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ABSTRACT
Malaria remains one of the most important infectious diseases globally due to its high incidence and mortality rates. The
influx of infected cases from endemic to non-endemic malaria regions like Europe has resulted in a public health concern
over sporadic local outbreaks. This is facilitated by the continued presence of competent Anopheles vectors in non-
endemic countries.

We modelled the potential distribution of the main malaria vector across Spain using the ensemble of eight
modelling techniques based on environmental parameters and the Anopheles maculipennis s.l. presence/absence data
collected from 2000 to 2020. We then combined this map with the number of imported malaria cases in each
municipality to detect the geographic hot spots with a higher risk of local malaria transmission.

The malaria vector occurred preferentially in irrigated lands characterized by warm climate conditions and moderate
annual precipitation. Some areas surrounding irrigated lands in northern Spain (e.g. Zaragoza, Logroño), mainland areas
(e.g. Madrid, Toledo) and in the South (e.g. Huelva), presented a significant likelihood of A. maculipennis s.l. occurrence,
with a large overlap with the presence of imported cases of malaria.

While the risk of malaria re-emergence in Spain is low, it is not evenly distributed throughout the country. The four
recorded local cases of mosquito-borne transmission occurred in areas with a high overlap of imported cases and
mosquito presence. Integrating mosquito distribution with human incidence cases provides an effective tool for the
quantification of large-scale geographic variation in transmission risk and pinpointing priority areas for targeted
surveillance and prevention.
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Main

Among vector-borne diseases, malaria remains one of
the most serious infectious diseases with an estimated
247 million infected human cases and 619,000 deaths

in 2021 (most occurring in Africa) [1]. On the positive
side, malaria was eradicated from many countries,
including the USA and Canada by the 50s and Europe
by the 70s. However, the competent malaria vectors
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(many species of genus Anopheles) are still present in
these non-endemic regions. A recent study estimated
that approximately 50,000 infected people travelled
between 2005 and 2015 from malaria-endemic areas
to 40 non-endemic countries [2]. In the European
Economic Area between 8,200 and 8,600 imported
malaria cases were reported annually for the period
2015–2017 [3]. As a result, local transmission cases
are sporadically recorded in many non-endemic terri-
tories, including Europe. Most of these imported cases
are attributed to Plasmodium falciparum (81.8%) but
also include infections by Plasmodium vivax (4.9%)
and Plasmodium ovale (2.7%) [3]. An important out-
break of P. vivax was reported in Southern Greece in
2011–2012, where local transmission occurred for sev-
eral consecutive years [4]. Among the vast number of
approximately 530 Anopheles species that exist in the
world, only 30–40 species are capable to transmit
malaria in nature [5].

Mosquito abundance and distribution are largely
determined by climate and landscape [6,7]. Consider-
ing multifaceted factors, including climate, environ-
mental conditions, vector presence, number of
imported cases and disease dynamics are crucial for
predicting regions that are susceptible to future out-
breaks [8,9]. For example, understanding and quantify-
ing where a high incidence of imported malaria cases
spatially overlap with a high habitat suitability of vec-
tors will improve our ability to prioritize areas for mos-
quito control and disease prevention in non-endemic
regions. Although malaria in Spain was officially eradi-
cated in 1964 [10], four cases of vectorial transmission,
and 28 other cases of non-vectorial transmissions, such
as congenital, transfusion, nosocomial, or trans-
missions between intravenous drug users have been
recorded in the following years [10]. This highlights
the need to investigate the presence of Anopheles vec-
tors that are competent in those areas where imported
cases have already been detected.

Despite significant efforts to develop risk maps for
vector-borne diseases, there remains a lack of compre-
hensive studies that fully integrate multiple factors
into these maps. Existing research often focuses on
specific aspects, such as vector distribution and expan-
sion [11–13], disease prevalence [14], and imported
cases [15–17]. While these factors are individually
important, it is the interaction between them that
would ultimately determine the risk of transmission
of imported cases into local populations. Unfortu-
nately, detailed information on vector distribution is
often geographically biased and scarce. Moreover,
although much of this information has been collected
in the recent years, it remains uncounted in large bio-
diversity databases (e.g. GBIF (Global Biodiversity
Information Facility)).

To fill this gap, we integrated habitat suitability
models for the main Anopheles vector of Plasmodium

present in Spain with data on the distribution of
human-imported cases from the RENAVE (Spanish
National Epidemiological Surveillance Network). We
identified the areas with a high relative risk of local
malaria transmission through the combined effects
of malaria vector suitability and the distribution of
imported cases.

Material & methods

. Entomological data collection

The A. maculipennis complex includes the main
malaria vectors present in Europe [18]. The data
from the most prevalent species (A. maculipennis
s.l.) were obtained from various sources, including
nine Spanish research groups, national mosquito sur-
veillance centres, and public health control agencies.
The data encompassed unpublished and regional
monitoring programme data from large-scale projects
such as the Bluetongue National Surveillance Program
and REGAVIVEC from the Galician Network of Vec-
tor Surveillance, complemented with data from inter-
national databases like GBIF and iNaturalist, and
published sources. The sampling includes a total of
5749 records between 2000 and 2020, for all Spanish
provinces except for those of the Canary Islands,
which have very different climatic patterns and were
thus excluded from our analysis.

. Molecular identification of the Anopheles maculi-
pennis complex

To estimate the frequency of the different species of
the A. maculipennis complex across Spain, we con-
ducted a literature review and a molecular identifi-
cation of 121 adult specimens. These mosquitos were
sampled from 2019 to 2023 in 10 Spanish regions
(Figure S1) and preserved either in 70% ethanol or
stored at −80°C until further analysis. We extracted
genomic DNA from single mosquitoes using the Max-
well® 16 LEV system Research (Promega, Madison,
WI) with the Maxwell ® 16 LEV Blood and Tissue
DNA kit, following the manufacturer’s protocol. Mol-
ecular identification of the sibling species of the
A. maculipennis complex was carried out using a
PCR-RFLP protocol [19], (see Supplementary material
for further details of the procedure and the infor-
mation gathered from the literature).

. Human imported cases

Data on the imported cases of malaria between
2005 and 2020 were obtained from RENAVE. The
data provide information for the municipality where
the case was registered, the residence municipality,
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the country of residency, the country of origin, and the
date of diagnosis for each patient. For the analyses, we
only considered records with information on the resi-
dence municipality (5718 out of 8254 records). The
polygon shapefiles of the municipal boundaries of
Spain were obtained from Eurostat (https://ec.
europa.eu/eurostat).

To effectively visualize the spatial distribution of
imported cases and overlap them with the probability
distribution of the vector, we used municipality codes
as a unique code to join the number of imported
malaria cases in each municipality to the vector distri-
bution map.

Vector distribution and environmental
parameters

To understand the association between climate vari-
ables and A. maculipennis s.l. distribution, we used
monthly time series of climate data from the Terracli-
mate dataset [20]. The dataset provides climate infor-
mation on minimum and maximum temperature and
precipitation with a spatial resolution of approxi-
mately 4 km. We particularly focused on a period
from 2000 to 2020, aligning with the availability of
the species points. We then used this information to
drive the corresponding set of bioclimatic variables
using the R package dismo [21].

We expanded our analysis by incorporating wind
speed and runoff data into our model, which were
sourced from the same data provider, with the

assumption that factors such as high wind speed and
runoff could affect mosquitoes’ distribution and survi-
val. Our choice of variables reflects those known to
impose general constraints on the suitability of
A. maculipennis s.l. distribution (See Table S1)
[22,23]. Moreover, to avoid issues related to spatial
autocorrelation [24,25], we generated regular grids
with 2 × 2 km cell size and assigned presence/absence
points to the corresponding grid cell, ensuring that
only one point lies inside each grid cell (Figure 1a).
Anopheles maculipennis s.l. was considered present
when at least one sample point inside the grid cell
indicated its presence and was considered absent
when all the points inside the cell were absences. In
this way, we removed duplicated points and those
that had nearest neighbours at a distance lower than
2 km (Figure S1).

We downscaled the climate data using Inverse Dis-
tance Weighting (IDW) following the approach pro-
posed by Donald Shepard, (1967) [26] and using the
raster package in R [27]. IDW is a method of interp-
olation that estimates cell values by averaging the
values of sample data points in the neighbourhood
of each processing cell. The closer a point is to the
centre of the cell being estimated, the more influence,
or weight it has in the averaging process [28].
The output cell size and other parameters of the new
raster layers were matched to the 2 × 2 km grid of
the A. maculipennis s.l. occurrence points (Figure 1a).

To avoid multicollinearity, we calculated the Var-
iance Inflation Factor (VIF) and absolute correlation

Figure 1. General methodological framework. The overall process for identifying high-risk transmission areas according to the
high probability distribution of the vector and the incidence of imported malaria. a) Data preparation: this step involves cleaning
and wrangling mosquito occurrence points to ensure data quality and consistency. b)Modelling techniques: details used to ident-
ify areas with a high probability of A. maculipennis s.l. occurrence and the number of imported cases in each Spanish municipality.
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coefficient between all predictor variables using the
rsdm R package [29]. Variables with VIF > 10 were
excluded from the models. As a result of variable selec-
tion and multicollinearity test, we ended up with the
following variables: annual mean temperature
(bio.1), temperature seasonality (bio.4), max tempera-
ture of the warmest month (bio.5), annual precipi-
tation (bio.12), precipitation seasonality (bio.15),
annual runoff, and wind speed.

We obtained CORINE-land-cover 2018 from
Copernicus (European Union’s Earth observation
programme). The CORINE dataset is available in sha-
pefile format with 44 classes. To reduce the complexity
of the analysis, we reclassified original categories into
seven land cover classes: urban area, urban green
space, irrigated lands, agricultural lands, inland waters
(water bodies), open spaces (e.g. beaches, dunes,
sands, bare rocks, burnt areas, glaciers, and perpetual
snow), and natural ecosystems (e.g. broad-leaved for-
est, coniferous forest, mixed-forest, natural grasslands,
moors and heartland, sclerophyllous vegetation, tran-
sitional woodland-shrub, sparsely vegetated areas).
The proportion of each of the seven land-cover cat-
egories was calculated within each 2 × 2 km grid of
species ranges. All the analyses were carried out in
RStudio version 3.3.1 (R Core Team 2019).

. Statistical analysis

To examine the association between climate and
land-cover prediction with the presence/absence of
A. maculipennis s.l., we developed an ensemble species
distribution model using the sdm package in R [29].
We modelled the presence/absence distribution of
the vector as a function of the six climate and seven
land-cover variables. To improve the robustness of
our model, we used an ensemble modelling framework
[30] integrating eight different algorithms for model-
ling the presence/absence of A. maculipennis s.l.: gen-
eralized linear models (GLM; [31]), generalized
additive models (GAM; [32]), random forest (RF;
[33]), flexible discriminating analysis (FDA; [34]),
boosted regression tree (BRT; [35]), support vector
machines (SVM; [36]), multivariate adaptive
regression splines (MARS;[35]), and artificial neural
network (ANN; [37]) (Figure 1b). Ensemble modelling
helps to address uncertainties associated with model
selection and variability by incorporating multiple
models with different algorithms, data, and assump-
tions [30]. It also improves prediction accuracy and
provides more robust and reliable insights, reducing
the impact of individual model limitation error (see
also [38]). The variability in variable importance
across different modelling techniques stems from
differences in model characteristics, assumptions,
how they handle and interpret the data, and the mod-
ellings of variable interactions (Figure S2). That is why

it is highly recommended to use ensemble models,
which combine multiple models and generally offer
more reliable variable importance measures [38].

To avoid biases in parameter estimation, we used a
bootstrapping method [39,40] with 100 random repli-
cations for each modelling technique. Bootstrapping
repeats a sampling with replacement, each time draw-
ing a sample with equal size as the original data for
training data. The observations that are not selected
are used for the evaluation at each run. We then gen-
erated a consensus model, using the weighted average
probability for vector data, where the weight was
obtained from the area under the curve (AUC) in
evaluation data (e.g. [41]).

To identify high-risk areas for malaria, we first
computed the incidence rate in each municipality by
dividing the number of positive imported cases by
the population living in the municipality [42]. Second,
we multiplied the number of incidences by the median
probability distribution of the vector species within
each municipality to find the hot-spot areas where
the high probability of the vector coincides with a
high malaria incidence rate.

Results

The joined data of the molecular analyses and litera-
ture review showed that 78,6% of the total individuals
analyzed in Spain (n = 229) were A. atroparvus. This
species was predominant in all the regions analyzed.
The remaining 21,4% (n = 49), identified as
A. maculipennis s.s., were mainly found in the north-
ern areas of Spain, co-occurring with A. atroparvus
(Figure S3). Most A. maculipennis s.s. occurred in
País Vasco (46 of the 50 individuals identified as
A. maculipennis s.s. for all of Spain) and outside
north Spain, A. atroparvus represented 97,3% of the
analyzed individuals. Consequently, A. atroparvus
can be considered the most common species within
the A. maculipennis complex in Spain.

The ensemble of eight modelling techniques clearly
showed that A. maculipennis s.l. has a strong incli-
nation towards irrigated lands (e.g. rice fields and
permanently irrigated lands) in areas with warm
climate (Figure 2b). Overall, habitat suitability for
A. maculipennis s.l. increased as the maximum temp-
erature in the warmest month increased (Figure 2c)
and decreased with high-temperature seasonality
(the amplitude of annual cycle temperature) and
mean annual temperature.

Moderate precipitation increased the likelihood of
A. maculipennis s.l. occurrence, although high levels
of precipitation decreased its suitability. The same
trend was observed for wind speed and surface
runoff water, where moderate levels of these variables
positively influenced the suitability forA. maculipennis
s.l., while higher levels had a negative impact (Figure
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2c). However, these two variables make a small contri-
bution to the model fit (Figure 2b). These findings
revealed that the suitability of the vector decreased in
areas characterized by intensive agricultural lands
where more than 40% of the land within a 2 km grid
was dedicated to crop cultivation. Furthermore, natu-
ral ecosystems, such as broad-leaved forests, conifer-
ous forests, natural grasslands, and heathlands, were
also found to contribute to the association reducing
the suitability of the vector habitat. In addition, while

urban areas typically exhibit lower suitability for
A. maculipennis s.l. mosquitoes, the presence of
green urban spaces and sport leisure facilities within
cities can create microhabitats that are conducive to
the presence of vectors and reproduction.

The primary locations for the presence of
A. maculipennis s.l. are in central Spain (e.g. Madrid,
Toledo) as well as areas surrounding the main rivers
and associated irrigated lands in the North-East and
South-West of Spain. These areas include the Ebro

Figure 2. Habitat suitability, variable importance, and response curves of A. maculipennis s.l. using an ensemble of eight modelling
techniques and 100 repetitions for each model. a) Habitat suitability, b) Variable importance (% IncMSE): quantifies the relative
contribution of 12 environmental variables in modelling the habitat suitability of the vector (darker colours correspond to the
higher contribution of the model), c) Response curves illustrate the relationship between the probability of occurrence of
A. maculipennis s.l. (response) in the Y-axis and the corresponding environmental variables (X-axis). The 95% confidence level
interval is shown in grey.
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River valley (e.g. Zaragoza, Huesca), the Guadalquivir
River valley and nearby agricultural areas (e.g. Cor-
doba, Huelva) (Figure 3).

Overall, our models demonstrated good modelling
performance with an AUC ranging between 0.7 and
0.8 for all modelling techniques, except RF which
had a very good performance <0.9 (Figure S4 and
Figure S5). RF outperforms other methods due to its
ensemble learning nature, aggregating predictions
from multiple decision trees via bagging (bootstrap
aggregation), which prevents overfitting by combining
predictions from diverse trees trained on varied data
subsets.

Between 2005 and 2020, a total of 8254 imported
malaria cases were identified in Spain. Most of them
were produced by P. falciparum (n = 6795, 82,3%),
with smaller numbers of cases attributed to
P. vivax (n = 352, 4,3%), P. ovale (n = 191, 2,3%),
and P. malariae (n = 132, 1,6%). The Plasmodium
species was not reported for 625 cases (7.7%, Figure
S6, Figure S7). The major sources of imported
malaria cases in Spain can be traced back to various
countries in sub-Saharan Africa, such as Equatorial
Guinea (n = 1523), Nigeria (n = 852), Mali (n =

781), Senegal (n = 451), Guinea (n = 291), Ghana (n
= 276), and Cameron (206). Additionally, South
American countries, including Venezuela (n = 25),
Ecuador (n = 15), Colombia (n = 14), and Honduras
(n = 17), as well as certain countries in South and
Southeast Asia, such as Pakistan (n = 87), India (n
= 28), Cambodia (n = 14), and Indonesia (n = 5)
have also contributed to the imported malaria cases
observed in Spain during the study period (Figure
4b). The number of imported malaria cases in
Spain follows an upward trend over time rising
from 293 in 2005 to 849 and 795 in 2018 and 2019,
respectively (Figure 4a). However, in 2020, there
was a substantial decline to 213 cases. In addition,
the number of reported cases varied by region,
with more cases identified in Madrid (n = 1187), Cat-
aluña (n = 1198), Comunidad Valenciana (n = 664),
País Vasco (n = 476), and Aragón (n = 293; 76.4%
of cases in Zaragoza). In certain instances, these
areas coincided with regions highly suitable for
A. maculipennis s.l. (Figure 3a), resulting in a more
extensive overlap between vectors and imported
cases in irrigated lands in the Southeast of Spain,
Aragón, and Madrid. Notably, A. maculipennis s.l.

Figure 3. The spatial distribution of transmission risks associated with the high probability distribution of A. maculipennis s.l. and
imported malaria cases. a) The spatial overlap between imported cases and the probability distribution of A. maculipennis s.l. b)
The spatial overlap between the probability distribution of A. maculipennis s.l. and malaria incidence rate (the ratio of confirmed
cases of malaria divided by the total population in each municipality). c) The risk areas of malaria after excluding P. falciparum
from the imported cases.
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is present in neighbourhoods of the South of Madrid
overlapping with an important number of imported
cases (Figure 3b,3c).

Discussion

Here, we identified potential hotspots for malaria trans-
mission combining the information of imported
malaria cases with a detailed analyses of the

environmental factors that determine the presence of
A. maculipennis s.l. Our models suggest that the
combination of high summer temperature with low-
temperature variability, moderate precipitation and
the presence of irrigated lands create a suitable environ-
ment for the proliferation of A. maculipennis s.l. [40].

Hence, Spanish municipalities located near irri-
gated lands with warm summer temperatures are
likely to hold significant populations of

Figure 4. Number and origin of malaria cases in Spain. a) Indicates the general trend of imported malaria cases from 2005 to 2020.
The dashed line represents the total number of imported malaria cases, while the solid line represents the subset of imported
cases with registered municipalities. The dashed line on the left side represents notification rate (reported cases in relation to
the total population ×100,000). b) Geographic distribution and country of origin of imported malaria cases in Spain.
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A. maculipennis s.l.. These species exhibit a pro-
nounced preference for the Continental climatic
zones in Spain, as it is predominantly found in these
specific regions (Figure 2a). Seemingly, the Continen-
tal Mediterranean climate, characterized by distinct
seasonal dynamics encompassing hot summers and
cold winters, along with regions featuring theMediter-
ranean climate with hot and dry summers, provide
suitable environmental conditions for the distribution
and proliferation of A. maculipennis s.l..

The overlap between mosquito distribution maps
with the imported malaria cases indicates the presence
of high-risk areas associated with irrigated lands (e.g.
rice fields) in different parts of Spain (e.g. the Ebro val-
ley and Huelva). Additionally, different localities
around Madrid also present a large degree of overlap
between imported cases and habitat suitability for
Anopheles mosquitoes. Notably, in 2001, a locally
acquired case of malaria produced by P. ovale was
detected in a person who had not travelled to endemic
countries in a locality of East of Madrid [43]. Also, a
previous case of infection by P. falciparum in a nearby
locality was reported in 1984 [44]. While these two
cases may be considered cases of airport malaria, i.e.
caused by the arrival of infected vectors because of air-
port activities, the distance of these localities to the air-
port and the activity patterns of the two infected
persons could also be compatible with transmission
by locally infected vectors. Afterwards, in 2010,
another infection by P. vivaxwas detected in a resident
in a locality close to the Ebro valley in Huesca, with the
onset of symptoms in September [45]. Four years later,
another infection by P. vivax genetically related to a
nearby imported case from Pakistan, was reported in
a locality of Navarra, starting symptoms in August
[46]. These two cases highlight how the distribution
of the sporadic cases of local malaria transmission in
rural or nearby areas of Huesca and Navarra overlaps
with the high-risk areas highlighted in our study
(Figure S8), with the season of maximum suitability
(e.g. temperature, humidity) for local vectors to be
active. At the moment, the risk of local transmission
of malaria imported from Africa in Spain is considered
low, bearing in mind that A. atroparvus is competent
for P. vivax but seems to be refractory to
P. falciparum tropical strains, which are responsible
for the majority of imported cases [47]. However,
the risk may be higher in regions with a high suit-
ability for vectors and an increased likelihood of
imported cases originating from endemic regions
where P. vivax circulates, such as Latin America or
Asia. The exclusion of P. falciparum from our analysis
underscores the comparability, as it still identifies the
same high-risk regions (Figure 3b,3c).

Moreover, a majority of the imported cases tend to
occur during months characterized by favourable con-
ditions for the development of Anopheles mosquitoes

and temperature conductive to Plasmodium trans-
mission (see Figure S9). Considering the above-men-
tioned reasons along with the possibility of ongoing
changes in travel patterns and in the malaria epide-
miology in endemic countries, we should be aware
about the need of updating risk assessment based on
all these factors and incorporate surveillance of Ano-
phelesmosquitoes to the National Plan for the preven-
tion, surveillance, and control of vector borne
pathogens [48].

However, this should be considered as a relative
indicator of transmission across Spain, and not as an
absolute estimator, because the low incidence of auto-
chthonous transmission suggests that establishment
risk remains low. The widespread distribution of
A. atroparvus highlights the need for early detection
and treatment of malaria imported cases. Moreover,
the risk maps we provided here aim to guide public
health strategies and interventions by allowing stake-
holders to prioritize resources and implement targeted
mosquito prevention and control measures in the
areas where the potential for disease transmission is
higher [49]. In these areas, favouring the use of per-
sonal protection with topical repellents and other
mosquito prevention measures, may successfully
reduce disturbance by Anopheles mosquitoes and the
risk of transmission of mosquito-borne pathogens.

Accurately estimating the risk areas associated with
the habitat suitability of Anopheles mosquitoes
requires robust data and advanced methodologies,
encompassing predictor selection and modelling tech-
niques. In this study, we used a unique dataset con-
taining the presence/absence of A. maculipennis s.l.,
which was collected in collaboration with numerous
entomologists throughout Spain from 2000 to 2020.
Nevertheless, it is important to acknowledge that
this dataset may be subjected to certain data uncer-
tainties and biases. For example, we are aware that a
small percentage of the records may correspond to
any of the two sibling species of the A. maculipennis
complex, although our molecular analyses support
that A. atroparvus may dominate the captures
included here. Similar data may exist for many other
regions in Europe, but up to now, it is not easily avail-
able through biodiversity platforms such as GBIF.
Therefore, the collaboration between field ecologists,
entomologists, modellers, epidemiologists, and public
health services is necessary to reverse this situation.

However, while the geographic distribution of
A. maculipennis s.l. is a crucial factor in assessing
the potential risk of malaria transmission, the actual
risk is indeed determined by the concurrent presence
of infected human hosts. Although previous studies
have analyzed the distribution of imported malaria
cases across non-endemic countries [15], it is the over-
lap with the distribution of competent vectors that
ultimately determines transmission risk [11]. While
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most of the imported cases in Europe, and particularly
in Spain, correspond to P. falciparum, most of the
local transmission cases in Europe are caused by
P. vivax and P. ovale. This could be due to the higher
vector competence of European populations of
A. atroparvus for these species and the apparent
refractoriness of this mosquito species to current var-
iants of P. falciparum circulating in Africa [45]. Exper-
iments done using African variants of P. falciparum
and A. atroparvus from Italy, Portugal or Spain,
have reported low rates of oocysts development, and
no sprorozoites development in the mosquitoes from
Italy and Spain [50,51]. Unfortunately, the develop-
ment of sporozoites was not followed in the study
from Portugal, although rates of oocysts development
were higher than in the other studies, probably due to
the modification of the temperature conditions of the
assays [52] and the study from Spain has not been
published yet, and consequently the details from the
experimental protocols are not available [51]. How-
ever, some local transmission cases of P. falciparum
have been reported in Western Europe, which high-
lights the need to experimentally determine the com-
petence of autochthonous Anopheles species for the
transmission of the main Plasmodium variants cur-
rently circulating worldwide. We incorporated
P. falciparum into our study because it was one of
the original species producing malaria in Spain and
owing to the limited scientific evidence supporting
the refractoriness of A. atroparvus. It should be
noted also that imported cases of both P. ovale and
P. vivax are widely distributed throughout Spain´s
geography (Figure. S6 See also Figure 3c). These
pathogens may cause relapses years after the first
infection [53], highlighting the need for appropriate
antimalarial treatment of imported cases.

We also need to consider that reporting of
imported cases may be biased against segments of
the population more reluctant to use medical services,
and it may represent an underestimation of the real
number of imported cases. In fact, in none of the
recent local transmission cases in Spain was possible
to identify the imported case that originated the trans-
mission. Improving the reporting system to reduce the
presence of incomplete records and improve data
quality is imperative given the significant proportion
of incomplete registers in RENAVE, especially in
relation to the municipality of residence and Plasmo-
dium species. The increasing number of imported
cases in Spain, except for 2020, probably due to
COVID-19 travel restrictions, reflects the improve-
ment of the coverture and communication of cases
to RENAVE, and the increase in international travels,
and can not be interpreted in itself as an estimator of
levels of Plasmodium circulation in the countries of
origin in the last 15 years [17].

In sum, this study demonstrates the utility of using
multidisciplinary approaches to develop high-risk
maps to identify areas prone to malaria re-introduc-
tion. By combining data on the competent vector dis-
tribution, environmental parameters, and imported
malaria cases, we have gained insights into the geo-
graphical hotspots of transmission risk. This infor-
mation can be used as a foundation to create
comprehensive risk maps that highlight areas with a
higher likelihood of malaria transmission. Such
maps can be instrumental in guiding public health
efforts, including targeted mosquito control measures,
enhanced surveillance and monitoring, and the allo-
cation of resources for prevention and treatment. By
identifying high-risk areas, we can prioritize interven-
tions and interventions, ultimately working towards
the goal of protecting public health.
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