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Abstract
Childhood cancer is a devastating disease that requires continued research and improved treatment options to increase 
survival rates and quality of life for those affected. The response to cancer treatment can vary significantly among patients, 
highlighting the need for a deeper understanding of the underlying mechanisms involved in tumour growth and recovery 
to improve diagnostic and treatment strategies. Patient-specific models have emerged as a promising alternative to tackle 
the challenges in tumour mechanics through individualised simulation. In this study, we present a methodology to develop 
subject-specific tumour models, which incorporate the initial distribution of cell density, tumour vasculature, and tumour 
geometry obtained from clinical MRI imaging data. Tumour mechanics is simulated through the Finite Element method, 
coupling the dynamics of tumour growth and remodelling and the mechano-transport of oxygen and chemotherapy. These 
models enable a new application of tumour mechanics, namely predicting changes in tumour size and shape resulting from 
chemotherapeutic interventions for individual patients. Although the specific context of application in this work is neuroblas-
toma, the proposed methodologies can be extended to other solid tumours. Given the difficulty for treating paediatric solid 
tumours like neuroblastoma, this work includes two patients with different prognosis, who received chemotherapy treatment. 
The results obtained from the simulation are compared with the actual tumour size and shape from patients. Overall, the 
simulations provided clinically useful information to evaluate the effectiveness of the chemotherapy treatment in each case. 
These results suggest that the biomechanical model could be a valuable tool for personalised medicine in solid tumours.

Keywords Computational oncology · Imaging biomarkers · Neuroblastoma · Patient-specific modelling · Finite element 
method

1 Introduction

Cancer is the second most common cause of death among 
children aged 1–14 years in the United States, surpassed 
only by accidents [1]. Globally, approximately 400,000 
children are diagnosed with cancer each year [2]. One in 
every six children diagnosed with cancer in the US does not 
survive beyond 5 years. Over the past 50 years, there has 
been significant improvement in the prognosis for children 
and adolescents diagnosed with cancer. In the mid-1970s, 
only 58% of children (ages 0–14 years) with cancer survived 

for at least 5 years. By 2011–2017, this rate increased to 
84.7% [1]. However, despite this progress, the development 
of new drugs exclusively for childhood cancer has been 
limited. People who have had cancer during childhood or 
adolescence need follow-up care and enhanced medical 
surveillance for the rest of their lives because of the risk of 
complications related to the disease or its treatment that can 
last for, or arise, many years after they complete treatment 
for their cancer. Health issues that manifest months or years 
after treatment has ended are commonly referred to as late 
effects.

Among children, one of the most common types of cancer 
is neuroblastoma [3]. Neuroblastoma is a type of cancer that 
is highly representative of the cancer disease itself, since it 
is strongly heterogeneous with very diverse clinical courses 
that may vary from an indolent disease causing little or no 
harm and exhibiting spontaneous regression, to an aggres-
sive disease with fatal progression [4]. For these reasons, 
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neuroblastoma is considered a paradigm of cancer disease 
and an excellent context of application for the validation of 
novel developments which have the ambition to be of poten-
tial application in a large variety of cancers.

The majority of current medical diagnostic practices 
result in imprecise approximations of treatment outcomes, 
often based on clinical trial results. However, since these 
results are based on averages, they might not be directly 
applicable to individual patients. Computational mod-
els have become an essential tool in the field of biomedi-
cal research, particularly in the study of complex diseases 
such as cancer [5–15]. These models allow researchers to 
simulate and analyse the behaviour of biological systems 
at different levels of complexity, from the molecular to the 
cellular levels [16, 17]. One of the key advantages of com-
putational models is their versatility, which allows them to 
be applied to a wide range of biological questions and to 
different types of data, including genomic, proteomic, and 
imaging data. Patient-specific computational models are 
particularly important in the context of cancer research, as 
they may have the potential to improve the accuracy and 
effectiveness of cancer diagnosis, prognosis, and treatment. 
By integrating patient-specific data, including genetic infor-
mation, imaging data, and clinical information, these models 
can provide more accurate predictions of disease progres-
sion and response to treatment. Furthermore, patient-specific 
models can be used to identify optimal treatment strategies 
for individual patients, potentially reducing the risk of 
adverse effects and improving treatment efficacy. Overall, 
the development of subject-specific computational models 
holds great promise for improving the diagnosis, treatment, 
and management of cancer, and represents a crucial area of 
research for the future of cancer care.

In this work, we hypothesise that the use of a computa-
tional model that predicts the outcome of the tumour during 
chemotherapy treatment could be used to identify when the 
treatment is going to return a positive response that would 
maximise the survival. To test this hypothesis, we developed 
a novel computational model of the neuroblastoma evolu-
tion that links cell processes with cancer growth and remod-
elling. The model is validated with two different patients 
classified at diagnosis as low and intermediate risk [18]. 
After applying a three-month chemotherapy treatment, the 
computational model is able to replicate the very different 
outcomes. It is imperative to emphasise the significance 
of developing models for the paediatric population, as this 
can potentially reduce the number of required clinical tests. 
However, the limited availability of data for model develop-
ment and validation poses a significant challenge.

Despite the challenges associated with the availability of 
data, the presented computational model serves as a prom-
ising step towards improving the understanding and treat-
ment of paediatric cancers. It is hoped that continued efforts 

in this field will lead to the development of more accurate 
and effective models, ultimately benefiting the paediatric 
population.

The present work is organised as follows. First, the meth-
odology is presented, starting with the proposed mathemati-
cal model. The main contributions of the model are also 
described, namely the integration of image-based biomark-
ers, the specific application of the model to neuroblastoma 
cancer, and the inclusion of the interaction between nutri-
ents and cells as well as the cross-talk between cells and the 
extracellular matrix (ECM). Then, the boundary conditions 
and the numerical implementation are described. Finally, 
we show the application of the proposed methodology to 
simulate the tumour progression and validate with specific 
clinical cases. We go beyond clinical validation and present 
different alternative scenarios.

2  Materials and methods

The following section is organised into several key subsec-
tions, each contributing essential elements to our compre-
hensive approach. We start by detailing the constituents of 
our mathematical model and the transport of species. Fol-
lowing this, we present the governing equations for kinemat-
ics of tumour growth and remodelling. Another dedicated 
portion outlines our methodology for integrating image 
data into the model, ensuring patient-specific representa-
tions. The significance of boundary conditions is discussed 
separately, forming the foundational elements of our com-
putational framework. A temporal multiscale approach is 
then outlined to simulate the dynamic interaction between 
nutrients, chemotherapy, and cells over time. The complex 
interplay between stroma and cells is explored through 
mechanical multiphase modelling in a dedicated section. 
Lastly, we provide insights into the numerical strategy guid-
ing the implementation of our model, offering a comprehen-
sive view of our computational framework.

2.1  Mathematical model of tumour growth 
and remodelling

Neuroblastoma tumours consists primarily of various types 
of cells and extracellular matrix. Of the many cell types, 
neuroblasts and non-tumoural cells are of primary interest, 
because they directly contribute to the mechanical prop-
erties of the tissue through the processes of proliferation, 
death or ECM production among others [19]. Extracellular 
matrix also has a principal role in the cell-microenviron-
mental cross-talk and it can promote the progression of the 
tumour. We here present a phenomenological model, which 
takes into account as detail as possible to better simulate the 
evolution of the tumour geometry. Our hypothesis proposes 
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that tumour evolution can be attributed to three distinct 
processes: growth, shrinkage, and remodelling. Localised 
growth is achieved through an increase in the number of 
cells, while localised shrinkage results either from cell death 
due to hypoxia or chemotherapy treatment or the degradation 
of ECM. Lastly, remodelling involves the reorganisation of 
existing constituents, leading to structural changes within 
the tumour. The two first processes result in a change of the 
mass of the constituents, and the later results in a change of 
the structure. To better address the processes of growth and 
remodelling, we apply the theory of mixtures, which states 
that every position of the tumour can be occupied simultane-
ously by multiple constituents.

2.1.1  Constituents

As a first approach, we consider a tumour consisting of 
three constituents (M = 3), namely the tumour cells—neuro-
blasts—, the non-tumoural cells and the ECM. The approach 
shown can be easily extended to any number of required 
constituents. Each population is defined by its density �i, 
where i = n, s, e stands for neuroblasts, non-tumoural cells, 
and ECM, and its change is driven by:

From left to right, the terms in the left side of the equa-
tion correspond to the temporal rate of change of the i-th 
population density and the change in density due to volume 
growth. The ones in the right side corresponds to the net 
constituent production, the death due to hypoxia and the 
death due to the presence of treatment. The displacement of 
the tissue, u, is caused by the growth of the tumour and by 
its deformation against the surrounding tissues and organs 
in location x at time t. Proliferation is driven by the presence 
of oxygen, where kp defines this ratio of proliferation. The 
uptake of the different constituents can be due to hypoxia or 
to the presence of treatment, such as chemotherapy. Thus, 
kh defines the ratio of cells that are dying by hypoxia and kc 
defines the ratio of cells that are dying due to the presence 
of chemotherapy.

The Macaulay brackets ⟨⋅⟩+ indicate the positive value of 
the argument if the argument is positive, but zero if it is not. 
H denotes the Heaviside function. Both proliferation and 
death depend on the oxygen concentration �o. It is assumed 
that there is a specific critical mass fraction of oxygen (�i

crit
) 

below which cells can no longer proliferate and begin to 
die. This critical mass fraction is believed to differ between 
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cancer cells (i = n) and non-tumoural and ECM (i = s, e). 
Non-tumoural cells are thought to be regulated by physi-
ological hypoxia, the lower level at which normal hypoxic 
responses are elicited. In contrast, tumour cells are regulated 
by pathological hypoxia, which is characterised by persis-
tent poor oxygenation and disruption of normal homeostasis. 
The parameter �o

env
 is the mass fraction of oxygen available 

in the environment [20]. This parameter can be defined as 
well as physoxia, the physiological oxygen level in periph-
eral tissues [21]. �c represents the density of chemotherapy 
available in the tissue. It is modelled that only when that 
concentration reaches a critical value �c

crit
 the tumoural cells 

start to die.
We do not model cell migration which is usually repre-

sented in a reaction diffusion equation through the diffusive 
term. Neuroblasts and non-tumoural cells do not exhibit a 
high migratory capacity [22, 23], so the diffusion term is 
neglected.

2.1.2  Species transport

Different species are transported all across the tumour. For 
the sake of simplicity, we have considered only oxygen and 
chemotherapy treatment. Each specie is defined by its con-
centration, �j, where j = o, c stands for oxygen and chem-
otherapy. We start from the standard form of the species 
transport equation:

On the left hand side, the temporal rate of change of the j-th 
population density and the change in density due to vol-
ume growth can be found. On the right hand side, the first 
term represents the species supply from the vascularisation. 
KTrans is the extravasation parameter for the species along 
the tumour. This term also depends on �j

b
, the species con-

centration in blood. The following term corresponds to the 
j species consumption by the constituents. Kj

d
 is the decay 

coefficient of the j species, and Aj and kj are the consumption 
coefficients for the j species, as defined in [7, 24]. More spe-
cifically, Aj is the maximum species consumption rate and kj 
is the species concentration at which the total consumption 
term is one-half of the total consumption term. Notice that 
this consumption term is being multiplied by the cellular-
ity, where �i represents the different cell populations and �c 
represents the tissue cells carrying capacity i.e., the maxi-
mum number of cells per unit of volume to prevent contact 
inhibition. It is assumed that only chemotherapy, j = c, can 
decay over time.
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While it is widely recognised that diffusion influences 
how species spread within a tumour, in cases where the tis-
sue is well-supplied with blood vessels (like neuroblastoma 
tumours), this diffusive effect might be hindered by active 
transport through the vascular network. Moreover, it is 
imperative to take into account the substantial computational 
expenses associated with the calculation of the diffusive pro-
cess, which, based on our estimations, is approximately twenty 
times higher in cost. Consequently, due to the elevated degree 
of vascularisation in neuroblastoma tumours, we have decided 
to streamline the transport equation by excluding the diffusion 
term, thereby mitigating the computational burden associated 
with the model.

2.2  Kinematics of growth and remodelling

Let Ω be the neuroblastoma tumour embedded in the three-
dimensional space (Fig. 1). A motion � ∶ Ω0 → Ωt maps a 
material or reference configuration Ω0 to a current configura-
tion Ωt via

where x(X, t) is the position at time t in the spatial configu-
ration and X is the position in the material configuration. 
This movement u(X) can be described within the theory of 
nonlinear continuum mechanics as the deformation gradient,

as well as:

where I is the identity matrix.
Constrained mixture models assume that a mechanical 

body consists in general of M different constituents. In this 
approach, we assume that there are three different constitu-
ents, namely tumour cells, the non-tumoural cells and the 
ECM. These constituents are characterised by their density 
�i = �i(x, t) at time t so that �i

0
= �i(x(X, 0), 0) is the density 

(3)x(X, t) = �(X, t),

(4)F =
�x

�X
,

(5)F = I +
�u

�X
,

Fig. 1  Scheme of the motion from the original unstressed configura-
tion Ω0 to the current configuration Ωt, through an incompatible con-
figuration Ωi

g
. A multiplicative decomposition is applied to the defor-

mation gradient F into a growth part Fi
g
 and an elastic part Fi

e
. In the 

kinematic growth theory, infinitesimal stress-free portions of the body 
growth independently via the transformation Fi

g
, which does not result 

in a compatible growth. An elastic assembly Fi
e
 yields to the configu-

ration of interest, Ωt
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at time t = 0, where i = n, s, e stands for neuroblasts, non-
tumoural cells and ECM. The initial and current mass of the 
i-th constituent are given by

These different constituents share each differential volume 
element and they thus deform together, exhibiting the same 
deformation tensor F. However, the single constituents may 
exhibit different deformations, reaching an incompatible 
configuration Ωi

g
.

The geometric deformation tensor can be decomposed as

where Fi

e
 is the elastic deformation tensor and Fi

g
 the inelas-

tic growth tensor. Thus, since mass is preserved along the 
path from Ωi

g
 to Ωt, the tensor Fi

e
 is not related to growth, 

but to the stress response of the material. However, Fi

g
 is the 

tensor directly connected to growth.
To reproduce tumour growth and remodelling, the 

change of mass needs to be considered for accurate stress-
strain relations. Let be mi the grown mass, vi

g
 the volume 

in Ωi
g
 and v the one in Ωt. The densities of the grown mass 

with respect to the different configurations are given as

therefore, �i
g
= �iJi

e
, where Ji

e
 indicates the volume ratio,

The growth deformation Fi

g
 can be modelled as the general 

form

with �i
1
, �i

2
 and �i

3
 the stretch ratios of every i-th constituent 

along the orthonormal vectors v1, v2 and v3, respectively.
Here, volume growth is considered isotropic, char-

acterised by a single isotropic growth multiplier �i
g
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assume that changes of mass production over the tissue 
carrying capacity (�c) govern the inelastic deformation 
included via the factor �i

g
(t):

where kv1, kv2, kv3 are constants defining the growth rate and 
kd governs the change of volume due to mass resorption.

Growth and remodelling happen in the time scale of 
days to months, whereas elastic deformations occur on 
the time scale of seconds. In this way, neglecting the body 
forces and inertia terms, the balance of linear momentum 
reads

where P is the first Piola–Kirchhoff stress tensor.
Since we are dealing with a constrained mixture model, 

we therefore apply the continuum theory of mixtures to be 
able to model different mechanical properties and different 
natural configurations for the different constituents. Then, 
assuming that all the constituents (i = n, s, e) standing for 
neuroblasts, non-tumoural cells and ECM) are linear elastic 
we solve their mechanical behaviour by:

where Ei(x, t) stands for the homogenised elastic modulus in 
position x and time t,  and Ei is the saturated elastic modulus 
for the different constituents.

2.3  Integrating image data to construct 
a patient‑specific finite element‑based 
simulation

The data available [26] for each of the cases consists of 
several MRI sequences taken at two different time points: 
the time of diagnosis and just after the end of the first treat-
ment, separated by three months in time (Fig. 2). These 
sequences include a T2-weighted series, where the tumour 
was manually segmented by experienced radiologists and 
both Diffusion Weighted (DW) and Dynamic Contrast 
Enhanced (DCE) Magnetic Resonance (MR) sequences. 
From these segmentations, the 3D geometry of the tumour 
was reconstructed. To do this, we first extracted the con-
tours of each of the segmented images and, using interpola-
tion techniques, we obtained the point cloud that represents 
the 3D shape of the geometry surface. From this cloud, 
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we first reconstruct the surface and then the volumetric FE 
mesh of the tumour that will be used for the simulations. 
The Python library im2mesh [25] was used for this pur-
pose. In addition to geometry, additional clinical data are 
necessary to initialise the model. In our case, these data 
consist of the spatial and time distribution of cellularity 
and vascularisation. To determine the former, we start from 
the ADC maps obtained from DW-MRI sequences. These 
maps measure the Brownian motion of water in the tissue, 
which is faster in the extracellular space than inside the 
cells. Assuming this correlation, the higher the cellular-
ity ratio, the more restricted this motion will be (lowering 
ADC values). Considering that the diffusivity of water in a 
free medium is known, we can directly estimate the volume 
fraction of cellularity from the ADC maps following the 
method proposed by [27]. DCE sequences are employed to 
estimate the vascularisation of the tumour. This type of MR 
sequence consists on the injection of a contrast agent (CA) 
into the bloodstream, followed by the acquisition of images 
as this agent reaches the tumour. As a result we obtain a CA 
concentration vs time curve for each voxel in the tissue. We 
use then the Standard Tofts Model (STM) [28, 29] to fit its 
equation to these curves and obtain the STM parameters. 

Among these parameters, we focus on the KTrans, since it 
represents the extravasation rate of the CA, or equivalently, 
of the nutrients or the chemotherapy. In particular, this 
parameter measures the combination of blood flow, vessel 
permeability and vessel surface on each voxel, so it can be 
considered an estimate of the whole vascularisation. These 
cellularity and vascularisation maps were interpolated to the 
FE mesh previously generated, thus completing the genera-
tion of the necessary inputs for the model.

2.4  Boundary conditions

The surroundings of the tumour are fixed with springs in 
reference normal direction to mimic the stiffness of the sur-
rounding tissue. The Young modulus assumed for the tissue 
carrying capacity is 50 kPa for a saturated cells-element and 
500 kPa for a saturated ECM-element. The Poisson’s ratio 
for both ECM and cells is set to 0.38 [33–36]. Since the 
histologies of both patients present important differences, 
Patient A is assumed to have initially 90% of neuroblasts 
and 10% of non-tumoural cells, whereas Patient B have a 
ratio of 30–70%. The parameters used in the simulation are 
listed in the Table 1.

Fig. 2  Processing patient data to initialise the biomechanical model. 
Magnetic resonance images are obtained from each patient. The 
tumour is segmented in the T2-weighted sequences, subsequently 
using these segmentations to reconstruct the 3D geometry. The 
reconstruction is carried out using the Python im2mesh library [25], 
resulting in a smooth FE mesh. Information about vascularisation is 
obtained from the DCE sequences. The Standard Tofts Model is used 
to obtain KTrans, a parameter that informs about permeability, vessel 
surface, and blood flow. The DW sequences measure the ADC, a met-

ric that quantifies the random movement of water within the tissue. 
This metric can be further used to approximate the ratio of cells in 
this tissue. This defines the cellularity, which is the ratio of volume 
occupied by cells and stroma. Each tumour has been biopsied, and 
the histology analysis allows classification into three different groups. 
Depending on the group, the neuroblasts content differs, enabling the 
estimation of the ratio between neuroblast cells and non-tumoural 
cells
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2.5  Temporal multiscale simulation of oxygen, 
chemotherapy, and cells interaction

Cellular processes and the transport of molecules such as 
nutrients, oxygen and chemotherapy take place on very dif-
ferent time scales. Thus, while cells take days to proliferate 
or die, the arrival of these substances occurs in a scale of 
minutes. It is clear, therefore, that the two phenomena must 
be considered separately and subsequently the effects of both 
integrated. Consequently, in this work we have modelled the 
interaction between cells and these substances by means of 
a multiscale temporal algorithm. Given a time instant t,  we 
begin by simulating the arrival of oxygen and chemotherapy 
until the equilibrium state of these substances is reached, 
which is achieved in a time Δtd. With the distributions of 
these substances at equilibrium we proceed to simulate the 
cellular processes during a time Δtb. Since the increment of 
time need to achieve equilibrium of species (Δtd) is much 
smaller than the time where cell events occur (Δtb), there-
fore Δtd ≪ Δtb. Δtd can be neglected and the equilibrium 
concentration of the substances can be considered constant 
throughout Δtb. After the first time step, at instant (t + 1) we 
simulate again the arrival of substances, this time with the 

new cellularity values obtained from the calculation of the 
biomechanical model of the previous step (see Fig. 3).

2.6  Mechanical multiphase modelling 
of stroma‑cell cross‑talk

The importance of the interactions between the ECM and the 
cells are widely known, specially in tumour mechanics. To 
better incorporate this behaviour to the model, instead of fol-
lowing the theories of biological growth that model the tis-
sue as a homogenised (single-constituent) solid continuum, 
both ECM and cells are separately modelled, but coupled 
on a strain approach. Therefore, based on the homogenised 
constrained mixture theory, it is assumed that, in each vol-
ume element, there exists a mixture of two structurally sig-
nificant constituents: the cells and the stroma. Mass incre-
ments of each constituent are allowed to be deposited or 
removed within the body at each time. These increments 
possess different natural (stress-free) configurations and 
then deform together with the overall tissue (i.e., in a con-
strained manner). Thus, each solid portion of the mixture is 
assumed to be constrained, and each solid constituent has the 
same deformation as that of the solid-mixture at each point. 

Table 1  Parameters of the 
model

Symbol Parameter Value Units References

Ao Oxygen uptake 2.55e1 pmol/s [7]
ko Oxygen uptake 4.64e0 pmol [7]
�o
b

Oxygen blood concentration 3.62e3 pmol [7]
Ac Chemotherapy uptake 1.42e−1 μmol/s [30]
kc Chemotherapy uptake 3.65e0 μmol [30]
�c
b

Chemotherapy blood concentration 1.00e1 μmol [30]
Kc
d

Time of decay 4.80e1 h Provided
�n
c

Neuroblasts carrying capacity 1.00e5 cells∕mm3 [27, 31]
�s
c

Healthy cells carrying capacity 1.00e5 cells∕mm3 [27, 31]
�e Tissue ECM carrying capacity 1.00e0 mg∕mm3 [32]
kp Cells proliferation rate 3.50e2 cells∕d [5]
kh Necrosis rate due to hypoxia 8.00e1 cells∕d Estimated
kc Necrosis rate due to chemotherapy 9.00e2 cells∕d Estimated
kd Shrinking rate 3.00e1 – Estimated
kv1 Min expansion rate 1.00e−1 – Estimated
kv2 Growth threshold 5.00e3 – Estimated
kv3 Net change rate 8.00e0 – Estimated
�n
crit

Threshold for neuroblasts proliferation 4.13e2 pmol [21]
�s
crit

Threshold for non-tumoural cells proliferation 7.75e2 pmol [21]
�o
env

Oxygen available at the environment 1.97e3 pmol [21]
�c
crit

Chemotherapy necrosis threshold 4.0e0 μmol Estimated
Ecell Young modulus of the cells 5.0e4 Pa [33–36]
Eecm Young modulus of the ECM 5.0e5 Pa [33–36]
� Poisson coefficient 0.38 – [33–36]
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Additionally, this approach also allows to model different 
material properties for each solid portion depending on the 
mixture present there.

2.7  Numerical implementation

The main goal of this work is to ascertain the evolution 
of a neuroblastoma tumour under different treatment sce-
narios. This biophysical target rewrites, in mathematical 
terms, in formulating a set of reaction–advection–diffusion 
equations, used to account the change of cells and ECM 
density. The proposed system is solved by the FE method 
with explicit time integration (Fig. 3). The mechanical 
analysis is performed separately from the biological one 
due to the assumption of incompatible growth. There-
fore, the inelastic growth tensor is fully programmed in 
Python, and the elastic contribution is computed via the 
commercial Finite-Elements software Ansys®Academic 

Research Mechanical, Release 19.2. In order to simulate 
tumour growth or shrinkage, the thermoelastic expansion 
equations are used as an analogy that governs the volumet-
ric changes in both contraction and expansion processes 
[37]. To simulate the tumour domain, we assume cellular 
contributions and ECM work in parallel, assuming a linear 
elastic material where the total stress of the tumour, under 
the finite strain assumption, is the sum of the cells and the 
ECM contributions. Strains are assumed to be equal in 
both parts of the tumour. To do so, the tumour domain is 
discretised in two overlapping conforming meshes sharing 
the nodes of the cells. Three-dimensional tetrahedral linear 
elements are produced by Gmsh [38] and updated each 
three time steps. Time-integration of the biological solver 
module is achieved using an explicit numerical scheme 
(forward Euler method), whereas the growth solver uses 
a full-implicit iterative scheme (Newton–Raphson). We 
performed a mesh refinement study and identified a mesh 

Fig. 3  Scheme of the phenomenological approach here presented. 
The simulation is initialised and starts with the cell metabolism 
model. First, the species of the model, namely oxygen and chemo-
therapy, distribution is calculated via a set of ordinary differential 
equations for a Δtd . Since Δtd ≪ Δtb, we assume the concentration 
to reach an stationary value which lasts until the end of the time step. 
Therefore, with this input, the mass of cells and ECM is updated. 
These increments exhibit different stress-free configurations, which 
lead to an incompatible growth of the whole tumour. Additionally, 
based on the new distribution of cells and ECM, different material 

properties are estimated for each element, based on the rule of mix-
tures. A mechanical analysis is performed to ensure that each solid 
constituent has the same displacement as the solid mixture and the 
whole body compatibility. Next, the iteration is considered complete, 
and the analysis is deemed finished if the final time is reached, or it 
continues if not. If it is necessary to proceed with the simulation, the 
mesh is updated every three steps, and the previous values are inter-
polated to the new FE mesh. Then, the convective term, which is 
uncoupled from the ODEs is updated and the cell metabolism model 
starts again from the previous geometry
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with 63,775 linear tetrahedral elements for the patient B 
and 96,624 for A to yield a good tradeoff between compu-
tational efficiency and accuracy. By updating the geom-
etry in each deformation, we adopt an updated Lagrangian 
approximation, whose formulation is also applied in the 
finite element analyses, to fulfil the hypothesis of finite 
deformations. In addition, enough small-time steps are 
simulated to assume linear elasticity in each step.

3  Results

Here, we applied the presented methodology to simulate the 
evolution of two different patient-specific neuroblastoma 
tumours, namely patient A and patient B. The section is 
structured as follows: first, the data available and the patients 
analysed are presented. Then, the model is validated using 

these data and the tumour outcome is evaluated. Finally, 
we explore further theoretical scenarios, where the chem-
otherapy treatment could be extended or a proangiogenic 
treatment could be administrated.

3.1  Clinical cases to study: patient‑specific models

The tumour progression of two different patients is analysed. 
Both patients received the same treatment, although they 
were classified in different risk-groups.

Patient A, a male, was diagnosed with poorly differenti-
ated neuroblastoma at the age of 16 months without pre-
senting life-threatening symptoms. Tru-cut needle biopsy of 
the primary mass revealed low Mitosis-Karyorrhexis Index 
(MKI). Evaluation of bone marrow showed no metastases, 
and molecular studies showed no amplification of the MYCN 
gene. MRI imaging revealed that the abdominal mass was 

Fig. 4  Patient A. Left, clinical data available of the patient: MRI, 
ADC and KTrans. The tumour is segmented over the MRI sequence. 
ADC maps inform about the tumour cellularity, whereas KTrans reveal 
the vascularisation map. Centre, geometry of the tumour segmented 
from MRI sequences in three different orthogonal views. The geom-
etry is discretised in a tetrahedral FE mesh. Right, cellularity distri-

bution inside the tumour retrieved from ADC image. Frequency dis-
tribution of the cellularity in the whole volume of the tumour. KTrans 
distribution in the tumour and its frequency distribution. The tumour 
presents low cellularity values and a more heterogeneous vascularisa-
tion. Bottom, time line of the diagnosis and treatment protocol fol-
lowed
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encasing primary branches of the mesenteric artery, aorta, 
and vena cava. Based on these findings, the tumour was 
classified as intermediate risk according to the international 
neuroblastoma risk group classification. Chemotherapy was 
administered for 3 months, resulting in a partial response. 
Follow-up examinations showed no evidence of relapse or 
progression of the disease. The information available of this 
patient is summarised in Fig. 4.

Patient B, a female, was diagnosed with pelvic inter-
mixed ganglioneuroblastoma at the age of 18 months, 
with no metastases present. At diagnosis, the patient pre-
sented bladder dysfunction. Tru-cut biopsy of the primary 
tumour revealed low MKI, and MYCN amplification was 
not observed in molecular studies. Evaluation of bone mar-
row metastasis yielded negative results. Image studies using 
MRI, CTE, and nuclear medicine did not reveal any defined 
risk factors. These findings led to the classification of the 
patient as belonging to the low risk group (international 
neuroblastoma risk group classification). Subsequently, the 
patient received chemotherapy treatment for three months, 

resulting in a partial response, indicating a reduction in 
tumour size. Follow-up examinations showed no evidence 
of relapse or progression of malignancy. The information 
available of this patient is plotted in Fig. 5.

3.2  Predictive simulations and validation

According to the clinical report, both tumours have exhib-
ited only partial responsiveness to chemotherapy. Nonethe-
less, upon conducting a volume analysis, it has emerged 
that the first tumour underwent a volumetric reduction of 
90%, whereas the second tumour experienced a mere 20% 
reduction. Despite being reported a partial response in both 
cases, there has been a notable disparity in the response to 
chemotherapy exhibited by both tumours.

The mechanical model described in the material and 
methods section was applied to both cases, which are similar 
yet divergent, resulting in disparate outcomes.

Fig. 5  Patient B. Left, clinical data available of the patient: MRI, 
ADC and KTrans. The tumour is segmented over the MRI sequence. 
ADC maps inform about the tumour cellularity, whereas KTrans reveal 
the vascularisation map. Centre, geometry of the tumour segmented 
from MRI sequences in three different orthogonal views. The geom-
etry is discretised in a tetrahedral FE mesh. Right, cellularity distri-

bution inside the tumour retrieved from ADC image. Frequency dis-
tribution of the cellularity in the whole volume of the tumour. KTrans 
distribution in the tumour and its frequency distribution. The tumour 
presents higher cellularity values and a more homogenised vasculari-
sation. Bottom, time line of the diagnosis and treatment protocol fol-
lowed
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3.2.1  Patient A: intermediate‑risk patient

Computational outcome shows a reduction in volume of 
90.4%.

Patient A results are depicted in Fig. 6, illustrating that 
the clinical volume closely approximates the simulated 

outcome. Although the tumour shrinkage was gradual and 
reached a plateau value at the end, the final volume was 
slightly lower than the clinical value. The effectiveness of 
the computational model was demonstrated through bar 
plots comparing the volume and external surface of the 
tumour mass. Cellularity was evaluated in the computational 

Fig. 6  Patient A, numerical results in comparison with clinical out-
come. Volume segmented at diagnosis is plotted in grey, whereas the 
segmentation of the tumour after the treatment is depicted in blue. In 
green, the computational outcome is plotted. At the bottom, the cellu-
larity at the end of the simulation is plotted. Two transverse sections 

enable visualisation of the cellularity distribution within the tumour. 
Error bar plot show the differences between the clinical cellular-
ity and the computational outcome. Circles depicts the mean of the 
values, whereas the bars depict the standard deviation (Colour figure 
online)
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Fig. 7  Patient B, numerical results in comparison with clinical out-
come. Volume segmented at diagnosis is plotted in grey, whereas the 
segmentation of the tumour after the treatment is depicted in blue. In 
green, the computational outcome is plotted. At the bottom, the cellu-
larity at the end of the simulation is plotted. Two transverse sections 

enable visualisation of the cellularity distribution within the tumour. 
Error bar plot show the differences between the clinical cellular-
ity and the computational outcome. Circles depicts the mean of the 
values, whereas the bars depict the standard deviation (Colour figure 
online)



Engineering with Computers 

simulation. Clusters of cells can be distinguished at the end 
of the simulation, with some clusters exhibiting extremely 
low cellularity, approaching zero, indicating that these 
regions consist primarily of extracellular matrix. However, 
other clusters still exhibit high cellularity, suggesting that 
chemotherapy treatment has not yet fully penetrated these 
areas. The cellularity assessed in the computational model 
shows more dispersion compared to that obtained from the 
clinical images.

3.2.2  Patient B: low‑risk patient

Patient B was not responding to chemotherapy, the decrease 
of the volume observed in clinic was 20%, and the mechani-
cal model predicts a shrinkage of 15.0%. The computational 
model also reproduces this behaviour by achieving a volume 
similar to that segmented at the end of treatment evalua-
tion, along with a closely matching external surface value 
(Fig. 7). Although the tumour volume still shows a smooth 
trend, it does not reach a plateau value. The computational 

model suggests that the tumour may continue to shrink if 
chemotherapy treatment is extended for a longer duration. In 
this case, the results indicate a slight reduction in cellularity 
from the initial value centred around 0.68, with the mean 
value obtained at the end of the simulation being 0.55. Com-
paring this data with the cellularity values obtained after 
chemotherapy treatment reveals a minimally higher value 
in the clinical outcome.

3.3  Further exploration of alternative scenarios

In this subsection, two distinct theoretical scenarios are 
analysed to broaden the scope of our investigation. Firstly, 
an exploration is conducted by extending the duration of 
chemotherapy treatment from 3 to 4 months. This investi-
gation aims to assess the impact of prolonged treatment on 
the model’s predictions and outcomes. Additionally, a sepa-
rate scenario is examined, focusing on enhancing the level 
of vascularisation. This exploration serves to underscore 
the pivotal role of the vascular network in influencing the 

Fig. 8  Evolution of the volume over 4 months of treatment. In patient A, the rate of volume decrease is lower in the final month compared to the 
preceding 2 months.  In patient B, the tumour continues to shrink after three months of chemotherapy, although at a slow rate

Fig. 9  Simulation of the scenario in which a proangiogenic treatment 
has been previously administered to the tumour. This proangiogenic 
effect has been modelled as an increase in the values of the KTrans 
parameter. On the left, the histograms represent the different values 
of KTrans at the beginning of the simulation. The original data is plot-
ted in light green, and presents low vascularisation. In dark green, the 

original data has been multiplied by 1.5. In brown, the original data 
is multiplied by 3.0. On the right, the evolution of the tumour volume 
is depicted. The light green one represents the original patient data. It 
can be observed that the more vascularised the tumour is, the more is 
the volume decreasing (Colour figure online)
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efficacy of chemotherapy treatment. It is important to note 
that these results are purely theoretical in nature and have 
not undergone formal validation. These findings are intended 
to serve as initial insights into potential variations and alter-
native conditions, offering a preliminary exploration of the 
model’s behaviour in scenarios beyond the clinically vali-
dated treatments. As such, caution should be exercised in 
interpreting these results, and further validation efforts are 
warranted to confirm the robustness and reliability of the 
model in these extended theoretical scenarios.

3.3.1  Extended chemotherapy treatment

 We first present the outcome of the tumour if an extra month 
of chemotherapy would be administrated. In this scenario, 
the model predicts that the volume of the tumour would fur-
ther decrease (Fig. 8). However, the decrease would only be 
an additional 5% for the patient A. In patient B, the volume 
is expected to decrease by a further 3%, which is not much 
compared to the overall 15% reduction achieved after three 
months of treatment. Therefore, as far as we can hypothesise, 
it would not be worth to administer an additional month of 
chemotherapy to get only a 5% reduction in volume, prob-
ably the best option would be to perform a surgery once the 
tumour is small enough. In this particular case, Patient B, 
the chemotherapy is failing to effectively reach the tumour, 
likely because of the inadequate blood supply indicated 
by KTrans; therefore, radiotherapy might be a most suitable 
option [39].

3.3.2  Effects of a proangiogenic treatment

 Since we have hypothesised that the tumour from patient B 
is not shrinking enough due to the lack of vascularisation, 
we then test the scenario where a proangiogenic treatment is 
previously administrated. To start with these new conditions, 
we have increased the KTrans parameter in the whole tumour 
by multiplying it by 1.5 and 3 (Fig. 9, left). Therefore, we 
can simulate the scenario where the tumour is beforehand 
given a proangiogenic treatment. After that, chemotherapy 
would be administrated. The computational model then pre-
dicts, that the tumour is going to decrease its volume the 
more vascularised it is (Fig. 9, right).

4  Discussion

In this study, we present a predictive model for the 
response of tumours to chemotherapy, with the ultimate 
aim of testing the treatment before it is administered to the 
patient. Although there have been several studies on differ-
ent forms of cancer [5, 6, 9, 10, 40], this particular work 
emphasises the importance of including the dynamics of 

tumour growth and the mechano-transport of oxygen and 
chemotherapy, while starting from MRI sequences to fully 
create a patient-specific model.

The model here proposed combines growth and remod-
elling theories with constrained mixture rules to better 
simulate the cross-talk between cells and tumour micro-
environment [41–43]. While the ideal approach to model-
ling tumour evolution would be to incorporate detailed 
information about each constituent and their interactions, 
the current limitations in available clinical data mean that 
achieving fully realistic models remains a significant chal-
lenge. The formulation of the model allows to uncouple 
and simulate the mechanics of cells and the ECM sepa-
rately, subsequently achieving compatibility. It is also 
more meaningful because it facilitates the incorporation 
of cellularity information, which varies significantly from 
patient to patient, as it has been shown in the data pre-
sented, and have a major impact on tumour progression 
and treatment response. Moreover, the mechanics of the 
surrounding tissue, and in particular the supportive ECM, 
have been found to be critical in shaping tumour growth 
and response. Mechanical aspects of the ECM such as tis-
sue density and stiffness have been linked to cancer cell 
proliferation and motility [19, 44, 45], with strong cor-
relations to the aggressiveness of the particular tumour.

Notably, the current assumption is that cell proliferation 
and death rates are not affected by current cell density. In 
order to uphold this hypothesis, we formulate the concen-
trations of the constituents to be representative of average 
values and ensure the absence of significant extreme value. 
Consequently, both the rates of proliferation and death will 
be dependent on the concentration of oxygen for each spe-
cific coordinate and time point.

In the present study, it is assumed that cellular prolifera-
tion and death may occur due to either hypoxia or chemo-
therapy treatment. Specifically, the model does not account 
for cellular migration, which simplifies the balance laws 
of the constituents. By replacing classical partial differ-
ential equations with ordinary differential equations, the 
computational efficiency of the model is greatly improved. 
This assumption is justified in neuroblastoma, as previous 
research has shown that cells in this cancer do not exhibit 
a high migratory phenotype [22, 23]. Furthermore, it is 
worth noting that cell processes occur on a different time 
scale than cellular proliferation or death, further support-
ing this decision.

The distribution of oxygen and chemotherapy within the 
tumour is obtained using a mass transport model. Two main 
hypothesis are considered to reduce the computational cost 
of this additional model. Firstly, the diffusive process of 
the species is considered negligible in comparison with the 
extravasation and consumption terms. Secondly, given the 
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significant difference in the temporal scales of cell processes 
and transport phenomena, both models are coupled in a tem-
poral multiscale model.

The model here presented recovers the information of 
the vascularisation from DCE sequences. After applying the 
standard Tofts model [28], the parameter KTrans is obtained 
for each point of the tumour at the initial time. This param-
eter informs on the permeability, vessel surface and blood 
flow. Thereafter, the vascularisation is considered static. 
Thus, this is considered as a limitation of the model that 
deserves further research but was out of the scope of this 
work.

In this manuscript, we demonstrate the efficacy of the 
model applied to two distinct patients. The patient-specific 
model was constructed using MRI sequences as well as DCE 
and DWI [26]. This data, along with the clinical report, was 
employed to establish the initial conditions of the mechani-
cal model. It is important to note that the vascularisation 
and cellularity data are specific to each patient, while some 
parameters of the model are based on literature and others 
are estimated.

Both analyses simulated a 3-month chemotherapy 
treatment period and produced outcomes comparable to 
the actual results. The two patients were classified into 
two different risk groups—intermediate and low—and 
it is notable that the model is still able to predict both 
outcomes, even though chemotherapy resulted in signifi-
cantly greater tumour shrinkage in one patient. Here, we 
demonstrate that the model is complex but straightfor-
ward enough to replicate this behaviour and offer a plau-
sible explanation. Conversely, Patient A exhibits a higher 
degree of vascularisation. Following chemotherapy treat-
ment, the tumour volume decreased by 90.4%, with areas 
of low cellularity indicating significant treatment efficacy. 
Interestingly, certain areas with higher cellularity were not 
affected by chemotherapy and remained isolated from the 
rest of the tumour. However, these regions may ultimately 
be eliminated through a process of cell competition. Such 
areas are localised within specific regions of the tumour 
and hold promise for future research into the mechanisms 
underlying tumour growth and treatment response. Patient 
B’s low vascularisation indicates that angiogenesis has not 
been activated, which leads us to hypothesise that neither 
chemotherapy nor oxygen can reach the tumour cells and 
induce their death. We further explore the validated model 
and present alternative scenarios. However, it is worth 
highlighting that these additional results lack validation.

Additional exploration will be directed towards the 
development of a more complex model of chemotherapy, 
to be coupled with the presented model, accounting for 
detailed therapeutic mechanisms and pharmacodynamics.

The biomechanical model presented here does not have 
a large number of parameters. Most of them have been 

obtained from literature, while some had to be estimated. 
We can hypothesise that some parameters governing cell 
behaviour could be patient-specific, including the rates of 
proliferation and death, or how cells respond to chemo-
therapy. In order to gain more information in this sense, 
in vitro analyses could be conducted using patient-specific 
cells, the calibrated parameters measured experimentally 
could be translated to the macroscale model. Neverthe-
less, this has to be taken with caution since cells might not 
exhibit same behaviour in in vitro and in vivo conditions. 
Thus, as future work, the parameters of these macroscopic 
models can be fed by in vitro experiments, in order to 
build a full patient-specific model. In this field, microflu-
idic experiments are an excellent tool for understanding 
early tumour formation. Organoids experiments allow to 
reproduce the initial avascular steps in tumour develop-
ment, as well as the vascular phase in bigger experimen-
tal set-ups. The combination of these experiments with 
physics-based models and the calibration of the former can 
feed the biological parameters of the macroscopic models 
[20, 46, 47].

The availability of data for paediatric malignancies is typ-
ically restricted, as minimising clinical testing for children 
is a priority. Additionally, in contrast to other malignancies 
such as breast or prostate cancer, the protocols in cancer 
in the young population are not fully defined. Therefore, 
modellers can obtain different data type acquisition for each 
patient, which makes the research process not straightfor-
ward. Consequently, patient-specific models have become 
increasingly necessary to compensate for the lack of avail-
able information. In this context, computational models 
serve as essential tools to aid in decision-making processes. 
It is important to note that developing models for paediatric 
populations is critical, as it can reduce the need for invasive 
and potentially harmful clinical tests. Despite the challenges 
associated with the limited availability of data, the presented 
computational model represents a promising step forward 
towards improving our understanding of paediatric cancers. 
In light of the above, it is essential to have a prognostic tool 
to help clinicians make decisions in childhood cancer to bet-
ter tailor treatment, adjust dosage and timing, and minimise 
potential side effects. The mechanical model here presented 
is applied to paediatric neuroblastoma cancer, although it 
is sufficiently generalisable to be extended to other types of 
malignancy.
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