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Understanding the dynamics of wildfire is crucial for developing management and intervention strategies. 
Mathematical and computational models can be used to improve our understanding of wildfire processes and 
dynamics. This paper presents a systematic study of a widely used advection–diffusion–reaction wildfire model 
with non-linear coupling. The importance of single mechanisms is discovered by analysing hierarchical sub-
models. Numerical simulations provide further insight into the dynamics. As a result, the influence of wind 
and model parameters such as the bulk density or the heating value on the wildfire propagation speed and the 
remaining biomass after the burn are assessed. Linearisation techniques for a reduced model provide surprisingly 
good estimates for the propagation speed in the full model.
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1. Introduction

Wildfires are a crucial part of the Earth system that have shaped 
ecosystems since the appearance of terrestrial plants [6]. While many 
ecosystems depend on a certain wildfire regime to sustain themselves 
[17], wildfires pose a significant threat to anthropogenic biomes, de-
stroying property and, in the worst case, leading to casualties. In ad-
dition, large and uncontrolled wildfires are often accompanied by air 
pollution and significant change of the hydrological function of the im-
pacted area that may harm water security [22]. At the time of writing, a 
large wildfire in Nova Scotia, Canada, is making headlines as it burned 
down a record area of about ten million hectares. A huge wildfire is 
ravaging the Greek island of Corfu, another wildfire at the coast of Al-
gier claimed 34 lives, and yet another wildfire is approaching the city 
of Palermo, Italy. In previous years, Californian [21,22] as well as Aus-
tralian wildfires [10] wreaked havoc on the regions. The Mediterranean 
region that has been historically prone to wildfires, is scorched by early 
wildfires, see, for example [32,34]. South East Asia is reportedly brac-
ing for increasing wildfires, see for example [26]. The African Sahel 
region is more frequently subject to wildfires and agricultural fires that 
may in return trigger prolonged droughts [19]. For a current global re-
view of wildfire dynamics, see the excellent discussion in [17].

In general, the anthropogenic climate change continues to create 
favourable conditions for wildfires and both frequency and intensity 
of wildfires are expected to increase [28,33,12]. Previously unaffected 
regions such as Northern Europe have also become vulnerable to wild-
fires due to climate change [9]. As wildfire risk increases, the demand to 
better understand and predict wildfire dynamics through mathematical 
models and their numerical solution to support management decisions 
is increasing.

Wildfire dynamics consist of two main processes: (i) ignition and 
(ii) propagation [17]. Neither of these two processes are completely un-
derstood [17]. In this context, mathematical and computational models 
can help to understand key dynamics of the fire–vegetation relationship 
[11]. A comprehensive review of the modelling of wildfire propaga-
tion dynamics can be found in [29–31]. In this work, we focus on 
a specific class of physically-based wildfire propagation models, the 
advection–diffusion–reaction equation-based (ADR) model. This ADR 
model has been initially proposed in [2] for wildfire propagation in an 
idealised two-dimensional (2D) forest. It was numerically explored in 
[7,8]. Mathematical properties—like the existence of travelling wave 
solutions sensu [16]—were studied for simplified models in [4].

Variations and extensions of this ADR wildfire model exist in the lit-
erature. For example, in [5], a three-dimensional (3D) form of the ADR 
wildfire model is presented that allows to distinguish between crown 
and surface forest fires. In [3], the model was extended with convection 
above the fire by means of coupling the ADR wildfire model with an at-
mospheric flow model. Another variation of the ADR wildfire model is 
discussed in [14], which explicitly accounts for the underlying chemi-
cal reactions of combustion and spread in the framework of an ADR. In 
[23], an ensemble Kalman filter technique is used to account for mea-
sured temperatures in running ADR-based wildfire simulations.

While the ADR wildfire model is widely used and adapted, the indi-
vidual model components and their influence on the dynamics have not 
yet been systematically studied. In this paper, we formulate sub-models 
of the ADR wildfire model, each including combinations of the mech-
anisms advection, diffusion, reaction and ambient cooling. We study 
the influence of these hierarchical sub-models on the full ADR wild-
fire model’s emerging non-linear behaviour using both analytical and 
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Fig. 1. Representation of the two-dimensional spatial domain Ω and heat fluxes 
relevant to wildfire spreading: the conductive flux �̇�cond , the convection heat 
flux �̇�conv, radiation heat flux �̇�rad , and the reaction heat flux �̇�reac . The con-
vective flux is driven by the wind velocity 𝐯. All heat fluxes can be defined for 
an arbitrary control volume 𝑉 ⊂ Ω. Colours inside the domain are meant to 
represent the temperature distribution.

numerical methods. The rest of this paper is structured as follows: In 
Sec. 2, the ADR wildfire model is derived using physics-based argu-
ments and the numerical solver used to solve the resulting system of 
equations is presented. The sub-models are analysed in Sec. 3. The in-
terplay of all mechanisms is studied in Sec. 4, first for a one-dimensional 
domain and then for a two-dimensional more realistic setting. Finally, 
conclusions are drawn in Sec. 5.

2. The wildfire propagation model

2.1. Advection–diffusion–reaction equation-based wildfire model

The model presentation in the literature, for example [2,7,8], is 
focused on mathematical aspects. Here, we provide a physics-based 
description of the model. The model is characterised by the biomass 
fraction 𝑌 (𝐱, 𝑡) and the temperature 𝑇 (𝐱, 𝑡), defined inside a two-
dimensional spatial domain Ω ⊂ℝ2, with 𝐱 = (𝑥, 𝑦) ∈Ω being the Carte-
sian coordinates in space and 𝑡 > 0 being time, see Fig. 1. The tempera-
ture is a measure for the internal energy and we will derive the model 
by energy considerations. Bulk parameters are used to characterise the 
properties of the biomass and air mixture, which are considered as a 
continuum.

Our starting point is a fixed control volume defined as 𝑉 = 𝑆 ×
[0, 𝓁] inside a forest ecosystem. Here, 𝑆 ⊂ Ω is the horizontal extent 
of the forest and 𝓁 is the forest layer thickness or depth in the vertical 
direction, associated with the tree height in the forest. The boundary of 
the control volume is denoted by 𝜕𝑉 . The equation for the conservation 
of internal energy inside 𝑉 is

𝑑

𝑑𝑡 ∫
𝑉

𝜌𝑒d𝑉 + ∫
𝜕𝑉

𝜌𝑒𝐯 ⋅ 𝐧dΓ = �̇�cond − �̇�conv + �̇�rad + �̇�reac , (1)

where 𝑒 is the specific internal energy per unit mass, 𝜌 is the density 
defined below, and �̇�cond, �̇�conv, �̇�rad and �̇�reac are the conduction, 
convection, radiation and reaction heat fluxes, respectively. A concep-
tual sketch of these fluxes is shown in Fig. 1. Note that compressibility 
effects and viscous dissipation in the gaseous phase are neglected in the 
energy balance. The advection velocity, 𝐯, is related to the wind ve-
locity. We assume that all modelled quantities are homogenised over 
the forest layer thickness 𝓁 and thus, represent depth-averaged quanti-
ties on a two-dimensional horizontal plane defined by 𝑆 . Consequently, 
heat fluxes and wind velocity only have horizontal components. The 
fuel mass fraction 𝑌 relates to the density 𝜌 as

𝑌 (𝐱, 𝑡) =
𝑚𝑓 (𝐱, 𝑡)
𝑚 (𝐱)

, with 𝜌0(𝐱) =
𝑚𝑓0

(𝐱)
𝑉

and 𝜌𝑓 (𝐱, 𝑡) =
𝑚𝑓 (𝐱, 𝑡)
𝑉

, (2)

𝑓0
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where 𝑚𝑓 is the fuel mass and 𝑚𝑓0 is the maximum fuel mass at 𝑡 = 0. 
Here, we assume that the total mass of air in 𝑉 is negligible such that 
the total mass 𝑚𝑡 =𝑚𝑎 +𝑚𝑓 ≈𝑚𝑓 , and therefore 𝜌 ≈ 𝜌𝑓 .

Assuming a constant density 𝜌0 and specific heat 𝐶 in 𝑉 , the internal 
energy can be expressed as 𝑒 = 𝐶𝑇 . Therefore, the temperature is a 
quantity for the internal energy. This allows us to rewrite Eq. (1) as

𝜌0𝐶
⎛⎜⎜⎝ 𝑑𝑑𝑡 ∫𝑉 𝑇 d𝑉 + ∫

𝜕𝑉

𝑇 𝐯 ⋅ 𝐧dΓ
⎞⎟⎟⎠ = �̇�cond − �̇�conv + �̇�rad + �̇�reac. (3)

The conduction heat flux �̇�cond is given by Fourier’s law as

�̇�cond = ∫
𝜕𝑉

𝑘∇𝑇 ⋅ 𝐧dΓ, (4)

where 𝑘 is the thermal conductivity. The convection heat flux is given 
by Newton’s cooling law

�̇�conv = ∫
𝑆

ℎ0(𝑇 − 𝑇∞)dΓ, (5)

with ℎ0 being the convection coefficient and 𝑇∞ being the temperature 
of the air over the surface. The radiation heat flux can be written in the 
form of a non-linear conduction heat flux as

�̇�rad = ∫
𝜕𝑉

4𝜎𝜖𝛿𝑇 3∇𝑇 ⋅ 𝐧dΓ, (6)

provided that the optical path length for radiation 𝛿 is smaller than the 
characteristic length of the control volume. The constant 𝜎 is the Stefan-
Boltzmann constant and 𝜖 is an emissivity factor. Finally, the reaction 
heat flux is given by

�̇�reac = ∫
𝑉

�̇�𝑓𝐻 d𝑉 , (7)

where 𝐻 is the combustion heat per unit mass of fuel and

�̇�𝑓 = 𝜌0
𝜕𝑌

𝜕𝑡
(8)

is the fuel mass disappearance rate per unit volume, with

𝜕𝑌

𝜕𝑡
= −𝑠(𝑇 )𝐴 exp

(
−
𝑇ac
𝑇

)
𝑌 (9)

being the rate of variation of the mass fraction of fuel, given by the 
Arrhenius law where 𝑇ac =

𝐸𝐴

𝑅
with the activation energy 𝐸𝐴, the uni-

versal gas constant 𝑅, a pre-exponential factor 𝐴 and the activation 
function 𝑠(𝑇 ) given by

𝑠(𝑇 ) =
{

0 if 𝑇 < 𝑇pc
1 if 𝑇 ≥ 𝑇pc (10)

that triggers the reaction when the temperature is higher than 𝑇pc. By 
combining the previous definitions and inserting them into Eq. (7), we 
obtain

�̇�reac = ∫
𝑉

𝑠(𝑇 )𝜌0𝐻𝐴 exp
(
−
𝑇ac
𝑇

)
𝑌 d𝑉 . (11)

Using the Green–Gauß divergence theorem and considering that the 
flow is incompressible, so ∇ ⋅ 𝐯 = 0, we can rewrite Eq. (3) as

𝜌0𝐶 ∫
𝑉

(
𝜕𝑇

𝜕𝑡
+ 𝐯 ⋅∇𝑇

)
d𝑉

= ∫
𝑉

∇ ⋅
((
4𝜎𝜖𝛿𝑇 3 + 𝑘

)
∇𝑇

)
d𝑉 − ∫

𝑉

ℎ(𝑇 − 𝑇∞)d𝑉

+ ∫ 𝑠(𝑇 )𝜌0𝐻𝐴 exp
(
−
𝑇ac
𝑇

)
𝑌 d𝑉 ,

(12)
𝑉
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with ℎ = ℎ0∕𝑙, which allows to obtain

𝜌0𝐶
(
𝜕𝑇

𝜕𝑡
+ 𝐯 ⋅∇𝑇

)
=∇ ⋅

((
4𝜎𝜖𝛿𝑇 3 + 𝑘

)
∇𝑇

)
− ℎ(𝑇 − 𝑇∞)

+ 𝑠(𝑇 )𝜌0𝐻𝐴 exp
(
−
𝑇ac
𝑇

)
𝑌 .

(13)

Finally, the complete wildfire propagation model is written as

⎧⎪⎨⎪⎩
𝜌0𝐶

(
𝜕𝑇

𝜕𝑡
+ 𝐯 ⋅∇𝑇

)
=∇ ⋅

(
𝑘𝑡(𝑇 )∇𝑇

)
− ℎ(𝑇 − 𝑇∞) +Ψ(𝑇 )𝜌0𝐻𝑌 ,

𝜕𝑌

𝜕𝑡
= −Ψ(𝑇 )𝑌 ,

(14)

where we define 𝑘𝑡(𝑇 ) = 4𝜎𝜖𝛿𝑇 3 + 𝑘 and Ψ(𝑇 ) = 𝑠(𝑇 )𝐴 exp
(
− 𝑇ac
𝑇

)
. 

For simplicity, we assume linear diffusion, so 𝑘𝑡(𝑇 ) = 𝑘. The temper-
ature 𝑇 = 𝑇 (𝐱, 𝑡) > 0 and the biomass 𝑌 = 𝑌 (𝐱, 𝑡) ∈ [0, 1] are the model 
variables. The model parameters are summarised in Table 1 with val-
ues taken from the literature when available. Parameters that could not 
be assigned a value range based on the literature are estimated, often 
through heuristic arguments. In general, many of these parameters may 
vary in space due to spatial heterogeneity in the environment. Examples 
for potentially spatially heterogeneous parameters are the bulk density 
𝜌0 and the specific heat 𝐶 . In this work, we will not consider spatial 
variations of this kind. To complete the mathematical model, Eq. (14)
must be subjected to appropriate initial and boundary conditions, IC 
and BC, respectively. Many choices exist, for example{

IC: 𝑇 (𝐱,0) = 𝑇0(𝐱), 𝑌 (𝐱,0) = 𝑌0(𝐱), 𝐱 ∈Ω,

BC:
(
𝑘∇𝑇 − 𝜌0𝐶𝐯𝑇

)
⋅ 𝐧 = 0, 𝐱 ∈ 𝜕Ω, 𝑡 > 0.

(15)

The zero-flux boundary condition defined in Eq. (15) could be applied if 
the domain is chosen such that the wildfire does not propagate outside 
of it.

2.2. Numerical solver

The ADR wildfire model outlined in Eq. (14) and Eq. (15) is discre-
tised using a high order finite volume scheme. The weighted essentially 
non-oscillatory (WENO) method [20] with up to 7-th order of accuracy 
is used to compute the convective fluxes. The WENO method provides 
stable reconstructions of cell variables without Gibbs oscillations in the 
presence of sharp gradients or discontinuities in the solution, which 
may be the case for the problems herein considered. Second order 
central differences are used for the diffusive fluxes. This combination 
proved to be suitable for other applications in [24,25].

Different Runge–Kutta integrators of varying order are used in com-
bination with Strang splitting to step forward in time, similar to the 
numerical solver in [7]. The time integration is as follows: First, the re-
action terms in Eq. (14) are evaluated to update the model variables 
for half a time step using an implicit second order Runge–Kutta (RK2) 
method. Then, the advection and diffusion terms in the partial differen-
tial equation are evaluated to evolve the system for one full time step 
using a third order Strong Stability Preserving Runge–Kutta (SSP-RK3) 
method. Finally, the reaction terms are evaluated again for half a time 
step using the RK2 method.

The verification of the numerical solvers for a spatially integrated 
model and for the spatially explicit ADR wildfire model is presented 
in Appendix A.1 and A.2, respectively. The need of very high order of 
accuracy in space for the discretisation of the convective fluxes is also 
motivated in Appendix A.2.

3. Analysis of hierarchical sub-models

The ADR wildfire model in Eq. (14) includes the interacting mech-
anisms advection, diffusion, and reaction that lead to highly non-linear 
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Table 1

Summary of model parameters and their range used in this study for realistic scenarios with references 
when applicable. Note that parameter values outside of this range may be used for sub-model analysis.

Parameter Symbol Value or range Units Reference Default (simulations)

Bulk density 𝜌0 [40,640] kg⋅m−3 [2] 40
Specific heat 𝐶 [1.0, 3.0] kJ⋅kg−1⋅K−1 [2] 1.0
Pre-exponential factor 𝐴 0.05 s−1 [15] 0.05
Heating value 𝐻 [100,10000] kJ⋅kg−1 [2] 4000
Convection coefficient ℎ [0.1,10] kW⋅m−3⋅K−1 N/A 4
Ambient air temperature 𝑇∞ [280,320] K N/A 300
Ignition temperature 𝑇pc [400,500] K [15] 400
Activation temperature 𝑇ac [400,500] K [15] 400
Thermal diffusivity 𝑘 [0,4] kW⋅m−1⋅ K−1 [2,7] 2
behaviour. See, for example [27] for a discussion of the manifold be-
haviour of reaction–diffusion equations. In order to better understand 
the effects of these individual mechanisms, we formulate sub-models of 
system (14) with fewer mechanisms. All models together form a model 
family and every model will provide insights into some characteristic 
behaviour of the system. In the following, for every sub-model, we sum-
marise relevant results from the literature, prove analytical results, and 
carry out numerical simulations. We interpret the analytical and numer-
ical results in the light of wildfire management applications and specify 
open questions.

3.1. Dynamical system analysis for the spatially lumped sub-model

We start by analysing the model in a spatially integrated or 
“lumped” version, neglecting any spatial mechanisms. The ADR wildfire 
model in Eq. (14) reduces to an ordinary differential equation model of 
the form⎧⎪⎨⎪⎩
𝜌0𝐶

𝑑𝑇

𝑑𝑡
= 𝑓𝑇 (𝑇 ,𝑌 ) ∶= −ℎ(𝑇 − 𝑇∞) +Ψ(𝑇 )𝜌0𝐻𝑌 ,

𝑑𝑌

𝑑𝑡
= 𝑓𝑌 (𝑇 ,𝑌 ) ∶= −Ψ(𝑇 )𝑌 ,

(16)

with initial conditions 𝑇 (0) = 𝑇0 > 𝑇pc and 𝑌 (0) = 𝑌0 > 0. The com-

bustion function Ψ(𝑇 ) is given by Ψ(𝑇 ) = 𝑠(𝑇 )𝐴 exp
(
− 𝑇ac
𝑇

)
with the 

discontinuous activation function 𝑠(𝑇 ) in Eq. (10) depending on the 
ignition temperature 𝑇pc. The discontinuity of 𝑠(𝑇 ) results in a discon-
tinuity of the differential equation.

Theorem 1. The initial value problem in Eq. (16) has a unique solution 
for (𝑇 (0), 𝑌 (0)) ∈ [𝑇pc, 𝑇max] × [0, 1] and 𝑡 ∈ [0, 𝜏] where 𝜏 is the maximal 
time with 𝑇 (𝜏) ≥ 𝑇pc. 𝑇max is a finite maximum value for the temperature.

Proof. For 𝑇 ≥ 𝑇pc the activation function 𝑠(𝑇 ) has the value 1. The 
right-hand side of Eq. (16) is continuous w.r.t. 𝑇 and 𝑌 . Additionally, 
the right-hand side is differentiable w.r.t. 𝑇 and 𝑌 , and the derivatives 
are bounded for the given domain. Consequently, the Picard-Lindelöf 
theorem guarantees the existence of a unique solution.

For 𝑇 < 𝑇pc, the activation function is zero. For 𝑌 > 0 and 𝑇 ∈
(𝑇 − 𝜖, 𝑇 + 𝜖), 𝜖 > 0, the function 𝑓𝑇 (𝑇 , 𝑌 ) in dd𝑡 𝑇 = 𝑓𝑇 (𝑇 , 𝑌 ) is discon-
tinuous. The existence of a unique solution is therefore not guaranteed 
and worth a proof. □

Lemma 2. The discontinuity of the functions 𝑓𝑇 and 𝑓𝑌 for 𝑇 = 𝑇pc does 
not affect the validity of the differential equations describing the combus-
tion process. By interpreting the state (𝑇pc, 𝑌 ) as new initial values for the 
differential equation

d𝑇
d𝑡

= −ℎ(𝑇 − 𝑇∞),

d𝑌
d𝑡

= 0,
(17)
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the Picard-Lindelöf theorem guarantees the existence of a unique solution for 
the case 𝑇 < 𝑇pc.

Consequently, the system given in Eq. (16) has a unique solution for 
given initial values (𝑇0, 𝑌0) ∈ [0, 𝑇max] × [0, 1].

When modelling the dynamics of a wildfire, the boundedness of the 
temperature by a lower and an upper bound is desired, where the latter 
may depend on the initial values. The system state 𝑌 describes a fuel 
mass density—compare Eq. (2)—and should be bounded therefore by 
𝑌 ∈ [0, 1]. We then prove that the solutions of system (16) are bounded.

Theorem 3. The solutions of (16) are bounded with (𝑇 , 𝑌 ) ∈ 𝐷 =
[𝑇low, 𝑇max] × [0, 1] for any initial values (𝑇0, 𝑌0) ∈𝐷 and 𝑇max sufficiently 
large.

Proof. We start with showing the boundedness of 𝑌 .
Assume 𝑌 (0) ∈ [0, 1]. For any 𝑇

0 ≤Ψ(𝑇 ) = 𝑠(𝑇 )𝐴 exp
(
−
𝑇ac
𝑇

)
≤𝐴 (18)

yields. Consequently,

d𝑌
d𝑡

= −Ψ(𝑇 )𝑌 ≥ −𝐴𝑌

yields as long as 𝑌 is positive. Since 𝑌 (𝑡) = 𝑌0𝑒−𝐴𝑡 > 0 gives a lower 
bound for 𝑌 (𝑇 ), any solution 𝑌 (𝑇 ) for 𝑌0 ≥ 0 is bounded by [0, 𝑌0]. 
Even more, the case 𝑌 (𝑡) = 0 only occurs if 𝑌0 = 0. The biomass 𝑌 (𝑡) is 
positive for any meaningful initial condition 𝑌0 ∈ (0, 1].

The temperature 𝑇 is bounded from above because 𝑌 is bounded by 
1 and Eq. (18) gives

d𝑇
d𝑡

= − ℎ

𝜌0𝐶
(𝑇 − 𝑇∞) + 1

𝐶
Ψ(𝑇 )𝐻𝑌 ≤ 𝐴𝐻

𝐶
− ℎ

𝜌0𝐶
(𝑇 − 𝑇∞). (19)

This ensures a negative derivative for 𝑇 > 𝑇max = 𝜌0
ℎ
𝐴𝐻 + 𝑇∞. Be-

sides, the temperature is bounded from below by 𝑇low = min{𝑇0, 𝑇∞}: 
If 𝑇0 < 𝑇∞ < 𝑇pc, the temperature increases by d𝑇d𝑡 = −ℎ(𝑇 − 𝑇∞) until 
𝑇 = 𝑇∞. On the other hand, if 𝑇∞ < 𝑇0 < 𝑇pc, the temperature decreases 
with a lower bound 𝑇∞. These two cases neglect the activation of the 
combustion process. If, in the last case, 𝑇0 > 𝑇pc > 𝑇∞ yields, the com-
bustion process starts and 𝑇∞ again gives a lower bound for 𝑇 . □

Consequently, the solutions of System (16) are bounded, which is 
crucial for the interpretation of the solutions as a model for real world 
processes. Further, the switching behaviour of the combustion function 
leads to infinitely many stationary points, which differ in the biomass 
at ambient temperature.

Theorem 4. System (16) has a continuous line of stationary points 
(𝑇∞, 𝑌 ⋆) with 𝑌 ⋆ ∈ [0, 1].

Proof. The change of biomass is only zero for either 𝑌 = 0 or 𝑠(𝑇 ) = 0. 
In the first case, for 𝑌 = 0, the temperature decreases until 𝑇 = 𝑇∞ and 
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Fig. 2. Phase space portrait of the system, showing the heating (red) and cooling (blue) regions of the trajectories, separated by the dashed gray line. Trajectories of 
the solutions for the initial conditions 𝑇0 = 470 K and 𝑌0 = {0.2,0.4,0.6,0.8,1.0} are plotted with black continuous lines.

Fig. 3. Evolution in time of the temperature (left) and biomass concentration (right) for the initial conditions 𝑇0 = 470 K and 𝑌0 = {0.2,0.4,0.6,0.8,1.0}.
we find the stationary point (𝑇∞, 0)T. The switching function is zero 
for 𝑇 < 𝑇pc. Then, the derivative of the temperature is zero if 𝑇 = 𝑇∞, 
which gives us infinitely many stationary states (𝑇∞, 𝑌 ⋆)T with 𝑌 ⋆ ∈
[0, 1]. □

For gaining further understanding of the system dynamics, we visu-
alize in Fig. 2 the phase space portrait of System (16) using the default 
parameters from Table 1. The heating and cooling regions in the phase 
space are indicated with red and blue colours. These regions are sepa-
rated for 𝑇 > 𝑇pc by the tipping line with d𝑇d𝑡 = 0 given by

𝑌tip(𝑇 ) =
ℎ

𝜌0𝐻𝐴
exp

(
𝑇ac
𝑇

)
(𝑇 − 𝑇∞). (20)

The dashed gray tipping line in Fig. 2 corresponds to the maximal tem-
perature for any trajectory. The continuous line of stationary points of 
the system is plotted with a green line in Fig. 2.

Remark 5. In the case where combustion takes place, so for initial val-
ues 𝑇0 > 𝑇pc, only stationary points with 𝑌 ⋆ < 𝑌tip(𝑇∞) are stable and 
occur as results of the systems dynamics.

We conclude the analysis of the spatially lumped model: Even if the 
equations contain noncontinuous terms, the existence of unique and 
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bounded solutions is guaranteed. The set of stationary points is a contin-
uous line with varying values for the biomass. Based on these analytical 
results, we now investigate the system numerically.

System (16) is solved for the initial conditions 𝑇0 = 470 K and 𝑌0 =
{0.2,0.4,0.6,0.8,1.0} using the numerical solver described in Sec. 2.2. 
The evolution in time of the temperature and biomass is depicted in 
Fig. 3. The solutions show the switching behaviour of the combus-
tion function for 𝑇 = 𝑇pc = 400 K resulting in an unsteady slope of 
the temperature decrease. The trajectories of these numerical solutions 
are also depicted in the phase space portrait in Fig. 2 using black con-
tinuous lines. Starting with the same initial temperature and various 
initial biomass values, the trajectories lead to comparable final values 
for the biomass, and the ambient temperature. The influence of the ini-
tial biomass on the remaining biomass after the combustion process 
is therefore small. This is more clearly visualised in Fig. 4, where the 
terminal biomass 𝑌 ⋆ is plotted for various combinations of initial tem-
perature 𝑇0 and initial biomass values 𝑌0. Fig. 4 shows that a majority 
of the initial value combinations result in similar terminal biomass at 
the end of the simulation.

Fig. 5 shows the tipping line in Eq. (20) for different values of the rel-
evant parameters. We consider as the base parameterisation the values 
in Table 1. In the plot, 𝑚 is a factor scaling the denominator of ℎ

𝜌0𝐻𝐴
, 

where 𝜌0 is the bulk density. A larger parameter 𝑚 leads to a smaller up-
per bound for the remaining biomass. This can be interpreted as a larger 
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Fig. 4. Terminal biomass 𝑌 ⋆ as a function of the initial temperature and biomass.

Fig. 5. Sensitivity analysis of the tipping line in Eq. (20). Left: Change of the factor 𝑚 in 𝑚𝜌0𝐻𝐴. Right: Change of the activation temperature 𝑇ac. Note that the 
range of variation is larger than the realistic parameter ranges in Table 1 for highlighting the changes.
bulk density leading to a higher temperature in the burning process and 
therefore to a lower biomass in the end. A larger activation temperature 
𝑇ac leads to a larger upper bound for the remaining biomass. This can 
be interpreted as a reduction of the availability starting a combustion 
process, perhaps linked to forest management decisions.

These effects on the tipping line are as well visible if we calculate the 
sensitivity of the tipping line on the parameters directly. The sensitivity 
of 𝑌tip on 𝜌0 is given by

𝜕𝑌tip

𝜕𝜌0
= − ℎ

𝜌20𝐻𝐴
exp

(
𝑇ac
𝑇∞

)
(𝑇 − 𝑇∞).

Enlarging the parameter 𝜌0 therefore has a negative effect on the tip-
ping line, shifting it downwards. The same is observed for the heating 
value 𝐻 . In comparison, the influence of the activation temperature is 
positive, due to

𝜕𝑌tip

𝜕𝑇ac
= ℎ

𝜌0𝐻𝐴

1
𝑇∞

exp
(
𝑇ac
𝑇∞

)
(𝑇 − 𝑇∞).

These expressions of the sensitivity therefore support the findings in 
Fig. 5.
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The tipping line in the phase space of System (16) gives an estima-
tion for the maximum of the remaining biomass 𝑌 ⋆ after the combus-
tion process. The minimum of 𝑌 ⋆ is an interesting quantity as well. As 
the system is non-linear and the dynamics are cut off by the switch-
ing function for 𝑇 = 𝑇pc, a prediction of the steady states depending on 
the parameters and the initial values is challenging, even if System (16)
is linearised. For example, a linearisation of the non-linear combustion 
term is

exp(−𝑇ac∕𝑇 ) ≥ −𝛿𝑇pc + 𝛿𝑇 , (21)

where 𝛿 is chosen such that the linearised function is larger than 1 for 
𝑇 > 𝑇max. With this linearisation, the system reads

d𝑇
d𝑡

= − ℎ

𝜌0𝐶
(𝑇 − 𝑇∞) + 𝐻𝐴

𝐶
(−𝛿𝑇pc + 𝛿𝑇 )𝑌 ,

d𝑌
d𝑡

= −𝐴(−𝛿𝑇pc + 𝛿𝑇 )𝑌 ,
(22)

and can be reformulated to

d𝑇
d𝑌

= ℎ

𝜌 𝐶𝐴𝛿

𝑇 − 𝑇∞
(𝑇 − 𝑇 )𝑌

− 𝐻
𝐶
. (23)
0 pc
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Fig. 6. Numerical example with the parameters in Table 1 for the combustion-free reaction–diffusion model in Eq. (25) with periodic boundary conditions. Left: 
Evolution of the total energy dissipation rate in the system calculated analytically (line) and numerically (circles). Right: Simulation snapshots of the temperature 
distribution in the domain at different time instants. Red colour indicates high and yellow colour indicates low temperature.
The solution of the homogeneous equation is

𝑌 (𝑇 ) =
𝜌0𝐶𝐴𝛿

ℎ
(𝑇∞ − 𝑇pc) ln(𝑇 − 𝑇∞) +

𝜌0𝐶𝐴𝛿

ℎ
𝑇 + 𝑐int , (24)

where the integration constant 𝑐int is a very large value, shifting the 
whole approximation above the domain of 𝑌 . This approach therefore is 
not giving useful bounds for the inhomogeneous and non-linear system.

The analysis of the lumped System (16) shows the influence of some 
parameters on the tipping line and gives insight into the bounded-
ness of solutions and the sensitivity of the model parameters. However, 
the minimum of 𝑌 ⋆ is further affected by diffusion and advection. In 
what follows, we analyse the effect of these mechanisms on the so-
lution through sub-models of the ADR wildfire model. We start with 
combustion-free sub-models.

3.2. Combustion-free sub-models

Combustion-free sub-models of the ADR wildfire model neglect the 
combustion function Ψ in Eq. (14) to remove the discontinuity in the 
model. This allows to investigate paths to stationary states that result 
primarily from energy dissipation and the development of advection-
driven travelling wave solutions. Here, we study two combustion-free 
sub-models: (i) a reaction–diffusion sub-model without combustion in 
Sec. 3.2.1 and (ii) a combustion-free ADR sub-model in Sec. 3.2.2.

3.2.1. Energy dissipation in a combustion-free reaction–diffusion sub-model
First, we consider a combustion-free reaction–diffusion model for 

𝐱 ∈ Ω ⊂ ℝ𝑑 and constant diffusion. The reaction only describes the ex-
change with the ambient temperature and the word reaction is meant 
only in the context of reaction–diffusion equations. Without any com-
bustion, the biomass is unchanged and d

d𝑡 𝑌 = 0. Further, we neglect 
advection, so 𝐯 = 𝟎. The system in Eq. (14) becomes{
𝜕𝑇

𝜕𝑡
= 𝛼∇ ⋅∇𝑇 − 𝛽(𝑇 − 𝑇∞) (25)

with 𝛼 = 𝑘∕(𝜌0𝐶) the thermal diffusivity and 𝛽 = ℎ∕(𝜌0𝐶). We adapt the 
zero-flux boundary conditions from Eq. (15) and use initial conditions 
with 𝑇 ≥ 𝑇∞ point-wise and a constant 𝑌 (0, 𝑥) = 𝑌0 ∈ (0, 1].

For a given domain Ω ⊂ℝ𝑑 , we define the eigenvalues 𝜆𝑘 of the neg-
ative Laplacian with periodic boundary conditions as solutions 𝑈𝑘(𝐱) of
185
−∇ ⋅∇𝑈𝑘(𝐱) = 𝜆𝑘𝑈𝑘(𝐱) for 𝐱 ∈Ω, (26)

All eigenvalues of Eq. (26) are real and non-negative. Then, the solu-
tion of Eq. (25) can be calculated by hands of a Fourier approach and 
separation into a homogeneous and inhomogeneous problem. With co-
efficients 𝑐𝑘 ∈ℝ, the solution reads

𝑇 (𝐱, 𝑡) = 𝑇∞ +
∞∑
𝑘=0
𝑐𝑘 exp

(
− 𝛼𝑡

𝜆𝑘 + 𝛽

)
𝑈𝑘(𝐱). (27)

The coefficients can be determined by using the Fourier series of the 
initial conditions. Analogous formulations are possible for different 
boundary conditions as well. The solution in Eq. (27) is decaying in 
time towards the ambient temperature 𝑇∞.

Remark 6. The combustion-free reaction–diffusion problem excluding 
advection shows a decaying and levelling solution behaviour.

This levelling effect gives the dissipation of the system, compare 
Eq. (5). The convection heat flux �̇�conv can be integrated over space, 
resulting in an expression for the energy dissipation rate as

𝐸(𝑡) = ∫
Ω

ℎ(𝑇 − 𝑇∞)d𝑉 . (28)

The change of 𝐸 is then given by

d
d𝑡
𝐸(𝑡) = ∫

Ω

ℎ
d
d𝑡
𝑉 = ∫

Ω

ℎ(𝛼∇ ⋅∇𝑇 − 𝛽(𝑇 − 𝑇∞))d𝑉

= ℎ𝛼 ∫
𝜕Ω

∇𝑇 ⋅ 𝐧d𝑉 − ℎ𝛽 ∫
Ω

𝑇 − 𝑇∞ d𝑉 = −𝛽𝐸(𝑡),
(29)

where we use the Green–Gauß divergence theorem and the zero-flux 
boundary conditions. The differential equation in 𝐸 has the solution

𝐸(𝑡) =𝐸(0) exp(−𝛽𝑡), (30)

clearly showing the dissipative nature of the spreading and levelling. 
The energy dissipation rate tends to zero as the system’s temperature 
approaches the ambient temperature.

We explore the energy dissipation now numerically. Fig. 6 shows 
the solution of Eq. (25) for the parameters given in Table 1. We im-
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Fig. 7. Numerical example with the parameters in Table 1 for the combustion-free advection–diffusion–reaction model in Eq. (33) with wind velocity in direction 
(1, 1)T and periodic boundary conditions. Left: Evolution of the total energy dissipation rate in the system calculated analytically (line) and numerically (circles). 
Right: Simulation snapshots of the temperature distribution in the domain at different time instants. Red colour indicates high and yellow colour indicates low 
temperature.
pose periodic boundary conditions to ensure that the total energy is 
not affected by the fluxes across the domain boundaries. The periodic 
boundary conditions are reasonable in this example because there is no 
combustion process and the fuel is not burning. The initial condition is 
given by

𝑇 (𝑥, 𝑦,0) =
{

400 K if 𝑟(𝑥, 𝑦) < 50 m
300 K otherwise

(31)

with

𝑟(𝑥, 𝑦) =
√

(𝑥− 𝑥1)2 + (𝑦− 𝑦1)2 (32)

with (𝑥1, 𝑦1) = (500, 500) m. Fig. 6(left) shows the decrease of the en-
ergy dissipation rate, 𝐸, following Eq. (30) and for comparison and ver-
ification of the numerical solver, the value of 𝐸 computed by Eq. (28)
for the numerical solution. Simulation snapshots at different time steps 
are shown in Fig. 6(right). The maximum temperature at every time 
step is denoted in each of the snapshots. As time evolves, the heat dif-
fuses from an initial maximum temperature in the centre of the domain. 
The maximum temperature reduces from 𝑇 = 400 K to almost ambient 
temperature 𝑇 = 300.8 K after 𝑡 = 1000 s. Energy dissipation is maxi-
mum in the beginning and tends to zero when the solution evolves in 
time, due to the levelling effect. The energy dissipation rate for the nu-
merical solution fits the analytical estimation, which is a verification 
for the numerical solver.

3.2.2. Combustion-free advection–diffusion–reaction sub-model
After regarding the energy dissipation of the advection-free model, 

we focus on the wind-driven propagation of wildfire. In this sub-model, 
in addition to the energy dissipation and diffusion mechanisms dis-
cussed in Sec. 3.2.1, temperature is also advected. Combustion is still 
not regarded, so d

d𝑡 𝑌 = 0. We consider the partial differential equation 
for the temperature as

𝜌0𝐶
(
𝜕𝑇

𝜕𝑡
+ 𝐯 ⋅∇𝑇

)
=∇ ⋅ (𝑘∇𝑇 ) − ℎ(𝑇 − 𝑇∞), (33)

with periodic boundary conditions. Assuming a spatially constant wind 
velocity 𝐯, the equation reads

𝜌0𝐶
𝜕𝑇 =∇ ⋅

(
𝑘∇𝑇 − 𝜌0𝐶𝑇 𝐯

)
− ℎ(𝑇 − 𝑇∞), (34)
𝜕𝑡
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and the solution can be calculated according to Sec. 3.2.1 by substitut-
ing the space variable with 𝐱 − 𝐯. The energy dissipation in Eq. (30)
remains identical because the wind only shifts the whole solution in 
space and the periodic boundary conditions ensure that the total en-
ergy is not affected by the fluxes across the domain boundaries.

Fig. 7(left) shows the evolution of total energy inside the domain 
based on the combustion-free ADR sub-model in Eq. (33) with peri-
odic boundary conditions and a wind velocity that is pointing towards 
the direction (1, 1)T. Comparison of the analytically obtained energy 
dissipation rate (line) and the numerical solution (circles) shows that 
the numerical solution preserves the energy as expected. Fig. 7(right) 
shows simulation snapshots at different time steps. The wind advects 
the high temperature from the centre of the domain at 𝑡 = 0 to the up-
per right-hand corner at 𝑡 = 210 s towards the lower left-hand corner 
at 𝑡 = 756 s due to the periodic boundary conditions. Along the way, 
the temperature is subject to diffusion such that the maximum temper-
ature decreases as the simulation evolves. As in Fig. 6, the maximum 
temperature decreases until it nearly reaches the ambient temperature 
after 𝑡 = 1000 s.

The combustion-free ADR model in Eq. (33) does not have travelling 
wave solutions because the reaction function has only one stationary 
state for 𝑇 = 𝑇∞. The energy is not conserved which is shown by the 
non-zero energy dissipation rate in Fig. 7(left).

3.3. Advection-free sub-models

As a next sub-model, we investigate the model in Eq. (14) without 
wind by setting 𝐯 = 𝟎. This results in a reaction–diffusion equation cou-
pled to an ordinary differential equation as

𝜌0𝐶
(
𝜕𝑇

𝜕𝑡

)
=∇ ⋅

(
𝑘𝑡(𝑇 )∇𝑇

)
− ℎ(𝑇 − 𝑇∞) +Ψ(𝑇 )𝜌0𝐻𝑌 ,

𝜕𝑌

𝜕𝑡
= −Ψ(𝑇 )𝑌 .

(35)

We impose periodic boundary conditions and set the diffusion to a con-
stant value 𝑘𝑡(𝑇 ) = 𝑘.

The solution of Eq. (35) is either dominated by diffusion or has the 
form of travelling waves. Both solution types are illustrated in Fig. 8
that shows them for some time steps. The diffusion dominated solution 
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Fig. 8. Comparison of numerically obtained solutions dominated by diffusion 
(green) and travelling waves (red). Each line represents the solution at a dif-
ferent time instants. The initial condition is represented as black dashed line. 
The travelling wave solution has been computed using the default parameters 
in Table 1, whereas the diffusion-dominated solution has been computed set-
ting 𝐻 = 100 kJ/kg and ℎ = 0.01 kW m−3 K−1. The solutions are plotted every 
50 s.

Table 2

Cases computed for different parameters ℎ.

Sub-case A-1 A-2 A-3 A-4 A-5 A-6 A-7

ℎ (kW⋅m−3⋅K−1) 0.0 0.025 0.25 1.0 2.0 4.0 6.0

Table 3

Cases computed for different constant diffusion coefficients 
𝑘𝑡 = 𝑘.

Sub-case B-1 B-2 B-3 B-4 B-5 B-6

𝑘 (kW⋅m−1⋅K−1) 0.125 0.25 0.5 1.0 2.0 4.0

(green lines) occurs for parameter choices with comparable small values 
of 𝐻 and ℎ that diminish the effect of the reaction terms. The temper-
ature profile diffuses as time progresses. The travelling wave solution 
(red lines) shows a distinct temperature profile with a steep gradient 
emerging and travelling through the domain as the simulation evolves.

3.3.1. Travelling wave speed
Analytical results proving upper and lower bounds for the travel-

ling wave speed in the full ADR wildfire model are still an open issue. 
Here, we investigate the emergence and propagation of travelling waves 
through numerical simulations and give analytical estimates for the 
propagation speed. We choose constant initial conditions on a bounded 
subdomain with the parameters from Table 1 and then study variations 
of the parameters ℎ and 𝑘 in Table 2 and Table 3. In particular, we 
consider the computational domain [0,500] m and we set as initial con-
dition

𝑇 (𝑥,0) =
{

470 K if 225 < 𝑥 < 275,
300 K otherwise

and 𝑌 (𝑥,0) = 1.0. (36)

Fig. 9 shows travelling wave solutions that result from the simu-
lation of case A-6 in Table 2 and the parameters from Table 1. The 
initial condition in Eq. (36) evolves to a fire front propagating to the 
right-hand side and a fire front propagating to the left-hand side. The 
amplitude of the travelling wave solution is constant and equal for the 
spread in both directions. The wave profile of the temperature is steep 
on the propagation front and less steep where the temperature decays. 
The biomass burns down to a small amount of remaining biomass and 
the value is different in the support of the initial condition. Our results 
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are consistent with the findings reported in the literature, for example, 
[23].

The wave speed and the profile of the wave front depend on the 
model parameters. Fig. 10(left) shows the influence of the parameter 
ℎ on the position of the wave front. In all cases, the dependency of 
the wave front position over time is linear, after a short transient time. 
The slope of these lines is the wave speed and decreases for increasing 
values of ℎ, due to a higher heat release into the atmosphere. As seen 
in Fig. 10, the maximum temperature decreases and the front profile 
narrows for increasing values of ℎ, as the energy dissipation (i.e. heat 
release into the atmosphere) enhances.

The observed larger maximum temperature and larger wave speed 
are connected. For a larger maximum temperature, the spatial gradi-
ent of the temperature that drives the wave propagation is larger and 
thus, leads to a larger wave speed. This observation is as well supported 
by numerical studies of the influence of the diffusion parameter 𝑘 in 
Fig. 11, where the six different sub-cases in Table 3 are computed. Here, 
larger diffusion parameters lead to a higher wave speed and a wider 
wave profile. Recall that the diffusion term models the heat transfer 
due to conduction and radiation.

In the literature, results for travelling waves have been obtained for 
sub-models of the ADR wildfire model. For example, the evolution of 
a travelling wave solution was shown in [4] for a model that neglects 
the effects of Newton’s cooling law in Eq. (5). Further neglecting advec-
tion, the speed of a travelling wave is bounded by a sub-solution and 
a super-solution with 𝑐⋆ < 𝑐 < 𝑐⋆. The values for 𝑐⋆ and 𝑐⋆ are given 
in transformed non-dimensional parameters in [4]. A transformation to 
the dimensional variables and parameters of Eq. (14) gives lower and 
upper bounds as

𝑐⋆ =
√
𝑘

√√√√ 𝐻

𝜌0𝐶

1 − 𝐶

𝐻
(𝑇ac − 𝑇∞)

𝑇ac − 𝑇∞
𝐴

e
< 𝑐 < 𝑐⋆

=
√
𝑘

√√√√ 𝐻

𝜌0𝐶

1 − 𝐶

𝐻
(𝑇ac − 𝑇∞)

𝑇ac − 𝑇∞
𝐴 exp

(
−

𝑇ac
𝑇∞ +𝐻∕𝐶

) (37)

for the travelling wave speed 𝑐. The extension of the proof to the full 
model including the heat exchange with the environment is still an open 
problem. In the following, we use the values of 𝑐⋆ and 𝑐⋆ for compari-
son with numerically obtained wave speeds.

We apply a different approach by comparing the system again to a 
reaction–diffusion equation. In [16], for reaction–diffusion equations of 
the form

𝜕𝑢

𝜕𝑡
= 𝑑 𝜕

2𝑢

𝜕𝑥2
+ 𝑓 (𝑢), (38)

with a monostable reaction function 𝑓 , the existence of a travelling 
wave front is proven. The influence of advection on the front speed in 
case of a monostable reaction–diffusion equation is discussed in [1].

The extension of the results to an advection–diffusion–reaction 
model coupled with an ordinary differential equation still needs to be 
addressed and requires similar results for super- and sub-solutions like 
the proof of the existence of a travelling wave solution.

Therefore, we regard the reaction–diffusion equation

𝜌0𝐶
(
𝜕𝑇

𝜕𝑡

)
= 𝑘∇ ⋅∇𝑇 − ℎ(𝑇 − 𝑇∞) +Ψ(𝑇 )𝜌0𝐻𝑌 , (39)

for a fixed 𝑌 . Then, the conditions of [16] for a travelling wave solution 
are fulfilled. The reaction function has two roots, where one is at 𝑇 =
𝑇∞ and the other one is the solution of

ℎ

𝜌0𝐶
(𝑇 − 𝑇∞) = 𝐻

𝜌0𝐶
𝐴𝑌 exp

(
−
𝑇ac
𝑇

)
for fixed 𝑌 . Varying 𝑌 will vary the root, shifting the value for smaller 
𝑌 to smaller 𝑇 .

Further, the reaction function 𝑓 (compare Eq. (38)) of Eq. (39) is 
positive between the two roots and the derivative of 𝑓 is positive for 
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Fig. 9. Numerical example with travelling wave solution for case A-6 in Table 2 on a domain 𝑥 ∈ [0, 500] with 𝑁 = 2000 cells. All other model parameters are from 
Table 1. The solution is plotted for every 150 s.

Fig. 10. Numerical example with travelling wave solution to illustrate the sensitivity of the parameter ℎ. The values of ℎ are chosen according to Table 2. Left: 
Position of the wave front depending on the parameter ℎ at 𝑡 = 800 s. Right: Profile of the wave front depending on the parameter ℎ. The parameter 𝑘 = 2 kW⋅m−1 ⋅K−1

is fixed.

Fig. 11. Numerical example with travelling wave solution to illustrate the sensitivity of the parameter 𝑘. The values of 𝑘 are chosen according to Table 3. Left: 
Position of the wave front depending on the diffusion parameter 𝑘. Right: Profile of the wave front depending on the parameter 𝑘. The parameter ℎ = 1 kW⋅m−3 ⋅K−1

is fixed.
188



C. Reisch, A. Navas-Montilla and I. Özgen-Xian Computers and Mathematics with Applications 158 (2024) 179–198

Fig. 12. Left: Wave speed for different values of ℎ and default 𝑘. Right: wave speed for different values of 𝑘 and default ℎ. The bounds from Eq. (37) are depicted 
in blue, and the linearised wave speed of Eq. (40) is displayed for various fixed values 𝑌 .
the first and negative for the second root. Then, a travelling wave solu-
tion of the single reaction–diffusion equation in Eq. (39) exists and the 
linearised wave speed of the travelling wave is

𝑐lin = 2
√

d
d𝑇
𝑓 (𝑇 = 𝑇∞) = 2

√√√√ 𝑘

𝜌0𝐶

(
𝐻

𝐶
𝐴𝑌

𝑇ac

𝑇 2
∞
exp

(
−
𝑇ac
𝑇∞

)
− ℎ

𝜌0𝐶

)
,

(40)

where 𝑓 is the reaction-function according to Eq. (38). This linearised 
wave speed may give a lower limit, see [16]. Here, it is only derived for 
a sub-model and we investigate its approximation quality numerically.

Fig. 12 compares the bounds in Eq. (37) for the model with ℎ = 0
and numerical simulations. Additionally, the linearised minimal wave 
speed of Eq. (40) for the model in Eq. (39) is shown. The upper bound 
for ℎ = 0 in Eq. (37) is an upper bound for any ℎ. The dependency of 
the linearised propagation speed in Eq. (40) on ℎ is non-linear with a 
decrease for increasing ℎ. This behaviour is expected from the results 
plotted Fig. 10, where we found that the front speed decreases with 
increasing ℎ. From an application point of view, this insight is useful 
because even if ℎ cannot be determined precisely, a lower estimate for ℎ
gives conservative estimates for the speed of the fire front. However, the 
lower bound of Eq. (37) is not a lower bound of the model with ℎ > 0. 
For the case ℎ = 0, we find a dependency proportional to 

√
𝑘 of the 

upper and lower bound of the wave speed on the diffusion parameter 
𝑘. The upper bound for the wave speed in Eq. (37) is again an upper 
bound for the numeric calculated wave speed. The linearised minimal 
wave speed from Eq. (40) gives a rough estimate for the dependency on 
𝑘 but not exact bounds.

In Fig. 13, we compare the travelling wave speed for different initial 
biomass values. The smaller the initial biomass is, the slower propagates 
the combustion wave. This is qualitatively as well the interpretation 
of the linearised wave speed in Eq. (40). The dashed line in Fig. 13, 
bottom right, gives the dependency of the linearised travelling wave 
speed depending on 𝑌0. The travelling wave speed was gained from 
fixing the biomass 𝑌 and regarding only the reaction–diffusion equation 
in Eq. (39). This rough approximation of the coupled dynamics shows 
good results in the computations.

The simulations in Sec. 3.3.1 use a constant diffusion coefficient of 
𝑘𝑡(𝑇 ) = 𝑘 ∈ ℝ. In [7], the influence of different diffusion coefficients 
𝑘𝑡(𝑇 ) was studied numerically. A qualitative comparison of constant 
diffusion and non-constant diffusion from [7] shows that the burnt area 
is smaller if a constant diffusion 𝑘𝑡(𝑇 ) = 𝑘 is used.

3.3.2. Terminal biomass
The analysis of the lumped sub-model in Eq. (16) in Sec. 3.1 pro-

vides an upper bound for the remaining terminal biomass after the 
combustion process by the tipping line. A limitation of this analysis is 
that spatially explicit diffusion processes can not be modelled through 
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the lumped model. Thus, the spatially explicit diffusion mechanism in 
Eq. (35) may lead to a different tipping line and consequently a shift in 
the upper bound. In spatially explicit sub-models, at any point 𝑝 in the 
domain, the diffusion process leads to a rise in temperature before the 
combustion process reaches it. During the combustion process, heat is 
transferred to cooler regions by the diffusion mechanism. The increase 
of temperature at 𝑝 is amplified by diffusion from warmer regions, lead-
ing to a shift of the tipping line in the phase plot to the right-hand side. 
The diffusion-induced decrease of temperature leads to a shift of the 
tipping line to the left-hand side in the phase plot.

This is illustrated in Fig. 14 that compares trajectories in the phase 
space of the lumped sub-model in Eq. (16) and the advection-free sub-
model in Eq. (35) for case A-6 in Table 2 with the initial condition 
in Eq. (36). For the latter, trajectories for two different points (𝑝 = 𝑥) 
are plotted. One of these points is in the support of the initial condition, 
where the diffusion effect is small; the second point 𝑥 further away from 
the support of the initial condition, where the travelling wave behaviour 
dominates. Due to the initial temperature distribution, there is a differ-
ence in the initial value in the phase space portrait in Fig. 14 for the two 
points 𝑝 in space. The trajectory for 𝑥 = 250 m starts with an initial tem-
perature above the activation temperature, the trajectory for 𝑥 = 350 m 
has an initial temperature smaller than the activation temperature. The 
trajectory for a point where diffusion is small (𝑥 = 250 m) follows the 
trajectories of the ordinary differential equations. In contrast, the trajec-
tory for a point where the travelling wave front passes (𝑥 = 350 m) has 
a decreased temperature compared to the trajectories of the ordinary 
differential equations. In this particular case, the remaining biomass in 
both sub-models is similar. However, this is not true in general. In some 
cases, we observed a decreased biomass for the sub-model in Eq. (35)
compared to the lumped model in Eq. (16).

The influence of the initial biomass on the terminal biomass is qual-
itatively similar to the lumped model in Fig. 4. Fig. 13 compares the 
trajectories for different initial values 𝑌0. We discussed in Sec. 3.3.1 the 
slowing down of the travelling wave speed by smaller initial biomass. In 
contrast, the initial biomass has a low impact on the terminal biomass.

3.4. Summary of the analysis of the hierarchical sub-models

The spatially lumped sub-model in Sec. 3.1 has a tipping line for the 
shift between heating and cooling which gives an upper limit for the 
remaining biomass after the combustion process. Analysis of the sys-
tem reveals a continuous line of stationary states due to the switching 
function in the reaction function modelling the activation and deacti-
vation of the combustion process. The terminal biomass of the spatially 
lumped sub-model reacts less sensitive to changes in the initial biomass 
but more sensitive to changes of the activation temperature 𝑇ac and 
changes of the bulk density 𝜌0 or the heating value 𝐻 . Changes in 
the activation temperature can be interpreted as the influence of man-
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Fig. 13. Left: Phase space portrait of the solution for case A-6 at 𝑥 = 350 m with 𝑘 = 2 kW⋅m−1 K−1, ℎ = 4 kW⋅m−3⋅K−1. Right: Temperature 𝑇 and biomass 𝑌 over 
time. Different initial conditions for the biomass are used, 𝑌0 = {0.6,0.7,0.8,0.9,1.0}.

Fig. 14. Left: Phase space portrait of the solution for case A-6 at 𝑥 = 250 and 𝑥 = 350 m with 𝑘 = 2 kW⋅m−1 K−1, ℎ = 4 kW⋅m−3⋅K−1. Right: Temperature 𝑇 and 
biomass 𝑌 over time. The initial condition for the biomass is 𝑌0 = 1.0.
agement strategies such as pre-emptive watering while changes in the 
vegetation result in a different bulk density and heating value, in the 
context of the ADR model herein considered.

We define an energy dissipation functional for the combustion-free 
sub-model in Sec. 3.2 which allows to verify the numerical model for the 
diffusion and ambient cooling. The energy dissipation does not change 
if advection caused by wind is introduced. Therefore, the verification 
of the numerical model is valid for the combustion-free sub-model as 
well with advection. Meanwhile, this sub-model shows the diffusive 
behaviour and the exchange with the environment, both leading to a 
decaying temperature.

The advection-free model in Sec. 3.3 including combustion has trav-
elling wave solutions with steep wave profiles. Such travelling wave 
behaviour is not caused by wind and advection, but it is a result of the 
interplay between reaction and diffusion. After a short transient phase, 
a wave profile forms and propagates with a constant speed in space. The 
wave speed depends on the reaction parameters and the diffusion con-
stant, compare Fig. 10 and 11. As a reference value for the wave speed, 
we find upper and lower bounds for ℎ = 0. For a constant biomass, the 
linearised wave speed gives an approximation for the dependency on 
the wave speed as well. When the initial biomass is reduced, there is 
a noticeable decrease in wave speed, compare Fig. 13. However, this 
reduction in initial biomass does not have a significant impact on the 
terminal biomass, which remains relatively unchanged.
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Table 4

Cases computed for different wind speed 𝑣.
Sub-case C-1 C-2 C-3 C-4 C-5 C-6 C-7

𝑣 (m/s) 0.00 0.02 0.04 0.06 0.08 0.09 0.1

4. Insights from the full model

4.1. One-dimensional wildfire simulation

The full ADR wildfire model allows to study the interplay of com-
bustion, temperature exchange with the environment, diffusion, and 
advection. Here, we run several one-dimensional wildfire simulations 
using the full ADR wildfire model in Eq. (14) with different wind speed 
𝑣 as summarised in Table 4. In general, the advection speed of the wild-
fire should always be lower than the wind speed. In fact, a correction 
factor must be used to obtain the advection speed [15], but herein, for 
the sake of simplicity, we will set both of these speeds equal.

Adding wind into the system dynamics changes the amplitude and 
propagation speed of the waves propagating in the same and in the 
opposite direction of the wind. Fig. 15 shows the wave profile and the 
spread of the waves for different times 𝑡 and a constant wind speed 
𝑣 = 0.08 m/s. Compared to the simulations without wind in Fig. 9, the 
temperature wave propagating to the left and to the right have different 
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Fig. 15. Solutions of the model in Eq. (14) each 150 s for constant diffusion and case C-5 of Table 4 with 𝑣 = 0.08 m/s. The domain is [0,500] m and the discretisation 
uses 𝑁 = 2000 cells. The parameters have the default values of Table 1 with 𝑘 = 2 kW⋅m−1 K−1 and ℎ = 4 kW⋅m−3⋅K−1.

Fig. 16. Phase space trajectories for three points for case C-5 in Table 4. At 𝑥 = 250 m, the initial condition is non-zero and the behaviour is dominated by the 
ordinary differential equation. The gray lines give the trajectories of the ordinary differential equation, compare Fig. 2. At 𝑥 = 200 m, the left travelling wave passes 
by and at 𝑥 = 350 m the right travelling wave passes by.
amplitudes, profiles and speed. The biomass consumption differs for the 
two directions. While the temperature for the wave propagating to the 
right is much higher, the remaining biomass is higher in this case. This 
suggests that temperature is not the primary control of the remaining 
biomass. This observation is consistent with our study of the lumped 
sub-model in Fig. 4. A higher temperature leads to a shift to the right in 
the phase space of Fig. 4. The lumped sub-model does not react sensitive 
to this change with respect to the remaining biomass. Hence, the full 
model highlights an additional dependency of the remaining biomass. 
As the wave propagating to the left has a much lower wave speed, the 
combustion time at a certain position 𝑥 is much longer than for the 
wave propagating to the right. This leads to a longer burning process at 
this position and therefore to a lower remaining biomass.

Fig. 16(left) illustrates the difference in the trajectories through the 
phase space of the lumped sub-model and the full ADR wildfire model. 
For the latter, trajectories for three distinct points 𝑝 = 𝑥 are plotted. 
The blue line shows a trajectory of a point inside the support of the ini-
tial temperature pulse. It follows closely the trajectory of the lumped 
sub-model. The orange line shows the trajectory of a point at the right-
hand side of the initial temperature subject to a travelling wave. Here, 
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the phase plot shows an increased temperature for the full ADR wildfire 
model trajectory, compared to the lumped sub-model, which is caused 
by the transport of temperature in the wind direction. The opposite ef-
fect is seen for the green curve, where the wind direction and the wave 
propagation are opposite. As a consequence, the temperature is lower 
for medium temperatures but the combustion process at one point in 
space takes longer. This leads to a lower temperature after the combus-
tion process but to a lower terminal biomass at the equilibrium state. 
Fig. 16(right) shows the profiles of the waves propagating to the left 
and to the right. The profile is steeper on the activation front and the 
amplitude of the temperature is higher for the wave where wind and 
propagation have the same direction.

Fig. 17 shows the wave profiles of the temperature for different wind 
speed. The amplitude and the speed of the wave propagating in the 
opposite direction to the wind decrease with higher wind speed. For a 
certain wind speed, the opposite wave even stops propagating and only 
one wave is travelling in the wind direction. This qualitative change of 
the system’s behaviour is as well depicted in Fig. 18.

The propagation speed of the travelling wave in the opposite di-
rection to the wind decreases approximately linearly until a certain 
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Fig. 17. Profiles of the travelling temperature waves to the left and to the right for fixed parameters and different wind speed. For 𝑣 = 0.1 m/s, there is no wave 
propagating to the left.

Fig. 18. Left: Position of the wave profiles for different wind speed. Right: Propagation speed of the travelling wave profiled depending on the wind speed.
threshold is reached. Then, the speed drops to zero—in our case at 
𝑣 = 0.1 m/s. For this speed, which depends on the fixed parameters 
in Table 1, the solution switches from two travelling waves to only one. 
The travelling wave propagating in the opposite direction of the wind 
stops.

Fig. 19 compares the evolution of temperature and biomass over 
time for a wind speed with two travelling waves and with only one. For 
𝑣 = 0.09 m/s, the travelling wave propagating opposite to the wind di-
rection still exists, even if the propagation speed is slow. In contrast, for 
𝑣 = 0.093 m/s, the wave propagating against the wind stops spreading 
after some time. The temperature profile does not form towards a trav-
elling wave profile and there is only one wave in the direction of the 
wind, moving to the right-hand side.

4.2. Two-dimensional wildfire simulation

We simulate wildfire in a forest ecosystem with a domain of 
[0, 500] × [0, 500] m2. The forest features spatially heterogeneous initial 
biomass organised in patches, defined as a multi-scale random distri-
bution. Random maps of different scales (i.e. 2, 5, 10 and 100 m) are 
combined to produce the initial condition for the biomass, 𝑌 (𝑥, 𝑦, 0). 
The initial biomass distribution resembles areas with reforestation, for 
example in areas with previously dominant monoculture forest. The ini-
tial condition for the temperature is given by

𝑇 (𝑥, 𝑦,0) =
{

470 K if 𝑟(𝑥, 𝑦) < 15 m
300 K otherwise

(41)

with
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𝑟(𝑥, 𝑦) =
√

(𝑥− 𝑥1)2 + (𝑦− 𝑦1)2 (42)

with (𝑥1, 𝑦1) = (50, 50) m. The computational mesh has 500 cells in each 
Cartesian direction. The simulation runs for 500 seconds. The thermal 
diffusivity is set to 𝑘 = 3 kW⋅m−1⋅ K−1 and the wind velocity is set to 
𝐯 = (0.5, 0.5) m/s; default values from Table 1 are used for the other 
parameters.

Simulation results are plotted in Fig. 20, where at the top, tempera-
ture contours and at the bottom, the burned biomass contours at the end 
of the simulation are overlaid with the terminal and the initial biomass 
distribution, respectively. The burnt area near to the ignition point pre-
serves its symmetry more or less, but once the fire reaches a patch 
with low biomass, the symmetry is broken. The wildfire propagation 
is slowed down in this region. As the wildfire propagates through the 
domain, encountering more heterogeneity, the symmetry breaks down 
even further. The expansion towards the north is severely limited by 
patches of low biomass that draw a “border” along the diagonal of the 
domain. Besides, when the fire front reaches the patches with lower 
initial biomass, the temperature of the fire front decreases and thus the 
severity of the fire, as described in Sec. 3.3.2. This is how firebreaks and 
prescribed burn work in wildfire management. This slower propagation 
speed in areas with lower biomass was discussed in Sec. 3.3.1 for the 
advection-free model. The linearised wave speed in Eq. (40) depends 
on the biomass. Fig. 13 also shows this dependency of the advection 
speed on the biomass. We further observe that the wind speed is suffi-
ciently high to stop the wildfire propagation in the opposite direction. 
This is consistent with the one-dimensional wildfire model results in 
Fig. 18.
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Fig. 19. Temperature and biomass evolution for different wind speed 𝑣 = 0.09 m/s (top) and 𝑣 = 0.093 m/s (bottom) and the parameters of Table 1.
5. Conclusions

The advection–diffusion–reaction wildfire model is a non-linear sys-
tem of several coupled mechanisms between the energy of a fire, repre-
sented by its temperature in the context of this model, and the biomass. 
Sub-models including selected mechanisms form a hierarchical model 
family and shed light on the complex mechanisms one by one. Numer-
ical simulations of the sub-models support the analytical findings and 
extend the insights by providing non-formal limit case observations.

In our discussion, we focus on three interlinked properties that we 
consider important for wildfire management applications: the termi-
nal biomass, the maximum temperature and the propagation speed of 
the wildfire. The terminal biomass indicates the fraction of the forest 
ecosystem that went unharmed by the wildfire and is relevant to assess 
the damage and the potential of recovery, see [13,18]. The maximum 
temperature is an indicator of damage, where higher temperatures will 
destroy more biomass. The propagation speed of the wildfire influences 
the amount of burnt area per time.

The spatially lumped ordinary differential equation model in 
Sec. 3.1 provides insight into the relevance of the reaction parame-
ters on the terminal biomass and the maximum temperature. In Sec. 3.2
and 3.3, diffusion and advection mechanisms are added to obtain spa-
tially explicit sub-models.

A sensitivity analysis of the lumped ordinary differential equation 
model shows a high sensitivity of the tipping line for the maximum tem-
perature to the activation temperature, the bulk density and the heating 
value. This tipping line connects the two relevant aspects of terminal 
biomass and maximum temperature: shifting the tipping line further 
up means having a lower maximum temperature and a possibly higher 
remaining biomass after the fire—see Fig. 5. Meanwhile, the initial 
biomass has a rather low influence on the terminal biomass—see Fig. 3, 
Fig. 13 and Fig. 20 for the reaction–diffusion model. In other words, ac-
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cording to the model, reducing the biomass before the occurrence of a 
wildfire will not help the forest ecosystem to recover more quickly af-
terwards. However, the analysis of the reaction–diffusion model reveals 
one advantage of reducing the initial biomass: a lower initial biomass 
might lead to a reduced wildfire propagation speed—see Fig. 12 and 
Fig. 13. We found a surprisingly good approximation of the propagation 
speed by linearisation techniques combined with fixing the biomass 𝑌 , 
compare Eq. (40) and Fig. 13. Diffusion drives the temperature to prop-
agate as a travelling wave with a fixed wave profile. The propagation 
speed depends on the reaction parameters, the wind speed, and the dif-
fusion parameter. A strong wind affects both the terminal biomass and 
the wildfire propagation speed. In the direction opposite to the wind, 
the terminal biomass is smaller and the propagation speed is slower, 
which might form a natural fire break. In the wind direction, we have 
a faster wildfire propagation but a higher terminal biomass. The influ-
ence of the wind is therefore ambiguous: on the one hand, the wind 
enforces the wildfire in the wind direction and leads to a much faster 
propagation and larger burnt area in a shorter time; however, it also 
has a potential benefit of reducing damage to vegetation, resulting in 
higher terminal biomass. On the other hand, the area opposite to the 
wind direction remains unaffected, which serves as a small advantage 
compared to scenarios with no wind. We observed this model property 
as well in the two-dimensional simulation in Fig. 20.

The wind-driven advection mechanism in the present ADR wildfire 
model is a rather simplified representation of real-world processes. In 
our opinion, it also presents the most interesting area of future research 
activities. From a mathematical perspective, the shift of the system’s 
behaviour depending on the wind speed is an emergent property that 
we observe numerically. A full proof and analysis of travelling waves 
for the full system is still an open problem. Further investigations into 
the connection between the approximated models and the full model 
may concretise the quality of the linearised propagation speed.
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Fig. 20. Two-dimensional numerical simulation of wildfire propagation through a heterogeneous domain. Top: Temperature contours (every 100 s) and terminal 
biomass. Bottom: Initial biomass and difference between terminal and initial biomass. Results are shown for 500 s.
With regard to model development, the influence of the wind on the 
fire dynamics could be simulated with higher physical fidelity by cou-

pling the ADR wildfire model to an atmospheric model. This coupling 
is computationally challenging but promises a more precise prediction 
of the propagation direction and speed. Such a coupled model in com-

bination with real-world forest structures in a two-dimensional setting 
would provide the option to test wildfire management strategies like 
firebreaks or planting formations. It is also crucial for understanding 
plume-dominated fires, which are expected to become more frequent 
due to climate change.
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Table 5

Numerical errors for 𝑇 and 𝑌 measured using the 
𝐿∞ norm in the full domain.

Implicit Euler Implicit RK2

Δ𝑡 𝐿∞(𝑇 ) 𝐿∞(𝑌 ) 𝐿∞(𝑇 ) 𝐿∞(𝑌 )

1.0 32.71 1.79e-02 14.61 4.40e-03
0.1 3.38 1.79e-03 9.55e-01 2.44e-04
0.01 0.33 1.78e-04 8.48e-02 2.14e-05
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Appendix A. Verification of the numerical solver

The numerical solvers are explained in Sec. 2.2. Here, we present 
verification results for sub-models.

A.1. Verification case 1: spatially lumped model

The system in Eq. (16) is solved for the initial conditions 𝑇0 = 470
K and 𝑌0 = 1 using the numerical model in Section 2.2 with time steps 
Δ𝑡 = {1,0.1,0.01} s (i.e. a implicit RK2 time integrator), as well as with 
a simple implicit Euler time integrator. The simulation time is 𝑇 = 150
s. The computed evolution in time of the temperature and biomass is 
depicted in Fig. 21. The trajectory of the solutions is also depicted in 
the phase space portrait in Fig. 2. From the figures, we observe that 
the numerical errors in temperature and biomass are negligible for the 
implicit RK2 method. The solver accurately reproduces the solution in 
the phase space diagram. See Fig. 22.

The numerical errors are computed using the 𝐿∞ error norm in-
side the full domain and subdomain 𝑡 = [0, 75] s, and are presented 
in Table 5 and 6, respectively. Note that the subdomain 𝑡 = [0, 75] s 
does not include the deactivation of the combustion term, thus the 
solution is regular inside it. The implicit RK2 approach provides re-
markably smaller values of errors than the implicit Euler integrator. 
For the implicit Euler method, the largest error is obtained at the point 
of maximum temperature. On the other hand, the implicit RK2 integra-
tor offers a high accuracy in smooth regions (e.g. near the maximum 
temperature), with the largest error at the point when the combustion 
term switches off (i.e. when the solution losses its regularity). Thus, we 
observe large differences between Table 5 and 6, showing better con-
vergence rates in the latter where the solution is smooth. We evidence 
that the proposed implicit RK2 integrator in Section 2.2 possesses good 
convergence properties and is sufficiently accurate for the applications 
herein considered.

A.2. Verification case 2: advection-diffusion-reaction model

In this case, we do not consider combustion (𝐴 = 0) and we will 
assume 𝑘𝑡(𝑇 ) = 𝑘 constant. We solve{

𝜕𝑇

𝜕𝑡
+ 𝑣 𝜕𝑇

𝜕𝑥
= 𝛼 𝜕

2𝑇
𝜕𝑥2

− 𝛽(𝑇 − 𝑇∞)
𝜕𝑌 = 0

(43)

𝜕𝑡
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Table 6

Numerical errors for 𝑇 and 𝑌 measured using the 
𝐿∞ norm in the subdomain 𝑡 = [0, 75] s.

Implicit Euler Implicit RK2

Δ𝑡 𝐿∞(𝑇 ) 𝐿∞(𝑌 ) 𝐿∞(𝑇 ) 𝐿∞(𝑌 )

1.0 32.71 1.79e-02 9.74e-01 7.81e-04
0.1 3.38 1.79e-03 1.29e-02 8.29e-06
0.01 0.33 1.78e-04 2.35e-04 9.03e-08

with 𝛼 = 𝑘∕(𝜌0𝐶) the thermal diffusivity and 𝛽 = ℎ∕(𝜌0𝐶), using the 
numerical methods explained in Section 2.2. We set the following initial 
condition

𝑇0(𝑥) = 300 + 100exp (−0.001(𝑥− 𝑥0)2) (44)

which allows to derive an exact solution for the temperature

𝑇 (𝑥, 𝑡) = 300 + 1√
1 + 0.004𝛼𝑡

exp
(
−0.001

(𝑥− 𝑥0 − 𝑣𝑡)2

1 + 0.004𝛼𝑡

)
exp (−𝛽𝑡)

(45)

For the simulation, we choose the following parameters: 𝑣 = 5
m/s, 𝜌0 = 1 kg/m3, 𝐶 = 1 kJ⋅kg−1⋅K−1 , 𝑘 = 10 kW m−1 K−1, ℎ = 0.01
kW⋅m−3⋅K−1, and 𝑥0 = 250 m. The spatial domain is Ω = [0, 1000] m 
and the final time is set to 𝑡 = 100. The solution is computed using 
𝑁 = 100 computational cells and a Courant–Friedrichs–Lewy number 
of 𝖢𝖥𝖫 = 0.1. Periodic boundary conditions are set. The numerical so-
lution is computed using a 1-st, 3-rd, 5-th and 7-th order advection 
scheme.

Fig. 23 shows the computed temperature profile at 𝑡 = 100 s. The 
lower order schemes (1-st and 3-rd) introduce a high numerical dif-
fusion, which would overestimate the conduction and radiation heat 
transfer processes. On the other hand, the 5-th and 7-th order schemes 
provide accurate results for this grid. The results evidence that the ad-
vective terms must be computed with high order of accuracy to avoid 
unphysical diffusion.

A.3. Dependency of the travelling wave speed on the discretisation

The simulation of the reaction–diffusion equation in Eq. (25) shows 
travelling wave solutions. The wave speed there depends on the number 
of discretisation points used in the spatial discretisation, see Fig. 24.

In the simulations the parameter ℎ is given by ℎ = 1 kW⋅m−3⋅K−1. 
The wave speed increases with a larger number of spatial discreti-
sation points with a tendency towards a threshold wave speed. This 
phenomenon is known for the discretisation of wave-like solutions, 
compare [35, p. 169f.].

A.4. Configuration of the simulations

Details for the simulations are given in Table 7, including the do-
main size (Ω), the final time (𝑇 ), the initial (IC) and boundary condi-
tions (BC), the number of cells (𝑁), the 𝖢𝖥𝖫 number to compute the 
time step and the order of accuracy for advection. The section where 
each of the simulations is located is also included in the table, as well 
as the case identifier, if any.

Regarding the initial condition for 𝑌 in the case in Section 4.1 (*), 
it is defined by overlapping random distributions of 𝑌 with differ-
ent length scales. We consider four layers composed of quadrilateral 
patches of maximum size of 2, 5, 10 and 100 m. The size of the 
quadrilateral patches is randomly selected, as well as the magnitude 
of 𝑌 inside each patch. The final value for 𝑌 taken as IC is given by 
the sum of the values computed in each map 𝑗, denoted by 𝑌𝑗 , i.e. 
𝑌 (𝑥, 𝑦) = 𝑌1(𝑥, 𝑦) +𝑌2(𝑥, 𝑦) +𝑌3(𝑥, 𝑦) +𝑌4(𝑥, 𝑦). Note that the final value 
for 𝑌 must be within [0, 1] and thus adequate bounds when generating 
the random numbers must be considered.
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Fig. 21. Numerical solution for 𝑇 (left) and 𝑌 (right) computed by the implicit Euler solver (top) and the implicit RK2 solver (bottom). The reference solution is 
depicted with black solid line.

Fig. 22. Computed phase space portrait by the implicit Euler solver (left) and the implicit RK2 solver (right). The reference solution is depicted with black solid line.
196
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Fig. 23. Numerical solution computed by a 1-st, 3-rd, 5-th and 7-th order, compared with the exact solution (black solid line). Initial condition depicted with dashed 
line.

Table 7

Summary and configuration details of the test cases presented.

Section Case Ω 𝑇 IC BC 𝑁 𝖢𝖥𝖫 Order

3.2.1 [0,1000] × [0,1000] 1000 Eq. (31) Periodic 1002 0.1 7
3.2.2 [0,1000] × [0,1000] 1000 Eq. (31) Periodic 1002 0.1 7
3.3.1 A [0,500] 800 Eq. (36) Transmissive 2000 0.1 7
3.3.1 B [0,500] 800 Eq. (36) Transmissive 2000 0.1 7
4.1 C [0,500] 800 Eq. (36) Transmissive 2000 0.1 7
4.1 [0,500] × [0,500] 500 Eq. (41)(*) Transmissive 5002 0.1 7
Fig. 24. Position of the wave front depending on the number of space discreti-
sation points.
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