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Zusammenfassung
Die Antibiotikaresistenz (AMR) ist zu einer der größten globalen Bedrohungen für die Ge-
sundheit vonMensch und Tier geworden, was den Bedarf an schnellen und präzisen AMR-
Diagnoseverfahren erhöht. Traditionelle antimikrobielle Empfindlichkeitstests (AST) sind
zeitaufwändig, haben einengeringenDurchsatzund sind auf kultivierbareBakterienbeschränkt.
Maschinelles Lernen bietet einen vielversprechenden Weg für die automatische AMR Vor-
hersage. Die meisten bestehenden Modelle legen jedoch den Schwerpunkt auf Merkmale,
die sich nur auf bekannte Resistenzgene und -varianten beziehen, und stützen sich stark auf
AMR-Referenzdatenbanken, wodurch neue AMR-bezogene Merkmale übersehen werden
können. Um die oben genannten Herausforderungen zu bewältigen, werden in unserer er-
sten Studie genomweite maschinelle Lernmodelle zur effizienten Erkennung von AMR oh-
ne Abhängigkeit von vorherigemAMR-Wissen eingeführt. Konkret haben wir verschiedene
Modelle, darunter logistische Regression (LR), Support Vector Machine (SVM), Random
Forest (RF) und Convolutional Neural Network (CNN), zur Vorhersage von Resistenzen
gegen vier Antibiotika untersucht. Unsere Ergebnisse zeigen, dass diese Modelle AMR mit
Label-Codierung, One-Hot-Codierung und ‘Frequency Matrix Chaos Game Representati-
on’ (FCGR) auf ganze Genom-Sequenzierungsdaten effektiv vorhersagen können. ImAllge-
meinen übertrafen RF und CNN die LR und SVMModelle. Wichtig ist, dass wir für jedes
Antibiotikum spezifische Mutationen identifiziert haben, die mit AMR in Verbindung ste-
hen.

Darüber hinaus konzentrieren sich aktuelle AMR-Studien auf die Vorhersage der Resistenz
gegen ein einzelnes Medikament und ignorieren die kumulative Natur der antimikrobiellen
Resistenz imLaufe der Zeit, was die schnelle Identifizierung vonMultiresistenzen (MDR) zu
einer Herausforderungmacht. Um diese Einschränkungen zu überwinden, haben wir in un-
serer zweiten Studie fünf Multi-Label-Klassifikationsmodelle (MLC) für MDR-Probleme
entwickelt. Unsere Ergebnisse zeigten, dass das ECC-Modell (Ensemble Classifier Chains)
die anderen MLC-Methoden übertraf und eine deutliche Wirksamkeit bei der Vorhersage
vonMDR zeigte.

Darüber hinaus stellen begrenzte Trainingsstichproben und unausgewogene Daten erhebli-
cheHindernisse für dieGeneralisierungundGenauigkeit vonAMR-Modellen dar.Umdiese
Herausforderungen zu überwinden, haben wir in unserer dritten Studie ein Deep-Transfer-
Learning-Modell auf der Grundlage einer CNN-Architektur vorgeschlagen. Zunächst trai-

i



nieren wir das Modell auf vier Datensätzen, dann wird das beste Modell als Ausgangsmo-
dell für das ‘Transfer Learning’ verwendet, und das Modell wird auf kleinen Datensätzen
neu trainiert, indemdieArchitektur undGewichte vomAusgangsmodell übertragenwerden.
Unsere Ergebnisse zeigen, dass unser Deep-Transfer-Learning-Modell dieModellleistung für
AMR-Vorhersagen auf kleinen, unausgewogenen Datensätzen verbessert.

In einer Zeit, in der Datensicherheit und Datenschutz von entscheidender Bedeutung sind,
bieten ‘Federated Learning’ (FL) und ‘Swarm Learning’ (SL) Lösungen, indem sie Daten
während des Trainings lokal halten. Dieser Ansatz reduziert die Notwendigkeit, sensible In-
formationen an einen zentralen Server zu übertragen und verbessert die Effizienz durch die
VerteilungderRechenlast.Darüber hinauswirdbeimSchwarmlernen eineDezentralisierung
erreicht, da imVergleich zum föderierten Lernen kein zentraler Server zur Verwaltung der Pa-
rameter erforderlich ist, was die Sicherheit der Daten weiter verbessert. In unserer vierten
Studie befassen wir uns daher mit der Anwendung des Schwarmlernens speziell im Zusam-
menhang mit AMR.
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Abstract
Antimicrobial resistance (AMR) has become one of the significant global threats to both hu-
man and animal health, intensifying the need for rapid andpreciseAMRdiagnosticmethods.
Traditional antimicrobial susceptibility testing (AST) is time-consuming, low throughput,
and limited to cultivable bacteria. Machine learning offers a promising avenue for automated
AMR prediction. However, most existing models emphasize features related only to known
resistance genes and variants, relying heavily onAMRreference databases, and thusmay over-
look new AMR-related features. To address the above challenges, my first study introduces
genome-wide machine learning models to detect AMRwithout dependence on prior AMR
knowledge efficiently. Specifically, I assessed various models, including logistic regression
(LR), support vector machine (SVM), random forest (RF), and convolutional neural net-
work (CNN), for predicting resistance against four antibiotics. The findings illustrated that
these models can effectively predict AMR with label encoding, one-hot encoding, and fre-
quency matrix chaos game representation (FCGR) encoding on whole-genome sequencing
data. Generally, RF and CNN outperformed LR and SVM. Importantly, I identified spe-
cific mutations associated with AMR for each antibiotic.

Moreover, current AMR studies focus on single-drug resistance prediction, ignoring the cu-
mulative nature of antimicrobial resistance over time, which makes rapid identification of
multi-drug resistance (MDR) a challenge. Therefore, in my second study, in order to over-
come these limitations, I constructed five multi-label classification (MLC) models for MDR
problems. The findings revealed that the ECC (EnsembleClassifierChains)model surpassed
the other MLCmethods, demonstrating marked effectiveness in predicting MDR.

Furthermore, the constraints of limited training samples and data imbalances present signi-
ficant barriers to the generalization and accuracy of AMR models. To overcome these chal-
lenges, in my third study, I have proposed a deep transfer learning model based on a CNN
architecture. First, I pre-train the model on four datasets, then the best-performing model is
used as the source model for transfer learning, and the model is retrained on small datasets
by transferring the architecture and weights from the source model. The results showed that
the deep transfer learningmodel improvesmodel performance for AMRprediction on small
and imbalanced datasets.

In an era where data security and privacy are crucial, federated learning (FL) and swarm learn-
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ing (SL) present solutions by maintaining data locally during training, which reduces the
necessity to transfer sensitive information to a centralized server and improves efficiency by
distributing computational load. Moreover, swarm learning achieves decentralization by not
requiring a central server to manage the parameters compared to federated learning, which
further improves the security of the data. Thus, in my fourth study, I delve into the applica-
tion of swarm learning specifically within the context of AMR.
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1
Introduction

1.1 Antimicrobials and Antimicrobial Resistance

1.1.1 A brief history of antibiotic discovery

Antimicrobials are broadly defined as agents used to protect against and combat infections
triggered bymicroorganisms, such as bacteria, fungi, viruses, and parasites, in plants, animals,
and humans, which include a large group of substances, such as antibiotics, antivirals, and
antifungals (Shankarnarayan et al., 2022). In a narrow sense, it usually refers to antibiotics, a
specific antimicrobial class that can inhibit or kill bacteria (Boolchandani et al., 2019). Here,
we focus on antibiotics.

The first antibiotic, penicillin, was discovered byAlexander Fleming in 1928, setting the stage
for the development of effective antimicrobial agents (Gaynes, 2017) (Figure 1.1). Then, in
the 1930s to 1940s, with the realization of penicillin purification technology and in-depth
study of its properties, it was widely used in World War II, saving a large number of lives
(Hutchings et al., 2019). Along with the successful application of penicillin, researchers
turned their attention to discovering new antibiotics. In 1943, streptomycin was discovered
andwas successfully used to treat tuberculosis (a previously incurable disease), whichmarked
the beginning of a golden age of antibiotic discovery (Aminov, 2010). During the 1940s to
1950s, several important antibiotics were discovered. Chlortetracycline (aureomycin), as the
first tetracycline, was isolated in 1948, followed by other tetracyclines such as hygromycin
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and doxycycline (Nelson and Levy, 2011). In addition, antibiotics such as chloramphen-
icol, erythromycin, and vancomycinwere also discovered during this period (Hutchings et al.,
2019). In the 1960s era, as the need for antibiotics grew, scientists embarked on the explor-
ation of synthesizing antibiotics instead of relying solely on natural sources. A significant
breakthroughwas achievedwith the development of synthetic penicillins, includingmethicil-
lin, which demonstrated efficacy against bacteria resistant to traditional penicillin treatments
(Ribeiro da Cunha et al., 2019). From the 1970s to the 2000s, researchers discovered and de-
veloped a variety of novel antibiotics. Examples include cephalosporins, fluoroquinolones,
macrolides (such as azithromycin), aminoglycosides, and carbapenems (Figure 1.1). These
antibiotics have expanded the therapeutic options for treating bacterial infections (Hutch-
ings et al., 2019).

In summary, the discovery of antibiotics has revolutionized medicine, saving countless lives
and transforming the treatment of bacterial infections.

1.1.2 The emergence and challenges of antimicrobial resistance

However, with the overuse and misuse of antibiotics, antimicrobial resistance (AMR) has
been gradually reported, in which infectious microorganisms became insensitive to antibi-
otics, leading to poor outcomes and severe illness and death (Shankarnarayan et al., 2022;
Zaman et al., 2017; Palumbi, 2001; Clatworthy et al., 2007).

During the 1940s, just a few years after themass production of penicillin began duringWorld
War II, resistancewasobserved (Figure 1.1). Staphylococcus aureusdeveloped resistance through
the production of beta-lactamase (Barber and Rozwadowska-Dowzenko, 1948), an enzyme
that inactivates penicillin. Then, the first cases of methicillin-resistant Staphylococcus aureus
(MRSA)were reported in 1961, just two years later in the introduction ofmethicillin (Jevons,
1961). Resistance to tetracycline also emerged shortly after its introduction, with resistance
genes carried on plasmids (Speer et al., 1992). Vancomycin, introduced in the 1950s, saw its
first instances of resistance emerge in the 1980s (Cetinkaya et al., 2000). After the introduc-
tion of fluoroquinolones in the late 1960s, resistance began to emerge in the 1970s (Yoshida
et al., 1988). During the 1980s-2000s, the discovery and development of new antibiotics
slowed. Fewer and fewer new classes of antibiotics were introduced to themarket while resist-
ance continued to increase. This has led to a growing gapbetween the emergence of resistance
and the availability of effective treatment options. Moreover, multidrug-resistant tubercu-
losis (MDR-TB)was identified as a serious problem in the late 1980s and early 1990s (Frieden
et al., 1996). The late 1990s and early 2000s also saw the rise of resistance to carbapenems,
a class of last-resort antibiotics, in organisms like Klebsiella pneumoniae and Escherichia coli
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(E. coli). The WHO (World Health Organization) reported extensively drug-resistant TB
(XDR-TB) in 2006 (Nordmann et al., 2009).

Today, antimicrobial resistance remains one of the greatest threats to global health, food se-
curity, and social development. The evolution and spread of drug-resistant bacteria continue,
and it is estimated that if measures are not taken to address AMR by 2050, the annual global
death toll will reach 10 million, and the cost will reach $100 trillion.

Figure 1.1: History of antibiotic development and observed time of antibiotic resistance. The year each antibiotic was
discovered is shown above the timeline, and the year resistance to each antibiotic was identified is indicated below the
timeline.

1.1.3 Mechanisms of antimicrobial resistance

AMR can occur through various mechanisms, which can be broadly classified into three
categories: genetic mechanisms, biochemical mechanisms, and physical mechanisms (Figure
1.2) (Shankarnarayan et al., 2022; Darby et al., 2023; Munita and Arias, 2016).

Geneticmechanisms are commonly thought to includemutations andhorizontal gene trans-
fer (Christaki et al., 2020; Alekshun and Levy, 2007). a. Mutation: Bacteria can acquire
resistance through random mutations in their genetic material. These mutations can alter
the target site of the drug or modify the metabolic pathways, rendering the antimicrobial in-
effective. b. Horizontal gene transfer: Bacteria can also obtain resistance genes from other
bacteria. This can occur through three main mechanisms: 1) Conjugation: This is a pro-
cess where one bacterium transfers a copy of a resistance gene to another bacterium through
plasmids (small, circular DNAmolecules). 2) Transformation: Bacteria can pick up pieces
of DNA from the environment that contain resistance genes and incorporate them into the
bacterial genome. 3) Transduction: This involves the transfer of resistance genes via bac-
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teriophages that infect bacteria (Boolchandani et al., 2019).

Biochemical mechanisms include the following directions: a. Enzymatic inactivation:
Some microorganisms produce enzymes that can chemically modify or degrade antimicro-
bial agents (Browne et al., 2020). For example, beta-lactamases can break down beta-lactam
antibiotics, such as penicillins and cephalosporins. b. Efflux pumps: Bacteria can have ef-
flux pumps that actively pump out the antimicrobial agents from inside the cell, preventing
their accumulation to effective levels (Browne et al., 2020).

Physicalmechanisms include alteredpermeability and target sitemodification (Boolchandani
et al., 2019). a. Altered permeability: Microorganisms can develop mechanisms to modify
their outer membrane or cell wall, making it more difficult for drugs to penetrate and reach
their targets (Cag et al., 2016; Blair et al., 2015). For example, biofilm formation, which is
communities of microorganisms that can attach to surfaces and form a protective matrix.
This makes it difficult for antimicrobial drugs to penetrate and reach the bacteria. Addition-
ally, bacteria in biofilms often have slower metabolic rates, making them less susceptible to
drugs that target active growth. b. Target site modification: Changes in the structure of
drug targets, such as receptors or enzymes, can prevent antimicrobial agents from binding
effectively, reducing their efficacy (Zaman et al., 2017).

It’s important to note that these mechanisms of resistance can act individually or in com-
bination, leading tomulti-drug resistance or extensively drug-resistant strains of microorgan-
isms (Shankarnarayan et al., 2022; Munita and Arias, 2016). The misuse and overuse of an-
timicrobial agents, such as inappropriate prescription or agricultural use, can accelerate the
development and spread of antimicrobial resistance. Proper antimicrobial stewardship and
infection control measures are crucial to combat the emergence and spread of resistant mi-
croorganisms.
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Figure 1.2: Genetic, biochemical, and physical mechanisms of antibiotic resistance. The diagram on the left shows the
genetic mechanisms that lead to bacteria acquiring antibiotic resistance (Abr), which include both gene mutations and
horizontal gene transfer. The latter involves the acquisition of resistance genes through plasmids and conjugative transpo‐
sons (conjugation), and by bacteriophage (transduction), as well as the integration of foreign free DNA into the bacterial
chromosome (transformation). The diagram on the right shows biochemical mechanisms and physical mechanisms, where
S represents Susceptible, R represents Resistant. This figurewas adapted fromAlekshun and Levy (2007) andBoolchandani
et al. (2019), which was created with BioRender.

1.2 Conventional DetectionMethods for Antimicrobial Resistance

1.2.1 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing (AST) is a laboratory method used to determine the ef-
fectiveness of specific antimicrobial agents against bacteria or other microorganisms. It helps
guide healthcare professionals in selecting appropriate antibiotics for treating bacterial infec-
tions (Boolchandani et al., 2019).

The first step of AST is to isolate and identify the bacterial strains obtained from patient
samples, such as blood, urine, or wound cultures. This step is crucial as susceptibility pat-
terns can vary among different bacterial species. Then the isolated bacterium is grown in a
laboratory culturemedium and exposed to different antibiotics to see how it reacts. Once the
testing is done, the results are interpreted based onprofessional organizations like theClinical
and Laboratory Standards Institute (CLSI) or the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) (Boolchandani et al., 2019). The results are reported as
either susceptible, intermediate, or resistant, indicating the effectiveness of each antibiotic
against the tested bacterium. This information helps guide clinicians in choosing the most
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appropriate antibiotic treatment (Boolchandani et al., 2019).

AST is a traditional and standardizedmethod for assaying antimicrobial resistance in bacteria.
However, it can sometimes be complex, time-consuming, and low throughput, particularly
for organisms that are difficult to grow in a lab or for which standard testingmethods are not
available (Boolchandani et al., 2019). Thus, a rapid and accurate approach toAMRdetection
is a critical part of managing infectious diseases, particularly in the era of growing antibiotic
resistance.

1.2.2 Sequencing-based resistance discovery

Advances in sequencing technology and decreasing costs have made sequencing-based ap-
proaches a viable and effective tool for antimicrobial resistance discovery and surveillance
(Boolchandani et al., 2019). These methods leverage high-throughput DNA sequencing
technologies, such as whole-genome sequencing (WGS), metagenomic sequencing, and tar-
geted gene sequencing, to analyzemicrobial genomes and identify specific geneticmutations,
resistance genes, andmobile genetic elements contributing toAMR(WorldHealthOrganiza-
tion, 2020). Inparticular,WGScanprovide a comprehensive insight into an isolate’s genome,
which can promote understanding of AMR mechanisms and distinguish pathogen subtyp-
ing with identical AST profiles. This kind of molecular data can also be used for surveillance
and development of new diagnostics and therapies for AMR. Moreover, it facilitates identi-
fying the position of AMR determinants on either the bacterial chromosome or plasmids,
thereby providing crucial information about the routes of AMR spread (World Health Or-
ganization, 2020; Köser et al., 2014).

Reuter et al. (2013) highlights the role ofWGS in detecting antibiotic resistance and tracking
the spread of multidrug-resistant bacteria. Danko et al. (2021) provided antimicrobial resist-
ancemarkers in different geospatial contexts by analyzing a globalmap of 4728metagenomic
samples from 60 urban public transportation systems. Roemer and Boone (2013) reviewed
the targeted-sequencing strategy for antimicrobials discovery.

WGS serves as a complementary method to AST, offering comprehensive information on
the epidemiology of resistance genes in studying resistance determinants. Moreover, WGS
facilitates high-throughput AMR monitoring and the identification of AMR-related mark-
ers (Boolchandani et al., 2019; World Health Organization, 2020). Despite these advant-
ages, WGS does exhibit some limitations that need to be known. For example, sequence-
based approaches to antimicrobial resistance typically involve identifying resistance determ-
inants by first predicting the protein-coding region and then comparing it to AMR refer-
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ence databases, such asComprehensiveAntibioticResistanceDatabase (CARD),Antibiotic
Resistance Genes Database (ARDB) or the active Antibiotic Resistance Gene Annotation
(ARGANNOT). The bias of AMR-related databases thus affects the accuracy of prediction.
Most antimicrobial resistance databases lack standardization and effective and sustainable
management pipelines, they are usually onlymaintained for a few short yearswith a lot of out-
dated information that is not updated in a timely manner. Another important limitation is
that they focus on the identification and characterization of protein-coding resistance genes;
they ignore the complexity of themechanisms of AMR, such as genomic changes or de novo
mutations in ribosomal RNA (rRNA) genes and regulatory elements, as well as drug-target
mutations (Boolchandani et al., 2019).

1.3 Machine Learning for Detection of Antimicrobial Resistance

Machine learning (ML) techniques have emerged as powerful tools for addressing various
challenges related to AMR (Farhat et al., 2023; Kim et al., 2022). Here, we will introduce the
basics of ML and its application to AMR.

1.3.1 Fundamentals of machine learning

ML can identify patterns from large amounts of data and make predictions or classifications
based on learned patterns (Sarker, 2021; Domingos, 2012). The machine learning process
begins with data collection, where understanding the available features and target data is cru-
cial based on specific research questions (Figure 1.3) (Alzubaidi et al., 2021). Subsequently,
data undergoes preprocessing, which includes tasks like data cleaning— eliminatingmissing
values, outliers, and duplicates — and feature encoding, which converts the raw data into a
format that can be recognized by machine learning (Figure 1.3) (Qu et al., 2019). The data
is then split into distinct subsets: a training set for model development, a validation set for
fine-tuning, and a test set for final evaluation (Figure 1.3). Following this, the appropriate
model, whether for classification, regression, or clustering, is selected. Thenmultiple models
are contrasted to pinpoint the best-performing one (Sarker, 2021). Then comes model train-
ing, which involves the actual training of the chosen model, incorporating hyperparameter
tuning to optimize its performance (Swanson et al., 2023). The model is first trained on the
training data and then validated on the validation set to ensure that it’s generalizing well to
unseen data. Finally, the model is assessed using an independent test set with suitable evalu-
ation metrics. Interpreting the model’s results in the context of the research question is also
important (Carvalho et al., 2019; Burkart and Huber, 2021).

Machine learning is usually categorized into supervised, unsupervised as well as reinforce-
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ment learning (Swanson et al., 2023; Sarker, 2021). Supervised learning uses labeled training
data to learn the relationship between inputs and outputs (Alzubaidi et al., 2021). Com-
mon algorithms include linear regression, logistic regression (LR), support vector machines
(SVM), and various neural networks. Unsupervised learning recognizes patterns in the data
without reference to known labeled results. Common algorithms include clustering meth-
ods, such as k-means and hierarchical clustering, and dimensionality reduction methods,
such as principal component analysis (PCA) (Alzubaidi et al., 2021; Swanson et al., 2023).
Reinforcement learning learns how to behave in their environment by performing certain
actions and receiving rewards or penalties. Q-learning and deep Q-networks (DQNs) are ex-
amples of reinforcement learning algorithms (Botvinick et al., 2019;Nian et al., 2020;Arulku-
maran et al., 2017).

Figure 1.3: Overview of machine learning workflow and project design. This figure was created by BioRender.com.
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1.3.2 DNA sequence encoding

DNA sequence encoding is the process of transforming DNA nucleotide sequences, typic-
ally represented by the characters A, T, C, and G, into a numerical format that can be recog-
nized by computational algorithms, which is an essential step for ML (Spänig and Heider,
2019; Chen et al., 2020). The common encodingmethods for DNA sequences include label
encoding, One-Hot encoding, k-mer encoding, andChaosGameRepresentation (CGR) en-
coding (Yu et al., 2018; Spänig and Heider, 2019; Ren et al., 2021).

Label encoding
Label encoding is also named integer encoding. Each nucleotide is mapped to a unique in-
teger value. A common mapping might be A=1, G=2, C=3, T=4 (Yu et al., 2018). This
method is straightforward. Gunasekaran et al. (2021) use both label and k-mer encoding
techniques to encode DNA sequences. Following this, they employed several neural net-
workmodels such as convolutional neural networks (CNN),CNNcoupledwithLong Short-
TermMemory (CNN-LSTM), andCNN integrated with Bidirectional LSTM, aiming at se-
quence classification.

One-Hot encoding
One-hot encoding, also referred to as sparse encoding, encodes the DNA sequence into a
binary matrix, which is then vectorized and used as input for the ML models. For example,
A=[1, 0, 0, 0], C=[0, 1, 0, 0], G=[0, 0, 1, 0], T=[0, 0, 0, 1]. It’s widely applied in genomics,
including DNA, RNA, and protein sequence encoding. For example, Zhou et al. (2022) en-
coded DNA sequences using a One-Hot encoding scheme and then employed deep neural
networks to predict the locations of nucleosomes from these DNA sequences. Mittag et al.
(2015) implemented coding schemes like label encoding and One-Hot encoding to repres-
ent the genotypes of single nucleotide polymorphisms (SNPs), and subsequently examined
how these encodingmethods influenced the performance of predicting disease risk. Enireddy
et al. (2022) employed One-Hot encoding in conjunction with LSTM techniques to predict
protein secondary structure. Kuzmin et al. (2020) utilized the widely recognized One-Hot
encoding method to transform the sequences into numerical vectors suitable for input into
machine learning algorithms and then predicted the host specificity of coronaviruses.

K-mer encoding
K-mer encoding is amethod representing genomic sequences by counting the occurrences of
all possible substrings of length k (referred to as k-mers) within the sequence (Gunasekaran
et al., 2021; Manekar and Sathe, 2018). By offering a fixed-size representation of variable-
length sequences, this method is frequently used across various fields, including genomics,
metagenomics, and other areas of bioinformatics. Fletez-Brant et al. (2013) developed kmer-
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SVM, a web server for identifying predictive regulatory sequence features in genomic data
sets based on k-mer encoding. Orozco-Arias et al. (2021) classified long terminal repeat retro-
transposons in plant genomes based on k-mer’s ML approach. Solis-Reyes et al. (2018) in-
troduced an open-source, supervised, and alignment-free subtyping method called Kameris,
which functions by analyzing k-mer frequencies in HIV-1 sequences. Mahé and Tournoud
(2018) utilized a k-mer-based genotyping approach and a logistic regression model, combin-
ing multiple k-mers into a probabilistic framework for predicting bacterial resistance.

Chaos game representation encoding
Chaos game representation (CGR) encoding is a novel method used to visualize DNA se-
quences by turning them into a unique pattern or shape, which was first applied CGR al-
gorithm to DNA sequences by Jeffrey (1990). The method is based on a recurrent iterative
function system,which canbeused to visualize sequences bybuilding fractals fromsequences
of symbols (Wang et al., 2005; Löchel et al., 2020; Löchel and Heider, 2021). Specifically,
this process begins with a square, where each corner in the square represents one of the four
DNA bases (A, G, C, T). A dot is initially placed in the center of the square. Then, for each
letter in the DNA sequence, the dot is moved halfway to the corner that matches the letter,
and a mark is made at the new position. This process is repeated for each subsequent let-
ter in the sequence, with the dot consistently moving halfway to the corner associated with
the next letter. Upon completion of the entire sequence, the marks form a unique pattern
that visually represents that specificDNA sequence (Almeida et al., 2001; Löchel andHeider,
2021). CGR has a wide range of applications in genomics. Kania and Sarapata (2021) pro-
posed a generalized method for constructing chaos game representations, called serial chaos
game representations, which can be used to construct representations that are less sensitive
to mutations, thus providing more reliable values for phylogenetic tree construction for free
alignment. Hoang et al. (2016) encoded DNA sequences by treating 2D CGR coordinates
as complex numbers, and then employed digital signal processing methods to analyze their
evolutionary relationship. CGR has also been utilized in the rapid comparison of different
strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Sengupta et al.,
2020). While most existing studies on CGR encoding focused on CGR for DNA, there also
exists a smaller number of studies dealing with other alphabets, such as the encoding of pro-
tein sequences. For example, Yu et al. (2004) applied CGR algorithm to classify proteins,
dividing amino acids into four groups according to their characteristics and then utilizing
multifractal and correlation analysis to build a phylogenetic tree for Archaea and Eubacteria.
In alternative methods, amino acids were retranslated into DNA for CGR representation
(Yang et al., 2009). Sun et al. (2020) employed a three-dimensional CGR technique for pro-
tein classification.
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Frequency Chaos Game Representation
Frequency Chaos Game Representation (FCGR) is a variant of the standard Chaos Game
Representation (CGR)methodused forDNAsequence encoding (Rizzo et al., 2016). While
CGR provides a unique fractal visualization of a DNA sequence, FCGR takes this a step
further by transforming the CGR into a frequency matrix that can be used for quantitat-
ive analysis (Löchel et al., 2020; Löchel and Heider, 2021). Lichtblau (2019) used FCGR
method to transform sequences into images, followed by dimensionality reduction to create
vectors of moderate length. These vectors can then be used for rapidly searching sequences,
building phylogenetic trees, and classifying viral genomedata. Wang et al. (2005) used FCGR
method to compute the image distance between genomes, which was then used to construct
phylogenetic trees. And Löchel et al. (2020) utilized FCGR in conjunction with CNN for
predicting resistance in HIV-1.

Different encoding methods are suitable for different tasks and models. Simpler methods
like label or One-Hot encoding might be used as a starting point, with more complex meth-
ods employed as needed based on the requirements of the specific analysis.

1.3.3 Machine learning algorithms

TraditionalML algorithms

Traditional ML algorithms come in various forms. Random forest (RF) is one common al-
gorithm, which is an ensemble learning method that can be used for both classification and
regression tasks (Breiman, 2001). RF is composed of multiple decision trees. Each tree is
constructed from the training data and is used tomake sequential binary decisions about the
input features. These decisions ultimately lead to a prediction concerning the label of the
data points (Swanson et al., 2023). RF often outperforms models that rely on a single tree
as they combine the insights frommultiple decision trees. This ensemble approach not only
enhances the overall predictive accuracy but also enables random forests to assign an import-
ance value to each feature, reflecting its contribution to the final prediction result. Another
popular algorithm is support vector machines (SVM), which is a set of supervised learning
methods used for classification, regression, and outliers detection (Chen et al., 2012). The
basic concept behind SVM is to find a hyperplane (a line in 2D, a plane in 3D, or a hyperplane
in more than three dimensions) that best separates the data into different classes (Boser et al.,
1992; Swanson et al., 2023). The optimal hyperplane is the one that maximizes the margin
between the closest points (support vectors) of the different classes. With its effectiveness in
higher dimensional spaces and robustness to outliers, SVM serves as a powerful tool in vari-
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ous analytical applications. Regression models are designed to find a linear combination of
input features that can accurately predict continuous outcomes, as seen in linear regression,
or binary outcomes, as exemplified by logistic regression (LR) (Swanson et al., 2023;Maulud
and Abdulazeez, 2020). In the training process of LR, coefficients are typically estimated
using maximum likelihood estimation, optimizing the model’s ability for prediction.

Deep learning

Deep learning is a subset of machine learning that involves algorithms inspired by the struc-
ture and function of the brain, particularly neural networks (Wainberg et al., 2018). The
basic units of a neural network are neurons. They receive input from other neurons, per-
form a weighted sum of the inputs, pass this through an activation function, and send the
output to neurons in the next layer (Swanson et al., 2023). This design allows deep learning
models to capture complex patterns and relationships within data. Thus, it can be applied to
a wide variety of tasks, including image and speech recognition, natural language processing,
and even drug discovery (Alzubaidi et al., 2021).

The common deep learning models include convolutional neural network (CNN), recur-
rent neural network (RNN), generative adversarial network (GAN), and transformer mod-
els (Alzubaidi et al., 2021). CNN is usually used to process grid-structured data like images,
utilizing convolutional layers that automatically and adaptively learn spatial hierarchies of
features (P and R, 2023). RNN is designed to recognize patterns in sequences of data, such
as time series or natural language (Lipton et al., 2015; Sherstinsky, 2020). GAN consists
of two networks, a generator, and a discriminator, that are trained together. The generator
learns to generate data, and the discriminator learns to distinguish between real and gener-
ated data (Aggarwal et al., 2021;Gui et al., 2023). Transformermodels are based on attention
mechanisms, allowing them to consider other parts of the input when encoding a particular
part, which is especially useful in natural language processing (Vaswani et al., 2017; Lin et al.,
2022).

1.3.4 Machine learning classification tasks

Classification is one of the main tasks in machine learning and belongs to the category of
supervised learning, which involves classifying input information into one of two or more
categories. Common classification problems include binary classification, multiple classific-
ation, and multi-label classification (MLC).
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Binary classification

Binary classification is one of the most common and fundamental tasks in machine learning.
It involves categorizing instances into one of two classes, often labeled as 0 or 1, or negative or
positive, such as identificationof tumor andnormal tissue, drug resistance andnon-resistance
(Kumari and Kr., 2017; Canbek et al., 2022).

Multi-class classification

Multi-class classification, also known as multinomial classification, extends the concept of
binary classification to more than two classes. In this task, the goal is to categorize instances
into one of three or more classes (Mehra and Gupta, 2013; Grandini et al., 2020; Sharma
and Parwekar, 2023). Examples of multi-class classification include classifying handwritten
digits into one of the ten classes, determining the sentiment of a text as positive, negative,
or neutral, and diagnosing a patient’s illness based on symptoms and test results into one of
several diseases or conditions. These scenarios illustrate the diverse applications ofmulti-class
classification.

Multi-label classification

Multi-label classification (MLC) is a type of classification where an instance can be assigned
to multiple classes or labels simultaneously (Zhang and Zhou, 2014; Tarekegn et al., 2021).
Unlike multi-class classification, where each instance is categorized into one and only one
class, MLC allows for a broader and more flexible categorization (Tawiah and Sheng, 2013;
Bogatinovski et al., 2022). MLC is well suited to deal with multi-drug resistance issues.

Multi-label problems have traditionally been transformed into single-label problems (Tsou-
makas et al., 2009). A commonmethod, known as the binary relevance (BR) approach, sim-
plifies this by treating each label as an independent binary problem (Rokach et al., 2014).
However, a significant limitation of the BR approach is its failure to consider dependencies
between labels (Read et al., 2021). In contrast to BR, the classifier chain (CC) method ex-
plicitly accounts for label correlations by using the predictions from preceding classifiers as
additional inputs for subsequent ones (Read et al., 2011). Thismakes the order of theCC in-
tegral to prediction accuracy, leading to the development of the ensemble of classifier chains
(ECC). ECC combines several CCs with varied orders to study dependencies between labels
(Read et al., 2011, 2021). While CCs and ECCs have been employed for cross-resistance pre-
diction in HIV, specifically focusing on the protein sequences of HIV-1 reverse transcriptase
(Heider et al., 2013) and protease (Riemenschneider et al., 2016), these approaches have not
been applied to genomic data or multi-drug resistance (MDR) in bacteria.
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Additional multi-label techniques include the label powerset (LP) method, which acknow-
ledges label dependencies by treating each label combination as a distinct class (Tsoumakas
et al., 2009). Another noteworthy method is the random label space partitioning with label
powerset (RD), an effective ensemble technique that leverages label powerset with random
subsets of k labels (Read et al., 2011, 2021). These methodologies present varying strategies
for addressing the complexity of multi-label classification.

1.3.5 Training strategies

Transfer learning

The limited number and skewed distribution of data hinder the accuracy and generalization
ofmodel training (Al-Stouhi andReddy, 2016). This is often the casewithmedical diagnoses,
such as cancer diagnostics, where datasets are typically imbalanced andmay contain a dispro-
portionately low number of cancer samples (Al-Stouhi and Reddy, 2016). Training a ma-
chine learning model generally requires a substantial number of samples, but such data may
not be readily available, particularly for emerging areas like novel antibiotics. This scarcity
and imbalance can pose significant challenges to developing robust and reliable predictive
models.

Transfer learning (TL) has emerged as a potent solution to challenges posed by imbalanced
and limited datasets, particularly in applications like visual and text classification (Zhuang
et al., 2020;Chen, 2021; Yu et al., 2020;Mahbod et al., 2020;Radha et al., 2021;Mallesh et al.,
2021; Pan and Yang, 2010). Unlike traditional machine learningmethods, where there’s usu-
ally one domain and one task, transfer learning introduces flexibility by allowing for different
but relateddomains and tasks between training and test data (Farahani et al., 2021;Weiss et al.,
2016). In essence, transfer learning leverages knowledge from a source domain, which typic-
ally consists of a large collection of high-quality, well-labeled data samples, and applies it to a
target domain, where data may be scarcer, or labels may be unbalanced (Ebbehoj et al., 2022;
Liu et al., 2020). The goal is to improve model performance in the target domain by utiliz-
ing the underlying patterns and insights learned from the source domain. This connectivity
between domains, where training and test data can vary yet remain contextually linked, sets
transfer learning apart and makes it an appealing strategy for cases where obtaining ample
and balanced data is problematic (Plested and Gedeon, 2022; Li et al., 2020; Ling Shao et al.,
2015; Schwessinger et al., 2020).

Some researchers have effectively utilized transfer learning to address a variety of challenges
across different areas. For example, in computer vision, a common approach involves first
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training a CNN on the extensive ImageNet dataset (known as pre-training), and then adapt-
ing the learned features to a specific task (known as fine-tuning) to solve various problems
(Plested and Gedeon, 2022; Gao and Mosalam, 2018). In the area of text classification, the
Word2Vec dataset often serves as a foundational pre-training resource (Mikolov et al., 2013).
Specific applications of transfer learning have included the work by Gupta et al. (2021) on
enhancing predictive analysis on limited data through a cross-property deep transfer learning
model. And the work by Park et al. (2021) to explore data heterogeneity and small sample
size issues with single-cell data using meta-transfer learning. Medical fields have also seen the
successful deployment of transfer learning, especially in situations dealingwith imbalanced la-
bels (Okerinde et al., 2021; Weiss and Khoshgoftaar, 2016; Minvielle et al., 2019; Krawczyk,
2016). For instance, Gao and Cui (2020) implemented deep transfer learning to mitigate
healthcare disparities stemming from imbalanced biomedical data. They began by training
the model on the data from the majority group and then adapted the learned knowledge to
theminority groups to enhance performance. This demonstrates the versatile nature of trans-
fer learning, which can be tailored to various tasks, enhancing efficiency and accuracy in areas
ranging from visual recognition to healthcare analytics.

Federated learning

The power of machine learning comes from big data, but the real-world scenarios we face
in our daily work and life are often only small. For example, in the medical field, the auto-
matic inspection and diagnosis of computed tomography (CT) chest radiographs require a
professional doctor to label the data, but the doctor’s time is very precious (Yang et al., 2019).
This becomes even more challenging when dealing with rare diseases, where the available
case data is minimal. Traditionally, the approach to overcome this limitation is to collect
data frommultiple partner institutions and then train a machine learning model at a central
server, which is called centralized training (Yang et al., 2019). However, this requires each par-
ticipant to upload their data to the central server, making the data of all participants visible to
one another and thereby increasing the risk of data leakage (Yang et al., 2019). As data secur-
ity and privacy are becoming more and more important, many countries have enacted laws
on data privacy that limit the sharing of specific data. Federated learning (FL) has emerged
as a solution to this dilemma, allowing collaborative training without compromising the pri-
vacy and security of individual data sets (Dasaradharami Reddy and Gadekallu, 2023; Rieke
et al., 2020; Banabilah et al., 2022).

Federated learning is a decentralized training methodology that utilizes datasets dispersed
across various participants (Liu et al., 2023). By using privacy-preserving techniques, it syn-
thesizes information fromthesediverse sources tobuild globalmodels cooperatively, allwithout
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centralizing the data or compromising individual privacy (Yang et al., 2019; Kaissis et al.,
2020). This approach is useful for privacy preservation and reducing the need to send large
amounts of data to a central location.

Federated learning can be categorized into three distinct types based on the relationships
between data feature spaces and sample spaces across different data owners: horizontal feder-
ated learning (HFL), vertical federated learning (VFL), and federated transfer learning (FTL)
(Yang et al., 2019). Here’s an overview of each:

Horizontal federated learning (HFL): This approach is applicable when the data of the
federated learning participants have overlapping data features, meaning that they share com-
mon characteristics but have different data samples (Yang et al., 2019).
Vertical federated learning (VFL): VFL is suited for scenarios where the participants’ train-
ingdata share commondata samples, i.e., thedata samples are consistentbetweenparticipants,
but the specific data features vary. Unlike HFL, where feature alignment is key, VFL focuses
on aligning samples while allowing for differing features (Yang et al., 2019).
Federated transfer learning (FTL): FTL applies when both the data samples and data fea-
tures among participants have minimal overlap (Xu et al., 2022). In a typical scenario in-
volving two participants, one acts as the source domain while the other represents the target
domain. Themodel learns the distribution of features in the source domain and transfers this
knowledge to the target domain (Saha and Ahmad, 2021; Sun, 2022; Ju et al., 2020; Zhang
et al., 2022a). Crucially, this transfer process is conducted in a way that ensures the local data
remains within its respective domain and does not leave.

In federated learning systems, commonly utilized privacy-preserving techniques encompass
methodsbasedonhomomorphic encryption (HE), differential privacy (DP), and securemulti-
party computation (MPC) (Yang et al., 2019). These methods form a critical layer of pro-
tection, safeguarding the integrity and confidentiality of data during the learning process.
The Python open-source package provides a rich set of privacy-preserving implementations,
such as the package Pycrypto is commonly used in encryption/decryption algorithms, and
the Paillier package provides an implementation that supports partial homomorphic encryp-
tion (Yang et al., 2019).

FL is widely used in the medical field. Bai et al. (2021), Dayan et al. (2021), and Dou et al.
(2021) applied deep learning models combined with FL training strategies for coronavirus
disease (COVID) diagnosis. Several studies have focused on cancer and disease diagnosis us-
ing FL and machine learning models (Pati, 2022; Ogier du Terrail et al., 2023). Pati (2022)
conducted the most comprehensive FL study to date, encompassing data from 71 locations
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across six continents, to develop an automated tumor boundary detection system specifically
for glioblastoma, a rare disease. With adataset comprising6,314 cases, the largest of its kind re-
ported in the literature, they demonstrated that their model outperformed a publicly trained
model. Ogier du Terrail et al. (2023) explored the application of ML, utilizing whole-slide
images and clinical data, to predict the histological response to neoadjuvant chemotherapy in
early-stage triple-negative breast cancer (TNBC) patients. To circumvent the limitations of
small-scale studies and simultaneously maintain data privacy, they carried out a multicentric
TNBC study employing federated learning. In this approach, patient information remained
securely protected behind the firewalls of individual hospitals. And Wu et al. (2022) intro-
duced a federated graph neural network (GNN) framework known as FedPerGNN. This
framework enables collaborative trainingofGNNmodels usingdecentralized graphs inferred
from local data, all while employing a privacy-preserving model update method. To enrich
the utilization of graph information beyond mere local interactions, they implemented a
privacy-preserving graph extension protocol that responsibly integrates higher-order inform-
ation. Personalized validation was conducted on six distinct datasets across various scenarios.
The findings demonstrate that FedPerGNN effectively achieves high performance while also
maintaining robust privacy preservation.

Swarm learning

Federated learning alleviates certain concerns by ensuring that data is retained locally, effect-
ively dealing with local confidentiality issues (Warnat-Herresthal et al., 2021). However, the
model parameters continue to be managed by central custodians, a factor that centralizes au-
thority (Warnat-Herresthal et al., 2021). Additionally, the adoption of star-shaped architec-
tures in this approach reduces fault tolerance, creatingpotentialweaknesseswithin the system
(Warnat-Herresthal et al., 2021). Warnat-Herresthal et al. (2021) introduced swarm learn-
ing (SL), a groundbreaking decentralized machine learning approach that combines edge
computing and blockchain-enabled peer-to-peer networking. Unlike traditional federated
learning, swarm learning maintains data confidentiality and coordination without a central
coordinator, offering an enhanced and more secure method of distributed learning. Warnat-
Herresthal et al. (2021) demonstrated the feasibility and efficacy of employing swarm learn-
ing to create classifiers for various diseases, includingCOVID-19, tuberculosis, leukemia, and
lung lesions on distributed data. The results ofWarnat-Herresthal et al. (2021) also indicated
that swarm learning classifiers exhibit superior performance compared to classifiers trainedon
local data alone.

Bai et al. (2021) developed the unified CT-COVIDAI diagnostic initiative, employing a fed-
erated learning framework that allows the AI model to be trained distributively and run in-
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dependently at each host institution without the necessity of data sharing. Specifically, par-
ticipants first download and train three-dimensional CNN models using their local cohort
data. Once trained, the model parameters are encrypted and sent back to the server. The
server then combines the contributions from each participant to create the federated model
without having direct access to or explicit knowledge of the individual parameters.

1.3.6 Evaluation metrics

ML model evaluation is an essential part of the development process, as it allows you to un-
derstand how well the model is performing. Various metrics can be used, depending on the
type of problem you are addressing. Accuracy, precision, and recall are fundamental evalu-
ationmetrics for classificationmodels, each serving to quantify different aspects of a model’s
performance (Vakili et al., 2020).

Accuracy
This metric quantifies the overall correctness of the model bymeasuring the fraction of both
true positive and true negative predictions overall predictions (Vakili et al., 2020). In the con-
text of binary classification, it can be expressed mathematically as:

Accuracy = TP+TN
TP+FP+TN+FN

Where TP=True Positives, TN=TrueNegatives, FN= FalseNegatives, FP = False Positives.

Precision
Precision focuses on the correctness of the positive predictions, representing the ratio of true
positive predictions to the total number of positive predictions (true positives plus false pos-
itives). It is particularly concerned with minimizing false positive errors (Vakili et al., 2020).

Precision = TP
TP+FP

Recall
Also known as sensitivity or true positive rate, recall measures the proportion of actual pos-
itive samples that are correctly identified (Vakili et al., 2020). It is especially useful when the
cost of missing a positive sample (false negative) is high.

Recall = TP
TP+FN

ROC Curve
The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR)
at various threshold settings. It illustrates the tradeoff between correctly identifying positive
instances and mistakenly identifying negative instances as positive. A model with a perfect
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discriminative ability would result in a curve that hugs the upper left corner, and the area
under the ROC curve (AUC-ROC) would be 1.

Precision-Recall curve
The Precision-Recall (PR) curve shows the relationship between precision and recall for dif-
ferent thresholds. Unlike the ROC curve, it focuses solely on the positive class, making it
more informative for imbalanced datasets where the positive class is the minority. A higher
area under the PR curve (AUC-PR) generally indicates better model performance.

Both of these curves offer insights into a model’s performance, but neither is a one-size-fits-
all solution. While they provide a comprehensive view of a model’s ability to distinguish
between classes, they may not always be the most appropriate metrics for heavily imbalanced
datasets, particularly when the focus is on the performance related to the minority class.

F1 score
In such cases, metrics like the F1 score, which combines precision and recall into a single
value, or custom evaluation metrics tailored to the specific context and requirements, might
be more suitable.

F1 = 2× Precision×Recall
Precision+Recall

MCC
The Matthews Correlation Coefficient (MCC) is a robust metric used to evaluate the per-
formance of classification models, particularly when dealing with imbalanced datasets. Cal-
culated based on the Pearson correlation coefficient, theMCC ranges from -1 to 1, where “+
1” indicates a perfect prediction, “0” represents no better than the random prediction, and “-
1” indicates total disagreement between prediction and actual observation (Boughorbel et al.,
2017). The strength of theMCC lies in its balanced consideration of true and false positives
and negatives, making it a valuable measure when the classes are of different sizes (Boughor-
bel et al., 2017). In the context of imbalanced datasets, where traditionalmetrics like accuracy
may be misleading, the MCC offers a more nuanced assessment of a model’s performance,
ensuring that both classes are fairly represented in the evaluation.

MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

Given the variability in our datasets, with some being balanced and others extremely imbal-
anced, relying on a single metric may not adequately capture the overall performance of our
model. As a result, we’ve conducted a comprehensive evaluation using a combination of the
metrics mentioned earlier. This multifaceted approach ensures a more nuanced understand-
ing of the model’s effectiveness, taking into consideration both the accuracy and the unique
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challenges posed by imbalanced data.

Hamming loss and 0/1 loss
TheHamming loss and0/1 loss are commonlyused for the evaluationofMLCmodels. Ham-
ming loss refers to the proportion of labels that are inaccurately predicted, serving as a gauge
for individual label prediction errors across all classes. On the other hand, 0/1 loss examines
the correctness of the entire set of predicted labels for a given instance, quantifying the per-
centage of instances where the full set of predicted labels does not exactly match the true
labels. Thus, while Hamming loss provides a finer-grained label-by-label error rate, 0/1 loss
offers insight into the overall prediction accuracy of entire label sets.

1.3.7 Application ofML to AMR

Recent studies have underscored the potential of machine learning methods in predicting
AMR. By integrating sequencing methodologies with well-established databases and pheno-
typic information related to AMR, these innovative approaches are laying the groundwork
for more precise predictions and actionable insights (Boolchandani et al., 2019; Liu et al.,
2020; Lv et al., 2021). For instance, Yang et al. (2018) developedmachine learningmodels us-
ing DNA sequencing data from 1839 UK bacterial isolates to classifyMycobacterium tuber-
culosis resistance to eight anti-tuberculosis drugs and to identify multi-drug resistance. How-
ever, their models were not based on genome-wide sequence information, they selected 23
known drug-resistance candidate genes and mutations in these 23 candidates and then con-
structed the models. It has some limitations, such as the prediction of new resistance genes
and resistance mechanisms can be restricted. Most studies have employed a similar approach
for classifying resistance, determining its presence or absence based on predetermined librar-
ies of variants found in the existing literature (Kouchaki et al., 2019; Moradigaravand et al.,
2018; Van Camp et al., 2020; Pesesky et al., 2016).

Deep learning algorithms have also demonstrated substantial potential in predicting new
antibiotic drugs, identifying AMR genes, and recognizing AMR peptides (Arango-Argoty
et al., 2017; Stokes et al., 2020; Veltri et al., 2018; Popa et al., 2022; Liu et al., 2023; Veltri
et al., 2018). Stokes et al. (2020) developed a deep neural network capable of identifying mo-
leculeswith antimicrobial properties. By applying this network tomultiple chemical libraries,
they discovered a unique molecule from the Drug Repurposing Hub, namely halicin. Dis-
tinct from conventional antibiotics in its structure, halicin demonstrated bactericidal activity
against a diverse array of pathogens, including those from the broad phylogenetic spectrum
such asMycobacterium tuberculosis and carbapenem-resistantEnterobacteriaceae bacteria. Li
et al. (2021) proposed a multi-task deep learning framework called HMD-ARG. Initially,
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they collected and cleaned resistance gene sequences from seven well-established ARG (Anti-
bioticResistanceGene) databases and got the final resulting database,HMD-ARG-DB.This
comprehensive collection consists of 17,282 high-quality sequences, coupled with labels of
15 antibiotic classes, 6 underlying resistance mechanisms, and their mobility. Subsequently,
HMD-ARG was employed for ARG annotation, encompassing three distinct dimensions:
type of antibiotic resistance, underlyingmechanism, and genemobility. Arango-Argoty et al.
(2017) developed two deep learning models, DeepARG-SS andDeepARG-LS, based on the
metagenomedata, for predictingARGs in short reads and full gene length sequences, respect-
ively. They first also collected ARGs from three major databases: CARD, ARDB, and UNI-
PROT, and then constructed models based on the presence or absence of resistance genes.

To summarize,machine learning anddeep learning have awide range of applications inAMR
detection, new AMR gene prediction, and new antibiotic development.

1.4 Challenges andMotivation

Although these studies applied machine learning to facilitate the prediction of AMR, most
of the research models were constructed by focusing only on features related to resistance
genes and resistance variants, with a high dependence on previous AMR reference databases,
without constructing models from genome-wide features. The predictions may be missing
some new features of AMR-related genes and variants. Thus, the development of genome-
wide machine learning models to rapidly and accurately detect AMR without prior know-
ledge of AMR is a significant addition to existing methods.

Another challenge regardingAMR research is that currentmethods typically focus on single-
drug resistance prediction and do not include information on antimicrobial resistance char-
acteristics that accumulate over time. Therefore, rapid identification ofmulti-drug resistance
simultaneously remains a challenge. In our study, we will explore multiple multi-label classi-
fication approaches for multidrug resistance modeling of pathogens.

Limited training samples anddata imbalance hinder the generalizationperformance andover-
all accuracy of the model, which is an important challenge in the AMR detection and devel-
opment of new antibiotics and a more generalized challenge in the medical field. Therefore,
in this study, we will utilize transfer learning to improve this problem.

Data security andprivacyhavebecomeparamount inmachine learningmodel training. Swarm
learning offers a solution by ensuring data remains local during training. This approach not
only minimizes the transfer of sensitive data to a centralized server but also enhances train-
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ing efficiency by distributing computational tasks. Additionally, it allows models to quickly
adapt to emergingdata trends, given the continuousupdates throughout thenetwork. There-
fore, we will explore the application of swarm learning on AMR.

1.5 Aims

The purpose of this dissertation is to apply machine learning to facilitate AMR-related re-
search. Specifically, the first part of the work focuses on the development of fast and accurate
detection models for AMR as well as the identification of new AMR genes and mutations.
In the second work, we delve into five different MLC approaches dedicated to the problem
of multidrug resistance prediction. In the third work, we develop deep transfer learning to
facilitate the ability to generalize models with small numbers and label imbalances. Finally,
in our fourth work, we employ swarm learning to address the challenges of data privacy and
security during AMRmodel training.
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1.6 List of Publications

The publications and contributions during my Ph.D. period are listed below.
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Yunxiao Ren, Trinad Chakraborty, Swapnil Doijad, Linda Falgenhauer, Jane Falgenhauer,
Alexander Goesmann, Anne-ChristinHauschild, Oliver Schwengers, DominikHeider. Pre-
diction of antimicrobial resistance based on whole-genome sequencing and machine
learning. Bioinformatics, 2022, 38(2), 325-334.
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chine learning analysis pipeline, and drafted themanuscript; S.D., L.F., and J.F. collected the
raw sequencing and antimicrobial resistance (AMR) data. O.S. pre-processed the sequencing
data and clinical data. D.H., T.C., and A.G. revised the manuscript. All authors have read
and agreed to the published version of the manuscript.
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Yunxiao Ren, Trinad Chakraborty, Swapnil Doijad, Linda Falgenhauer, Jane Falgenhauer,
Alexander Goesmann, Oliver Schwengers, Dominik Heider. Multi-label classification for
multi-drug resistance prediction of Escherichia coli. Computational and Structural Bio-
technology Journal, 2022, 20: 1264-1270.
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D.H. conceived and supervised the study; Y.R. analyzed the genome data, developed the
multi-label classification pipeline, and drafted the manuscript; S.D., L.F., and J.F. collected
the raw sequencing and antimicrobial resistance (AMR) data. O.S. pre-processed the sequen-
cing data and clinical data. D.H., T.C., and A.G. revised the manuscript. All authors have
read and agreed to the published version of the manuscript.

Publication 3

Yunxiao Ren, Trinad Chakraborty, Swapnil Doijad, Linda Falgenhauer, Jane Falgenhauer,
Alexander Goesmann, Oliver Schwengers, Dominik Heider. Deep Transfer Learning En-
ables Robust Prediction of Antimicrobial Resistance for Novel Antibiotics. Antibiotics,
2022, 11(11): 1611.
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transfer learning pipeline, anddrafted themanuscript; S.D., L.F., and J.F. collected the raw se-
quencing and antimicrobial resistance (AMR) data. O.S. pre-processed the sequencing data
and clinical data. D.H., T.C., and A.G. revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Other contributions not included

Yunxiao Ren, Carmen Li, Dulmini Nanayakkara Sapugahawatte, Chendi Zhu, Sebastian
Spänig, Dorota Jamrozy, Julian Rothen, Claudia ADaubenberger, Stephen D Bentley, Mar-
garet Ip,DominikHeider. Predicting hosts and cross-species transmission of Streptococcus
agalactiae by machine learning. Under Review.
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Y.R., D.H. andM.I. conceived the study;Y.R., C.L,D.S., C.Z. constructedmachine learning
methods and related subsequent analysis.Y.R., D.H., C.L., and C.Z. wrote the manuscript.
S.S. helped with the DAAD funding application. D.J. and S.D.B partially performed whole
genome sequencing on the isolates. J.R. and C.A.D partially provided GBS sequencing data-
set. D.H. and M.I. supervised this whole project and revised the manuscript. All authors
read and approved the final manuscript.

24



2
Methods

2.1 Datasets Overview

The species in our work are all based on E. coli bacteria. E. coli is one of the predominant bac-
terial agents related to hospital-induced infections and AMR (Shankarnarayan et al., 2022).
Serving as an important model organism, it offers valuable insights into severe infections in
humans and animals (Poirel et al., 2018). Given the sufficient data available on this species,
we have selected it as the basis for developing our model for AMR prediction.

In the first paper, we utilized two datasets: the Giessen data and the public data. TheGiessen
dataset, specifically collected from our study, contains WGS data along with corresponding
phenotypic information related to various antibiotics for a total of 987 E.coli strains. These
strains were extracted fromboth animal and human clinical samples. ASTwas conducted us-
ing the VITEK® 2 system (bioMérieux, Nürtingen, Germany) and interpreted in alignment
with EUCAST guidelines. The second dataset, referred to as the public dataset, comprises
WGS information for 1509 E.coli strains, along with corresponding phenotypic data (as doc-
umented byMoradigaravand et al. (2018). In the scope of our study, we narrowed our focus
to four specific antibiotics: ciprofloxacin (CIP), cefotaxime (CTX), ceftazidime (CTZ), and
gentamicin (GEN).

In the second paper, the raw dataset is the same as the Giessen data in the first paper. In
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order to do MLC, the isolates need to be filtered for missing antibiotic resistance informa-
tion. Thus, the final dataset with complete MDR information contains 809 E. coli strains.

In the third paper, we utilized two datasets. The first dataset, containing 809 E. coli strains, is
consistent with the one used in the second paper. The second dataset consists of 1509 E. coli
strains collected from public sources, which is the same as the data used in the first paper.

In the fourth work, we used three datasets. The first dataset at node 1 was fromGiessen, and
the second dataset as the test set was from the public source. The third dataset at node 2 was
collected from the Chinese University of Hong Kong. See Table 2.1 for more information

2.2 Whole Genome Sequencing Analysis

The raw whole-genome sequencing reads underwent an initial quality assessment and were
subsequently filtered low-quality reads using fastp (Chen et al., 2018). The clean reads were
then aligned to the E. coli reference genome (specifically, the E. coli K-12 strain MG1655)
using BWA-mem (Li et al., 2009). Variants were then called using Bcftools (Danecek et al.,
2021), while the aligned reads were sorted through Samtools (Li and Durbin, 2009). Finally,
vcftools (Danecek et al., 2011) was employed to filter the raw variants. All tools were applied
using their default parameters.

Firstly, we extracted the reference and variant alleles along with their respective positions.
Then we merged all isolates based on the location of the reference alleles. Loci without vari-
ation were filtered out (with an “N” designating a locus lacking variation), leading to the
construction of the final SNPmatrix. In this matrix, rows correspond to individual samples,
while columns represent the various variant alleles.

2.3 Sequences Encoding

To prepare the SNPs for machine learning analysis, we employed three encoding techniques:
label encoding, one-hot encoding, and FCGR encoding. In label encoding, the nucleotide
bases A, G, C, T, and N in the SNP matrix were mapped to numerical values 1, 2, 3, 4, and
0, respectively. With one-hot encoding, the DNA sequence was transformed into a binary
matrix and subsequently vectorizedusingOneHotEncoder frompreprocessing class in Scikit-
learn python package (Pedregosa et al., 2011). In the case of FCGR encoding, we utilized the
R package kaos to convert the sequences into an image-like matrix, setting the resolution at
200 (Löchel et al., 2020).
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2.4 Model Training and Evaluation

We constructed four distinctmachine learningmethods, includingLR, SVM,RF, andCNN.
We used the Scikit-learn python package to implement LR, SVM, and RF (Pedregosa et al.,
2011). LR was configured with default parameters, except for an increase to 1000 iterations.
RF was applied using default parameters, including a forest of 200 trees. For SVM, we used
a linear kernel algorithm with default parameters.

We implemented CNNs using the Keras (https://keras.io/) library and TensorFlow library
(https://tensorflow.org). Our CNN architecture consisted of eleven hidden layers, specific-
ally encompassing four convolutional layers, two batch normalization layers, two pooling lay-
ers, one flattening layer, one fully connected layer, and one dropout layer. The CNN struc-
ture for both label encoding and one-hot encoding is the same, while differs from FCGR
encoding in the convolutional layers and pooling layers. For FCGR, we used the Conv2D
and MaxPooling2D functions, whereas the CNN for label encoding and one-hot encoding
used the 1D versions instead.

In the CNN architecture, the first two convolutional layers utilized eight filters, each with
a kernel size of three, a rectified linear unit (ReLU) activation function, and ’same’ padding
to maintain the spatial dimensions. The latter two convolutional layers were designed with
16 filters each. All pooling layers in the network employed a pool size of two for spatial down-
sampling. The final fully connected layer featured a softmax activation function for class
probability estimation. For the training process, we compiled the model using the Adam op-
timization algorithm, complemented by cross-entropy loss as the objective function.

We fine-tuned the machine learning models through a rigorous optimization process, utiliz-
ing five iterations of 5-fold stratified cross-validation. To address class imbalance in the train-
ing set, an up-sampling strategy was implemented. For the definitive evaluation conducted
on the public data, we assessed performance on both the unmodified public dataset and a
balanced version, the latter achieved through a down-sampling strategy.

Model performance was evaluated using several metrics. We plotted the receiver operating
characteristic curve (ROC) and computed the AUC tomeasure the models’ ability to distin-
guish between classes. Additionally, we calculated precision and recall for all models, provid-
ing a more comprehensive view of their effectiveness. To conduct statistical comparisons
between the models, we applied the DeLong test (Demler et al., 2012), a widely recognized
method for evaluating differences in AUC.
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2.5 Gene Annotation

To uncover the specific SNPs linked to resistance, we carried out amarker gene identification
process utilizing the EFS R package (Neumann et al., 2017). This package integrates eight
distinct feature selection methods, all tailored for binary classification tasks (Neumann et al.,
2016). We engaged EFS with its default parameters to ensure consistency with established
practices. Following the identification of relevant SNPs, we annotated the corresponding
genes using the SnpEff software (Cingolani et al., 2012), a specialized tool for variant annota-
tion and effect prediction.

2.6 Multi-label Classification

In this study, we employed various algorithms, including Binary Relevance (BR), Classi-
fier Chain (CC), Ensembled Classifier Chain (ECC), Label Powerset (LP), and Random
label space partitioning with label powerset (RD) method for the multi-label classification
of MDR in bacteria. BR is often used as a reference model for comparison in multi-label
classification scenarios.

To elaborate further, let L = {λ1, . . . , λm} (where m >1) represent a finite set of class labels
corresponding to resistance to specific antibiotics, and letX denote the space of the SNPs, or
the instance space. The training setS forMLCcan thenbedefined asS = {(x1, y1), . . . , (xn, yn)},
where these pairs are generated independently and identically according to a probability dis-
tribution P(X), over the Cartesian product X × Y. Here, Y represents the set of all possible
combinations of labels.

BR tackles a dataset with L labels by dividing it into L separate binary classification prob-
lems. In our context, we separated the data into four binary classification challenges, each
corresponding to one of the antibiotics (CIP, CTX, CTZ, and GEN).

Contrastingly, theCCmethod forms a “chain” linking theLbinary classifiers. In this scheme,
the prediction from one classifier serves as an additional input for all subsequent classifiers in
the chain. This design enables the capture of potential dependencies between labels, address-
ing a limitation in BR. However, CC’s performance is highly sensitive to the chain’s order.
To mitigate this issue, the ECC was introduced, which combines multiple chains with vary-
ing orders through majority voting, as proposed by Read et al. (2021).

The LP approach simplifies amulti-label problem into a single-labelmulti-class issue by train-
ingonall unique label combinations found in the trainingdata. Alternatively, theRDmethod
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partitions the label space into groups of size k, training an LP classifier for each group, and
then aggregates the predictions from all LP classifiers.

It is worth noting that any conventional binary classification method can be employed in
these multi-label strategies. In our study, we specifically evaluated RF, LR, and SVM for the
multi-label classification of MDR in bacteria.

2.7 Basic CNNModel

We employed the Keras and Tensorflow Python packages to construct our CNN models.
After evaluating various topologies on the training data, a 12-layer structure emerged as the
optimal design. This architecture encompasses twelve layers: four convolutional layers each
with a kernel size of 3 (implemented using the Conv1D function), two pooling layers (util-
izing the MaxPooling1D function), a pair of batch normalization layers, a flattening layer,
a fully connected layer containing 128 nodes followed by a dropout layer, and a final out-
put layer employing the “softmax” activation function. The CNN models were compiled
using the “categorical_crossentropy” loss function and the “Adam” optimizer, with training
carried out over 50 epochs. To enhance computation efficiency, the data was divided into
multiple small batches, each containing 8 samples.

2.8 Deep Transfer Learning Architecture

To enhance model performance on small, imbalanced datasets, we implemented deep trans-
fer learning, extending the basic CNN architecture previously detailed. Transfer learning
requires specification of both the source and target domains (Ds and Dt, respectively) and
tasks (Ts and Tt, respectively) (Cai et al., 2020). In our study, the CIP dataset from our labor-
atory served as the source domain Ds, while the CTX, CTZ, and GEN datasets constituted
the target domain Dt. The tasks Ts and Tt were focused on predicting AMR against various
antibiotics.

We executed two distinct transfer learning strategies, namely fine-tuning and freezing. The
fine-tuning approach involves a common deep transfer learning method in which the para-
meters (or weights) from the source domain model (Ds) are transferred to the target domain
models (Dt) (Cai et al., 2020). In our implementation, the parameters trained on the CIP
dataset were transferred into the models for CTX, CTZ, and GEN. Additionally, to prevent
overfitting, we employed the freezing strategy (Mallesh et al., 2021), where two normaliza-
tion layers and one convolution layer were kept constant, allowing the remaining layers to be
retrained in the CNNmodels.
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2.9 Swarm Learning

2.9.1 Swarm learning framework

The principle of Swarm Learning (SL) lies in collaboratively constructing machine learning
models across separate computer systems, utilizing private data at each node. This is achieved
by sharing parameters across a Swarm network. Unlike the FL, SL operates without the ne-
cessity for a centralized server to oversee these parameters. Here, we apply SL to independ-
ent data from two distinct nodes. The first dataset, referred to as Node_1, is garnered from
Giessen, comprising 809 E. coli samples with AMR information against four drugs: CIP,
CTX, CTZ, and GEN (Table 2.1). The second dataset, Node_2, originates from Hong
Kong, containingE. coli samples tested againstCIP (n=979),CTX(n=977),CTZ (n=971),
and GEN (n = 980) (Table 2.1). After each training session, model weights are synchronized
across the nodes. These weights are then averaged during each synchronization event, and
subsequent training at each node employs these averaged parameters. The SL framework is
efficiently implemented in Python.

2.9.2 Algorithm in swarm learning

We build the CNN as the foundational algorithm within the SL framework, employing the
Python packages Keras and TensorFlow. The architecture of our CNNmodel is comprised
of 13 layers. This includes four convolutional layers with a kernel size of three, made pos-
sible with the Conv1D function. The model also encompasses two pooling layers, utilizing
the MaxPooling1D function, along with two batch normalization layers. Further structure
includes a flattening layer, a fully connected layer consisting of 128 nodes, and two dropout
layers. The final layer is the output layer, utilizing the “softmax” activation function. We use
the “categorical_crossentropy” loss function and the “Adam” optimizer function to compile
the CNNmodels, running it through 50 epochs for optimal performance. To enhance com-
putational speed, the data is partitioned into multiple smaller batches, each containing 16
data points.

2.9.3 Performance comparison

we benchmark the model’s performance within the SL framework against both local and
centralized training modes. Each dataset is trained independently on each node at the local
mode. Conversely, the centralized mode involves training the model on a combined dataset
from two nodes. The performance evaluation of the models in these three distinct modes is
conducted using independent test data obtained from public sources. This data comprises
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E. coli samples tested against CIP (n = 1496), CTX (n = 1428), CTZ (n = 1471), and GEN
(n = 1489) (Table 2.1).

Table 2.1: Dataset overview. The local training modes at Node_1 and Node_2 are referred to as Local_1 and Local_2,
respectively. The data size for the centralized mode is a combination of Node_1 and Node_2. For the class label, ‘R’
denotes resistance, while ‘S’ indicates sensitivity.

Drugs Nodes Size R/S R/S (%)
CIP Node_1 809 366/443 45.2/54.8
CIP Node_2 979 366/613 37.4/62.6
CIP Test 1496 267/1229 17.8/82.2
CTX Node_1 809 358/451 44.3/55.7
CTX Node_2 977 257/720 26.3/73.7
CTX Test 1428 115/1313 8.1/91.9
CTZ Node_1 809 276/533 34.1/65.9
CTZ Node_2 971 62/909 6.4/93.6
CTZ Test 1471 73/1398 5.0/95.0
GEN Node_1 809 188/621 23.2/76.8
GEN Node_2 980 336/644 34.3/65.7
GEN Test 1489 101/1388 6.8/93.2
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3
Results

This sectionwill provide a comprehensive overviewof publications related to the dissertation.
Each sub-section begins with an extended abstract, followed by the associated manuscript.
The first study focuses on the application of machine learning to AMR based on whole-
genome sequencing, with the goal of constructing different ML models that do not rely on
prior knowledge for accurate AMR prediction and identification of new AMR-associated
mutations and genes (Ren et al., 2021). The second work delves into the problem of multi-
drug resistance (MDR) problems with the aim of exploring the performance of different
multi-label classification (MLC)methods forMDRprediction (Ren et al., 2022a). The third
article studies how to address the challenges of data limitation and labeling imbalance thatma-
chine learning encounters in training (Ren et al., 2022b). The fourth work ((Unpublished))
focuses on applying swarm learning to copewith data privacy issues in AMRprediction, and
since this work has not yet been published, I will briefly describe the motivation and main
results of this work.
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3.1 Publication1: PredictionofAntimicrobialResistancebasedonWhole-
genome Sequencing andMachine Learning.

3.1.1 Summary

Aim and Motivation

The aim of this study (Ren et al., 2021) was to conceive and validate potent machine learn-
ing methodologies that can accurately predict antimicrobial resistance (AMR) using whole-
genome sequencing data, without relying on any pre-existing knowledge. Additionally, we
also strove todiscovernovelmutations andgenes associatedwithAMR.As theworld grapples
with the growing problem of AMR, which threatens both human and animal health, the ur-
gency of a rapid and accurate method for AMR detection cannot be overemphasized. Tradi-
tional antimicrobial susceptibility testing (AST) strategies have significant drawbacks, includ-
ing time-consuming, limited throughput, and limitations on culturable bacteria. Machine
learning offers a promising solution in this scenario, with its potential to automate AMR
prediction using bacterial genomic data. However, the exploration and comparison of vari-
ous machine learning methodologies to predict AMR, especially while employing different
encodings and whole-genome sequencing data without pre-existing knowledge, is a field yet
to be extensively explored. Therefore, our study sets out to bridge this gap and contribute to
the development of effective solutions for this pressing global issue.

Methods and Results

In our study, we initially collected two whole genome sequencing (WGS) datasets of E.coli,
the Giessen data consisting of 987 samples, and a public dataset incorporating 1509 samples.
Following this, we performed SNP variant calling, focusing on the elimination of only low-
quality data rather than filtering data according to known AMR databases. Consequently,
we utilized the resulting SNPmatrix, where the rows represent the samples and columns are
the variant alleles, and corresponding phenotype data relating to four antibiotics, namely
ciprofloxacin (CIP), cefotaxime (CTX), ceftazidime (CTZ) and gentamicin (GEN), as input
for the subsequent analyses.

Subsequently, we employed three encoding methods including label encoding, One-Hot en-
coding, and FCGR to transform the sequence into a format that machine learning can use.
We then developed four distinct machine learning models, including Random Forest (RF),
Logistic Regression (LR), Support Vector Machine (SVM), and Convolutional Neural Net-
work (CNN). We evaluated the performance of these models through cross-validation and
testing on independent data. Our findings demonstrated the efficacy of these models in
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AMRprediction, with RF andCNNnotably outperforming LR and SVM, achieving AUC
score of up to 0.96. There was no significant difference between the three coding methods,
indicating that all of thesemethods can be effectively applied to encoding genomic sequences.
Lastly, we identifiedmutations and genes associatedwithAMRby ensemble feature selection
and genome annotation.

Conclusion

This research signifies a critical advancement in the field of AMR prediction. By employ-
ing machine learning models and diverse encoding methods on genomic data, we have laid
the foundation for a more efficient and informed approach to combat AMR. The know-
ledge derived from this research could profoundly transform our approach to detecting and
managing antimicrobial resistance, potentially playing a vital role in the protection of global
health.
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Krankenhaushygiene, Giessen 35392, Germany and 6Department of Bioinformatics and Systems Biology, Justus Liebig University
Giessen, Giessen 35392, Germany

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on June 29, 2021; revised on August 27, 2021; editorial decision on September 17, 2021; accepted on September 24, 2021

Abstract

Motivation: Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal
health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicro-
bial susceptibility testing (AST) is time-consuming, low throughput and viable only for cultivable bacteria. Machine
learning methods may pave the way for automated AMR prediction based on genomic data of the bacteria.
However, comparing different machine learning methods for the prediction of AMR based on different encodings
and whole-genome sequencing data without previously known knowledge remains to be done.
Results: In this study, we evaluated logistic regression (LR), support vector machine (SVM), random forest (RF) and
convolutional neural network (CNN) for the prediction of AMR for the antibiotics ciprofloxacin, cefotaxime, ceftazi-
dime and gentamicin. We could demonstrate that these models can effectively predict AMR with label encoding,
one-hot encoding and frequency matrix chaos game representation (FCGR encoding) on whole-genome sequencing
data. We trained these models on a large AMR dataset and evaluated them on an independent public dataset.
Generally, RFs and CNNs perform better than LR and SVM with AUCs up to 0.96. Furthermore, we were able to iden-
tify mutations that are associated with AMR for each antibiotic.
Availability and implementation: Source code in data preparation and model training are provided at GitHub web-
site (https://github.com/YunxiaoRen/ML-iAMR).
Contact: dominik.heider@uni-marburg.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rise of antimicrobial resistance (AMR) is one of the greatest
threats to global health, food security and societal development.
Estimates indicate that the number of yearly deaths will be at 10 mil-
lion worldwide with a cost of $100 trillion if no steps to tackle
AMR are taken by 2050 (Naylor et al., 2018). Traditional anti-
microbial susceptibility testing (AST) is widely used for AMR ana-
lysis in clinical practice. However, this approach requires
professional facilities and technicians for implementation and is

viable only for cultivable bacteria (Boolchandani et al., 2019).
Recently, many studies highlight the potential of machine learning
methods in predicting AMR combining sequencing methods and
well-known databases with phenotypic information for AMR
(Boolchandani et al., 2019; Liu et al., 2020; Lv et al., 2021). For in-
stance, Yang et al. (2018) and Kouchaki et al. (2018) analyzed
AMR using different machine learning algorithms [e.g. support vec-
tor machine (SVM), logistic regression (LR) and random forest
(RF)] trained on whole-genome sequencing and achieved high accur-
acy on AMR prediction. Deep learning algorithms also showed
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significant potential for predicting new antibiotic drugs, AMR genes
and AMR peptides (Arango-Argoty et al., 2018; Stokes et al., 2020;
Veltri et al., 2018). However, these studies focused on genome var-
iants (such as single-nucleotide polymorphisms, SNPs) or other fea-
tures only related to resistant genes identified in previous studies or
resistant databases. The potential of machine learning models for

predicting AMR without using known resistance mutation data-
bases or annotated genes remains to be clarified.

To use machine learning methods for the classification of AMR,
the input sequences (here: genomic sequences) need to be encoded
into numerical values. A practical and informative encoding method
for the whole-genome sequence is, thus, crucial for downstream

Fig. 1. Workflow of the study. WGS data from Giessen and the public data from Moradigaravand et al. (2018) were processed, and single nucleotide polymorphisms (SNPs)
were called. The SNP data were encoded by label encoding, one-hot encoding and FCGR encoding for subsequent machine learning. The Giessen dataset was used to train and
validate the four machine learning algorithms using cross-validation. The public data were used for the final evaluation of the models. Finally, we analyzed the association of
SNPs and SNPs-adjacent genes with AMR using EFS. Created with BioRender.com
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analysis. There are various encoding methods for sequences (Spänig
and Heider, 2019), e.g. one-hot encoding or label encoding. One-
hot encoding, also referred to as sparse encoding, encodes the DNA
sequence into a binary matrix, which is then vectorized and used as
input for the machine learning models. Label encoding is another
simple and straightforward encoding method, where each label is
assigned a unique integer.

Thus, in this study, we use label encoding, one-hot encoding and
Chaos Game Representation (CGR) to encode the genomic data.
CGR is a recurrent iterative function system, which can be used to
visualize sequences by building fractals from sequences of symbols,
i.e. from an alphabet A ¼ fS1; . . . ; Sng. Jeffrey (1990) was the first
who applied the CGR algorithm to DNA sequences, i.e. n¼4 and
A ¼ fA;C;G;Tg, thus the resulting fractals are constructed from
squares. Since the development of the CGR and its application in
life science, it has been used for the analysis and alignment-free com-
parison of whole-genome sequences (Joseph and Sasikumar, 2006;
Kania and Sarapata, 2021; Lichtblau, 2019). It has been shown that
CGR is an excellent representation for genomes and that CGR-
driven phylogeny leads to reliable predictions (Deschavanne et al.,
1999). In particular, the comparison between genomes using CGR is
straightforward and fast (Hoang et al., 2016). CGR has been used,
for instance, for a fast comparison of SARS-CoV2 strains (Sengupta
et al., 2020). Extensions of CGR include color grids (Deschavanne
et al., 1999) and frequency matrix chaos game representation
(FCGR) (Almeida et al., 2001). Wang et al. (2005) used FCGR to
calculate the image distance between genomes to generate phylogen-
etic trees. Rizzo et al. (2016) showed that deep neural networks
(DNNs) trained on genomes encoded with FCGR yielded very ac-
curate predictions. They used a convolutional neural network
(CNN) to divide bacteria into three different phyla, order, family
and genus, and showed very high accuracy for the method.

While most existing studies on CGR encoding focused on CGR
for DNA, there also exist a smaller number of studies dealing with
other alphabets, e.g. the encoding of protein sequences. Yu et al.
(2004) used the CGR algorithm for protein classification by separat-
ing the amino acids into four groups based on their properties and
used multifractal and correlation analysis to construct a phylogenet-
ic tree of Archaea and Eubacteria. In other approaches, the amino
acids were retranslated into DNA for CGR (Yang et al., 2009). Sun
et al. (2020) used a three-dimensional CGR representation for pro-
tein classification, and Löchel et al. (2020) used FCGR for resistance
prediction in HIV-1 with CNNs.

Thus, in this study, we analyzed the potential of different statis-
tical and machine learning methods, including LR, SVM, RF and
CNN with label encoding, one-hot encoding and FCGR encoding
for predicting AMR based on whole-genome sequencing of
Escherichia coli (E.coli).

2 Materials and methods

The workflow of the study is shown in Figure 1.

2.1 Data collection and sample phenotype
Escherichia coli is an important model organism that can cause se-
vere infections in humans and animals, it also represents a signifi-
cant resistance gene pool that may be responsible for treatment
failure in humans and veterinary medicine (Poirel et al., 2018).

In our study, we used two datasets, referred to as the Giessen
data and the public data. The first dataset (Giessen) was collected as
part of our study and contains whole-genome sequencing data
(WGS) and corresponding phenotypic information for several anti-
biotics for, in total, 987 E.coli strains. These isolates were obtained
from human and animal clinical samples. Antimicrobial susceptibil-
ity testing was performed using the VITEKVR 2 system (bioMérieux,
Nürtingen, Germany) and interpreted following EUCAST guide-
lines. DNA isolation and whole-genome sequencing were per-
formed, as described by Falgenhauer et al. (2020).

The latter dataset (public) consists of WGS of 1509 E.coli strains
and corresponding phenotypic information (Moradigaravand et al.,

2018). In our study, we focused on the four antibiotics ciprofloxacin
(CIP), cefotaxime (CTX), ceftazidime (CTZ) and gentamicin (GEN).

CIP belongs to the class of fluoroquinolones and is widely used
to treat various infections, including gastroenteritis, respiratory tract
infections or urinary tract infections (Heeb et al., 2011). CIP is par-
ticularly effective against Gram-negative bacteria, such as E.coli.
However, due to overuse, resistances evolve rapidly. CTX and CTZ
belong to the class of cephalosporins and are also widely used to
treat various infections, such as meningitis, pneumonia, urinary
tract infections, sepsis and gonorrhea. They are broad-spectrum
antibiotics with activity against numerous Gram-positive and Gram-
negative bacteria, including E.coli. Nevertheless, resistance is also
increasing noticeably (Gums et al., 2008; Sharma, 2013).

GEN belongs to the aminoglycoside class and is widely used to
treat various infections, including meningitis, pneumonia, urinary
tract infections and sepsis. It is active against a wide range of bacter-
ial infections, mostly Gram-negative bacteria including E.coli. It
binds to the 30S subunit of the bacterial ribosome and negatively
affects protein synthesis (Garneau-Tsodikova and Labby, 2016).

We used data of 900 isolates with resistance information for CIP
(418 resistant, 482 susceptible), 930 isolates with resistance infor-
mation for CTX (455 resistant, 475 susceptible), 841 isolated for
CTZ (291 resistant, 550 susceptible) and 926 isolates for GEN (216
resistant, 710 susceptible).

While the CIP and CTX data are balanced, the Giessen datasets
are imbalanced on the CTZ and GEN data (34% and 23% resistant
isolates, respectively). The public dataset is imbalanced for all anti-
biotics. For CIP, CTX, CTZ and GEN, there are only 267, 115, 73
and 101 resistant samples, representing 18%, 8%, 5% and 7% of
all isolates in the public dataset, respectively.

The summary of the datasets is shown in Table 1.

2.2 Variants calling of whole-genome sequencing data
The raw whole-genome sequencing reads were first quality checked
and filtered by fastp (Chen et al., 2018). The filtered reads were then
aligned to the E.coli reference genome (E.coli K-12 strain.
MG1655) using BWA-mem (Li et al., 2009). Bcftools (Danecek
et al., 2021) was used for calling variants. Samtools (Li and Durbin,
2009) was used to sort the aligned reads, and vcftools (Danecek
et al., 2011) was used to filter the raw variants. We used default
parameters for all tools.

2.3 SNPs pre-processing and encoding
We first extracted reference alleles, variant alleles and their posi-
tions, and merged all isolates based on the position of reference
alleles. We filtered out the loci without variation (N replaces a locus
without variation), and we built the final SNP matrix, where the
rows represent the samples and columns are the variant alleles.

To encode the SNPs for subsequent machine learning, we used
label encoding, one-hot encoding and FCGR encoding. For the label
encoding, the A, G, C, T and N in the SNP matrix were converted to
1, 2, 3, 4 and 0. In one-hot encoding, the DNA sequence is encoded
into a binary matrix, which is subsequently vectorized. For the
FCGR encoding, we used the R package kaos to transform the
sequences into an image-like matrix with a resolution of 200
(Löchel et al., 2020).

2.4 Machine learning and model evaluation
We used four machine learning methods, including LR, SVM, RF
and CNN. For LR, RF and SVM, we used the Scikit-learn python

Table 1. Overview of the datasets

Drug CIP CTX CTZ GEN

Source Giessen Public Giessen Public Giessen Public Giessen Public

Resistant 418 267 455 115 291 73 216 101

Susceptible 482 1229 475 1313 550 1398 710 1398

Total 900 1496 930 1428 841 1471 926 1489
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Fig. 2. ROC curves for the models with label encoding, one-hot encoding and FCGR encoding on the Giessen data. First row: ROC curves for CIP with label encoding (A),
one-hot encoding (B) and FCGR encoding (C), respectively. Second row: ROC curves for CTX with label encoding (D), one-hot encoding (E) and FCGR encoding (F), respect-
ively. Third row: ROC curves for CTZ with label encoding (G), one-hot encoding (H) and FCGR encoding (I), respectively. Fourth row: ROC curves for GEN with label
encoding (J), one-hot encoding (K) and FCGR encoding (L), respectively

Table 2. Results of the four machine learning models with label encoding on the Giessen data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.88 6 0.04 0.75 6 0.04 0.81 6 0.02 0.76 6 0.03 0.87 6 0.01 0.65 6 0.10 0.89 6 0.03 0.91 6 0.02

LR 0.88 6 0.05 0.71 6 0.04 0.81 6 0.03 0.77 6 0.02 0.90 6 0.03 0.69 6 0.08 0.92 6 0.05 0.96 6 0.03

RF 0.92 6 0.04 0.75 6 0.03 0.84 6 0.03 0.79 6 0.02 0.89 6 0.03 0.73 6 0.07 0.90 6 0.06 0.97 6 0.03

SVM 0.85 6 0.03 0.69 6 0.02 0.78 6 0.03 0.75 6 0.02 0.89 6 0.04 0.73 6 0.03 0.89 6 0.03 0.96 6 0.03
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package (Pedregosa et al., 2011). LR was used with default parame-
ters, except that we used 1000 iterations. RF was used with default
parameters and 200 trees. For SVM, we used a linear kernel and de-
fault parameters.

We implemented CNNs using the Keras (https://keras.io/) pack-
age and TensorFlow (https://tensorflow.org). The CNN architecture
is based on eleven hidden layers, including four convolutional layers,
two batch normalization layers, two pooling layers, one flattening
layer, one fully connected layer and one dropout layer. The structure
of the networks for label encoding and one-hot encoding are the
same, which differ from FCGR encoding-based CNNs only in the
convolutional layers and pooling layers (see Supplementary Fig. S1).
For FCGR, we used the Conv2D and MaxPooling2D function,
while the CNN for the label encoding used the 1D versions instead.

We used eight filters in the first two convolution layers with a
kernel size of three, rectified linear unit activation function and
same padding. The last two convolution layers used 16 filters in-
stead. The pool size of all pooling layers is two. We used the softmax
activation function in the final fully connected layer and compiled
the model with Adam optimization and cross-entropy loss.

2.5 Statistical evaluation
We optimized the machine learning models on the Giessen data
using five times 5-fold stratified cross-validation. We applied an up-
sampling strategy to balance the samples in the training set. For the
final evaluation on the public data, we analyzed the performance on
the raw public dataset and on a balanced set using a down-sample
strategy.

We evaluated the models using the receiver operating character-
istics curve (ROC) and the area under the curve (AUC). We also cal-
culated precision and recall for all models. Statistical comparisons
were made by the DeLong test (Demler et al., 2012).

2.6 Marker genes identification located around SNPs
To identify the SNPs that are associated with resistance, we per-
formed a marker gene identification using the EFS R package
(Neumann et al., 2017). The EFS package aggregates eight feature
selection methods for binary classification tasks (Neumann et al.,
2016). We used EFS with default parameters. We then annotated
the corresponding genes of SNPs using SnpEff software (Cingolani
et al., 2012).

3 Results

3.1 Performance of different machine learning methods

for predicting AMR on Giessen data
We used the filtered SNPs matrix encoded by label encoding, one-
hot encoding and FCGR encoding from the Giessen dataset to train
the four machine learning methods LR, RF, SVM and CNN. The
performance of the four machine learning models was evaluated
using five times 5-fold cross-validation. The ROC curves and AUC
values of the different machine learning models range from 0.69 to
0.96, demonstrating that all models can effectively predict AMR
compared with random null models (Fig. 2). We observed that the
mean AUC of the RFs was higher than for LR, SVM and CNN clas-
sifiers for all antibiotics with both encoding methods (Fig. 2). In par-
ticular, RFs were significantly better than LR (P¼0.03), SVMs
(P¼0.01) and CNNs (P¼0.02) for CIP with label encoding
(Supplementary Fig. S2). RFs were also better than the other three
classifiers for GEN with label encoding and FCGR encoding
(P<0.05). For CTZ, RFs significantly outperformed SVMs with all
encoding methods (P<0.05) (Supplementary Fig. S2). For CTX,
RFs are significantly better than LR and SVM with label encoding
and one-hot encoding (P<0.05), while there are no significant dif-
ferences if the FCGR encoding is used (Supplementary Fig. S2).

Moreover, all models show high precision and recall using label
(Table 2), one-hot (Table 3) and FCGR encoding (Table 4) for CIP.
For CTZ and GEN, the models show high recall but lower precision,
which may be related to the imbalanced resistant and susceptible
isolates. In sum, RF, CNN, LR and SVM can predict AMR for CIP,
CTZ, GEN and CTX with three encoding methods in E.coli.

3.2 Evaluation of the models on public data
We performed a further evaluation of our models using the public
data of E.coli of Moradigaravand et al. (2018). The public data are
highly imbalanced and thus performance metrics are difficult to in-
terpret. Thus, to evaluate the performance of the models, we per-
formed a down-sampling to balance the public data. For
completeness, results for the imbalanced set are shown in
Supplementary Tables S1–S3.

The resulting ROC curves clearly show that the machine learning
models generalize well and can predict AMR (Fig. 3). The AUCs of
RFs are higher compared with those from LR, SVM and CNN with
three encoding approaches, except for CTZ and GEN with FCGR
encoding. Consistent with the results from the Giessen data, all clas-
sifiers have high precision and recall for three encoding methods
(Tables 5–7).

Table 3. Results of the four machine learning models with one-hot encoding on the Giessen data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.87 6 0.05 0.75 6 0.00 0.84 6 0.01 0.80 6 0.00 0.90 6 0.01 0.71 6 0.03 0.84 6 0.03 0.87 6 0.05

LR 0.89 6 0.05 0.71 6 0.04 0.80 6 0.03 0.78 6 0.02 0.89 6 0.03 0.73 6 0.08 0.89 6 0.05 0.95 6 0.02

RF 0.92 6 0.05 0.75 6 0.01 0.82 6 0.02 0.80 6 0.03 0.90 6 0.02 0.73 6 0.07 0.90 6 0.07 0.97 6 0.03

SVM 0.86 6 0.05 0.68 6 0.03 0.77 6 0.03 0.76 6 0.03 0.89 6 0.03 0.69 6 0.06 0.89 6 0.06 0.95 6 0.04

Table 4. Results of the four machine learning models with FCGR encoding on the Giessen data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.87 6 0.04 0.74 6 0.04 0.81 6 0.03 0.75 6 0.02 0.91 6 0.03 0.84 6 0.04 0.87 6 0.06 0.96 6 0.01

LR 0.79 6 0.08 0.70 6 0.04 0.73 6 0.05 0.69 6 0.04 0.85 6 0.04 0.79 6 0.05 0.85 6 0.04 0.86 6 0.02

RF 0.91 6 0.03 0.74 6 0.01 0.82 6 0.02 0.80 6 0.02 0.87 6 0.03 0.72 6 0.07 0.90 6 0.07 0.98 6 0.01

SVM 0.81 6 0.03 0.72 6 0.03 0.73 6 0.01 0.69 6 0.02 0.88 6 0.03 0.81 6 0.05 0.87 6 0.03 0.92 6 0.03
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3.3 Marker genes associated with antibiotic resistance
We performed an SNP association study on the Giessen and pub-
lic data using the EFS R package with default parameters. In this
analysis, we did not include the known resistance genes. Thus,
we aimed at identifying secondary mutations that contribute to
the resistance directly or indirectly, e.g. compensatory muta-
tions. This data-driven approach does not need AMR expert

knowledge and can also be used and predict resistance even with-
out knowing the resistance genes but by identification of the sec-
ondary mutations. EFS provided a ranking of the SNPs for each
antibiotic. The ten most important SNPs for each antibiotic are
shown in Figure 4. These SNPs are part of 19 different genomic
regions. We then annotated and analyzed the corresponding
genes of these regions (Table 8).
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Fig. 3. ROC curves for the models with label, one-hot and FCGR encoding on the public data. First row: ROC curves for CIP with label encoding (A), one-hot encoding (B)
and FCGR encoding (C), respectively. Second row: ROC curves for CTX with label encoding (D), one-hot encoding (E) and FCGR encoding (F), respectively. Third row: ROC
curves for CTZ with label encoding (G), one-hot encoding (H) and FCGR encoding (I), respectively. Fourth row: ROC curves for GEN with label encoding (J), one-hot encod-
ing (K) and FCGR encoding (L), respectively
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Some of these genes are well-known genes conferring antibiotic
resistance, such as marA. marA is a gene related to multiple drug re-
sistance (Abdolmaleki et al., 2019). In comparison, the other genes
have not been well studied so far. For instance, the gene nhaA (asso-
ciated with CTX, CTZ and GEN resistance) displays a Naþ/Hþ
antiport activity in E.coli that can regulate the permeability, which
may further affect drug resistance (Padan et al., 2004). The gene
rlmC encodes a 23S RNA methyltransferase that methylates the 23S
rRNA, of antibiotic binding sites and is related to antibiotic resist-
ance (Pletnev et al., 2020; Stojkovi!c et al., 2016). It has been
reported that the gene fliI encodes a virulence factor, and some stud-
ies focused on the correlation between antimicrobial resistance and
bacterial virulence (Beceiro et al., 2013; Deng et al., 2019). The
gene pepB encodes the peptidase B, which is related to the produc-
tion of bacteriocins, narrow-spectrum antimicrobial peptides pro-
duced by bacteria (Suzuki et al., 2001; Telhig et al., 2020). MurB is
the key biosynthetic enzyme involved in the synthesis of peptidogly-
can, the key component of the cell wall (Nasiri et al., 2017; Walsh
and Wencewicz, 2014). In sum, the marker genes and SNPs identi-
fied by EFS can be used as a reference for further AMR studies.

4 Discussion

This study analyzed four different machine learning methods (RFs,
LR, SVMs and CNNs) for predicting four antibiotic resistances in
E.coli based on whole-genome sequence data with three different
encoding schemes, namely, label encoding, one-hot encoding and
FCGR encoding. Moreover, our goal was to identify mutations (sec-
ondary mutations) contributing to resistance beyond known resist-
ance genes. Thus, we used a reference genome for E.coli without
known resistance genes. Our study confirmed that label encoding,

one-hot encoding and FCGR encoding could encode genomic data
for preparing the input data for subsequent machine learning and
deep learning methods. Our results show that the four machine
learning methods can effectively predict AMR without the need for
a database of known resistance genes or SNPs, which is an essential
prerequisite for AMR prediction in less well-studied pathogens and
drugs. Furthermore, we provide potential genes and SNPs associated
with AMR based that can be used as a reference for the subsequent
experiments.

Previous studies reported different SNPs in the bacterial genome
associated with multiple drug resistance (Brimacombe et al., 2007;
Figueroa et al., 2019; Shi et al., 2019; Su et al., 2019; Yang et al.,
2018). However, these studies mainly focused on partial SNPs based
on available AMR databases (Yang et al., 2018). Machine learning
based on the complete set of SNPs from whole-genome sequencing
gives further insights and can be used to identify novel biological
mechanisms of resistance.

Encoding the genomic features into a readable format for ma-
chine learning and deep learning is an essential step. Label encoding,
one-hot encoding and CGR encoding can convert SNPs into
machine-recognizable formats very efficiently. Our study used the
three approaches to encode SNPs and yield excellent predictions for
both encoding methods. Many studies indicated that CNNs outper-
form other machine learning algorithms in image classification,
which was the rationale for incorporating FCGR as an encoding
scheme.

We compared four machine learning methods, including RFs,
LR, SVMs and CNNs. Overall, the four machine learning methods
showed good performance in predicting the four antibiotic resistan-
ces of E.coli. We also demonstrated that our models generalize well
on unseen data, as proven by validating the results based on an inde-
pendent public dataset. We were also able to identify SNPs

Table 5. Evaluation of the machine learning models with label encoding on the public data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.94 0.71 0.79 0.84 0.88 0.88 0.81 0.70

LR 0.93 0.76 0.80 0.82 0.90 0.84 0.75 0.62

RF 0.95 0.75 0.81 0.83 0.90 0.85 0.77 0.61

SVM 0.94 0.71 0.75 0.77 0.87 0.84 0.74 0.60

Note: Precision and recall are calculated based on balanced data using down-sampling.

Table 6. Evaluation of the machine learning models with one-hot encoding on the public data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.95 0.83 0.84 0.80 0.90 0.83 0.78 0.62

LR 0.90 0.80 0.76 0.81 0.90 0.85 0.78 0.63

RF 0.90 0.78 0.73 0.81 0.90 0.86 0.78 0.63

SVM 0.89 0.78 0.75 0.73 0.88 0.83 0.77 0.55

Note: Precision and recall are calculated based on balanced data using down-sampling.

Table 7. Evaluation of the machine learning models with FCGR encoding on the public data

Classifiers/drug Precision Precision Precision Precision Recall Recall Recall Recall

CIP CTX CTZ GEN CIP CTX CTZ GEN

CNN 0.84 0.71 0.72 0.74 0.93 0.89 0.86 0.71

LR 0.85 0.77 0.79 0.80 0.89 0.87 0.86 0.74

RF 0.92 0.77 0.83 0.83 0.88 0.89 0.78 0.59

SVM 0.88 0.78 0.77 0.75 0.90 0.86 0.86 0.74

Note: Precision and recall are calculated based on balanced data using down-sampling.
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associated with resistance. However, the marker genes located
around the SNPs associated with AMR need experimental
validation.

Although we only focused on four antibiotics in this study, our
method can easily be applied to other antibiotics and can also be
extended to other resistance-related SNPs of other pathogens, also
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from species other than bacteria. Furthermore, our approach can
also be applied to other biomedical areas, e.g. for cancer resistance
prediction. More importantly, our method may have huge potential
in systems medicine, to improve the diagnosis, targeted therapy and
disease prevention.

There are also some limitations in our study. For example, we
only used SNP data in our models that have been called based on a
single reference genome. This, however, spares many genomic
regions that might be important resistance factors. This is especially
true for diverse species like E.coli. One approach to mitigate this
issue would be the selection of more suitable or multiple reference
genomes. Another option potentially leading to a more holistic set
of potential SNPs would be to use an artificial pseudo-pan-genome
incorporating many genomes of a particular species as a reference
within the SNP detection workflow. However, other features, e.g.
transcriptomics or proteomics data, might be important for AMR as
well (Moradigaravand et al., 2018). Moreover, several other import-
ant drugs have not been taken into account yet. However, they may
be analyzed with the same methodology when enough data are
available.

5 Conclusion

We investigated four machine learning methods for predicting AMR
to four different drugs in E.coli from whole-genome sequence data
with label encoding, one-hot encoding and FCGR encoding. Our
results demonstrated that all methods perform very well also for un-
seen data. Overall, our study provides a new machine learning-
driven approach for resistance prediction and thus, may improve
treatment of patients in the future.

We evaluated the performance based on cross-validation on our
own data and tested the model performance on public data.
Moreover, we identified potential SNPs and corresponding genes
that are associated with AMR.

We could demonstrate that label encoding, one-hot encoding
and FCGR encoding can be used for whole-genome sequence analy-
ses. Moreover, we provide a comprehensive evaluation of different
machine learning algorithms for AMR prediction in E.coli. The
results of the study give a rich reference resource for further research
on both experimental and computational aspects of AMR.
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3.2 Publication 2: Multi-label Classification for Multi-drug Resistance
Prediction of Escherichia Coli

3.2.1 Summary

Aim and Motivation

The aim of this work (Ren et al., 2022a) focuses on addressing the multi-drug resistance
(MDR) problem. Its objective is to explore and evaluate the effectiveness of various multi-
label classification (MLC) methods for predicting MDR. MDR within pathogenic bacteria
poses a significant threat to global health. MDR is typically the consequence of geneticmuta-
tions and the aggregation of resistance genes, often leading to treatment failure and increasing
public health risks. Although machine learning methods offer a broad spectrum of applic-
ations for AMR prediction, they predominantly focus on predicting single drug resistance
and overlook the temporal accumulation of AMR traits. This leaves the simultaneous and
rapid identification of multi-drug resistance as an unaddressed challenge.

Methods and Results

In this study, we used 809 whole-genome sequencing (WGS) data of E. coli strains with
resistance information for four antibiotics, namely ciprofloxacin (CIP), cefotaxime (CTX),
ceftazidime (CTZ), and gentamicin (GEN). We called for SNP variants and performed pre-
processing analysis, following the sameprocedure as our previous study (Ren et al., 2021). To
achieve the multi-label classification ofMDR in bacteria, we deployed five different method-
ologies: Binary Relevance (BR), Classifier Chain (CC), Ensemble Classifier Chains (ECC),
Label Powerset (LP), and RandomLabel Space Partitioning with Label Powerset (RD). Our
results demonstrated the potential of MLCmethods in accurately modeling multi-drug res-
istance in pathogens. Importantly, we found the ECC model achieves accurate MDR pre-
diction and outperforms other MLCmethods.

Conclusion

Our study broadens the array of tools available for predictingMDR, thus catalyzing advance-
ments in diagnosing patient infections. The multi-label classification methods that we have
introduced not only expedite the identification of pathogens and resistance but also enhance
its accuracy. Consequently, these methodologies hold the potential to mitigate the public
health threats posed by antimicrobial resistance, and in the long term, reduce the number of
fatalities associated with such resistance.
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Figure 3.1: Workflow of this study. This figure was created by BioRender.com
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a b s t r a c t

Antimicrobial resistance (AMR) is a global health and development threat. In particular, multi-drug resis-
tance (MDR) is increasingly common in pathogenic bacteria. It has become a serious problem to public
health, as MDR can lead to the failure of treatment of patients. MDR is typically the result of mutations
and the accumulation of multiple resistance genes within a single cell. Machine learning methods have a
wide range of applications for AMR prediction. However, these approaches typically focus on single drug
resistance prediction and do not incorporate information on accumulating antimicrobial resistance traits
over time. Thus, identifying multi-drug resistance simultaneously and rapidly remains an open challenge.
In our study, we could demonstrate that multi-label classification (MLC) methods can be used to model
multi-drug resistance in pathogens. Importantly, we found the ensemble of classifier chains (ECC) model
achieves accurate MDR prediction and outperforms other MLC methods. Thus, our study extends the
available tools for MDR prediction and paves the way for improving diagnostics of infections in patients.
Furthermore, the MLC methods we introduced here would contribute to reducing the threat of antimicro-
bial resistance and related deaths in the future by improving the speed and accuracy of the identification
of pathogens and resistance.

! 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Antimicrobial resistance (AMR) is rapidly increasing and is,
therefore, one of the greatest threats to global health and also
causes significant economic problems. According to WHO esti-
mates, without countermeasures, up to 10 million deaths will be
caused by AMR in the future, with immense costs to the healthcare
system of approximately $100 trillion by 2050 [1]. In particular,
infection due to multi-drug resistance (MDR) pathogens has
become most threatening to public health, as MDR can lead to fail-
ure of treatment of patients [2,3]. For instance, the emergence of
MDR in Escherichia coli (E. coli) has become one of the global health

concerns [4–6]. In general, bacteria are resistant to antibiotics by
spontaneous mutations in existing genes or by the acquisition of
extraneous genes [6,7]. Many previous studies investigating AMR
have focused on well-known resistance genes or mutations in
well-known genes, such as mutations in the gyrA gene and parC
gene in E. coli [8,9]. However, there is a lack of AMR studies based
on overall mutations without previous knowledge.

While antimicrobial susceptibility testing (AST) is widely used
for AMR profiles in clinical practice, machine learning models have
been shown to produce highly reliable predictions in a shorter
turnaround time. Typically, these machine learning models com-
bine sequencing data with antibiotic resistance databases with
phenotypic information [10,11]. For instance, Yang et al., [12] and
Kouchaki et al., [13] used different machine learning algorithms,
namely support vector machine (SVM), logistic regression (LR),
and random forest (RF) to predict AMR from whole-genome
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sequencing data and achieved high accuracy prediction. Other
approaches also included deep learning to predict new antibiotic
drugs, AMR genes, and AMR peptides [14–20]. However, all of
these studies are based on single drug resistance information and
do not take into account the MDR information of the bacteria.

Multi-label classification (MLC) offers a potential solution for
AMR prediction based on MDR information. Traditionally, multi-
label problems are transformed into single-label problems [21].
For instance, the widely known binary relevance (BR) approach,
is a simple and straightforward method that treats each label as
an independent binary problem [22]. One of the limitations of
the BR approach is that it does not take into account the dependen-
cies between the labels [23]. Unlike BR, the classifier chain (CC)
takes into account the correlation among labels and uses the pre-
dicted results from the previous classifiers as an additional input
for the following classifier [24]. Obviously, the order of the CC
affects the prediction accuracy. Thus, the ensemble of classifier
chains (ECC) was proposed, which contains several CCs with differ-
ent orders and can be applied to study the dependencies between
labels [23,24]. CCs and ECCs have been used for cross-resistance
prediction in HIV based on protein sequences of the HIV-1 reverse
transcriptase [25] and protease [26], however, it has never been
used with genomic data and MDR of bacteria. Other multi-label
approaches include the label powerset (LP) method, which consid-
ers the dependency among labels, and each label combination is
considered as a class [21]. Random label space partitioning with
label powerset (RD) method is another effective ensemble method,
which is based on label powerset with a random subset of k labels
[23,24].

In our study, we gave the applications of MLC methods on
multi-drug resistance prediction. We aimed at identifying sec-
ondary mutations that contribute to the resistance directly or indi-
rectly, e.g., compensatory mutations. We did not include the
known resistance genes. Our approach does not need any AMR
expert knowledge and can also predict resistance even without
knowing the resistance genes by identifying secondary mutations.
The results demonstrated that the ECC model can significantly
improve overall resistance prediction in bacteria compared to the
other four MLC methods. MLC models will improve patient care,
in particular the treatment of patients, reduce the threat of antimi-
crobial resistance and related deaths in the future, and improve the
speed and accuracy of the identification of pathogens and
resistance.

2. Materials and methods

2.1. Dataset

In our analysis, we used 987 whole-genome sequencing (WGS)
data of E. coli strains with resistance information for four antibi-
otics, namely ciprofloxacin (CIP), cefotaxime (CTX), ceftazidime
(CTZ), and gentamicin (GEN). These data were collected by our
partner institution, the University of Giessen. The isolates were
obtained from human and animal clinical samples. Antimicrobial
susceptibility testing was performed using the VITEK" 2 system
(bioMérieux, Nürtingen, Germany) and interpreted following
EUCAST guidelines. DNA isolation and whole-genome sequencing
was performed as described in Falgenhauer et al. [27].

In order to use MLC, the isolates need to be filtered for missing
antibiotic resistance information. The final dataset with complete
MDR information contains 809 E. coli strains (see Table 1). CIP is
a fluoroquinolone and is widely used to treat infections with
Gram-negative bacteria, e.g., gastroenteritis, respiratory tract
infections, or urinary tract infections [28]. CTX and CTZ are
broad-spectrum antibiotics from the class of cephalosporins and

are widely used to treat infections of Gram-positive and Gram-
negative bacteria, such as meningitis, pneumonia, urinary tract
infections, sepsis, and gonorrhea [29,30]. GEN is an aminoglycoside
and is widely used to treat various infections of Gram-negative
bacteria, including meningitis, pneumonia, urinary tract infections,
and sepsis [31].

2.2. Dataset pre-processing and encoding

The pre-processing step of raw WGS data refer to our previous
study [20]. Briefly, we filtered bad quality reads by fastp (v0.23.2)
software [32] and then mapped the clean reads to E. coli reference
genome (E. coli K-12 strain. MG1655) through BWA-MEM with
default parameters [33]. We called single nucleotide polymor-
phisms (SNPs) variants using bcftools (v1.14) via ‘call’ function
with default parameters [34,35]. We extracted reference alleles,
variant alleles and their positions, and merged all isolates based
on the position of reference alleles. We retained the alleles existing
variant more than half in samples. Finally, we got an SNP matrix,
where the rows represent the samples and columns are the variant
alleles. We utilized one-hot encoding to transform the SNP matrix
into a binary matrix for subsequent machine learning.

2.3. Multi-label classification

In the current study, we used BR, CC, ECC, LP, and RD for the
multi-label classification of MDR in bacteria. BR is typically used
as a baseline model to compare multi-label classification models.
Let L :¼ fk1; :::; kmg with m > 1 be a finite set of class labels (here:
resistance for the four antibiotics), and let X be the instance space,
i.e., the SNPs. The training set S in MLC is then defined as
S :¼ fðx1; y1Þ; :::; ðxn; ynÞg, generated independently and identically
according to a probability distribution PðX; Þ on X $ Y . Y is the set
of possible label combinations, i.e., the powerset of L (Fig. 1A).

BR divides the dataset with L labels into L binary classification
problems (Fig. 1B). Accordingly, we split the data into four binary
classification problems, one for each antibiotic (CIP, CTX, CTZ,
and GEN). In contrast, the CC approach links the L binary classifiers
into a ‘‘chain” such that the output prediction of one classifier is
used as an additional input for all subsequent classifiers, which
overcomes the disadvantage of not considering dependencies
between labels and captures possible dependencies between the
labels (Fig. 1C). The performance of CC depends heavily on the
order of the chain, thus, Read et al., [23] proposed the use of ECC,
which aggregates several chains with different orders by majority
vote (Fig. 1D). The LP approach transforms a multi-label problem
into a single-label multi-class problem, which is trained on all
unique label combinations found in the training data [36]
(Fig. 1E). The RD method divides the label space into partitions of
size k, trains an LP classifier per partition, and predicts the testing
data by aggregating the result of all LP classifiers (Fig. 1F). It is
important to note that any standard method for binary classifica-
tion can be used in these multi-label approaches. In the current
study, we evaluated RFs, LR, and SVMs for multi-label classification
of MDR in bacteria.

2.4. Evaluation metrics

In MLC, the predictions for each instance are a collection of
labels, and the performance of classifiers can be calculated through
the average score of an evaluation metric or directly by comparing
the scores for each class. In this study, we employed seven differ-
ent metrics that are widely used to evaluate the performance of
the classifiers including hamming loss, 0/1 loss, F-score, accuracy,
precision, recall, and Jaccard similarity.
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The Hamming loss and 0/1 loss are commonly used for the eval-
uation of MLC models [37]. For Hamming loss, it is defined as the
fraction of labels that are incorrectly predicted. The 0/1 loss simply
checks whether the complete label subset is predicted correctly or
not, represented as the percentage of incorrectly predicted labels.

Accuracy is defined as the proportion of correct predictions,
while precision is defined as the number of resistant samples
divided by the overall number of samples that are predicted to
be resistant. Recall (also called sensitivity) is defined as the num-
ber of correctly predicted resistant samples divided by the total
number of resistant samples. The F-score can be calculated as the
weighted average of precision and recall. Jaccard similarity indi-
cates the overlap between the ground truth and the predictions,
focusing on true positives and ignoring true negatives [38]. The
classifiers were trained and evaluated based on five-times 5-fold
cross-validation, which means the dataset is randomly divided into
5 equal sub-groups, and one of the groups is used as the test set
and the rest are used as the training set. The model is trained on
the training set and scored on the test set. Then the process is

repeated until each unique group has been used as the test set. Sta-
tistical significance has been calculated based on the Wilcoxon
signed-rank test and T-test.

3. Results

3.1. Performance of different MLC methods on RF base classifier

We firstly constructed five MLCmodels (BR, CC, ECC, LP, and RD)
based on RF base classifier for MDR prediction of four antibiotics
(CIP, CTX, CTZ, and GEN). We compared the performance by F-
score, Precision and Recall, and Jaccard score. As shown in Fig. 2,
the ECC model has the highest F-score, Precision and Recall, and
Jaccard score for resistance prediction against four antibiotics.
For instance, the ECC model reached a F-score, precision, recall,
and Jaccard score on the CIP dataset of 0.93 ± 0.04, 0.94 ± 0.05,
0.98 ± 0.03, and 0.92 ± 0.06, respectively. Especially, the ECC model
significantly outperformed the BR, CC, LP, and RD for predicting

Table 1
Overview of the dataset.

Antibiotics CIP CTX CTZ GEN

Resistant 366 358 276 188
Susceptible 443 451 533 621

Fig. 1. Transformation methods of multi-label classification problems. (A) One multi-label dataset. vi 2 xis a training instance. (B) Binary relevance (BR) transforms the multi-
label dataset with m labels into m independent binary datasets. (C) The process of classifier chain (CC) for multi-label data. (D) The possible number of label orders for
ensemble classifier chains (ECC). (E) The transformation of the multi-label dataset by label powerset (LP). Labels with different colors represent the different combinations of
labels. (F) The transformation of a multi-label dataset by random label space partitioning with label powerset (RD). Labels with different colors represent the different
combinations of labels.
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resistance against CIP, CTZ, and GEN based on the F-score metric.
Moreover, we observed from the Recall metric that the perfor-
mance of the ECC model is significantly better than other models,
which represents the ECC model has a better sensitivity to detect
resistant samples. Besides, the ECC model reached, in general, the
highest accuracy, as well as, lowest hamming loss, and 0/1 loss
for RF (Table 2). Taken together, our results indicated that the
ECC models can significantly improve the prediction performance
for MDR prediction in E. coli.

3.2. Performance of different MLC methods on LR base classifier

We also compared the performance of the five MLC methods
(BR, CC, ECC, LP, and RD) on the LR base classifier. We found the
ECC model still got a higher F-score, precision, recall, and Jaccard
score (Fig. 3), which showed the consistent performance of the
ECC model on LR with RF base classifier. The results on F-score sug-
gested that ECC model is significantly better than other models for
CIP, CTZ, and GEN drug, reached 0.94 ± 0.04, 0.80 ± 0.15, and

0.64 ± 0.13 (p-value < 0.05). We also found a similar trend in recall
results of the ECC model, and the ECC model achieved a higher sen-
sitivity performance for MDR prediction. Moreover, ECC model sig-
nificantly outperformed other four MLC methods on CIP and GEN
drug based on recall results (0.98 ± 0.03, 0.87 ± 0.23, p-
value < 0.05) and Jaccard score (0.89 ± 0.07, 0.48 ± 0.14, p-
value < 0.05). As well, the ECC model got the highest accuracy, low-
est hamming loss, and 0/1 loss on the LR base classifier (Table 3).
These results demonstrated that the ECC model still has robust
performance for MDR prediction.

3.3. Performance of different MLC methods on SVM base classifier

For SVM, the F-score of ECC model is significantly better than
BR, CC, LP, and RD only for CIP (Fig. 4A) (F-scores of 0.93 ± 0.04,
0.86 ± 0.03, 0.86 ± 0.03, 0.88 ± 0.03, and 0.87 ± 0.04, respectively).
There are, however, no significant differences between BR, CC, LP,
and RD models. In comparison, CC, LP, and RD did not improve
the precision or recall significantly, and in some cases even per-
formed worse compared to the BR (Fig. 4B-C). For the CCs, this
might be due to the known problem of error propagation [39].
We found the same conclusion from Jaccard score that the ECC
model got better performance than the other four MLC methods,
and the Jaccard score of the ECC ranged from 0.42 ± 0.18 for the
drug GEN to 0.88 ± 0.07 for the drug CIP (Fig. 4D). Moreover, the
ECC model based on the SVM base classifier reached consistent
performance with the highest accuracy, lowest hamming loss,
and 0/1 loss for RF (Table 4). In summary, the results based on
the SVM classifier also demonstrated that the ECC models can sig-
nificantly improve the prediction performance for MDR prediction
in E. coli.

Fig. 2. Performance of different MLC methods with RF base classifiers for resistance prediction for each antibiotic. (A) F-scores, (B) Precision, (C) Recall, and (D) Jaccard score
of five MLC methods with RF base classifiers for predicting resistance against each antibiotic. ⁄ p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

Table 2
Accuracy, hamming loss, and 0/1 loss of five MLC methods with RF base classifier for
predicting resistance against four antibiotics. Mean ± standard deviations (signifi-
cance label of p-value) are shown in table. The statistical significances were compared
each group to all (base-mean). ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

MLC Accuracy Hamming Loss 0/1 Loss

BR 0.51 ± 0.07 (ns) 0.20 ± 0.03 (ns) 0.49 ± 0.07 (ns)
CC 0.52 ± 0.07 (ns) 0.20 ± 0.04 (ns) 0.48 ± 0.06 (ns)
ECC 0.72 ± 0.13 (ns) 0.11 ± 0.05 (*) 0.28 ± 0.13 (ns)
LP 0.53 ± 0.08 (ns) 0.11 ± 0.05 (ns) 0.47 ± 0.08 (ns)
RD 0.51 ± 0.09 (ns) 0.21 ± 0.04 (ns) 0.49 ± 0.09 (ns)
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4. Discussion

In our study, we compared five MLC models (BR, CC, ECC, LP,
and RD) based on three base classifiers (RF, LR, and SVM) for
MDR predictions in E. coli and evaluated the performance with
seven different metrics. Our results illustrated that the ECC model
outperforms the other MLC methods and can effectively predict
MDR.

The ECC multi-label classification model has a wide range of
applications, e.g., for cancers, chronic diseases, and viruses. For
instance, Zhou et al., [40] reported that the ECC performed best
in the diagnosis of four diabetic complications. ECCs have also been

used for cross-resistance prediction in viral infections, e.g., in HIV-
1 [25,26]. Here, we firstly applied ECC models on multi-label drug
resistance prediction based on all mutations, which could con-
tribute to improving the MDR prediction in other model organisms
or poorly known organisms.

Our results also showed that ECC obtained the highest accuracy
in all three base classifiers compared to the other four MLC meth-
ods, which indicates that the ECC model has good scalability, and
can be combined with multiple base classifiers, such as neural net-
works. Among them, the ECCmodel based on RF base classifier per-
forms best compared to LR and SVM, which is consistent with our
previous research results [20].

The performance of five MLC methods on each drug is different.
In general, all MLC methods performed well on CIP drug, and worse
on GEN drug. The comparatively lower performance for GEN may
be based on the fact that bacterial resistance to GEN is predomi-
nantly mediated by plasmids carrying the resistance genes. We
focused here solely on chromosomal sequences of the bacteria
and did not take into account the effect of alterations in other
genetic components on the MDR, like the plasmids, transposons,
and integrons [41,42]. This is one of the limitations of our study.
The other limitation in our study is our MLC models are built only
on four drugs, and we should integrate more types of antibiotics to
further investigate the MDR prediction in the future.

Fig. 3. Performance of different MLC methods with LR base classifiers for resistance prediction for each antibiotic. (A) F-scores, (B) Precision, (C) Recall, and (D) Jaccard score
of five MLC methods with RF base classifiers for predicting resistance against each antibiotic. ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

Table 3
Accuracy, hamming loss, and 0/1 loss of five MLC methods with LR base classifier for
predicting resistance against four antibiotics. Mean ± standard deviations (signifi-
cance label of p-value) are shown in table. The statistical significances were compared
each group to all (base-mean). ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

MLC Accuracy Hamming Loss 0/1 Loss

BR 0.45 ± 0.08 (ns) 0.24 ± 0.04 (ns) 0.55 ± 0.08 (ns)
CC 0.47 ± 0.08 (ns) 0.23 ± 0.04 (ns) 0.53 ± 0.08 (ns)
ECC 0.65 ± 0.11 (ns) 0.14 ± 0.05 (*) 0.35 ± 0.11 (ns)
LP 0.50 ± 0.08 (ns) 0.23 ± 0.04 (ns) 0.50 ± 0.08 (ns)
RD 0.47 ± 0.07 (ns) 0.24 ± 0.05 (ns) 0.53 ± 0.07 (ns)
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5. Conclusions

In summary, our study illustrates five MLC methods based on
three base classifiers that achieved accurate MDR prediction. Our
results suggest ECC is a promising MLC method for MDR identifica-
tion, which could be used as a reference approach for clinical staff
to improve the diagnostics and patient treatments and thus con-
tribute to reducing the threat of antimicrobial resistance and
related deaths in the future.

Data availability

Source codes for data preparation and model training are pro-
vided at Github website https://github.com/YunxiaoRen/Multi_
Label-Classification.

And the final SNP matrix datasets we used for model training in this
paper are also available at https://github.com/YunxiaoRen/Multi_
Label-Classification.
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Fig. 4. Performance of different MLC methods with SVM base classifiers for resistance prediction for each antibiotic. (A) F-scores, (B) Precision, (C) Recall, and (D) Jaccard
score of five MLC methods with RF base classifiers for predicting resistance against each antibiotic. ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

Table 4
Accuracy, hamming loss, and 0/1 loss of five MLC methods with SVM base classifier
for predicting resistance against four antibiotics. Mean ± standard deviations
(significance label of p-value) are shown in table. The statistical significances were
compared each group to all (base-mean). ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no
significance.

MLC Accuracy Hamming Loss 0/1 Loss

BR 0.37 ± 0.08 (ns) 0.28 ± 0.05 (ns) 0.63 ± 0.08 (ns)
CC 0.39 ± 0.08 (ns) 0.28 ± 0.05 (ns) 0.61 ± 0.08 (ns)
ECC 0.57 ± 0.12 (ns) 0.18 ± 0.07 (ns) 0.43 ± 0.12 (ns)
LP 0.47 ± 0.07 (ns) 0.24 ± 0.03 (ns) 0.53 ± 0.07 (ns)
RD 0.41 ± 0.09 (ns) 0.26 ± 0.05 (ns) 0.59 ± 0.09 (ns)
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3.3 Publication 3: Deep Transfer Learning Enables Robust Prediction of
Antimicrobial Resistance forNovel Antibiotics

3.3.1 Summary

Aim and Motivation
This paper (Ren et al., 2022b) aims to explore strategies for overcoming the difficulties posed
by data constraints and label imbalances, which are common obstacles of machine learning.
Machine learning model training often encounters hurdles due to data size limitations and
skewed data distributions, which can negatively impact the accuracy and generalizability of
the models. This problem is particularly prominent in many medical diagnostic datasets,
such as those used for cancer diagnosis, where the datasets are unbalanced and usually consist
of a relatively small number of samples. However, machine learning models often require a
large number of data for training. This challenge is not exclusive to the medical field but is
also faced in the development of novel antibiotics. Employing transfer learning (TL) holds
the potential for effectively addressing these issues.

Methods and Results
Building upon our prior research (Ren et al., 2021), it was observed that our models, par-
ticularly the CNN, exhibited impressive performance in AMR prediction based on whole-
genome mutations. However, the performance could be enhanced when dealing with im-
balanced label distribution. To address this, we initially constructed a fundamental CNN
model for each antibiotic included in our dataset, namely CIP, CTX, CTZ, and GEN. We
then selected the best-performing CNN, the model for CIP, as our pre-trained model, lever-
aging its learned knowledge to enhance the prediction for the remaining antibiotics: CTX,
CTZ, and GEN.

Our results illustrated that transfer learning can notably improve the prediction performance
for other antibiotics. Furthermore, our research demonstrated that the pre-trained model
can effectively generalize to unseen, extremely imbalanced public datasets characterized by a
small number of samples for the resistance class.

Conclusion
To summarize, we offer a deep transfer learning model capable of achieving accurate and ro-
bustAMRprediction on small, imbalanced datasets. By combining secondarymutation pro-
files with our pre-trained network, we lay the groundwork for future training tasks dealing
with AMR in small, imbalanced datasets. This approach can contribute to the development
of comprehensive solutions for novel antibiotics and future AMR challenges.
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Abstract: Antimicrobial resistance (AMR) has become one of the serious global health problems,
threatening the effective treatment of a growing number of infections. Machine learning and deep
learning show great potential in rapid and accurate AMR predictions. However, a large number
of samples for the training of these models is essential. In particular, for novel antibiotics, limited
training samples and data imbalance hinder the models’ generalization performance and overall
accuracy. We propose a deep transfer learning model that can improve model performance for AMR
prediction on small, imbalanced datasets. As our approach relies on transfer learning and secondary
mutations, it is also applicable to novel antibiotics and emerging resistances in the future and enables
quick diagnostics and personalized treatments.

Keywords: transfer learning; antimicrobial resistance; small data with imbalanced label

1. Introduction
Antimicrobial resistance (AMR) has become one of the serious public health problems

worldwide, threatening the effective treatment of a growing number of infections [1].
There were over 700,000 deaths from drug-resistant infections in 2019, and it could rise to
10 million deaths by 2050 according to estimations from the World Health Organization
(WHO) [2].

Machine learning and deep learning approaches have played significant roles in antibi-
otic resistance prediction in recent years [3–6]. A number of deep-learning-based models
and tools for predicting AMR genes or peptides have been developed, e.g., DeepARG [7] or
Deep-AmPEP [8]. These methods also promoted the discovery of new antibiotics. For ex-
ample, Stokes et al. trained a deep learning model based on multiple chemical libraries [9].
They found a molecule showing bactericidal activity against a broad phylogenetic spectrum
of pathogens, and thus has the potential to be the basis for a new antibiotic [9]. However,
skewed distribution of the data in machine learning often obstructs the accuracy and gen-
eralization of model training [10]. In fact, many datasets about medical diagnoses, such
as cancer diagnostics, are imbalanced datasets and typically have a low number of sam-
ples [10]. For training a machine learning model, a large number of samples is necessary.
However, these data are typically not available for novel antibiotics.

Transfer learning (TL) has shown promising applications for such challenges in recent
years [11–18]. The basic idea of transfer learning is to transfer knowledge from source
domains to target domains for improving the model performance [11,15,19]. In contrast to

Antibiotics 2022, 11, 1611. https://doi.org/10.3390/antibiotics11111611 https://www.mdpi.com/journal/antibiotics



Antibiotics 2022, 11, 1611 2 of 12

traditional machine learning (including deep learning), having only one domain and one
task, transfer learning extends the notion of domain and task, in which the domains and
tasks between the training and test data can be different but related in some ways [20–22].
Generally, the source domain is a set of data with a large number of data samples with
high-quality labels. In contrast, data in the target domain may include a limited number
of samples with unbalanced labels. Thus, transfer learning is widely used to solve the
issue with limited datasets for visual classification and text classification [21,23–27]. For
example, many researchers firstly trained a convolutional neural network (CNN) model
on the ImageNet dataset (pre-training) and then transferred the information from the
pre-trained model into a new task (fine-tuning) to solve a wide range of computer vision
problems [23–25]. The Word2Vec dataset is also commonly used as a pre-training dataset
for text classification [28]. Gupta et al. enhanced predictive analysis on small data using a
cross-property deep transfer learning model [29]. Park et al. used meta-transfer learning to
explore the data heterogeneity and extremely small sample size problem based on single
cell data [30]. Transfer learning is also widely used in the medical area with an imbalanced
label [10,31–34]. For example, Gao et al. used deep transfer learning to reduce healthcare
disparities arising from imbalanced biomedical data [35]. They first trained the model on
the majority group data, then transferred the knowledge learned to each minority group
to improve the model performance. Thus, our study aims to transfer the knowledge from
a well-trained model to a small amount of imbalanced label data to explore whether the
performance for AMR prediction can be improved.

Based on our previous work [6], our models, especially the CNN, performed well
for AMR prediction based on whole genome mutations, while the performance on the
data with the imbalanced label can still be improved. Therefore, in our work, we firstly
constructed a basic CNN model for each antibiotic in our dataset, including ciprofloxacin
(CIP), cefotaxime (CTX), ceftazidime (CTZ), and gentamicin (GEN). We then used the
model for CIP, i.e., the best-performing CNN, as the pre-trained model and transferred
the knowledge to improve the prediction of the other three antibiotics, i.e., CTX, CTZ,
and GEN (see Study design). Our results show that transfer learning can significantly
improve the prediction performance on the other antibiotics. Our work also illustrates that
the pre-trained model can generalize well on unseen public datasets that are extremely
imbalanced, i.e., have a low number of samples for the resistance class. We provide a
deep transfer learning model that can achieve accurate and robust AMR prediction on
small, imbalanced datasets. By combining secondary mutation profiles and our pre-trained
network, we pave the way for other training tasks concerning AMR with small, imbalanced
datasets in the future, and thus enable a quick and generic solution for novel antibiotics
and AMR in the future.

2. Results
2.1. Datasets

In this work, we used two datasets of Escherichia coli (E. coli) with whole-genome se-
quencing (WGS) and resistance information for four antibiotics, namely ciprofloxacin (CIP),
cefotaxime (CTX), ceftazidime (CTZ), and gentamicin (GEN). The first dataset contains
809 E. coli strains, produced by our laboratory. The isolates were collected from human
and animal clinical samples. Antimicrobial susceptibility testing was performed using the
VITEK® 2 system (bioMérieux, Nürtingen, Germany) and interpreted following EUCAST
guidelines. DNA isolation and whole-genome sequencing were performed as described in
Falgenhauer et al. [36]. The percentage of isolates resistant to CIP, CTX, CTZ, and GEN are
45%, 44%, 34%, and 23%, respectively (see Figure 1). This dataset was split into the training
dataset and testing dataset (see Section 2.2). The second dataset comprises 1509 E. coli
strains collected from public datasets [37]. This dataset is highly imbalanced concerning
resistant and sensitive isolates. The isolates that are resistant to CIP, CTX, CTZ, and GEN
are 18%, 8%, 5%, and 7% of all isolates, respectively (see Figure 1). We used this dataset as
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the external validation dataset to demonstrate the application of transfer learning on an
imbalanced, small, and unseen dataset.

 
Figure 1. Overview of the samples. The samples are resistant (R) or susceptible (S) to ciprofloxacin
(CIP), cefotaxime (CTX), ceftazidime (CTZ), and gentamicin (GEN). The left and right panel show
the resistant and susceptible sample information on our and public dataset considered for this
study, respectively.

2.2. Study Design
Transfer learning generally uses a known pre-trained model with a large amount of

data as the source model [12,14,19,38]. Here, we used the model that performs the best
on our AMR dataset as the pre-trained model instead of the public uncorrelated dataset.
Thus, we firstly constructed basic CNN architectures for each antibiotic with our data (see
Figure 2). The CNN architectures were implemented using the Keras (https://keras.io/,
accessed on 15 October 2021) package and TensorFlow (https://tensorflow.org, accessed
on 15 October 2021). We evaluated the performance of the CNNs based on accuracy,
receiver operating characteristics curve (ROC), and the precision–recall curve (P_R curve),
then selected the best-performing model, namely the CIP model, as the source model
for transfer learning. The source model based on CIP data not only performed well, but
more importantly, the source task was also closely related to the other target tasks, i.e., the
prediction of CTX, CTZ, and GEN resistance. We thus transferred the architecture and
weights of the source model from the CIP data and retrained the model with CTX, CTZ,
and GEN, respectively (see Figure 2). Our dataset was separated into a test set with 20% of
the samples, and the remaining data were used for fivefold cross-validation to split the
training set and validation set. The public dataset was used as an external validation set to
further validate the performance of the models on independent data.

2.3. Performance of the Basic CNN Models
We built basic convolutional neural network (CNN) models for each antibiotic in our

dataset [6]. The dataset was randomly split at 20% to create a testing set, and the remaining
data was used in fivefold cross-validation, where we trained the models and fine-tuned the
hyper-parameters. We observed that the training accuracy and validation accuracy of the
CNN model on CIP data reached a plateau around 0.98 and 0.91, respectively, and there is
less bias in each cycle training process (see Figure 3). The training and validation accuracies
of the other CNNs trained on the other antibiotics were lower, e.g., the CTX model had
accuracies of around 0.89 and 0.79 for training and validation (see Figure 3). For the CTZ
data, the training and validation accuracies of the model in fivefold cross-validation were
around 0.87 and 0.83. For the GEN data, the accuracies were around 0.86 and 0.79 (see
Figure 3). These results indicate that the model on CIP data has the highest accuracy
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compared with the other models on CTX, CTZ, and GEN data. Thus, we selected the CIP
model as the source model for transfer learning.

 
Figure 2. Deep transfer learning schemes. In the top left panel, the basic CNN models are shown.
Each model is trained on independent antibiotics and evaluated on a new dataset. The top right
panel shows the model trained on CIP that is then used as the pre-trained model to transfer the
knowledge to the other three antibiotics. The bottom left panel shows the 5-fold cross-validation
scheme. The dataset was firstly split, and 20% was used for testing. The remaining data were used in
the cross-validation. The bottom right panel shows our validation scheme for the transfer learning
model on an independent public dataset. This figure was created with BioRender.com.

 
Figure 3. Accuracy of basic CNN models on training and validation datasets based on our dataset.
Training accuracy and validation accuracy on (a) CIP, (b) CTX, (c) CTZ, and (d) GEN. The legend
shows the maximum accuracy in each fold and its mean value.
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We also evaluated the model performance on the testing set using the receiver operat-
ing characteristics curve (ROC) and the precision–recall curve (P_R curve). We observed
the same results based on the area under the ROC (AUROC) and P_R curves (AUPRC) for
CIP (0.97 ± 0.01, 0.95 ± 0.01) and CTX (0.78 ± 0.02, 0.75 ± 0.01) testing data (see Figure 4),
which show that the CNN model can generalize well. However, the AUROC and AUPRC
are much lower for CTZ (0.75 ± 0.07, 0.64 ± 0.01) and GEN (0.81 ± 0.02, 0.55 ± 0.02) in the
testing datasets (see Figure 4).

  
Figure 4. Performance of basic models on the testing dataset of our dataset. (a) The ROC curve and
(b) precision–recall curve (P_R) on CIP, CTX, CTZ, and GEN antibiotics.

2.4. Deep Transfer Learning Improves the Model Performance on the Minority Group
Based on the basic CNN model’s performance, we used the model trained on CIP data

as the pre-trained model, transferred the learned weights, and retrained the models for
CTX, CTZ, and GEN. To evaluate the model performance on the imbalanced datasets, we
used the Matthews correlation coefficient (MCC) as one of the evaluation metrics, which is
widely used for dealing with binary classification problems on imbalanced data [39–41].
Since we are more interested in the resistance phenotype, we also compared the F1 score
regarding resistance (F1-R). Our results show that the transfer learning model significantly
improves MCC for CTX (p = 0.009), CTZ (p = 0.023), and GEN (p = 0.001) compared with
the basic models (see Figure 5a, Table 1). Moreover, the F1-Rs for CTX (p = 0.007), CTZ
(p = 0.014), and GEN (p = 6.1 ⇥ 10�5) of the transfer learning models were significantly
higher than the basic models (see Figure 5b, Table 1). We also observed that the maximum
accuracy of the transfer learning models stabilize over 0.9 in both the training and validation
sets for CTX, CTZ, and GEN. Thus, all of them were significantly improved (Figure 6).
These results indicate that transfer learning can improve the model performance, especially
for the minority groups, and thus is also applicable for small, imbalanced datasets.

Table 1. MCC values and F1-R values (F1 on resistance class) of deep transfer learning models and
basic CNN models on the testing set of our dataset.

Drugs CTX CTZ GEN

Metrics MCC F1-R MCC F1-R MCC F1-R

Basic 0.47 ± 0.03 0.70 ± 0.02 0.46 ± 0.03 0.65 ± 0.02 0.33 ± 0.01 0.41 ± 0.02
TL 0.56 ± 0.03 0.76 ± 0.02 0.55 ± 0.03 0.71 ± 0.02 0.53 ± 0.03 0.63 ± 0.02

2.5. Model Evaluation on Independent Public Data
We further evaluated the deep transfer learning models on an independent public

dataset. The public dataset contains data from E. coli resistance to the four antibiotics, CIP,
CTX, CTZ, and GEN. There is an extreme imbalance between resistant and susceptible
phenotypes in this dataset, with a very low number of resistant strains (see Figure 1). We
firstly evaluated the model performance based on the MCC metric, which shows that
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the transfer learning models are significantly better than the original models for CTX
(p = 4.6 ⇥ 10�3), CTZ (p = 5.6 ⇥ 10�4), and GEN (p = 6.9 ⇥ 10�3) (see Figure 7a, Table 2).
Again, we also observed that the F1-Rs of the transfer learning models were significantly
higher than for the basic models for CTX, CTZ, and GEN data (see Figure 7b, Table 2).
The MCC and F1-R of the transfer learning model for CIP data were also better than for
the basic model. Moreover, we compared the transfer learning models and basic models
based on AUROC and AUPRC metrics. The AUROC results suggest that transfer learning
significantly improved drug resistance prediction for CTX (p = 2.4 ⇥ 10�4) and CTZ
(p = 0.012) (see Figure 7c, Table 2). Moreover, the results of AUPRC show that the transfer
learning models significantly improved for CTX (p = 7.1 ⇥ 10�3), CTZ (p = 4.1 ⇥ 10�4),
and GEN (p = 8.1 ⇥ 10�3) (see Figure 7d, Table 2). Taken together, the results on the public
dataset also clearly show that the deep transfer learning models can compensate for class
imbalance and thus improve AMR prediction also for small, imbalanced datasets, and thus
is also a very promising approach for novel antibiotics in the future where available data
on resistance are limited.
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Figure 5. Performance comparison between deep transfer learning models and basic CNN models on
the testing set of our dataset. (a) MCC of the deep transfer learning models and basic CNN models on
each dataset. (b) F1_R (F1 resistance) of the deep transfer learning models and basic CNN models on
each dataset. Statistical comparisons were performed using the Student’s t-test. * p < 0.05; ** p < 0.01;
**** p < 0.0001.

0.4

0.6

0.8

1.0

0 20 40 60
Epoch

A
cc

ur
ac

y

CTX Transfer Learning Model

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60
Epoch

A
cc

ur
ac

y

CTZ Transfer Learning Model

0.6

0.7

0.8

0.9

1.0

0 20 40 60
Epoch

A
cc

ur
ac

y

GEN Transfer Learning Model

Fold
1
2

3

4
5

Training_Acc Validation_Acc

Fold
Max = 0.915
Max = 0.948

Max = 0.950

Max = 0.956
Max = 0.963

Max = 0.815
Max = 0.854

Max = 0.961

Max = 0.977
Max = 0.992

1
2

3

4
5

Fold
1
2

3

4
5

Training_Acc Validation_Acc

Fold
Max = 0.956
Max = 0.983

Max = 0.988

Max = 0.990
Max = 0.994

Max = 0.869
Max = 0.954

Max = 0.984

Max = 0.977
Max = 0.992

1
2

3

4
5

Fold
1
2

3

4
5

Training_Acc Validation_Acc

Fold
Max = 0.946
Max = 0.961

Max = 0.967

Max = 0.973
Max = 0.981

Max = 0.892
Max = 0.962

Max = 0.969

Max = 0.984
Max = 0.961

1
2

3

4
5

a b c

mean = 0.946 ± 0.02 mean = 0.920 ± 0.07 mean = 0.982 ± 0.01 mean = 0.955 ± 0.04 mean = 0.966 ± 0.02 mean = 0.954 ± 0.03

Figure 6. Accuracy of deep transfer learning models on training and validation datasets on our data.
Training accuracy and validation accuracy of deep transfer learning models on (a) CTX, (b) CTZ, and
(c) GEN. The legends show the maximum accuracy in each fold and its mean value.
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Figure 7. Performance comparison between deep transfer learning models and basic CNN models
on the testing dataset of the public dataset. (a) MCC of the deep transfer learning models and basic
CNN models on each dataset. (b) F1_R (F1 resistance) of the deep transfer learning models and
basic CNN models on each dataset. (c,d) AUC of ROC curve (c) and precision–recall curve (d) of the
deep transfer learning models and basic CNN models on each dataset. Statistical comparisons were
performed using the Student’s t-test. * p < 0.05; ** p < 0.01; *** p < 0.001; ns: not significant.

Table 2. MCC values, F1-R values (F1 on resistance class), AUROC, and AUPRC of deep transfer
learning models and basic CNN models on the testing set of public dataset.

Drugs CIP CTX CTZ GEN

Model Basic TL Basic TL Basic TL Basic TL

MCC 0.79 ± 0.00 0.83 ± 0.02 0.06 ± 0.00 0.41 ± 0.04 0.08 ± 0.03 0.29 ± 0.02 0.11 ± 0.04 0.26 + 0.03

F1-R 0.83 ± 0.01 0.85 ± 0.02 0.14 ± 0.01 0.45 ± 0.03 0.13 ± 0.03 0.29 ± 0.05 0.11 ± 0.02 0.28 + 0.04

AUROC 0.93 ± 0.01 0.89 ± 0.01 0.74 ± 0.00 0.87 ± 0.01 0.79 ± 0.02 0.86 ± 0.02 0.69 ± 0.04 0.72 + 0.01

AUPRC 0.73 ± 0.04 0.85 ± 0.02 0.14 ± 0.00 0.43 ± 0.04 0.12 ± 0.02 0.28 ± 0.02 0.14 ± 0.03 0.26 + 0.01

3. Discussion
In this work, we propose a deep transfer learning model that performs well on small,

imbalanced data for AMR prediction. Transfer learning typically pre-trains a model on a
larger well-known dataset [30,38]. Here, we used a CNN model on a balanced dataset (CIP
dataset) with high accuracy as the pre-trained model. The knowledge obtained from the pre-
trained model was then transferred to other datasets with resistance to CTX, CTZ, and GEN.
We found that our deep transfer learning model can significantly improve the prediction
performance compared with the basic CNN models, ranging from 0.06–0.22 based on
different evaluation metrics (see Figure 5, Table 1). Especially, the results indicate that our
deep transfer learning model can facilitate the resistance prediction on small, imbalanced
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datasets. These findings are also supported and validated by an independent evaluation
with an unseen, public dataset. The performance was significantly improved, ranging from
0.02–0.35 based on different evaluation metrics (see Figure 7, Table 2). Moreover, we can
extend our approach to other species and various antibiotic drugs using our pre-trained
model in the future, which will improve the accuracy of resistance prediction and save
treatment time, especially for small data sizes with imbalanced labels.

Another interesting result is that we found the performance for CIP data on the public
dataset is better than for CTX, CTZ, and GEN public datasets. This result indicates that the
closer the correlation between the source task and target task is, the better the performance
of the final models. Thus, it is more important to focus on the relevance between the source
task and the target tasks when we choose the source domain. The evaluation metrics of the
models should be carefully chosen when we are faced with extreme class imbalance. In
this article, we provide the commonly used evaluation metrics such as the F1 score, ROC
curve, and P_R curve, as well as the evaluation metrics applicable to imbalanced data such
as the MCC.

Transfer learning has gained more attention in recent years. For example, Al-Stouhi et al.
previously proposed that transfer learning can be used to solve class imbalance problems
with inadequate data and provided theoretical and empirical validation on healthcare and
text classification applications [10]. Minvielle et al. explored the impact of class imbalance
using transfer learning on decision trees [33]. However, only a few studies have been
carried out on AMR so far. The proportion of the susceptible and resistant isolates in AMR
datasets varies depending on the antibiotic/bacterial species combinations. For the majority
of the antibiotics, the AMR data are imbalanced, and the resistant classes of interest are in
the minority group. This is particularly true for novel antibiotics in the future, where data of
resistant strains are limited. Therefore, our proposed deep transfer learning model paves the
way to improve AMR prediction accuracy, as well as for small datasets of novel antibiotics
in the future. Moreover, in this analysis, we aimed at identifying secondary mutations
that contribute to the resistance directly or indirectly, e.g., compensatory mutations. Thus,
we did not include the known resistance genes. Our pre-trained model may not be as
effective in predicting resistance due to the transfer of resistance genes compared with
resistance due to mutations. Our approach does not need any AMR expert knowledge
and can also predict resistance even without knowing the resistance genes by identifying
secondary mutations. By combining this data-driven approach with transfer learning, AMR
predictions can be significantly improved. It can also be used when only small data are
available and information on resistance mechanisms is missing or when the resistance
mechanisms are not fully understood yet, e.g., for novel antibiotics.

4. Materials and Methods
4.1. Data Pre-processing

We performed quality checking and filtering on the raw whole-genome sequencing
reads using fastp (v0.23.2) software [42]. The filtered reads were then aligned to the
E. coli reference genome (E. coli K-12 strain. MG1655) using BWA-mem with default
parameters [43]. We then called variants from the sequencing data using Bcftools software
(v1.14) via the “call” function with default parameters [44]. We extracted SNPs variants,
reference alleles, and their positions and merged all isolates based on the positions of
reference alleles. We filtered out the loci without variation (N replaces a locus without
variation) and retained the existing allele variants of more than half in samples. The
final SNP matrix, where each column represents the variant allele, and each row is a
sample, was encoded into numerical values by one-hot encoding that can be used for
subsequent machine learning. The pre-processing process was carried out according to
Ren et al. [6].
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4.2. Basic CNN Model
We used the Keras (https://keras.io/, accessed on 15 October 2021) and Tensorflow

(https://tensorflow.org, accessed on 15 October 2021) Python packages to build the CNN
models. We evaluated different topologies in the training data and found that a model with
12 layers performed the best. Thus, the architecture of the CNN models (see Figure 8a)
contains twelve layers, including four convolutional layers with a kernel size of 3, imple-
mented by the Conv1D function, two pooling layers using the MaxPooling1D function, two
batch normalization layers, one flattening layer, one fully connected layer with 128 nodes
followed by a dropout layer, and one output layer with the “softmax” activation function.
We used the “categorical_crossentropy” loss function and the “Adam” optimizer function
to compile the CNN models with 50 epochs. In order to improve the computation speed,
we split the data into multiple small batches, with a batch size of 8.
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Conv layer 2 

Conv layer 3 

Conv layer 4 

Batch normalization layer 1 

Max pooling layer 1 

Batch normalization layer 2 

Max pooling layer 2 
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Dense Layer 
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a b 

Figure 8. Our framework of basic CNN models and transfer learning models. (a) The architecture of
the basic CNN models. (b) The architecture of the transfer learning models. Conv layer represents
convolution layers. This figure was created with BioRender.com.
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4.3. Deep Transfer Learning Architecture
In order to facilitate the model performance on small, imbalanced data, we employed

deep transfer learning. The deep learning architecture is built based on the basic CNN
models as previously described (see Figure 8b). In transfer learning, we have to specify
the source domain Ds and the target domain Dt and the source task Ts and the target task
Tt [38]. Here, we used the CIP dataset from our lab as the source domain Ds; CTX, CTZ,
and GEN datasets were used as the target domain Dt. The tasks of Ts and Tt are predicting
AMR against different antibiotics. We incorporated two transfer learning strategies, namely
fine-tuning and freezing in our work. The fine-tuning strategy is a common deep transfer
learning approach based on transferring parameters (weights) from the Ds model to the Dt
models [38]. Therefore, we transferred the parameters (weights) of the model trained on CIP
into the CTX, CTZ, GEN models, respectively. Furthermore, we froze two normalization
layers and one convolution layer and retrained the CNN models on other layers to avoid
overfitting [17].

4.4. Model Evaluation Metrics
Accuracy, precision, and recall are the basic evaluation metrics for classification models

in our study. Accuracy measures the fraction of correct predictions, including positive and
negative samples [45]. For binary classification, it can be calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where TP = True Positives (the predicted positive value matches the actual positive value),
TN = True Negatives (the predicted negative value matches the actual negative value),
FN = False Negatives (the actual positive value was predicted as negative value), and
FP = False Positives (the actual negative value was classified as positive value). Precision
represents the ratio of true positives to the total predicted positives [45]:

Precision =
TP

TP + FP
(2)

Recall refers to how many of the actual positives are captured [45]. It is calculated
as follows:

Recall =
TP

TP + FN
(3)

F1 score combines precision and recall into one metric [45]:

F1 = 2 ⇥ Precision ⇤ Recall
Precision + Recall

(4)

The ROC curve (receiver operating characteristic curve) is a chart showing the trade-
off between the true positive rate (TPR) and the false-positive rate (FPR). The PR curve
(precision–recall curve) is a graph that combines precision and recall in a single visualiza-
tion. The higher the area under the curve score, the better the performance of a model.
However, accuracy, F1 score, ROC curve, and PR curve are not the best metrics for heavily
imbalanced datasets, especially when you are more interested in the minority group. The
MCC (Matthews correlation coefficient) is another alternative metric, which is calculated
based on the Pearson correlation coefficient between actual and predicted values ranging
from [�1, 1] [41]. It is the method of choice for imbalanced datasets [41]:

MCC =
TP ⇥ TN � FP ⇥ FNp

(TP + FP)⇥ (TP + FN)⇥ (TN + FP)⇥ (TN + FN)
(5)

Since some of our datasets are balanced and some are extremely imbalanced, a sin-
gle metric may not reflect the model performance well. Therefore, we comprehensively
evaluated our results based on the above metrics.
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3.4 Study 4: Swarm Learning Predicts AMR (Unpublished)

3.4.1 Aim and motivation

With rising concerns over data security and privacy, numerous countries and institutions
have implemented data privacy laws that restrict specific data sharing, especially in the med-
ical field. However, this has also hindered, to some extent, the models’ training with data
size limitations. The emergence of federated learning (FL) overcomes this challenge by allow-
ing collaborative training without compromising the privacy and security of individual data-
sets. Yet, model parameters are still managed by a central server, indicating a centralization
of power. Thus, this research delves into the swarm learning (SL) approach, a groundbreak-
ing decentralized machine learning method that combines edge computing and blockchain-
enabled peer-to-peer networks. We employ SL on data from two distinct nodes to predict
AMR for four drugs and evaluate its performance against both locally and centrally trained
modes.

3.4.2 Results

SL for AMR identification against CIP

Initially, we compared various training modes’ efficacy in predicting resistance against CIP
on training and test datasets. Themodel’s performance ofMCCscoreswas chartedwithin 50
epochs in local, centralized, and swarmmodes (Figure 3.2A).A focusedperformance compar-
ison on test data was also made after 10 epochs (Figure 3.2 B). The results showed that the
swarm mode achieved effective prediction of resistance to CIP, as the median value of the
MCC score exceeded 0.85. More importantly, the swarm mode significantly surpassed both
local and centralized approaches, particularly enhancing local mode performance at node 2,
with the p-value of 2.36e-6 compared to local_1, 1.03e-57 compared to local_2, and 1.87e-5
compared to centralized mode, respectively (Figure 3.2 B).
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Figure 3.2: Performance for AMR identification against CIP.A: Performance curve plot aboutMCC scoreswithin 50 epochs
on training and test datasets. B: Boxplot about MCC scores after 10 epochs on the test dataset. *p < 0.05, **p < 0.01, ***p
< 0.001, ****p < 0.0001, ns: no significance. The p‐values were calculated by T‐test.
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SL for AMR identification against CTX

Subsequently, we evaluated the modes for CTX resistance predictions. Performance curves
for MCCwere detailed within 50 epochs for all modes (Figure 3.3 A), and boxplots post-10
epochs were highlighted in Figure 3.3 B. The analysis indicated that the centralized mode by
integrating data at node 1 and node 2 didn’t notably enhance model performance compared
to the localmode at node2. This implies that oneof the local datasetsmight beof subparqual-
ity, and simply amassingmore data didn’t improve themodel performance. The swarmmode
was superior to the centralized mode, with a p-value of 2.10e-9. However, when compared
to the local model, the swarm mode enhanced the performance for node 1 but weakened it
for node 2, highlighting the influence of data quality on both centralized and swarm mode
outcomes.

SL for AMR identification against CTZ

For the CTZ resistance predictions, the performance curves for the MCC score are shown
across 50 epochs for each mode (Figure 3.4 A), and the boxplots showed the performance
after 10 epochs (Figure 3.4 B).We observed that the swarmmode significantly outperformed
the centralized mode and local mode at node 1, with p-values of 7.26e-13 and 5.10e-20, re-
spectively. However, at node 2, the swarm mode trailed behind the local mode, a trend con-
sistent with the CTX results.

SL for AMR identification against GEN

In the final assessment, we focused on GEN resistance predictions. Performance across 50
epochs for each mode is shown in Figure 3.5 A, and the boxplots for each mode after 10
epochs are shown in Figure 3.5 B. Swarm mode emerged as superior to centralized and the
local mode at node 2 concerning median values. However, the performance after 10 epochs
in swarmmode showed fluctuating results.
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Figure 3.3: Performance for AMR identification against CTX. A: Performance curve plot about MCC scores within 50
epochs on training and test datasets. B: Boxplot about MCC scores after 10 epochs on the test dataset. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, ns: no significance. The p‐values were calculated by T‐test.
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Figure 3.4: Performance for AMR identification against CTZ. A: Performance curve plot about MCC scores within 50
epochs on training and test datasets. B: Boxplot about MCC scores after 10 epochs on the test dataset. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, ns: no significance. The p‐values were calculated by T‐test.
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Figure 3.5: Performance for AMR identification against GEN. A: Performance curve plot about MCC scores within 50
epochs on training and test datasets. B: Boxplot about MCC scores after 10 epochs on test dataset. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns: no significance. The p‐values were calculated by T‐test.
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3.4.3 Discussion and conclusion

In this study, we employed Swarm Learning (SL) to predict resistance to four different drugs
across two independent nodes. We conducted an extensive evaluation ofmodel performance
under three distinct modes: SL, centralized, and local, using independent test datasets. Our
findings reveal that the swarm mode consistently outperforms the centralized mode. How-
ever, its relative performance compared to the local mode varies among different nodes.

The reason behind SL and centralized modes not achieving the same level of training per-
formance as the specific local mode model is likely multifaceted. Firstly, it may be attributed
to variations in data quality across nodes. Some nodes may possess high-quality data in suf-
ficient quantities for robust model training, while others may have lower-quality data. The
integration of data in the centralized mode, although it enhances the training performance
of one node, might adversely impact the performance of another node.

Furthermore, an imbalance in label distribution within our test and training datasets could
be contributing to these disparities in model performance. For instance, in the case of the
CTZ data, the ratios of resistance (R) and sensitivity (S) labels in nodes 1, 2, and the test
data are 34.1/65.9, 6.4/93.6, and 5.0/95.0, respectively. It’s possible that the local training
model in node 2 has a bias towards identifying sensitivity samples. Interestingly, the simil-
arity between the label distribution in the test and training datasets may also influence the
final local model performance, with potential implications from both the centralized and SL
modes.

In light of these findings, for a more robust assessment of the performance of different train-
ing modes, we advocate the balancing of training data and the inclusion of a more diverse
set of test data with varying label distribution ratios. This approach will enable a more com-
prehensive evaluation of the model’s generalization capabilities across different operational
modes.

In summary, our study highlights the complex interplay of data quality, quantity, label dis-
tribution, and the chosenmode of operation in predicting drug resistance, shedding light on
the intricate factors affecting model performance across different nodes.

73



4
Discussion

In these studies, we have successfully developed efficient and precise models for predicting
bothAMRandMDR.Our innovative approach includes a deep transfer learningmodel that
enhances prediction accuracy in the context of small and label-imbalanced samples. Notably,
we have identified critical AMR-associated mutations and genes, setting a foundation for
further exploration. However, there are some aspects that can continue to be improved in
future studies.

4.1 Experimental Validation

Firstly, there is a need for more comprehensive experimental validation to substantiate the
predictive results of our model. In the first work, we identified some genes associated with
antibiotic resistance. Some of these genes have been well-studied, such as marA, which is
related to multiple drug resistance (Abdolmaleki et al., 2019). While others remain less ex-
plored. For example, gene nhaA, associated with CTX, CTZ, and GEN resistance, displays
Na+/H+ antiport activity inE.coli thatmay influence drug resistance by regulating permeab-
ility (Padan et al., 2004). Gene rlmC encodes a 23S RNAmethyltransferase that methylates
the 23S rRNAat antibiotic binding sites and thusmaybe related to antibiotic resistance (Plet-
nev et al., 2020; Stojković et al., 2016). Gene fliI is known to encode a virulence factor, with
studies highlighting the correlation between antimicrobial resistance and bacterial virulence
(Beceiro et al., 2013;Deng et al., 2019). pepB encodes peptidaseB, linked to the productionof
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bacteriocins, which are narrow-spectrum antimicrobial peptides (Suzuki et al., 2001; Telhig
et al., 2020). MurB is a key enzyme in the synthesis of peptidoglycan, a crucial component
of the bacterial cell wall (Nasiri et al., 2017; Walsh andWencewicz, 2014).

Although these findings contribute to a more comprehensive understanding of antibiotic
resistance, additional in-depth experiments will strengthen the reliability of our findings.

4.2 Species Generalization

Our present model is specifically designed to analyze the resistance of E. coli to four targeted
drugs. E. coli, a prominent bacterial pathogen, is frequently linked with hospital-acquired in-
fections and AMR. It is part of the ESKAPE group of pathogens, an acronym representing
six critical multidrug-resistant bacterial species including Enterococcus faecalis, Staphylococ-
cus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacteriaceae (Shankarnarayan et al., 2022). The focus on E. coli in our model reflects
its significant role within this group, but future research could expand the model’s scope to
encompass other ESKAPE pathogens andmore drugs, which can enhance themodel’s gener-
alization capabilities and attain a more universally applicable model that could serve a wider
array of needs in the medical field.

4.3 Feature Input: SNP and Beyond

Our constructed models focus on genome-wide variant information to identify secondary
mutations that contribute to the resistance directly or indirectly, e.g. compensatory muta-
tions. Mutation represents an inherent mechanism leading to AMR, yet the pathways to
AMRaremultifaceted and also encompass horizontal gene transfer (Lerminiaux andCameron,
2019; Evans et al., 2020; Sun et al., 2019; Zhang et al., 2022b). Numerous studies have integ-
ratedmetagenomic analyses of resistance gene distribution across various environments with
expression abundance assessments to comprehend the health risks associated with ARGs
(AntibioticResistanceGenes) and their capability forHGT. For instance,Danko et al. (2021)
created the first urbanmetagenomemap, utilizing 4728metagenomic samples from60urban
public transportation systems. Analyzing the distribution and transmission of ARGs across
global habitats is essential from a worldwide health standpoint, especially considering the
transition from environmental compartments to humans.

In another study, Zhang et al. (2022b) conducted an extensive study across six unique habit-
ats, analyzing 4572 samples at themetagenomic level. They identified 2561ARG that jointly
confer resistance to 24 antibiotic classes. The research further explored the prevalence, po-
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tential for transmission, and expression characteristics of these ARGs within the pathogen,
shedding light on the complex interplay of factors influencing antimicrobial resistance.

Therefore, future research should incorporate additional features to capture the complexity
of AMRmechanisms, providing a richer and more accurate predictive model.

4.4 Software Development

We shared all the source code and data for our four topics, facilitating the possibility for in-
terested researchers to repeat our process or apply it to their own data. But for clinicians
and individuals without a computational background, there are still challenges to using our
methods. So we envision developing a toolkit or web-based tool. This user-friendly interface
would extend the reach of our methods and make it a valuable asset in the fight against drug
resistance.

4.5 Focus on AMP

Conventional antibiotics are facing a growing challenge as drug-resistant strains continue to
emerge, leading to a global health crisis. In response to this pressing need to combat AMR,
researchers are increasingly focusing on antimicrobial peptides (AMPs) to develop innovat-
ive antibiotics. AMPs are small proteins found in a wide range of organisms, from bacteria
to humans, that play a crucial role in the innate immune response, targeting pathogenic mi-
croorganisms including bacteria, fungi, viruses, and parasites (Huan et al., 2020; Lei et al.,
2019; Brogden, 2005). AMPs exhibit unique structural attributes, allowing them to disrupt
microbial cell membranes and performmultifaceted roles in host defensemechanisms. Their
broad-spectrumactivity andunconventionalmodes of actionmakeAMPsparticularly prom-
ising candidates in the discovery of novel antibiotics, including antiviral and antibacterial
drugs (Mba and Nweze, 2022; Spohn et al., 2019).

For example, Ma et al. (2022) combined several natural language processing neural network
models, including LSTM, Attention, and BERT, to identify candidate AMPs from human
gut microbiome data, ultimately identifying 181 that showed antimicrobial activity.

Furthermore, the discovery of new AMPs is being revolutionized through the application of
generativemodels (Das et al., 2021; Szymczak et al., 2023). Szymczak et al. (2023) introduced
HydrAMP, a conditional variance autoencoder that skillfully learns a low-dimensional con-
tinuous representation of a peptide while simultaneously capturing its antimicrobial prop-
erties. The model separates the learned representation of a peptide from its antimicrobial

76



conditions and leverages the ingenuity of parameter control. Complemented by wet-lab val-
idation, their approach yielded nine highly active peptides generated as analogs of clinically
relevant prototypes, along with six analogs of an inactive peptide. HydrAMP’s capability
to spawn a diverse array of potent peptides represents a forward leap in the ongoing battle
against the antimicrobial resistance crisis.

In summary, AMPs, with their distinctive characteristics and varied mechanisms of action,
emerge as promising alternatives to traditional antibiotics. Their exploration and develop-
ment throughmodern computational techniques herald a new era in the fight against AMR,
offering hope for more effective treatments and interventions.

4.6 Concluding Remark

Overall, we have developed accurate AMR prediction models that serve as valuable tools for
both AMRmonitoring and clinical treatment. Our models have enabled us to identify cru-
cial mutations and genes associated with AMR, providing a rich reference resource for fur-
ther experimental and computational studies of AMR. Furthermore, we compared different
multi-label classification methods, providing a novel approach for simultaneously identify-
ing multiple drug resistance. In addition, our innovative approach includes a deep transfer
learningmodel that enhances prediction accuracywith a limited number of samples and label
imbalances. Moreover, we have also developed federated transfer learning, a strategy allow-
ing different data owners to train models locally at their data stores. This method not only
achieves precise prediction but also ensures the utmost data security and privacy.

In conclusion, our comprehensive approach to combating the challenge of AMR incorpor-
ates diverse machine learning algorithms. These address the specific needs and constraints
of AMRprediction, including considerations formultiple drug resistance classification, con-
straints imposed by small sample sizes and label imbalances, and the imperatives of data pri-
vacy and security.
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