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A B S T R A C T   

Depression is an incapacitating psychiatric disorder with increased risk through adolescence. Among other 
factors, children with family history of depression have significantly higher risk of developing depression. Early 
identification of pre-adolescent children who are at risk of depression is crucial for early intervention and pre
vention. In this study, we used a large longitudinal sample from the Adolescent Brain Cognitive Development 
(ABCD) Study (2658 participants after imaging quality control, between 9–10 years at baseline), we applied 
advanced machine learning methods to predict depression risk at the two-year follow-up from the baseline 
assessment, using a set of comprehensive multimodal neuroimaging features derived from structural MRI, 
diffusion tensor imaging, and task and rest functional MRI. Prediction performance underwent a rigorous cross- 
validation method of leave-one-site-out. Our results demonstrate that all brain features had prediction scores 
significantly better than expected by chance, with brain features from rest-fMRI showing the best classification 
performance in the high-risk group of participants with parental history of depression (N = 625). Specifically, 
rest-fMRI features, which came from functional connectomes, showed significantly better classification perfor
mance than other brain features. This finding highlights the key role of the interacting elements of the con
nectome in capturing more individual variability in psychopathology compared to measures of single brain 
regions. Our study contributes to the effort of identifying biological risks of depression in early adolescence in 
population-based samples.   

1. Introduction 

Adolescence is a period in life with substantial neural and hormonal 
changes which are also accompanied with noticeable changes in 
behavior. However, some of these changes may result in maladaptive or 
unpleasant behaviors that can lead to long-term effects with its conse
quent negative impact on individuals and their families and commu
nities. In fact, many psychiatric disorders have their onset in the 
adolescent period (Kessler et al., 2005; Paus et al., 2008). Given that, it is 
of great importance for biomedical sciences to predict the risk for psy
chiatric disease onset in adolescents. Achieving that, more effective 
preventions and treatments can be applied, with consequent improve
ment in the quality of life for those individuals at risk. 

Depression is a prevalent psychiatric disorder, highly recurrent and 
with a negative impact on quality of life (Kessler and Bromet, 2013; 
Tolentino and Schmidt, 2018). It has a broad spectrum of symptoms that 

may include anhedonia, sleep difficulties, and suicidal ideation, among 
others (Tolentino and Schmidt, 2018), and is considered the most 
prevalent cause of disability worldwide (Smith, 2014; Friedrich, 2017). 
Many variables contribute to a higher risk of developing depression 
including genetics, socio-economic factors, or environmental stress 
(Hammen, 2018; Zajkowska et al., 2021). Among these risk factors, 
parental history of depression significantly increases the risk of 
depression in offspring to three to five folds higher than individuals 
without it (Lieb et al., 2002; Weissman, 2016). Therefore, it is important 
to identify biomarkers for depression in high-risk populations of ado
lescents with parental history of depression. From a human neuroscience 
perspective, several studies have focused on the prediction of depression 
based on neuroimaging data (MacQueen, 2009; Nouretdinov et al., 
2011; Gao et al., 2018; Lai, 2021). However, most studies focused on 
adult samples and how they differ from (well-balanced) control partic
ipants. Additionally, these studies were limited by relatively small 
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sample sizes and the lack of longitudinal designs. Longitudinal designs 
are a fundamental tool to describe prospective lifespan changes at the 
individual level (Chen et al., 2021; Gracia-Tabuenca et al., 2021). 
Considering the importance of predicting the onset of depression, more 
research is needed in early or pre-adolescent groups from large 
community-based samples which better represent the population. 

These limitations can be overcome with recent large scale open sci
ence projects. To address the better characterization of the onset of 
psychiatric disorder in the early stages of adolescence, the ABCD Study 
encompasses longitudinal follow-ups of ~12 k participants of 9–10 years 
old accounting for their phenotypical, neuroimaging, and genetic 
assessment (Volkow et al., 2018). Two recent studies have evaluated the 
onset of depression in open datasets in adolescent samples using neu
roimaging features, with modest prediction performances (Toenders 
et al., 2019, 2022; Ho et al., 2022). One study combined structural 
Magnetic Resonance Imaging (MRI), clinical, and environment assess
ment scores in 14-year-old adolescents from the IMAGEN consortium 
data to predict the onset of major depression at 2- and 5- year follow-up 
(Toenders et al., 2022). They reported that baseline depression severity 
at age 14, female sex, neuroticism, stressful life events, and surface area 
of the supramarginal gyrus were the strongest predictors for depression 
onset. However, functional MRI (fMRI) features were not included as 
predictors. A second study examined depression symptoms from a 
younger sample of 9- and 10-year-old children from the ABCD study and 
found that parental mental health, family environment, and child sleep 
quality were the top predictors of depression symptoms at the baseline 
and at the 1-year follow-up, while brain features had relatively weaker 
prediction power (rest fMRI) or little to no predictive power (structural 
MRI) (Ho et al., 2022). These studies identified possible behavioral, 
demographic, and environmental risk factors for depression and pro
vided early evidence for different brain imaging markers for depression 
in adolescents. However, the mixture of clinical and neuroimaging 
predictors together makes it difficult to elucidate the potential predic
tive power of different types of brain imaging data. 

The present study aims to predict the onset of depression in early 
adolescence based on a set of comprehensive brain features measured by 
multimodal MRI. To do so, we included the ABCD Study data from the 
baseline and 2-year follow-up, when a larger proportion of participants 
have developed depression, compared to the 1-year follow-up investi
gated by Ho et al. (2022). We applied multivariate techniques to extract 
features from structural, diffusion-weighted, and (rest and task) fMRI at 
the baseline visit and tested how well these different types of brain 
features predict depression onset at the two-year follow-up. We are 
particularly interested in vulnerability factors in the subsample of par
ticipants with parental history of depression, given the higher risk of 
developing depression in this subsample of children (Lieb et al., 2002; 
Weissman, 2016; Ho et al., 2022). In sum, this study uses the biggest 
longitudinal early adolescent neuroimaging sample currently available 
to predict the onset of depression at the two-year follow-up, by inte
grating and comparing a comprehensive set of multimodal MRI brain 
imaging features, using a rigorous cross-validation method (leave-one- 
site-out) and focusing on a high-risk group of adolescents with familial 
risk of depression. 

2. Methods 

2.1. Sample 

The sample of the ABCD Study includes 11875 participants between 
9 and 10 years old who are followed periodically in an intended span of 
10 years. Baseline sampling occurred between September 2016 and 
August 2018 through 21 sites distributed across the United States of 
America. The study was approved by each site’s Institutional Review 
Board (Garavan et al., 2018). The final set of participants included in 
this study are described in section 2.8 below. 

For this study, phenotypic data at baseline and at the two-year 

follow-up was extracted from the ABCD 3.0 release from the National 
Institute of Mental Health Data Archive (NDA) repository, as well as the 
baseline derivatives available from the MRI data: structural MRI, 
diffusion-weighted imaging, and task-based and rest-fMRI. Additionally, 
preprocessed functional connectivity matrices at baseline were extrac
ted from the ABCD-BIDS Community Collection (ABCD collection 3165; 
https://github.com/ABCD-STUDY/nda-abcd-collection-3165). 

2.2. MRI acquisition 

Imaging protocol was harmonized for three types of 3 Tesla MR 
manufacturers (General Electric, Phillips, and Siemens). T1- and T2- 
weighted sequences were 1 mm3 isometric size. Diffusion-weighted 
images (DWI) were 1.7 mm3 isometric size with multi-band accelera
tion factor of 3, and 96 directions at different b-values (0, 500, 1000, 
2000, and 3000). Functional MR images (fMRI) consisted in gradient- 
echo EPI (Echo Planar Images) with 2.4 mm3 isometric size, multi- 
band acceleration factor of 6, repetition time TR = 800 ms, and echo 
time TE = 30 ms. More information about MR sequences can be found at 
Casey et al. (2018). 

2.3. fMRI paradigms 

fMRI sequences include four 5-minute runs of resting condition and 
three task-specific paradigms with two runs each. In the rest runs par
ticipants were asked to remain still with their eyes open while seeing a 
fixation crosshair. Task-fMRI paradigms include a Monetary Incentive 
Delay (MID) task, a stop signal task (SST), and an emotional N-back task. 
For detailed descriptions of the tasks, please see supplementary methods 
material. 

2.4. MRI preprocessing 

More detailed information about MRI preprocessing can be found at 
Hagler et al. (2019). Briefly, structural MRI (sMRI) underwent scanner- 
specific gradient nonlinearity distortion correction, intensity in
homogeneity correction via B1-bias field estimation, and were regis
tered and resampled to an isotropic standard space. Cortical surface and 
subcortical segmentations were extracted using FreeSurfer v5.3. Struc
tural measurements include cortical thickness, area, volume, sulcal 
depth, and intensity for T1w, T2w, and T1w/T2w ratio. Also, weighted 
averages for fuzzy-cluster parcellations based genetic correlation were 
computed (Chen et al., 2012), as well as intensity scores for the volu
metric subcortical regions were included. 

DWI were corrected for eddy currents, motion, susceptibility 
distortion, and gradient nonlinearity distortions. Major white matter 
fiber tracts were segmented using AtlasTrack. Diffusion Tensor Imaging 
(DTI) analysis were applied and standard measures were extracted: 
fractional anisotropy (FA), mean (MD), longitudinal (LD), and trans
verse (TD) diffusivity. 

fMRI volumes were corrected for motion, susceptibility distortion, 
and gradient nonlinearity distortions. Task-fMRI contrasts were assessed 
using a general linear model (GLM) and calculated for each region of 
interest (ROI). GLM included as covariates baseline, quadratic trends, 
motion estimates, and their derivatives. Motion covariables were band- 
pass filtered at 0.31–0.43 Hz using an infinite impulse response (IIR) 
filter. Also, time points with a framewise displacement (FD) above 0.9 
mm were censored. Rest-fMRI underwent additional preprocessing steps 
including removal of initial volumes, normalization, regression, tem
poral filtering (0.009–0.08 Hz), and calculation of average ROI time 
series. Functional connectivity matrices were calculated via Fisher 
transformed cross-correlation of the ROIs time series. Time points with 
FD higher to 0.2 mm were not included in the correlation. These 
matrices included pairwise connections between 352 ROIs: 333 cortical 
areas (Gordon et al., 2016) plus 19 subcortical regions from the Free
Surfer segmentation. 
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2.5. Target variable 

The target variable for the prediction models is the depression onset, 
defined as a binary variable if any of the 8 diagnostic scores of the 
parental Kiddie Schedule for Affective Disorders and Schizophrenia 
(KSADS-5; Kaufman et al., 1997) was positive at the two-year follow-up. 
The scores included persistent depressive disorder past, present or in 
partial remission; major depression disorder past, present or current in 
partial remission; and unspecified depressive disorder past or current. At 
two-year follow-up, data from 6317 matched participants was available 
(depression onset: Yes = 358; No = 5959; prevalence = 5.67 %). 

2.6. High-risk group with parental history of depression 

Considering previous findings of higher vulnerability for depression 
risk in subjects with parental history of depression (Lieb et al., 2002; 
Weissman, 2016), we further tested a subset of participants who re
ported maternal and/or paternal history of depression based on parental 
responses on the ABCD Family History Assessment. From the previous 
sample, a subset of 1854 participants (depression onset: Yes = 195; No 
= 1656; prevalence = 10.52 %) from the two-year follow-up had 
parental history of depression. 

2.7. Predictors 

All predictor variables were selected from baseline, this way the 
classification tests the prospective prediction of depression onset at the 
two-year follow-up. Brain features include: 1196 from sMRI, 1140 from 
DTI, 2548 from task-fMRI, and 61776 from rest-fMRI. 

sMRI features included structural measures of 71 cortical regions 
from the Desikan-Killiany atlas (Desikan et al., 2006) plus 36 weighted 
average regions for the genetically derived fuzzy-cluster parcellations 
(2, 4, and 12 clusters) (Chen et al., 2012). For these 107 regions, four 
features were selected: cortical thickness, sulcal depth, surface area, 
gray matter volume. Additionally, for these 107 ROIs, another six fea
tures for (three for each T1 and T2 images) were extracted from the 
average intensity of white matter (voxels 0.2 mm from the white matter 
surface), gray matter (voxels 0.2 mm from the white matter surface), and 
white–gray contrast. Finally, from the 40 subcortical regions, three 
features were selected: volume, and T1 and T2 average intensity; plus 6 
volumetric features from gross parcellations (i.e., 107*4 + 107*6 +
40*3 + 6 = 1196). 

DTI features included four standard measures (FA: fractional 
anisotropy; MD: mean diffusivity; LD: longitudinal diffusivity; and TD: 
transverse diffusivity) extracted from 285 ROIs: 42 tracts and 30 
subcortical regions, plus the sub/adjacent white-matter, cortical gray 
matter, and gray/white matter contrast associated with 71 cortical re
gions; resulting in a total of 1140 features (i.e., 4*(42 + 30+(3*71)) =
1140). Major white fiber tracts were labeled via AtlasTrack (Hagler 
et al., 2009), while cortical and subcortical ROIs were extracted from the 
Desikan-Killiany atlas. 

Task-fMRI features consisted of the two-run average beta weight 
divided by its standard error from its corresponding contrast within 68 
cortical plus 30 subcortical regions from the Desikan-Killiany atlas. 
Specifically, MID, SST, and N-Back task-fMRI include 980, 686, and 882 
features resulting from their corresponding ten, seven, and nine con
trasts, respectively. The resulting 2548 variables were pooled together 
for the prediction analysis. 

Rest-fMRI features were derived from the 61776 pairwise functional 
connectivity variables from the upper triangle of the preprocessed 
352x352 ROI-ROI connectivity matrices. 

2.8. Inclusion/exclusion criteria 

From the full sample at baseline, 6317 participants with at least 8 
min of low-motion rest-fMRI data (i.e., more than 600 timepoints with 

FD < 0.2 mm) and available MRI derivatives were selected. Also, 854 
participants were excluded due to positive scores in the diagnostic bi
polar variable in either the parental or youth report on their baseline 
KSADS. Additionally, 177 participants were excluded because of 
discrepancy in the parent and child K-SADS reports: due to the relatively 
young age of this sample, we kept the cases where the parent reported 
depression in their child, but the child reported no depression, but 
exclude the cases when the parent reported no depression for their child, 
but the child report was positive for depression. From those, 3085 had 
available corresponding target data (KSADS-5) at two-year follow-up. 
159 participants with depression at baseline were removed. Further
more, 128 participants were removed due to missing data in the MRI 
predictors. Finally, three sites which had no positive cases were 
excluded for the prediction analyses (140 participants total). 

The final dataset used in the classification analyses included a gen
eral sample of 2658 participants from 18 sites with complete data at 
baseline and at the two-year follow-up. From these participants, the 
high-risk group of parental history of depression includes 625 partici
pants. Table 1 summarizes the sample selection (Supplementary Fig. 1). 

2.9. Leave-one-site-out cross-validation 

Training and testing data splitting was performed using a leave-one- 
site-out (LOSO) cross-validation strategy (Esteban et al., 2017; Nunes 
et al., 2020; Sripada et al., 2021; Huang et al., 2022). This cross- 
validation approach takes each site separately as test data, performs 
the feature selection and model fitting via the machine learning algo
rithm (both described below) on the remaining sites (train data), and 
lastly, the resulting model is used to predict the outcome variable in the 
test data. 

2.10. Feature selection 

Two feature selection strategies were applied to the MRI predictors, 
in order to examine global (PCA) and local predictor effects (AOV), 
respectively. The first feature selection strategy is based on Principal 
Components Analysis (PCA). We extracted the first 75 principal com
ponents (following Sripada et al., 2021) from each of the multi-modal 
features: sMRI, DTI, task-fMRI, and rest-fMRI. We performed an effi
cient PCA based on randomized algorithms (flashPCA2; Abraham & 

Table 1 
Number of participants with or without depression based on the K-SADS scores, 
total number of participants, and depression prevalence, for the general group as 
well as the high-risk group (with parental history of depression). A) Available 
sample at baseline with complete K-SADS; B) Baseline sample matched with 
available MRI derivative and quality-controlled rest-MRI data; C) Final sample 
with complete data at baseline and two-year follow-up, no depression at baseline 
and negative scores in bipolar disorder.  

A) Initial sample: baseline with available K-SADS  

Depression No depression Total Prevalence (%) 

General 741 10993 11734 6.31 
High-risk 409 3066 3475 11.77  

B) MRI matched sample: participants from A) with available MRI derivatives and QC 
rest-fMRI  

Depression No depression Total Prevalence (%) 

General 358 5959 6317 5.67 
High-risk 195 1659 1854 10.52  

C) Final sample: complete data at two-year follow up  

Depression No depression Total Prevalence (%) 

General 132 2526 2658 4.97 
High-risk 59 566 625 9.44  
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Inouye, 2014; Abraham et al., 2017). This approach can handle the 
eigenvalue decomposition of big datasets by decomposing it into sub
matrices of high probability to capture the top eigen-values and eigen- 
vectors. The second feature selection strategy is based on univariate 
analysis of variance (AOV). We tested for each predictor individually 
using a linear model and selected only those variables with statistically 
significant effects p < 0.05. However, for the pairwise functional con
nectivity predictors we set the threshold to p < 0.001 due to the high 
number of features (61776). 

2.11. Prediction analyses 

Prediction was conducted using machine learning algorithms via the 
“caret” library (Kuhn, 2008; RRID:SCR_021138). Specifically, a (logis
tic) elastic net was applied for each type of MRI features. We select this 
model among other machine learning techniques because it can deal 
with the problem of having more predictors than observations by effi
ciently selecting meaningful variables (Zou and Hastie, 2005). This 
method has been widely used in neuroimaging (Mwangi et al., 2014; Sui 
et al., 2020). To deal with class imbalance (only 5–10 % of cases were 
positive), tuning parameters were set by bootstrap and synthetic data 
was generated by Randomly Over Sampling Examples (ROSE; Lunardon 
et al., 2014). ROSE was only applied on the train data to feed balanced 
datasets into the elastic nets. Furthermore, due to class imbalance, 
prediction performance was assessed by the area under the receiver 
operating characteristic curve (AUROC) and the True Negative Rate 
(TNR) conditioned on the True Positive Rate (TPR) being over 70 % 
(TNR|TPR > 0.7). 

We compared the predictive performance of each type of MRI fea
tures against other types of MRI features in a pairwise manner using a 
bootstrap resampling method of 10,000 iterations, to account for the 
variation in sample size among different sites. Then, the difference in 
prediction performance (AUROC and TNR|TPR > 0.7) was standardized 
based on their bootstrapped standard deviation, and its one-sided p- 
value was calculated to account for the polarity of the difference. 
Finally, all sites p-values were combined through the Fisher’s method, 
which multiplies minus two by the sums the p-values transformed by the 
natural logarithm, and this follows a chi-square distribution with de
grees of freedom of two times the number of p-values (Fisher, 1992; 
Heard and Rubin-Delanchy, 2018). Additionally, the combined p-values 
were corrected for multiple comparisons using the False Discovery Rate 
(FDR; Benjamini and Hochberg, 1995). 

3. Results 

3.1. All MRI features predict depression onset better than chance 

When assessing depression onset in the two-year follow-up, the 
classification performance measured by the area under the receiver 
operating characteristic curve (AUROC) in the whole sample (regardless 
of parental depression history) showed that all MRI predictors were 
better than random (0.5) with a 95 %-confidence interval (Table 2; 
Fig. 1; Supplementary Fig. 2). The rest-fMRI features extracted using 
univariate ANOVA (AOV) scored the highest AUROC of 0.62 (95 %-CI: 
[0.577, 0.664]). Nevertheless, this score was not statistically signifi
cantly better than the rest of the multi-modal MRI predictors nor the 
extraction with the PCA feature selection. Regarding the true negative 
rate when setting the true positive rate to 0.7 (TNR|TPR > 0.7), all 
scores were above the random 0.3. Similar to AUROC, rest-fMRI features 
with AOV were the ones with the highest score: 0.44 (95 %-CI: [0.359, 
0.52]). 

3.2. Rest-fMRI outperforms the other MRI predictors in the high-risk 
group 

In the high-risk group with parental history of depression, the 

AUROC and TNR (TPR > 0.7) scores for every type of features showed 
scores better than random (Table 1; Fig. 2; Supplementary Fig. 2), with 
rest-fMRI features via AOV showing the best performance. (AUROC: 

Table 2 
Prediction scores of depression onset at two-year follow-up for the whole sample 
and the subsample of the high-risk parental depression group. Numbers in pa
rentheses represent the 95 % confidence interval lower/upper bound. Scores: 
area under the receiver operating characteristic curve (AUROC), and true 
negative rate conditioned on true positive rate being over 0.7 (TNR|TPR > 0.7).  

Prediction scores of depression onset at the two-year follow-up   

General sample High-risk 

Features Selection AUROC TNR|TPR >
0.7 

AUROC TNR|TPR >
0.7 

sMRI PCA 0.58 
(0.030) 

0.33 (0.081) 0.60 
(0.090) 

0.46 (0.134) 

AOV 0.59 
(0.040) 

0.41 (0.079) 0.64 
(0.077) 

0.43 (0.143) 

DTI PCA 0.59 
(0.027) 

0.35 (0.072) 0.62 
(0.107) 

0.45 (0.162) 

AOV 0.58 
(0.037) 

0.39 (0.085) 0.66 
(0.058) 

0.52 (0.098) 

task- 
fMRI 

PCA 0.60 
(0.046) 

0.41 (0.075) 0.56 
(0.115) 

0.43 (0.135) 

AOV 0.59 
(0.044) 

0.41 (0.088) 0.59 
(0.075) 

0.42 (0.151) 

rest- 
fMRI 

PCA 0.60 
(0.049) 

0.40 (0.085) 0.63 
(0.065) 

0.50 (0.102) 

AOV 0.62 
(0.043) 

0.44 (0.081) 0.72 
(0.065) 

0.60 (0.088)  

Fig. 1. Depression onset prediction performance in the whole sample: MRI 
features predict depression onset better than chance. Area under the receiver 
operating characteristic curve (AUROC) and true negative rate (TNR) when the 
true positive rate (TPR) is set to higher than 0.7 scores for the prediction of 
depression onset at two-year follow-up, for each type of MRI predictor and 
feature selection method, and at each site via a leave-one-site-out (LOSO) 
approach. Crossbars in each box indicate mean with 95 %-confidence intervals. 
Black thick line indicates AUROC and TNR (TPR > 0.7) for a random classifi
cation. Predictor abbreviations: structural MRI (sMRI), diffusion tensor imaging 
(DTI), task-fMRI (Task), rest-fMRI (Rest). Feature selection abbreviations: 
principal component analysis (PCA), univariate ANOVA (AOV). 
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0.72 (95 %-CI: [0.651, 0.781]); TNR (TPR > 0.7): 0.6 (95 %-CI: [0.508, 
0.683]). Furthermore, the AUROC score based on rest-fMRI AOV fea
tures was significantly higher than DTI, task-fMRI features and struc
tural MRI features selected by PCA (Fig. 3). Although it did not survive 
FDR correction, AUROC based on rest-fMRI (AOV) features was 
marginally higher than the structural MRI (with AOV selection) (un
corrected p-value = 0.029). 

3.3. Top rest-fMRI features that predicted depression onset 

Given that the rest-fMRI features extracted via univariate ANOVA 
had overall higher prediction power compared to other features, 
particularly in the high-risk group, we extracted the top features (those 
with a |Cohen’s d| > 0.5) in a post-hoc analysis based on their effect size 
(Figure 4) and included them in Supplementary Table 1. These top 
features were mostly between-network connections that included re
gions in the cingulo-opercular network, default mode network, medial 
temporal lobe regions, and auditory/sensory networks (Figure 4). In the 
subsample with parental history of depression, those participants with 
higher depression risk showed an increase in their functional connec
tivity between the right presubiculum and the right superior frontal 
cortex (Area 9-46d), between the right superior parietal lobule and the 
left auditory cortex, between the right superior temporal sulcus and the 
right temporo-parieto-occipital junction, and between the left premotor 
(Area 6) and the right fusiform face complex. In contrast, participants 
with higher depression risk showed lower functional connectivity be
tween the left operculum (OP1-SII) and the right perirhinal-entorhinal 
cortex (PEC), between the superior and the middle right temporal 
gyri, between the left sensorimotor and the left hippocampus, and 
within the left sensorimotor cortex. 

4. Discussion 

The present study aims to predict the onset of depression in a two- 
year span based on baseline multimodal brain imaging, using the pre
processed data from the ABCD Study sample. We additionally focused on 
a high-risk subsample of participants with parental history of depres
sion. Our results showed that the prediction performance of brain fea
tures is significantly better than chance in both samples, with higher 

Fig. 2. Depression onset prediction performance within the high-risk group: all 
MRI features predicted depression onset better than chance, with rest-fMRI 
features via AOV showing the best performance. Area under the receiver 
operating characteristic curve (AUROC) and true negative rate (TNR) when the 
true positive rate (TPR) is set to higher than 0.7 scores for the prediction of 
depression onset at two-year follow-up in the high-risk group with parental 
history of depression for every MRI predictor and feature selection, and at each 
site via a leave-one-site out (LOSO) approach. Crossbars in each box indicate 
mean with 95 %-confidence intervals. Black thick line indicates AUROC and 
TNR (TPR > 0.7) for a random classification. Predictor abbreviations: structural 
MRI (sMRI), diffusion tensor imaging (DTI), task-fMRI (Task), rest-fMRI (Rest). 
Feature selection abbreviations: principal component analysis (PCA), univariate 
ANOVA (AOV). 

Fig. 3. Pairwise comparisons of depression onset prediction performance of different features: rest-fMRI outperforms the other MRI predictors in the high-risk group. 
A: pairwise difference (weighted by site size) between the subsets of features’ area under the receiver operating characteristic curve (AUROC). The size and the color 
of the squares represents the raw AUROC difference of the row feature minus column feature. B: Minus natural logarithm p-value of the AUROC differences (A) of the 
row feature minus column feature. AUROC is based on the two-year follow-up risk of depression prediction in the subsample with parental history of depression using 
an elastic net classifier. P-values were calculated with the Fisher’s method that combined all sites p-values of the bootstrapped AUROC differences per site. ‘*’ denotes 
a significance after multiple comparison correction of FDR q < 0.05. ‘.’ denotes an uncorrected significance below 0.03. 

Z. Gracia-Tabuenca et al.                                                                                                                                                                                                                     



NeuroImage: Clinical 42 (2024) 103604

6

performance in the high-risk sample. Furthermore, when considering 
the high-risk subsample, the performance of the functional connectivity 
features extracted from the rest-fMRI showed a reasonable performance 
of AUROC = 0.72, which is significantly higher than the rest of the 
features from structural, diffusion, and task-based functional imaging. 

A small number of recent studies have attempted the prediction of 
prospective onset of depression in adolescent samples using neuro
imaging features. Earlier studies with small samples have shown 
promising prediction accuracies. For example, using relatively small 
samples, Foland-Ross et al. (2015) using structural MRI features 
(cortical thickness) into a 5-year follow-up sample (N = 33 girls; 10–15 
years old) found a 70 % accuracy. Also using a pilot sample, Hirshfeld- 
Becker et al. (2019) found in a 3–4 year follow-up study of children with 
family history of depression (N = 25; 8–14 age range at baseline) higher 
prediction scores based on functional connectivity compared to baseline 
clinical scores, on which participants developed major depressive dis
order (MDD). Recent studies based on large multi-site samples have 
started to emerge thanks to the availability of larger open-source data. 
For example, Ho et al. (2022) assessed the prediction of the depression 
symptoms in a 1-year follow-up also in the ABCD Study (N = 7995; 75/ 
25 % train/test) using phenotypical and neuroimaging data as features. 
They predicted slightly above a 10 % of variance, with the parental 
history of depression among the top features, and lower functional 
connectivity between the right caudate and the retrosplenial-temporal 
network being the most relevant brain feature, although neuroimaging 
features showed lower influence compared to phenotypic variables. 
Another study by Toenders et al. (2022) applied machine learning al
gorithms to predict depression onset in a 2- and 5-year follow-up multi- 
site sample (N = 407/137 train/test) of an older cohort of adolescents 
(14-year-olds) using phenotypic and sMRI features. They found similar 
prediction scores (AUROC = 0.68–0.72) to our study, and the surface 
area in the supramarginal gyrus was the highest predictor. It’s worth 

mentioning that when assessing our current performance with the pre
vious multi-site approaches, our results showed promising classification 
scores even though we only used neuroimaging features instead of a mix 
of brain and phenotypic predictors from previous results (Ho et al., 
2021; Toenders et al., 2022). 

A few insights can be learned by considering our results along with 
these previous studies. First of all, prospective depression prediction 
when using large and multi-site samples show modest performance 
compared to lower samples (N < 100) (Gao et al., 2018). This is a 
currently debated topic in neuroimaging, given that most published 
studies rely on small sample sizes which may inflate the effect size 
(Owens et al., 2021; Marek et al., 2022). Particularly, Winter et al. 
(2022) using a large (N > 1800; age range: 18–65 years) sample of adults 
diagnosed with depression and controls found low univariate effects 
sizes when using multi-modal MRI predictors. Nevertheless, our results 
showed that multivariate brain imaging features can still be promising 
biomarkers for the onset of depression in pre-adolescence. One possible 
contributing factor to the higher prediction performance in this study 
compared is the very tight age range in our sample compared to the 
adult study. Moreover, given the relevance of targeting early interven
tion, even modest prediction scores compared to previous studies with 
small samples may be valuable for this goal. 

Lastly, when assessing several multimodal imaging, our results are 
consistent with previous studies that showed that the rest-fMRI features 
tend to show higher prediction scores than the other common MRI 
features (sMRI, DTI, and task) (Morgan et al., 2021; Ho et al., 2022; Ooi 
et al., 2022). This higher performance may be due to the bivariate nature 
of the functional connectivity, which takes into account co-activation 
effects or interactions between brain regions, instead of focalized ones 
from single brain regions such as the structural properties (sMRI and 
DTI) or activation patterns (task-fMRI). Although the number of resting- 
state features were generally higher than other modalities, the higher 
number of predictors per se cannot account for the results. Models with 
the predictors from all modalities combined (i.e., 66660 predictors) 
yielded lower prediction scores (Supplementary Table 3). Rest-fMRI 
may provide valuable information for disease prognosis, even for 
neuropsychiatric diseases with altered behavior associated with specific 
tasks. This is because some task-specific responses may still be operative, 
but the resting-state data may reveal signs of network dysregulation in 
the brain functional connectome. For structural and task data the uni
variate approach is still the most widely used, and these single region 
measures were the currently available in the preprocessed ABCD re
positories. However, bivariate and even more complex approaches have 
already been applied into structural and functional neuroimaging, such 
as morphometric similarity network (MSN), or task-based connectivity 
(Seidlitz et al., 2018; Ooi et al., 2022; Expert et al., 2019). Future 
research based on these network features may yield better prediction 
power. 

Furthermore, in the group with parental history of depression even at 
baseline several functional connectivity features were found related to 
the onset of depression. That indicates that those connections related to 
depression risk are already established before the start of adolescence at 
9–10 years of age. Previous cross-sectional studies have shown that 
children and adolescents with parental history of depression have 
different rest-fMRI patterns than neurotypical samples. Particularly, 
lower functional connectivity between the right supramarginal gyrus 
(rSMG) and dorsal frontal areas were found in participants with parental 
history of depression (Sylvester et al., 2013; Clasen et al., 2014). Also, 
Chai et al. (2016) found higher functional connectivity of the rSMG with 
the right amygdala, as well as within the default mode network in the 
high-risk group. Our present results are broadly consistent with these 
previous findings, showing top predictive features in the lateral parietal 
region and DMN. These studies along with the present work demonstrate 
that the functional organization of the brain from those individuals with 
parental history of depression is different from neurotypical samples. 

Some limitations should be considered regarding the present study. 

Fig. 4. Top rest-fMRI features in the High-Risk group. Brain net (Xia et al., 
2013; RRID:SCR_009446) representation of the top rest-fMRI connections based 
on the High-Risk group inference: right (A), left (B) hemispheres, and dorsal (C) 
views. Chord diagram (Pedersen, 2020; RRID:SCR_021239) depicting those 
connections (D); nodes from each functional network are represented with 
different colors. Edge color depicts Cohen’s d effect. Abbreviations: AUD, 
auditory; CON, cingulo-opercular; CPN, cingulo-parietal; DAN, dorsal attention; 
DMN, default mode; FPN, fronto-parietal; RTN, retrosplenial-temporal; SAL, 
salience; SMH, sensorimotor-hand; SMM, sensorimotor-mouth; SUB, subcor
tical; UNC, uncertain; VAN, ventral attention; VIS, visual. Note that the edges 
from the UNC belong to the Entorhinal Cortex, PreSubiculum, and anterior 
temporal (Area_TE2_anterior). 
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First, parental history of depression was defined based on a self-report 
parental family history questionnaire, which is less rigorous than a 
clinical assessment. However, the higher prevalence of offspring 
depression onset (~2 times higher) in our parental depression group is 
consistent with previous studies, and suggests this definition of parental 
history of depression in this study is a meaningful alternative to formal 
clinical assessment. Another limitation was the use of uncorrected pre
dictors given that previous studies have shown the potential con
founding effect of site (Takao et al., 2014) or scanner effects (Dudley 
et al., 2023) in neuroimaging data derived from multi-site samples. 
Nevertheless, we found that there is no substantial change in our main 
findings when replying our analyses using features corrected by site and 
scanner models (Supplementary Fig. 3). Another potential limitation 
when examining the post-hoc top features is that the predictors varied 
across train-test subsets in the LOSO cross-validation (Supplementary 
Figure 4), nevertheless, the top predictive features showed high agree
ment across the train-test subsets. Lastly, the LOSO cross-validation 
approach is different from the train-test split method commonly used 
in previous studies (Ho et al., 2022; Toenders et al., 2019). We opted for 
LOSO as an appropriate strategy for analyzing this multi-site dataset 
because it enables the assessment of the classification model’s general
izability across different sites. This approach aims to mimic a more real- 
world scenario where the model needs to work on unseen sites, while 
reducing the impact of inner variability (i.e., random-effects) from the 
sites and/or sessions. 

5. Conclusion and future direction 

This work demonstrated that the onset of depression in early 
adolescence can be predicted from multimodal brain imaging data. Our 
results showed that resting-state functional connectivity has promising 
prospective predictive power for depression onset, especially within the 
high-risk group of children with parental history of depression. Future 
work focused on detecting relevant subsets of connections, such as 
Network-Based Statistic (Zalesky et al., 2010), would be suitable for the 
characterization of specific brain circuitry related to depression risk. 
Next releases of the ABCD study, which will contain a larger set of 
participants who have developed depression, will provide opportunities 
to further explore the brain biomarker of depression in early 
adolescents. 

CRediT authorship contribution statement 

Zeus Gracia-Tabuenca: Writing – review & editing, Writing – 
original draft, Visualization, Software, Methodology, Investigation, 
Formal analysis, Data curation, Conceptualization. Elise B. Barbeau: 
Writing – review & editing, Resources, Methodology, Investigation, Data 
curation. Yu Xia: Supervision, Methodology, Investigation, Formal 
analysis, Conceptualization, Writing – original draft, Writing – review & 
editing. Xiaoqian Chai: Writing – review & editing, Writing – original 
draft, Validation, Supervision, Resources, Project administration, 
Conceptualization, Formal analysis, Funding acquisition, Investigation, 
Methodology. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

ABCD Study data is available through the National Institute of 
Mental Health Data Archive (https://nda.nih.gov/abcd). 

Acknowledgements 

This study was partially supported by the HBHL grant (XC), and 
Brain Canada (XC), Canada Research Chairs program (CIHR) (XC). ZGT 
was funded by the European Union’s NextGeneration programme and 
the Spain’s Ministry of Universities RD 289/2021 UNI/551/2021 
(Margarita Salas). 

ABCD study acknowledgement 

Data used in the preparation of this article were obtained from the 
Adolescent Brain Cognitive Development (ABCD) Study (https:// 
abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multi
site, longitudinal study designed to recruit more than 10,000 children 
aged 9-10 and follow them over 10 years into early adulthood. The 
ABCD Study is supported by the National Institutes of Health and 
additional federal partners under award numbers U01DA041022, 
U01DA041028, U01DA041048, U01DA041089, U01DA041106, 
U01DA041117, U01DA041120, U01DA041134, U01DA041148, 
U01DA041156, U01DA041174, U24DA041123, U24DA041147, 
U01DA041093, and U01DA041025. A full list of supporters is available 
at https://abcdstudy.org/federal-partners.html. A listing of partici
pating sites and a complete listing of the study investigators can be 
found at https://abcdstudy.org/scientists/workgroups/. ABCD con
sortium investigators designed and implemented the study and/or pro
vided data but did not necessarily participate in analysis or writing of 
this report. This manuscript reflects the views of the authors and may 
not reflect the opinions or views of the NIH or ABCD consortium 
investigators. 

Disclosures 

Dr. Zeus Gracia-Tabuenca reported no biomedical financial interests 
or potential conflicts of interest. Dr. Elise B. Barbeau reported no 
biomedical financial interests or potential conflicts of interest. Dr. Yu 
Xia reported no biomedical financial interests or potential conflicts of 
interest. Dr. Xiaoqian Chai reported no biomedical financial interests or 
potential conflicts of interest. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2024.103604. 

References 

Abraham, G., Inouye, M., 2014. Fast principal component analysis of large-scale genome- 
wide data. PLoS One 9 (4), e93766. 

Abraham, G., Qiu, Y., Inouye, M., 2017. FlashPCA2: principal component analysis of 
Biobank-scale genotype datasets. Bioinformatics. https://doi.org/10.1093/ 
bioinformatics/btx299. 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57 (1), 
289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. 

Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M., 
Dale, A.M., 2018. The adolescent brain cognitive development (ABCD) study: 
imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54. https://doi.org/ 
10.1016/j.dcn.2018.03.001. 

Chai, X.J., Hirshfeld-Becker, D., Biederman, J., Uchida, M., Doehrmann, O., Leonard, J. 
A., Whitfield-Gabrieli, S., 2016. Altered intrinsic functional brain architecture in 
children at familial risk of major depression. Biol. Psychiatry 80 (11), 849–858. 
https://doi.org/10.1016/j.biopsych.2015.12.003. 

Chen, C.H., Gutierrez, E.D., Thompson, W., Panizzon, M.S., Jernigan, T.L., Eyler, L.T., 
Dale, A.M., 2012. Hierarchical genetic organization of human cortical surface area. 
Science 335 (6076), 1634–1636. https://doi.org/10.1126/science.1215330. 

Chen, L.Z., Holmes, A.J., Zuo, X.N., Dong, Q., 2021. Neuroimaging brain growth charts: 
A road to mental health. Psychoradiology 1 (4), 272–286. https://doi.org/10.1093/ 
psyrad/kkab022. 

Clasen, P.C., Beevers, C.G., Mumford, J.A., Schnyer, D.M., 2014. Cognitive control 
network connectivity in adolescent women with and without a parental history of 
depression. Dev. Cogn. Neurosci. 7, 13–22. https://doi.org/10.1016/j. 
dcn.2013.10.008. 

Z. Gracia-Tabuenca et al.                                                                                                                                                                                                                     

https://doi.org/10.1016/j.nicl.2024.103604
https://doi.org/10.1016/j.nicl.2024.103604
http://refhub.elsevier.com/S2213-1582(24)00043-3/h0005
http://refhub.elsevier.com/S2213-1582(24)00043-3/h0005
https://doi.org/10.1093/bioinformatics/btx299
https://doi.org/10.1093/bioinformatics/btx299
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.biopsych.2015.12.003
https://doi.org/10.1126/science.1215330
https://doi.org/10.1093/psyrad/kkab022
https://doi.org/10.1093/psyrad/kkab022
https://doi.org/10.1016/j.dcn.2013.10.008
https://doi.org/10.1016/j.dcn.2013.10.008


NeuroImage: Clinical 42 (2024) 103604

8

Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., 
Killiany, R.J., 2006. An automated labeling system for subdividing the human 
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31 (3), 
968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021. 

Dudley, J.A., Maloney, T.C., Simon, J.O., Atluri, G., Karalunas, S.L., Altaye, M., 
Tamm, L., 2023. ABCD_Harmonizer: An Open-source Tool for Mapping and 
Controlling for Scanner Induced Variance in the Adolescent Brain Cognitive 
Development Study. Neuroinformatics 21 (2), 323–337. https://doi.org/10.1007/ 
s12021-023-09624-8. 

Esteban, O., Birman, D., Schaer, M., Koyejo, O.O., Poldrack, R.A., Gorgolewski, K.J., 
2017. MRIQC: Advancing the automatic prediction of image quality in MRI from 
unseen sites. PLoS One 12 (9), e0184661. 

Expert, P., Lord, L.D., Kringelbach, M.L., Petri, G., 2019. Topological neuroscience. 
Network. Neuroscience 3 (3), 653–655. https://doi.org/10.1162/netn_e_00096. 

Fisher, R.A., 1992. Statistical Methods for Research Workers. In: Kotz, S., Johnson, N.L. 
(Eds.), Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, 
NY. https://doi.org/10.1007/978-1-4612-4380-9_6.  

Foland-Ross, L.C., Sacchet, M.D., Prasad, G., Gilbert, B., Thompson, P.M., Gotlib, I.H., 
2015. Cortical thickness predicts the first onset of major depression in adolescence. 
Int. J. Dev. Neurosci. 46, 125–131. https://doi.org/10.1016/j. 
ijdevneu.2015.07.007. 

Friedrich, M.J., 2017. Depression is the leading cause of disability around the world. 
JAMA 317 (15), 1517. https://doi.org/10.1001/jama.2017.3826. 

Gao, S., Calhoun, V.D., Sui, J., 2018. Machine learning in major depression: From 
classification to treatment outcome prediction. CNS Neurosci. Ther. 24 (11), 
1037–1052. https://doi.org/10.1111/cns.13048. 

Garavan, H., Bartsch, H., Conway, K., Decastro, A., Goldstein, R.Z., Heeringa, S., 
Zahs, D., 2018. Recruiting the ABCD sample: Design considerations and procedures. 
Dev. Cogn. Neurosci. 32, 16–22. https://doi.org/10.1016/j.dcn.2018.04.004. 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 
2016. Generation and evaluation of a cortical area parcellation from resting-state 
correlations. Cereb. Cortex 26 (1), 288–303. https://doi.org/10.1093/cercor/ 
bhu239. 

Gracia-Tabuenca, Z., Moreno, M.B., Barrios, F.A., Alcauter, S., 2021. Development of the 
brain functional connectome follows puberty-dependent nonlinear trajectories. 
Neuroimage 229, 117769. https://doi.org/10.1016/j.neuroimage.2021.117769. 

Hagler Jr, D.J., Ahmadi, M.E., Kuperman, J., Holland, D., McDonald, C.R., Halgren, E., 
Dale, A.M., 2009. Automated white-matter tractography using a probabilistic 
diffusion tensor atlas: Application to temporal lobe epilepsy. Hum. Brain Mapp. 30 
(5), 1535–1547. https://doi.org/10.1002/hbm.20619. 

Hagler Jr, D.J., Hatton, S., Cornejo, M.D., Makowski, C., Fair, D.A., Dick, A.S., Dale, A. 
M., 2019. Image processing and analysis methods for the Adolescent Brain Cognitive 
Development Study. Neuroimage 202, 116091. https://doi.org/10.1016/j. 
neuroimage.2019.116091. 

Hammen, C., 2018. Risk factors for depression: an autobiographical review. Annu. Rev. 
Clin. Psychol. 14, 1–28. https://doi.org/10.1146/annurev-clinpsy-050817-084811. 

Heard, N.A., Rubin-Delanchy, P., 2018. Choosing between methods of combining-values. 
Biometrika 105 (1), 239–246. https://doi.org/10.1093/biomet/asx076. 

Hirshfeld-Becker, D.R., Gabrieli, J.D., Shapero, B.G., Biederman, J., Whitfield- 
Gabrieli, S., Chai, X.J., 2019. Intrinsic functional brain connectivity predicts onset of 
major depression disorder in adolescence: a pilot study. Brain Connect. 9 (5), 
388–398. https://doi.org/10.1089/brain.2018.0646. 

Ho, T.C., Shah, R., Mishra, J., May, A.C., Tapert, S.F., 2022. Multi-level predictors of 
depression symptoms in the Adolescent Brain Cognitive Development (ABCD) study. 
J. Child Psychol. Psychiatry. https://doi.org/10.1111/jcpp.13608. 

Huang, S.G., Xia, J., Xu, L., Qiu, A., 2022. Spatio-temporal directed acyclic graph 
learning with attention mechanisms on brain functional time series and connectivity. 
Med. Image Anal. 77, 102370 https://doi.org/10.1016/j.media.2022.102370. 

Kaufman, J., Birmaher, B., Brent, D., Rao, U.M.A., Flynn, C., Moreci, P., Ryan, N., 1997. 
Schedule for affective disorders and schizophrenia for school-age children-present 
and lifetime version (K-SADS-PL): initial reliability and validity data. J. Am. Acad. 
Child Adolesc. Psychiatry 36 (7), 980–988. https://doi.org/10.1097/00004583- 
199707000-00021. 

Kessler, R.C., Bromet, E.J., 2013. The epidemiology of depression across cultures. Annu. 
Rev. Public Health 34, 119–138. https://doi.org/10.1146/annurev-publhealth- 
031912-114409. 

Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R., Walters, E.E., 2005. 
Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the 
National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62 (6), 593–602. 
https://doi.org/10.1001/archpsyc.62.6.593. 

Kuhn, M., 2008. Building predictive models in R using the caret package. J. Stat. Softw. 
28, 1–26. https://doi.org/10.18637/jss.v028.i05. 

Lai, C.H., 2021. Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of 
treatment responses in major depressive disorder. Prog. Neuropsychopharmacol. 
Biol. Psychiatry 107, 110234. https://doi.org/10.1016/j.pnpbp.2020.110234. 
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