14) to be integrated using a simultaneous implicit
integration scheme such as the Implicit Trapezoidal Method
(ITM) or the Backward Differentiation Formulae (BDFs). In
Ref. [64], in fact, the semi‐implicit form (14) is obtained

without calculating the Jacobian matrices of g and without the
need to introduce _y . Instead, _x is utilised to simplify the ex-
pressions of f and g.

The concept above is better illustrated through an example.
Let us consider the double lead‐lag shown in Figure 2. A
conventional explicit formulation of the DAEs that describe
this double lead‐lag is:

_x1 ¼ u − x1ð Þ=T2;
_x2 ¼ T1 u − x1ð Þ=T2 þ x1 − x2½ �=T4;
0¼ T3 T1 u − x1ð Þ=T2 þ x1 − x2½ �=T4 þ x2 − y:

ð15Þ

whereas the semi‐implicit form can be written as:

T2 _x1 ¼ u − x1;
T4 _x2 − T1 _x1 ¼ x1 − x2;

−T3 _x2 ¼ x2 − y:
ð16Þ

Equations (16) are, overall, ‘simpler’ than (15) as the input
u does not propagate through all equations, and there are less
terms. Moreover, no division by the time constant is needed in
(16), which allows downgrading state variables to algebraic
ones simply by setting to zero the time constants for which
they are multiplied. Finally, the Jacobian matrices of (16) are
also sparser than those of (15) at the price, however, of a non‐
diagonal and non‐symmetrical matrix T.

The property of the implicit formulation to increase the
sparsity of the equations and their Jacobian matrices is
particularly useful when one utilises techniques that involve
series of several lead‐lags such as the typical approximations
utilised to represent fractional order derivatives [65] (see
Section 2.3) or the Padé approximants of delayed variables
[66]. In the specific case of lead‐lag series, for example, the
implicit formulation leads to a tridiagonal Jacobian matrix
(number of non‐zero elements 3n − 2, where n is the
order of the matrix), whereas the explicit formulation leads
to a triangular one (number of non‐zero elements n
(n + 1)/2).

In general, it is not even necessary that the time derivatives
are separated from the right hand side, which leads to the
implicit form:

0¼ φ z ; _z ; tð Þ: ð17Þ

It is relevant to complete this discussion by observing that
the differentiation of (17) at a stationary point leads to:

0¼ φzΔz þ φ _zΔ _z ¼ A z þ E _z ; ð18Þ

which leads to the matrix pencil:

A þ E s: ð19Þ

where s is the variable of the Laplace transform. A relevant
application of the pencil (19) is the small‐signal stability
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analysis of the linear(ised) set of implicit DAEs, which is the
solution of the generalised eigenvalue problems:

detðA þ E λÞ ¼ 0; ð20Þ

which offers some benefits (sparser matrices) and some
drawbacks (very few available solvers and libraries are able to
treat the general problem with A and E both asymmetric [67]).
The interested reader can find a comprehensive discussion on
the utilisation of matrix pencils and eigenvalue problems,
including dual, non‐linear and singular ones, for power system
small‐signal stability analysis in the monograph [68].

The implicit form (17) is the formulation utilised in the
proposed power system model and in all cases studies. We
further elaborate on this form in Sections 2.4.

2.2 | Specialised models

Before introducing the proposed model, we discuss some
relevant specialised models, namely models that have been
proposed in the literature and focus on a specific modelling
detail of the more general model proposed in this work. Every
model presented in the remainder of this section, thus, can be
viewed as a special case of the model given in Section 2.4.

2.2.1 | Frequency dependent model

An ongoing debate in the power system community is the
discussion whether the utilisation of model (1) is adequate at
all, given the numerous drastic changes in the dynamics and
controls that have been introduced in the last couple of de-
cades in power systems [1, 2]. Power system converters are
much faster than synchronous machines and, while do not
provide inertia, they are also exempt from technical constraints
such as the relatively slow dynamics of the governors of
conventional power plants.

Among the various proposed approaches are multi‐scale
models [69, 70], dynamic phasors [71, 72], and ElectroMag-
netic Transient (EMT) models with integration methods
optimised for the simulation of large power systems [73]. Here,
we do not engage in this debate nor judge the merit of each
approach. In the experience matured by the authors, however,
we have found that high order harmonics are rarely any issue
for the overall dynamic behaviour of the system and, in any
case, these harmonics can be studied separately. This obser-
vation applies to large interconnected power systems, not to
microgrids, whose dynamics behaviour constitute a world apart
and should not be mixed up with that of transmission systems.

In this work, we consider exclusively the frequency
dependence of the various components of the system and a
selection of fast dynamics through the concepts of frequency
divider [74] and Park vectors [75].

The frequency divider is a continuum approximation‐based
technique used to estimate the frequency variations at the buses
of the grid based on synchronous machine rotor speeds. This
approach has been utilised in Ref. [76] and some results are
briefly discussed in Section 3.1. The main limitation of the
original definition of the frequency divider is the assumption
that only synchronous machines are able to modify/impose the
frequency at their point of connection. This has been demon-
strated not to be the case in more recent studies by the same
authors [77, 78]. This limitation can be solved, case by case, by
patching the frequency divider formula for devices other
than synchronous machines. This has been done, for example,
in Ref. [79].

The Park vector, on the other hand, can be viewed as the
simplest approximation of dynamic phasors, and in that it re-
tains only the fundamental frequency. However, it also retains
the fast dynamics of transmission lines and of the magnetic
fluxes of rotating machines. Park vector is compatible with the
average models of power electronic converters [80] and makes
possible to study the dynamic interaction of the DC and AC
sides of the converters [81]. In Ref. [82], the two concepts of
frequency divider and Park vectors are combined to allow a
precise, analytical definition of the frequency variations at grid
buses. This, however, comes at the price of introducing a new
quantity, namely the complex frequency that can be involved to
calculate.

2.2.2 | Stochastic Differential‐Algebraic
Equations

Stochastic Differential Equations have been utilised in power
systems since the 1908s, at least in academic studies, but with
the strong limitation of including perturbations only in the
differential equations. This limitation is a consequence of the
fact that it is not known how to include stochastic processes in
algebraic equations or, which is the same, to singular differ-
ential equations [83, 84]. Early attempts to include noise in the
algebraic variables have utilised the singular perturbation
approach, which, as said above, consists in assigning a fictitious
dynamic to algebraic variables [10, 85].

More recently, the first author has proposed a general
model in Ref. [86] that is able to include additive noise to both
state and algebraic variables. Since parameters can always be
made algebraic variables with a dummy equation, say
0 = α − y, also parameters can be thus made vary stochasti-
cally. The model proposed in Ref. [86] is the following:

_x ¼ f x ; y ; _ηð Þ;

0¼ gðx ; y ; ηÞ;

dη¼ aðη; tÞdt þ bðη; tÞ � dw ðtÞ

ð21Þ

F I GURE 2 Series of two lead‐lag transfer functions
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η ∈ Rq are the states of the stochastic processes; dw ∈ Rr are
the Wiener process increments; a and b are the drift and the
diffusion terms of the Wiener processes, respectively.

The stochastic processes η are expressed in terms of
variational equations rather than differential equations that
describe deterministic dynamic models. This is because sto-
chastic processes are conceptually different from conventional
ODEs and also require a specific integration scheme. In Ref.
[86], the Euler–Maruyama method is utilised, which is the
simplest first order integration scheme but is equivalent to
higher order schemes, for example, the Milton one, if the
diffusion term is constant. A positive aspect of the integration
of SDEs is that the diffusion term is integrated separately and
is delayed by one step with respect to the drift. This means that
the integration scheme of the deterministic part of (21), namely
the first two equations and a, can be different from the one
utilised for the diffusion b. This delay, howeve,r does not
impact on the accuracy as, in general, a and b do not depend
on x and y.

It is worth noticing that, in (21), only first time derivatives
of the stochastic processes appear in the differential equations
f [86]. The rationale for this is readily explained. If noise is
additive, then

x ¼ ~x þ U η; ð22Þ

where ~x is the deterministic part of the vector of randomly
perturbed state variables x, and U is a n � q matrix that de-
fines the weights of the stochastic processes onto the differ-
ential equations. The differentiation of (22) yields:

dx ¼ ~f ðx ; y ; tÞdt þ U dη
¼ f x ; y ; _η; tð Þdt;

ð23Þ

where ~f is the deterministic part of the differential equations f.
Equation (23) is expressed in an explicit form but can be
conveniently rewritten in a semi‐implicit form:

dx − U dη¼ ~f ðx ; y ; tÞdt; ð24Þ

which is computationally more convenient than using the ex-
pressions of dη into f.

The properties of stochastic processes that the SDEs that
define variables η have to reproduce are probability distribution,
autocorrelation and correlation with other processes. The
probability distribution also implies the mean, the standard de-
viation and higher order momenta of the process. Since the
Wiener process has zero expectation, the mean of η, say 〈η〉, is
the vector that satisfies the condition a(〈η〉) = 0. Imposing the
standard deviation is more involved as it is intertwined with the
probability distribution and the autocorrelation. Ref. [87–89]
discuss various methods to impose these properties considering
arbitrary probability densities and/or autocorrelation functions,
and the reader is referred to these studies for details on the
implementation of these techniques. A common feature of all
techniques is to have bounded standard deviation in stationary

conditions. This property is observed inmeasurement data and is
generally imposed through amean‐reverting process, such as the
Ornstein–Uhlenbeck process [86].

While mean, standard deviation and probability distribu-
tion are relatively well‐understood concepts, more involved
(and much less commonly found in studies on SDEs) is a
discussion on the effects of the autocorrelation. This can be
interpreted as an equivalent for stochastic processes of the time
constant of a deterministic dynamics. The autocorrelation, in
turn, defines how fast or slow a process can vary from one
time lag to another, which in turn, defines the harmonic
content of the process itself. For this reason, two processes
with identical probability distribution but with different auto-
correlations may have significantly different effects on the
dynamic response of a system [90].

The last property, namely correlation among processes, is
yet another aspect of SDEs that has not been fully discussed in
the literature on power system dynamic performance. To ac-
count for correlation, one has first to determine the correlation
matrix, say R ∈ Rr�r of the r stochastic processes. R is sym-
metric and has 1's on its diagonal as follows:

R¼

1 R1;2 R1;3 … R1;n
R2;1 1 R2;3 … R2;n
R3;1 R3;2 1 … R3;n

⋮ ⋮ ⋮ ⋱ ⋮
Rn;1 Rn;2 Rn;3 ⋯ 1

2

6
6
6
6
4

3

7
7
7
7
5
: ð25Þ

Note that if the processes are fully uncorrelated, then R is
the identity matrix. The correlation matrix must then be
decomposed, through Cholesky decomposition, into a matrix
C that satisfies the following equation [91]:

R¼ CCT ; ð26Þ

and the correlated processes are computed as

dζ ¼ C dw ðtÞ: ð27Þ

Finally, the Equations (21) are modified by substituting dw
with dζ:

_x ¼ f x ; y ; _ηð Þ;

0¼ gðx ; y ; ηÞ;
dη¼ aðη; tÞdt þ bðη; tÞ � dζ:

ð28Þ

The effect of correlation is that of increasing the proba-
bility that processes have similar trajectories. That is, if two
processes are strongly correlated the probability that they in-
crease (or decrease) at the same time is high. This means that
correlated processes are more likely prone to create stability
issues than two fully uncorrelated processes with same prob-
ability distribution.

The stochastic processes discussed so far are generated
based onWiener processes and are, thus, continuous. There are,
however, some random events that are better modelled as

316 - MILANO ET AL.



jumps, such as load consumption variations [13, 92], the effect
of tap‐changer‐under‐load transformers [14, 93], and the effect
of clouds on the active power generation of photovoltaic panels
[94]. Random jumps can be also correlated as their continuous
counterparts [95]. In mathematical terms, stochastic jumps have
a similar expression as continuous stochastic processes and the
two processes can be combined together [96]:

dη¼ aðη; tÞdt þ bðη; tÞ � ½C dwðtÞ�
þ cðη; tÞ � ½K dȷðtÞ�

¼ aðη; tÞdt þ bðη; tÞ � dζ þ cðη; tÞ � dκ;
ð29Þ

where dȷ ∈ Rs are the jump increments; K is a q � s matrix
that defines the correlation among the jumps and is obtained
using same procedure as matrix C; dκ are the correlated jump
increments; c is the diffusion terms of the Poisson stochastic
processes.

From the implementation point of view, jumps are
impulsive events that when integrated lead to a staircase
function. These events are slightly more involved to implement
than Wiener processes. The terms dȷ in (29) can be obtained
through the combination of a Poisson process that determines
how many events happen in a given period, a uniform distri-
bution that determines the times at which the events happen in
the given period, and a random process (e.g. Gaussian) that
imposes the probability distribution of the amplitude of the
events. Note that the parameter λ that defines the Poisson
distribution—which is both the expected value and the stan-
dard deviation of the Poisson process—functions as the
autocorrelation coefficient for the continuous stochastic
processes.

2.2.3 | Delay Differential‐Algebraic Equations

As discussed in Section 1, another modification to the conven-
tional model (1) that has been considered in the literature is the
inclusion of delays. These are typically included in the system as
index‐1 Hessenberg forms, namely, the algebraic equations do
not depend on delayed algebraic variables [29, 97]:

_x ¼ f x ; y ; x d; y d; tð Þ;

0¼ g x ; y ; x d; tð Þ;
ð30Þ

where xd = x(t − τ) and yd = y(t − τ), with τ > 0 are the
delayed variables. The notation of (30) is for one delay, but it
can be easily extended to multiple delays as follows:

_x ¼ f x ; y ; x 1
d;…; xμ

d ; y
1
d;…; y μ

d ; t
� �

;

0¼ g x ; y ; x 1
d;…; xμ

d ; t
� �

;
ð31Þ

where τ1, …, τμ are the μ delays of the system. To simplify the
notation, in the remainder of this paper, the vectors of state
and algebraic variables with multiple delays are indicated as xd

and yd.

In the context of the project AMPSAS and in the general
model proposed in Section 2.4, we extend the analysis to non‐
index‐1 Hessenberg DDAEs, which are of the form:

_x ¼ f x ; y ; x d; y dð Þ;

0¼ g x ; y ; x d; y dð Þ:
ð32Þ

In Ref. [98], the algebraic equations in (32) are viewed as
constraints, and this complicates significantly the small‐signal
stability analysis as thoroughly discussed in Ref. [98]. To
explain this point, let us consider a stationary solution (xo, yo)
of (32). This satisfies the conditions:

0¼ f x o; y o; x o; y oð Þ;

0¼ g x o; y o; x o; y oð Þ;
ð33Þ

where it has been used the fact that in steady‐state, xd,o = xo
and yd,o = yo. The differentiation of (30) at (xo, yo) yields:

Δ _x ¼ f xΔx þ f yΔy þ f xdΔx d þ f yd
Δy d ð34Þ

0¼ gxΔx þ gyΔy þ gxd
Δx d þ gy d

Δy d ð35Þ

where gy is assumed to be full rank. Ref. [98] shows that the
characteristic equation of (32) linearised at the stationary point
is given by:

Δ _x ¼ A0 Δx þ A1 Δx d þ
X∞

k¼2

Ak Δxðt − kτÞ½ �; ð36Þ

where

A0 ¼ f x − f yg
−1
y gx ;

A1 ¼ f xd − f yd
g−1

y gx þ f y N;

Ak ¼ f y Mþ f y d

� �
Mk−2 N; k ≥ 2;

with

M¼ −g−1
y gy d

;

N¼ −g−1
y gxd

− M g−1
y gx :

The first matrix A0 is the well‐known state matrix that is
computed for standard models in the form of (1). The other
matrices are not null only if the system include delays. The
matrix A1 is found in any Delay Differential Equations
(DDEs), while matrix A2 appears in (30) if both f y d

and gxd

are not null [97]. For index‐1 Hessenberg forms, the term for
k > 2 is null as gy d

, and hence M are null. For non‐index‐1
Hessenberg forms, on the other hand, since gy d

is not null
in general, there are infinitely many non‐null matrices Ak. Each
delay τ generates, thus, a characteristic equation with infinite
delays kτ, k = 1, 2, …, ∞. This clearly further complicates the
numerical calculations of the roots of the characteristic equa-
tion of (36). It is relevant to note, in fact, that this characteristic
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equation has infinite solutions even for single‐delay index‐1
Hessenberg form. The characteristic equation of single‐delay
non‐index‐1 Hessenberg forms, on the other hand, has infin-
ite delays, each of which leading to infinite solutions. Finally, it
is important to note that (36) can be studied only if the series
converges, which happens if and only if, as demonstrated in
Ref. [98], the spectral radius of M is strictly lower than 1.

The power system model proposed in this paper provides a
more elegant way to study non‐index‐1 Hessenberg form
DDAEs by considering an implicit formulation. This leads,
after linearisation, to a generalised eigenvalue problem for
which the calculation of the inverse of gy is not required. Let
us define zd = (xd, yd) as the delayed generalised state vector z
= (x, y). Using an implicit formulation and considering, for
simplicity, a single delay, the delayed version of (17) becomes:

0¼ φ z ; _z ; zd; tð Þ; ð37Þ

and linearising at a stationary point zo that satisfies _zo ¼ 0 and

0¼ φ zo; 0; zoð Þ; ð38Þ

one obtains:

0¼ φzΔz þ φ _zΔ _z þ φzd
Δzd; ð39Þ

which can be expressed in the form of (36) as follows:

E Δ _z ¼ A0 Δz þ A1 Δzd: ð40Þ

where E¼ −φ _z , A0 = φz and A1 ¼ φzd
. The implicit form,

thus, does not lead to matrices Ak for k ≥ 2 and does not
introduce fictitious delays kτ. Of course, this simplification is
obtained at the cost of having a singular pencil (E is certainly
singular), which complicates the numerical determination of
the eigenvalues [68].

A special case of DDEs are Neutral Delay Differential
Equations, that is, DDEs that include the first time derivative
of the delayed variables. Considering again, for simplicity, the
single‐delay case, one has:

0¼ ψ x ; _x ; x d; _x dð Þ; ð41Þ

which, using a descriptor model transformation [99], can be
equivalently rewritten as:

_x ¼ y ;

0¼ ψ x ; y ; x d; y dð Þ:
ð42Þ

Equations (42) are a set of non‐index‐1 Hessenberg form
DDAEs. Thus, if one defines z = (x, y), (42) can be rewritten
in the same form as (37), whose linearisation leads to (40). Ref.
[100] discusses the small‐signal stability of (41) using the
transformation above with applications to circuits and systems.

While the small‐signal stability analysis is significantly
complicated by the presence of delays, numerical time domain

integration methods can include delays in a relatively straight-
forward way. The only requirement is to store in some vector the
past values of each delayed variable, for a time at least as big as the
delay with which such a variable appears in the equations and
then interpolates the value of the delay variables at the points
evaluated by the integration scheme. It is worth noticing that for
implicit integration schemes that require the calculation of the
Jacobian matrices of the system only the Jacobian matrices with
respect to the current variables, namely fx, fy, gx and gy, are
required, not the Jacobian matrices with respect to delayed ones,
thus resulting, in effect, in a sparser matrix to factorise [29, 97].
This fact has been exploited in EMT analysis, for example, by
utilising the inherent delays of long transmission lines to
decouple the integration of circuits [101] or to take advantage of
the different time scale of electromagnetic transients and con-
trollers [102]. More recently, an application of the decoupling
property of delays has been proposed during the development of
the project AMPSAS for the transient stability analysis of power
systems [103].

So far, we have considered exclusively constant delays.
Communication systems, however, are characterised by vari-
able, partially random delays [104]. Figure 3 shows a realisation
of a realistic model of a Wide Area Measurement System
(WAMS) delay, which is composed of a constant, a sawtooth
and Gamma‐distributed jumps. A communication delay is thus
a relevant example of a physical process that combines sto-
chastic, functional and discontinuous DAEs.

The implementation in a time integration tool of time‐
varying delays has almost same complexity as that of constant
delays. This makes the numerical time‐domain integration the
best tool available for the analysis of the impact of time‐varying
time delays on power system dynamics. However, numerical
integration schemes are known to be potentially able to modify
the stability properties of theDDAEs [41]. It is, thus, desirable to
have an alternative method to compare results.

During the development of the project AMPSAS, a
considerable effort has been dedicated to the implementation
of methods for the small‐signal stability analysis of DDAEs
with time‐varying delays. This analysis is relevant because of
the quenching phenomenon [105], namely, the phenomenon
for which ‘a system that is unstable with inclusion of a constant
delay τ ∈ [τmin, τmax], can become stable for a time‐varying
delay ~τðtÞ that varies in the same interval [τmin, τmax], and
vice versa’ [106]. A breakthrough is provided by the work in

F I GURE 3 Realistic model of a Wide Area Measurement System
(WAMS) delay [104]
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Ref. [107], which recognises that sufficiently fast varying delays
are equivalent, from a stability point of view to distributed
delays. Since distributed delays can be modelled as a series
of infinitely many constant delays, this allows using available
tools, for example, PDE approximation followed by a Che-
byshev discretisation, for small‐signal stability analysis of
DDAEs [97, 108]. The computational burden of this analysis,
however, increases as each time‐varying delay yields infinitely
many constants delays, each of which yields infinitely many
roots of the characteristic equation of the linearised set of
DDAEs.

Due to their negative effect on the dynamic performance
of the system where they appear, delays have been largely
studied in control theory. In the context of power system
control, a conventional application is the design of controllers
that are robust against the delays that appear in the system
[6, 27] or techniques that compensate measurement delays [109].
As a final note on DDAEs, it is interesting to note that delays
do not necessarily always create stability issues. An emerging
application is the introduction—on purpose—of delays to
improve the stability of the controllers. A pioneering work in
this direction with applications to power systems is Ref. [110].

2.2.4 | Hybrid differential‐algebraic equations

As discussed in the introduction, the ability to properly char-
acterise discontinuities and behavioural models is an important
aspect of power system modelling. These discontinuities and
behavioural models lead to the inclusion of a vector of discrete
variables in the set of DAEs. For each variable, an equation has
to be added to the system but there is no unique nor well‐
accepted method to set up these equations.

A relevant approach is the combination of a hybrid au‐
tomaton and Petri nets proposed by Hiskens [111, 112]. The
hybrid automaton is described by a finite set of discrete states;
a collection of dynamical systems, one per each value of the
discrete states; and a finite set of events. The Petri nets, on the
other hand, are utilised to characterise unambiguously the
discrete event activities. The approach described in Ref. [111]
and several other papers by the same author is rigorous but
requires to define a large number of impulsive state variables,
namely, variables that normally have _z¼ 0 and that change
value, through a Dirac impulse, defined by a set of rules
expressed in the form of conditional equations. Thus, this
approach leads to singular Jacobian matrices (e.g. the row of
the Jacobian matrix corresponding to equation _z¼ 0 is iden-
tically null all times), apart from increasing significantly the
state space of the system itself.

During the execution of the project AMPSAS, we have
adopted a different but equally rigorous approach based on the
Filippov theory for differential equations with discontinuous
right‐hand side [46]. The starting point is common to the
hybrid automaton approach that is a switched dynamical sys-
tem, which for generality, we assume to be in implicit form and
function of the variables z:

0¼
φ1 z ; _zð Þ; when h z ; _zð Þ < 0;
φ2 z ; _zð Þ; when h z ; _zð Þ > 0;

�

ð43Þ

where h is an event function. Note the utilisation of the word
when as opposed to the more common if in Equation (43).
This notation is inherited from the when‐clause of the Mod-
elica language and is substantially a time‐driven if‐clause [113].
The equations of the kind of (43) are particularly useful to
define the status of the discrete variable, an infinitesimal instant
before and after a switch, often denoted as h− and h+,
respectively. This formulation, thus, facilitates the calculation
of the saltation matrix, which is required to properly obtain
the fundamental matrix solution and trajectories sensitivities
[114, 115].

Based on (43), the state space Rnþm can be split into two
regions, R1 and R2, separated by a hyper‐surface Σ where R1,
R2 and Σ are characterised as:

R1 ¼ z ∈ Rnþm∣hðzÞ < 0f g;

R2 ¼ z ∈ Rnþm∣hðzÞ > 0f g;

Σ¼ z ∈ Rnþm∣hðzÞ ¼ 0f g;

ð44Þ

such that Rnþm ¼R1 ∪ Σ ∪R2, assuming that the gradient of
h at z ∈ Σ never vanishes, hz(z) ≠ 0 for all z ∈ Σ.

The vector field on Σ is defined by Filippov continuation
approach, known as Filippov convex method [46]. This
method states that the vector field on the surface of discon-
tinuity is a convex combination of the two vector fields in the
different regions of the state‐space:

0¼
φ1 z ; _zð Þ; z ∈R1;

co φ1 z ; _zð Þ;φ2 z ; _zð Þf g; z ∈ Σ;
φ2 z ; _zð Þ; z ∈R2;

8
><

>:
ð45Þ

where co φ1;φ2ð Þ is the minimal closed convex set containing
φ1 and φ2.

The added value of the Filippov theory is that it provides a
systematic approach to determine what happens when the tra-
jectory of _z ¼ φ1ðzÞ; with zð0Þ ¼ zo reaches at Σ in finite
time. In turn, thus, the Filippov theory provides an alternative to
the Petri nets utilised in Ref. [111] and other studies by Hiskens.

The possibilities considered by Filippov are three: (i)
transversal crossing, (ii) attractive sliding or repulsive sliding
and (iii) smooth exit. Filippov formulated a first order theory
to decide what to do in such kind of situation. The details of
the general theory can be found in Ref. [46] and several
illustrative examples that utilise circuits and power system
models can be found in Ref. [116–119]. A particular advantage
of the definition of the event functions h is that they can
represent any non‐linear equation. This is particularly relevant
when modelling control limiters with variable limits, such as
the current limiters of the Voltage Sourced Converters (VSCs)
utilised in power ‐electronics‐based devices [120].

So far, we have discussed equations with discontinuous
right‐hand side, which are particularly adequate to model the
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hard limits of the controllers. Behavioural models (e.g. under‐
load tap‐changer transformers) can also be formulated using
Filippov theory (or hybrid automata and Petri nets) but this is a
kind of overshooting. In the experience of the authors, it suffices
to define simple when‐clause rules that determine the values of
the discrete values according to some event functions as follows:

u ¼
u1; when h z ; _z ; tð Þ < 0;
u2; when h z ; _z ; tð Þ > 0;

�

ð46Þ

where, for generality, h is assumed to be function not only of
time and the current value of the states but also of the first
time derivative. The resulting set of HDAEs that is able to take
into account discontinuous right‐hand side models as well as
behavioural models is as follows:

0¼ φ z ; _z ;u; tð Þ;

0¼ k z ; _z ;u; tð Þ;

ς ¼ h z ; _z ; tð Þ;

ð47Þ

where u ∈ Rp are the discrete variables; k are the switching
Equations (46) that in general depend on all variables of the
system and on time; h are the event functions that decide the
sign of the auxiliary variables ς ∈ Rξ. It is relevant to note that
equations k are formally introduced here exclusively to account
for the discrete variables u. These equations are, in effect,
algebraic equations; however, they differ from the equations g
in that the Jacobian matrices of k do not form the matrix
pencil of the linearised system and do not generate sensitivities,
in the same way as no sensitivities with respect to the discrete
variables u can be defined. In practice, equations k are
implemented as if‐ or when‐clauses.

The switching conditions of the discrete variables can be
time‐ or state‐driven. Time‐driven events are straightforward
to implement as it suffices to force the time domain simulation
to evaluate a point right before and a point right after the event
itself. That is, if an event is scheduled to happen at time t, the
time domain simulation has to calculate a point at t − ϵ and
another point at t + ϵ. This is possible if the numerical inte-
gration scheme allows a variable time step. Otherwise some
sort of interpolation is required. The interpolation is the typical
solution for EMT simulations, which typically use a fixed time
step. In our experience, however, variable time steps are more
convenient for the transient stability analysis of power systems.

If the event is state‐driven, then the identification of the
exact time at which this event occurs is more involved.
Functions h are evaluated during the whole time domain
integration and so the sign of the elements of vector ς are
determined. Whenever a switching condition is identified, that
is, a change of sign of an element of ς occurs, then proper
actions are taken, that is, the solver launches a Filippov theory‐
based procedure or switches a discrete variable.

With this regard, there are two relevant ways to proceed,
either time‐stepping or event‐driven approaches [121]. These
refer to the approach with which an event is treated during the
iterations required to solve each step of the time domain

integration (when using an implicit integration scheme). The
time‐stepping approach checks the signs of ς at each iteration
and switches the variables as soon as a change of sign is
identified. The event‐driven approach consists in completing
the iterations and determining the point. Only then the event
functions are evaluated, and if any ς has changed sign then the
variable that is associated to the condition that shows the
largest variations of the element of ς is switched, the state
variables are reset to the previous point and the calculation of
the time step is repeated.

Both methods offer advantages and drawbacks. The time‐
stepping approach can be, slightly, more time consuming than
the event‐driven one if there are few events actually occurring
during a simulation, and the size of the event functions is large.
On the other hand, the event‐driven approach is more time
consuming if many event occurs, especially if multiple events
occur in the same time step. However, which method leads to
the best performance of a given network and scenario can be
hardly known a priori. In the experience matured in the
execution of the project AMPSAS, the best solution is to have
a software tool that can handle both approaches.

There is, however, a more crucial issue: the inclusion of
discrete variables transforms the integration of DAEs from
a deterministic problem into a combinatorial one. For
example, if the system include p Boolean variables u, then
the system is characterised by 2p possible combinations of
the vector u. It has to be expected that at least some of
these combinations satisfy all the equations of the system—
including constraints k—and are thus feasible solutions. In
turn, there might be a variety of different feasible solutions
of the system, even if all equations and rules that defines
the discrete variables are deterministic. This conclusion
does not arrive unexpected as non‐linear equations are
known to potentially have multiple solution and, in turn,
discrete variables introduce a peculiar nonlinearity in the
equations.

Another way is to interpret the stationary points of a set of
HDAEs as the optima of an optimisation problem. We note, in
fact, that the stationary point of a set of DAEs can be viewed
as the solution of an optimisation problem having objective as
follows:

min: :
1
2

_zT _z ;

s:t: : 0¼ φ z ; _z ; tð Þ:

ð48Þ

Then, the determination of the equilibrium point of a set
of HDAEs is equivalent to a mixed‐integer optimisation
problem, which is certainly not convex due to the discrete
variables. In other words, thus, the multiple solutions of a set
of HDAE are local minima—and so are the solutions of a set
of non‐linear DAE—no matter how rigorous is the procedure
to determine the switching of the discrete variables.

A consequence of the existence of (potentially many)
feasible solutions leads to an (probably unsolvable) imple-
mentation issue that is common to both time‐stepping and
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event‐driven approaches: the occurrence of untimely/unnec-
essary switches of discrete variables. The main issue is that a
given event is identified by the change of sign in the vector ς
but the exact time at which such event happens is not known
unless one solves a special problem called zero‐crossing prob‐
lem, which can be formulated as follows:

0¼ φ z ; _z ;u∗; tð Þ;

0¼ hi z ; _z ; tð Þ;
ð49Þ

where hi is the ith event function that binds, and u* is the
vector of discrete variables that is frozen for the solution of the
zero‐crossing problem. This problem has n + m + 1 equations
and 2n + m + 1 unknowns, namely z, _z and t. Instead of
solving (49), thus, one can solve the following problem:

0¼ χ z ; z t;u∗; tð Þ;

0¼ hi z ; _z ; tð Þ;
ð50Þ

where χ is a function that depends on the numerical integration
scheme (see for example Ref. [64]), and zt is the value of the
states at the previous step.

The solution of the zero crossing problem (50) tends to be
time consuming and may require to have to cut the time step
until the change of sign of only one element of ς occurs. Due
to its non‐negligible computational burden, the solution of a
zero‐crossing problem is generally the last resource that is
utilised, for example, when the time‐stepping or event‐driven
approaches fail or produce chattering. In the software tool
utilised in the simulations shown in Section 3, the time‐
stepping approach is utilised for most discontinuous right‐
hand side equations, whereas the event‐driven approach is
mostly utilised for behavioural models.

As a final note on time‐ and state‐driven approaches, we cite
the Quantised Integration Methods (QIMs) that had some hype
about a decade ago [122]. These numerical methods work by
quantising the increments of the states rather than time. The
advantage is that the points that the integration method evaluate
impose a given state, which make unnecessary the solution of a
zero‐crossing problem. In turn, the difference between a con-
ventional time‐driven integration method and QIMs is very
similar to that exists between the perpendicular intersection and
the local parameterisation method utilised for the corrector step
of a continuation power flow analysis [59, 123]. As any other
method, QIMs have advantages and drawbacks. In the experi-
ence of the authors, themain issues with theQIMs are two: (i) no
A‐stable integration method equivalent to the ITM or the BDFs
is available for QIMs; (ii) QIMs are really efficient only for linear
circuit‐like DAE and if not too many events occur in a simula-
tion. But, of course, most integration methods are efficient in
these conditions. In particular, QIMs become awfully slow for
SDAEs, which has to be expected as continuous Wiener pro-
cesses can be viewed as a sequence of infinitely many events in
the unit of time. It is also for this reason that stochastic processes
require ad hoc integration schemes.

2.3 | Fractional‐Order Differential‐Algebraic
Equations

The last specialised model that we discuss here considers
Fractional‐Order Differential‐Algebraic Equations (FO‐
DAEs). Fractional calculus deals with the problem of the
differentiation and integration operators dγ/dtγ, ∫ t

0 dγ
ðτÞ for

γ ∈ R. This is an example of advanced mathematical tech-
niques and their applications to power system analysis and
control that have been explored during the execution of the
project AMPSAS.

The first problem to solve is which theoretical definition to
use. There are in fact many different ways to define fractional
derivatives [124–130] but only few of them are adequate for an
implementation in a software tool. In this work, we consider
the definition proposed by Caputo in Ref. [128], which reads:

xðγÞðtÞ ¼
dγx
dtγ
¼

1
Γðμ − γÞ

∫ t
0

xðμÞðτÞ
ðt − τÞγ−μþ1 dτ: ð51Þ

The Laplace transform of (51) is:

L xðγÞðtÞ
n o

¼ sγXðsÞ −
Xμ−1

j¼0
sγ−j−1xðjÞð0Þ: ð52Þ

Equation (52) requires the knowledge of the initial condi-
tions x(j)(0), j = 0, 1, …, μ − 1, which in this case are of integer
order. This property effectively allows for the solution of initial
value problems. Then, it remains to implement the term sγ in
(52). This is typically approximated using appropriate rational
order transfer functions. Also in this case, various techniques are
available, for example, Ref. [131]. In practice, the most
commonly utilised continuous method is the Oustaloup
RecursiveApproximation (ORA) [132]. The generalisedORAof
a fractional derivative of order γ is defined in Laplace domain as
Ref. [126]:

sγ ≈ ωγ
h ∏

N

k¼1

sþ ω0k
sþ ωk

; ð53Þ

where ω0k ¼ ωbω
ð2k−1−γÞ=N
v , ωk ¼ ωbω

ð2k−1þγÞ=N
v , and ωv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωh=ωb

p
, with [ωb, ωh] being the frequency range for which

the approximation is designed to be valid and N, the order of
the polynomial approximation. The block diagram of ORA is
shown in Figure 4. This is, for now, the implementation utilised
in the software tool developed for the project AMPSAS but
the implementation allows implementing any other approxi-
mation available in the literature.

In the context of the project AMPSAS, an effort has been
done to provide a comprehensive introduction to fractional
order calculus for power system modelling and control and
small‐signal stability analysis in Ref. [65, 133–135]. In fact,
while fractional order derivatives do not have really a physical
meaning, they find applications in control. Being ultimately
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converted into a series of leads‐lags, from the control design
point of view one has to define only very few parameters and
the order of the fractional derivatives.

2.4 | Proposed general model

We are now ready to present the proposed general SFHI‐
DAE‐based model for the transient stability analysis of po-
wer systems. This combines the implicit, frequency‐dependent
power system model with inclusion of stochastic processes and
jumps, delays and discontinuous right‐hand sides and behav-
ioural models. Merging together (28), (29), (37) and (47), one
obtains:

0¼ φ z ; _z ; zd ; η; _η;u; tð Þ;

dη¼ aðη; tÞdt þ bðη; tÞ � dζ þ cðη; tÞ � dκ;
0¼ k z ; _z ; zd ;u; tð Þ;

ς ¼ h z ; _z ; zd ; tð Þ;

ð54Þ

where all variables and functions have the meaning indicated in
the previous sections.

The implementation of a software tool that embeds all the
features discussed so far and effectively implements (54) in a
meaningful and consistent way has been a titanic task. This has
required, in effect, the last 12 years of work of the first author
and the combined effort of several students and post‐doctoral
researchers, not limited to the co‐authors of this paper. The
effort is so vast that the methodological approach adopted for
the implementation of the code is as important as the theo-
retical foundations themselves. The key aspects of this meth-
odological approach are briefly outlined in the remainder of
this section.

2.4.1 | Modularity

Modularity is one of the most important concepts of modern
programing techniques. It is the foundation of object‐oriented
programing, servlets, multi‐threading, and, more recently,
micro‐services. It is, thus, natural that modularity is also an
important concept for the development of a software tool for
power system simulation. In this context, modularity arises at
two different levels. At the device level, one can expect that
most devices that compose a power system do not include all
features that are accounted for in (54). Assuming that every
device is implemented as a class1, not all devices will include
stochastic processes, delays and events. These features should,
thus, be conveniently implemented in separated methods and

be called only if and when needed. A similar principle applies at
the system level. The device models available in the libraries of
the software tool are not always utilised altogether in simula-
tions. The code of the devices that is not part of a system
model should thus not be called during a simulation. This
concept is called just in time (jit) compilation and belongs to
the more general concept of laziness, which is a virtue when it
refers to computer programing as it increases the efficiency
and performance of the code.

2.4.2 | Acausality

Acausality is a fundamental concept of physical system
modelling. It refers to the fact that the quantities that appear in
a physical law should not be interpreted as one is the cause of
another, but a condition that each quantity contributes to
satisfy [137]. This concept is better explained through an
example. Let us consider again the double lead‐lag shown in
Figure 2. The control theory suggests that u is the input and y
is the output, thus implicitly assuming that u causes y. But this
interpretation is not included in the equations that define the
transfer function of the double lead‐lag and should not affect
how these equations are written. The implicit formulation
helps foster acausality when writing DAEs. For example, the
Equations (16) of the double lead‐lag of Figure 2 can be
rewritten as:

0¼ T2 _x1 þ x1 − u;
0¼ T4 _x2 − T1 _x1 þ x2 − x1;
0¼ T3 _x2 þ x2 − y;

ð55Þ

which are perfectly symmetric and do not allow distinguishing
between inputs and outputs.

2.4.3 | Separation of the solvers from the power
system model

All algorithms and techniques implemented throughout the
execution of the project will be defined in general terms, that
is, without any particular device or system model in mind. This
approach is recognised as a necessary feature of large‐scale
projects that involve the simulation of physical systems [54].
Direct advantages of this approach is that the implementation
of the algorithm can be conducted in parallel with and inde-
pendently from the implementation of physical models.
Another major advantage is that no hypothesis is imposed on
the device models, thus allowing an unconstrained develop-
ment of the system model. This approach is seldom applied to
power system analysis. A relevant example of an algorithm that
heavily constrains device models is the well‐known fast
decoupled power flow analysis, which is certainly efficient, but
can be applied only to a specific (and very restrictive) model of
the transmission system, loads and generators [138].

F I GURE 4 Oustaloup's recursive approximation block diagram [65]

322 - MILANO ET AL.



2.4.4 | Focus on large‐scale systems and real‐
world data

Every technique and algorithm should be tested using ‘large‐
scale power systems’. This point is crucial as the computational
burden tends to grow quickly when dealing with non‐linear
systems. Any technique that does not prove efficient or scal-
able will be discarded a priori. On the other hand, parallelisa-
tion will be exploited whenever possible. Moreover, it is crucial
to base and test all techniques on a real‐world system. The case
study presented in Section 3 is an application of this meth-
odological principle.

2.4.5 | High performance computing

The model (54) proposed in this paper can have a heavy
computational burden, especially for large systems. Thus, the
implementation of algorithms and techniques based on high
performance computing and, in particular, parallel program-
ing that are able to exploit multi‐threaded computer archi-
tectures is a key aspect of the proposed model. Parallel
programing for power system analysis is a relatively recent
topic [139–146], although there are also pioneering studies
dated back in the late 70s [147]. Needless to say, the simu-
lation proposed model (54) can significantly benefit from
parallelisation. An obvious application is the study of the
effects of stochastic processes through a Monte Carlo
method. This is an obvious parallelisation as each realisation
of the processes and each simulation of the Monte Carlo
analysis are fully independent and can be thus solved on
different processors without any particular coordination [86].
Another, less trivial, example of technique that can foster
code parallelisation is the one‐step delay decoupling technique
described in Ref. [103].

3 | CASE STUDY

This section illustrates the dynamic performance of the pro-
posed SFHI‐DAE model through a variety of examples based
on the AIITS. The base‐case scenario of this grid consists of
1479 buses, 1851 transmission lines, 245 loads, 22 conventional
synchronous power plants with Automatic Voltage Regulators
and turbine governors, 6 PSSs, one Automatic Generation
Control (AGC) that coordinates the synchronous machines,
and 176 wind power plants.

The topology and the steady‐state operation data of the grid
were provided by the EirGrid Group, the Irish Transmission
System Operator (TSO) (see Figure 5). Dynamic data, on the
other hand, are defined based on the technology of the gener-
ators and do not represent any actual operating condition. We
have, however, duly tested the dynamic response of the base‐
case scenario in order to match, at least in the first second af-
ter a large contingency, that of the real‐world system [148, 149].
Figure 6 shows the dynamic response as measured by the Eir-
Grid Group as well as the system setup for the AMPSAS project

following the outage of the largest in‐feed, namely the East West
Interconnector (EWIC) occurred on the 28th of February 2018.
On this date, the high voltage direct current link EWIC [20] that
connects the AIITS with the Great British transmission system
(GB), was tripped. At that moment, the AIITS was exporting
470 MW to GB. Due to the loss of the EWIC, the frequency in
the Irish grid rose to 50.42 Hz. Over frequency protections were
triggered and several wind farms were curtailed.

The examples below were developed during the execution
of the project AMPSAS and illustrate the impact on the AIITS
dynamic performance of frequency‐dependent models (Sec-
tion 3.1), correlated stochastic processes of wind speeds
(Section 3.2), WAMS communication delays (Section 3.3),
proportional integral (PI) controller limiters on the VSCs of
the EWIC (Section 3.4), and a fractional order AGC (Sec-
tion 3.5). All simulations were carried out using the software
tool Dome [55].

Verification of the results has been obtained by cross
checking all results and running a large number of sensitivity
studies. We observe that besides the AIITS we have also
thoroughly tested the models proposed in the manuscript with
a large variety of tests and benchmark systems. The interested
reader can find additional simulation results and tests in the
various references emanated by the project AMPSAS and duly
cited in the following sections.

F I GURE 5 Scheme of the All‐Island Irish Transmission System
(AIITS) (courtesy of EirGrid Group, available at www.eirgridgroup.com)
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3.1 | Frequency dependent model

This example is taken from Ref. [76] and illustrates the rele-
vance of considering the frequency dependency of the device
models in a low‐inertia system. Figure 7 shows the transient
response of the AIITS following the outage of the EWIC. This
contingency is chosen on purpose as it is the most severe
power unbalance that can be triggered by a single event in the
AIITS and, thus, leads to significant frequency variations.

The notation utilised in Figure 7 is the following:

� The Transient Stability Model (TSM) considers constant
reactances and susceptances everywhere in the grid. This is
effectively the conventional model as in (1).

� The Frequency Dependent Model (FDM), which was pro-
posed in Ref. [76] and is discussed in Section 2.2.1, considers
the dependency on the frequency in all loads, branches and
generators. In particular, loads are modelled as steady‐state
full‐load induction motors [150].

� A balanced fundamental‐frequency Dynamic Phasor Model
(DPM)—based on Park vectors—that includes machine flux
and line dynamics.

The trajectories shown in Figure 7 indicate that the DPM
and the FDM show similar information. The DPM also shows
some fast flux and electromagnetic dynamics but these damp
quickly and do not modify the overall behaviour of the grid, as
expected. On the other hand, the TSM is conservative, as it
shows a frequency nadir that is about 100 mHz lower and larger
voltage variations than those obtained with the other two sys-
tem models. From a computational point of view, the TSM,
FDM and DPM take 14, 7.5, and 165 s, respectively, to complete
the simulations. The bigger time required by the DPM is due to
its heavier computational burden and the need to use a smaller
time step (0.002 s vs. 0.01 utilised for the other two models)
needed to account for fast electromagnetic dynamics.

We note that these results have been ‘dramatised’ by the
utilisation of load models that heavily depend on voltage and
frequency variations. Without this dependency, the differences
between the TSM and the other models reduce significantly.
On the other hand, one may argue that in a scenario with
extremely low or even zero inertia, frequency variations can be
much higher than those that are possible in the current system.

It has to be expected, thus, that the relevance of frequency
dependent models will increase in the near future.

3.2 | Correlated stochastic processes

This example, which is taken from Ref. [76], illustrates the
impact of volatility and correlation of stochastic perturbations
of loads, bus voltages and wind speeds on the dynamic per-
formance of the AIITS. We first group the loads and wind
power plants of the AIITS into areas and then consider three
scenarios with same properties of the stochastic processes
except for the correlation as follows.

� S1 considers model (21), that is, a scenario where all Wiener
processes are fully uncorrelated.

� S2 considersmodel (28), with a low level of correlation among
processes that belong to the same area, that is, Ri,j = 0.4.

� S3 considers model (28) with a high level of correlation
among processes that belong to the same area, that is, Ri,

j = 0.8.

In all scenarios, the elements of the correlation matrix for i
and j belonging to two different areas are assumed to be Ri,

j = 0. Finally, the contingency is, also in this example, the
disconnection of the EWIC, which occurs at t = 10 s.

Figures 8a, 8b and 8c show the voltage magnitude at bus‐
bar Woodland obtained with 1000 Monte Carlo simulations,

F I GURE 6 Frequency response of the All‐Island Irish Transmission
System (AIITS) following the outage of the largest in‐feed [149]

F I GURE 7 Rotor angular speed of a synchronous machine (top panel)
and voltage magnitude at a load bus (lower panel) of the All‐Island Irish
Transmission System (AIITS) following the outage of the largest in‐feed
[76]
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for S1, S2 and S3, respectively. The black solid lines represent
the mean value of the 1000 trajectories. Since the stochastic
processes are designed to have zero expectation, the black lines
represent the dynamic response of the deterministic case, that
is, the case for which the diffusion terms of models (21) and
(28) are b = 0. While the expected value is always within the
voltage limits (indicated with the dashed line), depending on
the correlation of the processes, each scenario shows a
different probability of violating this limit, namely 24% for S1,
7% for S2 and never for S3 in the interval t ∈ [10, 30] s.

We have selected on purpose this example as it is fully
counterintuitive and shows results that are opposite to the
expected ones. In most cases, in fact, the higher the correlation
among the processes, the higher the probability to drive the
system to instability (see for example [95]). This can be readily
explained considering load consumption: if two loads are
strongly correlated, their energy consumption, if it increases,
will increase at the same time, thus reducing the loading margin
of the system. On the other hand, the variations of fully un-
correlated loads will more likely average out. In the simulations
shown in Figure 8, however, exactly the opposite behaviour is
observed: the higher the correlation the lower, statistically, the
variations of the voltage. These results could not be predicted a
priori and are due to the combined effect of correlated sto-
chastic wind generation and correlated load variations.

A relevant observation, which is common to all studies on
SDAEs that were carried out during the execution of the
project AMPSAS, is the difficulty to find suitable measurement
data to set up realistic stochastic processes. In fact, the pa-
rameters of the stochastic processes included in model (54) can
be determined only through long time series with small sam-
pling rate at several different locations. The lack of these data
is, we believe, due to two concurrent factors. On the one hand,
these measurements have not been deemed necessary (or even
possible) by TSOs and DSOs until recent years, that is, until
the level of penetration of renewable resources such as wind
and solar generation has significantly increased in power sys-
tems around the world. On the other hand, SDAEs and their
often unintuitive behaviour are not known to most practi-
tioners and academics. As far as we know, in fact, SDAEs are
not taught in undergraduate or graduate programmes on
electrical engineering. We see, thus, the need for updating

electric power engineering programmes to include this
important and timely subject.

3.3 | Impact of Wide Area Measurement
System delays

This example, extracted from Ref. [104], assumes that the 6
PSSs of the AIITS are included in a WAMS. Thus, their input
signals of the PSSs are affected by time‐varying delays similar
to that shown in Figure 3. In this example, the contingency
consists in the outage of the synchronous power plant con-
nected to bus 1378. To better illustrate the effect of the delays,
we assume that the PSSs have relatively high gains. Without
delays or with delays but with low PSS gains, in fact, the system
is stable and performs well.

Figure 9 shows the results obtained for three scenarios: no
delays, constant delay τ and stochastic WAMS delay. The con-
stant delay is assumed to be the average value of the stochastic
one. The effect of the high gains of the PSSs is to increase the
damping of electromechanical oscillations but also, and as ex-
pected, to make the PSSs more sensitive to measurement delays.
This results in a small limit cycle when considering the constant
delay. The WAMS delays, however, has dramatic consequences
on the dynamic performance of the system.

While this result is obtained by pushing the gain of the
PSSs, yet it is a relevant demonstration of the effects, on a real‐
world system, of the quenching phenomenon. This example is
also particularly interesting because it combines delays, sto-
chastic processes and discontinuities (given by the sawtooth
waveform for the WAMS communication system). It is, thus,
an example that could not be carried out without the imple-
mentation of the proposed SFHI‐DAE model.

3.4 | Impact of PI limiters on the East West
Interconnector

This example, taken from Ref. [118], illustrates the impact of
different implementations of the hard limits of the current
controllers of the VSCs of the EWIC. In this example, thus, we
include a dynamic model of the EWIC, which is modelled as a

(a) (b) (c)

F I GURE 8 Impact of stochastic processes on the voltage magnitude of the bus‐bar Woodland [76]
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symmetric monopole‐type VSC as described in Ref. [151], and
a simplified 63‐bus dynamic model of the GB system as
described in Ref. [152]. Before the fault, the EWIC imports
450 MW from the GB to the AIITS system. The contingency
is a three‐phase fault located close by the EWIC on the Irish
side. The fault occurs at 0.2 s and is cleared after 60 ms.

Figure 10 shows the trajectories of the reference dq‐axis
currents of the inner control loop of the Irish‐side VSC. These
controllers are implemented as PIs and are utilised to impose the
active and reactive power flow, respectively, in the EWIC. In Ref.
[118], several models are considered as follows. PI0 is a plain PI
with no limiters, which is utilised for reference; PI1 includes a
windup limiter; PI2 to PI6 include different implementations of
anti‐windup limiters. These are IEEE Standard 421.5–2016 with
conditional integrator (PI2), two types of back calculation (PI3
and PI4), back calculation with delay (PI5), and combined con-
ditional and back calculation (PI6).

During the fault, all PI implementations, except for PI0,
always reach their limits on both d‐ and q‐axis. As expected the
windup limiter (PI1) is the slowest to recover as it does not lock
its internal state when the limiters are enabled. The other limiters
respond faster, in particular PI2 fully locks its internal state. Back
calculation models PI3 to PI6 are also anti‐windup but do not
lock their states, rather use a feedback signal to reset this state
and prevent the integrator from winding up. Due to the rela-
tively short duration of the fault, the integrators of the PImodels
3 to 6 do not reach a steady state and provide a different dynamic
response that depends on their specific implementation.

As for the stochastic and delay DAE examples, the main
difficulty to set up realistic scenarios and simulations is the

availability of data. Voltage Sourced Converter devices and
their controllers are often provided as black boxes by the
makes, and the details of the implementation of the hard limits
are not disclosed or are difficult to figure out. As a matter of
fact, in many studies that can be found in the literature, such
limiters are not modelled at all. However, as the results shown
in this example indicate, small differences in the implementa-
tion of the hard limits can make quite a significant difference in
the output of the controllers and in turn, in the power system
dynamics. We believe, thus, creating a consciousness on the
importance of modelling precisely that the models of the VSC
controllers is critical, especially in view of the fact that VSC‐
connected devices will dominate power system dynamics in
the near future.

3.5 | Fraction order Automatic Generation
Control

This final example, extracted from Ref. [65], illustrates the
utilisation of a fractional order controller for the AGC of the
AIITS. Figure 11 shows the frequency response of the AIITS
with a conventional integer order integral controller (IO‐AGC)
and the fractional order integral one (FO‐AGC). The gain of
both controllers is Ki = 500. Then, for the FO‐AGC, the
fractional order is chosen as γ = 0.15 and the ORA parameters
are [ωb, ωh] = [10−3, 101] rad/s, N = 4. Finally, we apply the
same contingency, that is, EWIC outage, as that the leads to
obtain Figure 6. Simulation results show that the FO‐AGC can

F I GURE 9 Transient behaviour of the frequency of the center of
inertia (COI) for the All‐Island Irish Transmission System (AIITS)
following a power plant outage [104]

F I GURE 1 0 Dynamic response of the Voltage Sourced Converter
(VSC) reference dq‐axis currents of the active and reactive power support
on the Irish‐side of the East West Interconnector (EWIC) [118]

326 - MILANO ET AL.



improve, even though slightly, the frequency regulation of the
system. This, of course, is a simple example, but shows how
inexpensive controller setups can make a difference on the
dynamic performance of a real‐world network.

4 | CONCLUSIONS

This paper discusses the methodological and numerical chal-
lenges of the implementation of a software tool for power
system modelled as a set of SFHI‐DAE. The modelling and
applications of stochastic processes, delays, discontinuities and
behavioural models to power system analysis are discussed in
the paper. Stochastic processes serve to model renewable
sources and loads. Delayed and hybrid (e.g. discontinuous)
DAEs are utilised to model imperfections and deviations from
the ideal behaviour of telecommunication systems, measure-
ment signals and centralised/distributed controllers. Signal
transmission delays, digital discretisation, noises and informa-
tion loss are also considered.

Each considered modelling aspect is particularly chal-
lenging as it involves merging advanced mathematical concepts
that are currently not used for power system analysis with an
expert knowledge of computer‐based modelling and simula-
tion techniques. The result is a sophisticated tool that allows
solving complex stability analysis and control design problems.

The discussions and examples presented in the paper show
that it is possible for a small team of researchers with the
adequate interdisciplinary skills to develop a complete software
tool based on advanced mathematical concepts. It just requires
a long time: 5 years for the execution of the project AMPSAS
plus the previous 15 years of experience of the first author and
lead of the project.

Arguably, the most relevant conclusions and recommen-
dations that can be drawn are two: (i) the importance of
modelling ‘details,’ also at the cost of significantly complicating
the power system model and its implementation in a computer
language; (ii) the crucial importance of real‐world data to
validate and set up such models. These two aspects often go
together: it is hard to justify the need for certain measurements
if there is no software that can actually give them a use. On the
other hand, it is risky to commit a research group to the study
of certain modelling details that nobody has studied yet. There
is in fact the probability that these ‘details’ do not actually have

an impact on the dynamic behaviour of the system. As a matter
of fact, what has not been discussed in this paper are the
several tens of attempted implementions of model features that
served only to realise that these features have no particular
impact on the system dynamic performance. Nevertheless, the
lesson learnt is that this kind of studies, even if unconventional
and not following the main‐stream research trends, are useful
and definitively worth trying.

We believe that the discussions and results presented in this
paper provide a novel perspective and a novel methodological
approach to the formulation and analysis of power systems. We
also trust that the proposed modelling approach can provide
an improved flexibility and capability of adequately reflecting
the fundamental changes that power systems have gone
through in recent years and will continue to go through into
the future.
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