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Calculating the thermal conductivity of heterostructures with multiple layers presents a signifi-
cant challenge for state-of-the-art ab-initio methods. In this study we introduce an efficient neural-
network force field (NNFF) to explore the thermal transport characteristics of van der Waals het-
erostructures based on PtSTe, using both the phonon Boltzmann transport equation and molecular
dynamics (MD) simulations. Besides demonstrating a remarkable level of agreement with both the-
oretical and experimental data, our predictions reveal that heterogeneous combinations like PtSTe-
PtTe2 display a notable reduction in thermal conductivity at room temperature, primarily due to
broken out-of-plane symmetries and the presence of weak van der Waals interactions. Furthermore,
our study highlights the superiority of MD simulations with NNFFs in capturing higher-order anhar-
monic phonon properties. This is demonstrated through the analysis of the temperature-dependent
thermal conductivity curves of PtSTe-based van der Waals heterostructures, and advances our un-
derstanding of phonon transport in those materials.

I. INTRODUCTION

Finding materials with a low thermal conductivity (κ)
is a necessary step to create thermoelectric (TE) de-
vices able to efficiently scavenge electrical power from
waste heat. In this context, monolayer transition metal
dichalcogenides (TMDC) have emerged as promising can-
didates [1] since they also exhibit large charge-carrier ef-
fective masses. Both factors contribute to raising the di-
mensionless thermoelectric figure of merit (zT ), the key
descriptor of thermoelectric performance. A particularly
interesting variation on those basic monolayer structures
are Janus TMDCs with the formula MXY (where M is
a transition metal and X and Y represent two different
chalcogens) and a broken reflection symmetry in the out-
of-plane direction. A number of experimental and theo-
retical studies have looked into the prospects of 2D Janus
TMDCmonolayers as TE materials and their connections
with symmetry [2–9]. For instance, the Janus mono-
layer MoSSe has been experimentally synthesized [8] and
found to have a thermal conductivity significantly lower
than that of MoS2 and only slightly higher than that of
MoSe2 despite the much heavier average atomic mass of
the chalcogens in the latter [6]. Furthermore, monolayer
PtSTe shows a lower thermal conductivity than both of
its parent structures (PtTe2 and PtS2) [9].
A large set of additional degrees of freedom for tuning

TE performance comes from the possibility of stacking
those monolayers, as the transport properties of weakly
bound layered structures are strongly dependent on their
thickness and stacking sequence. For instance, the κ of
bilayer graphene is much lower than that of monolayer
graphene [10], a change driven by new phonon scattering

∗ jcarrete@unizar.es

channels caused by the weak interlayer coupling. More
generally, van der Waals Heterostructures (vdWHSs) of
2D layered materials can display emerging functionali-
ties distinct from those of the individual components.
The zT of WS2/WTe2 bilayers has been theoretically
predicted to reach the high value of 2.4 at room tem-
perature due to its ultralow thermal conductivity [11].
This creates a strong motivation to design and test novel
heterostructures, and 2D monolayer Janus TMDCs stand
out as promising building blocks for those.

In this work, we focus on the thermal conductivity
of different bi- and trilayer vdWHSs composed of PtS2,
PtTe2, and Janus PtSTe monolayers at room tempera-
ture. For crystalline semiconducting systems, where lat-
tice thermal transport is dominant, solving the Boltz-
mann transport equation (BTE) for phonons from first
principles has emerged as one of the most popular and ro-
bust approaches for obtaining predictive estimates of the
thermal conductivity [12, 13]. However, the complexity
and diversity of the vdWHSs pose a computational chal-
lenge when attempting to calculate all the necessary com-
ponents for solving the BTE. To overcome this obstacle
while maintaining accuracy, we employ a neural-network
force field (NNFF) [14, 15] trained on a smaller first-
principles dataset composed primarily of less complex
structures and strategically enriched to improve transfer-
ability. Even with the significant acceleration afforded by
the machine-learning calculation of energies and forces,
ordinary BTE-based methods have limited scalability
with the number of atoms in the unit cell. This has been
alleviated recently by several generalizations of the for-
malism [16–18] to encompass diffusive thermal transport
mediated by the coupling of non-propagating vibrational
modes. These generalizations have created quantitative
frameworks and calculation workflows that include diffu-
sons (introduced by Allen and Feldmann [19]) as heat car-
riers in addition to phonons, and are applicable to com-
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plex unit cells as well as disordered systems. Here, based
on the recent work by Baroni and coworkers [20–22], we
explore the alternative of using equilibrium molecular dy-
namics (MD) simulations with the same force field, which
also lift all restrictions regarding the order and impor-
tance of anharmonicity. To validate our model, we com-
pare the results with data obtained from first-principles
calculations for the monolayer. To get further insight into
the differences between the BTE and MD results, we also
perform a temperature-dependent study of the thermal
conductivity of monolayer and bilayer Janus PtSTe-based
vdWHSs. We then extend our calculations to trilayer
nanostructures.

II. METHODS

The NNFF model sits at the center of our methodol-
ogy, powering both the BTE-based workflow and the MD
simulations. Ab-initio calculations are used to train the
NNFF (in a series of refinement steps) and to perform
the BTE calculations employed as tests/calibration. The
following subsections describe each step of the process in
detail.

A. Force-field architecture and training

We parameterize the potential-energy hypersurface of
our systems using a committee of 5 NeuralIL FFs [14, 15],
which also afford an estimate of the uncertainty in that
prediction. Each member of the committee is a neural
network patterned after the Behler-Parinello architecture
[23] consisting of a first stage where the Cartesian coordi-
nates of each atom are translated into a set of symmetry-
adapted descriptors, a second one where a per-atom con-
tribution to the energy (ϕj) is computed from those de-
scriptors, and a sum over atoms at the end of the pipeline.
NeuralIL uses the spherical Bessel descriptors [24] aug-
mented with an element-based embedding, the Swish-
1 activation [25] and a deep residual network (ResNet)
core to improve upon the original implementation of this
architecture [15]. Moreover, it is end-to-end algorithmi-
cally differentiable thanks to being implemented on top
of JAX [26], so forces are automatically obtained from
the gradient of the energy. The predictions of the ensem-
ble are obtained as the average of the predictions of the
individual members, and the standard deviation of that
sample mean is taken as an estimate of the uncertainty.

Every member of the ensemble shares the same char-
acteristics: a cutoff of 4.5 Å and a maximum radial or-
der of 6 for the spherical Bessel descriptors, and ResNet
core layer widths of 64, 32, 16 and 16 (note that each
ResNet layer actually involves several layers of neurons
plus normalization stages; see Ref. 15 for details). The
loss function is formulated as

L =
1

2

〈
0.2

natoms
×

natoms∑
i=1

log

[
cosh

(
∥fi,predicted − fi,reference∥2

0.2 eVÅ
−1

)]〉

+
1

2

〈
0.02 log

[
cosh

(
Epot − Epot,reference

natoms × 0.02 eV atom−1

)]〉
.

(1)

Although we have found forces to supply much more in-
formation in the training process, the second term takes
care of aligning the origins of energies of the model and
the ground-truth calculations. The log-cosh function per-
forms a smooth transition between quadratic and lin-
ear behavior and prevents outliers from dominating the
training. We train the ensemble for 600 epochs using the
fully nonlinear VeLO optimizer [27].

B. Generation and structure of the ab-initio
dataset

The workflow (Fig. 1 (a)) begins with the building
of a dataset. That initial dataset, obtained from DFT
calculations, is utilized for committee training to create
the primary model, which is then employed in adversar-
ial attacks to enrich the database. The initial dataset
consisted of a set of monolayer configurations of Janus
PtSTe and its parent structures, PtS2 and PtTe2, all
of them in the 1T structure. Janus PtSTe, depicted in
Fig. 1(b), belongs to the P3m1 space group, while the
parent structures belong to P3m̄1 due to the presence
of inversion symmetry. Starting with the equilibrium
configurations of each structure, the dataset was popu-
lated by generating uniformly distributed random biaxial
strains from −8% to +8% and applying normally dis-
tributed atomic displacements with a standard deviation
of 0.05 Å. 700 configurations were created in this manner
for the Janus monolayer, which were complemented with
configurations for the parent monolayers until 1500 con-
figurations were available in total. The interatomic forces
and total energies of those configurations were then com-
puted by DFT (see details below). This dataset was then
randomly split into training (80% of the data) and val-
idation (20% of the data) subsets. Following standard
practice, the former was used to calculate the loss and
its gradients, while the latter was reserved to evaluate
the statistics describing the performance of the model at
each step of the training process.
Building upon this foundation, we then augmented the

dataset in three consecutive steps to extend the range of
applicability of our model. In the first of those steps, we
added data from 700 configurations of bilayer vdWHSs.
Their generation follows the same template as in the case
of the monolayers (random strain and random small dis-
placements) but with an additional degree of freedom in



3

(b) (c)

NNFF Thermal
conductivity

MD

Adversarial
attack data

Monolayer
Bilayer
Trilayer

Dataset

DFT

BTE

Dataset building Application

Model 1

Model 2

Model N

Prediction
&

Uncertainly
estimation

NNFF
model

Committee training

Training
Dataset

Validation
dataset

(a)

Side
view

Top
view

Pt

S

Te

D

FIG. 1. (a) Schematic representation of the development of a committee of neural-network force fields for application in this
study. (b) Monolayer and multilayer Janus PtSTe structures. (c) Distribution of structures in the training dataset.

the form of the interlayer distance, which was sampled
at random within an interval with a half width of 0.5 Å
centered around the equilibrium values. The purpose of
this procedure is to make the model aware of the char-
acteristics of the weak interlayer interactions, which are
naturally absent from the monolayers.

The second step was more targeted and aimed at find-
ing and patching possible blind spots of the model with
minimal additional data. The technique, detailed in
Ref. 15, utilized adversarial attacks to locate configu-
rations poorly characterized by the NN committee but
statistically likely and involves optimizing the differen-
tiable, likelihood-weighted uncertainty metric,

Ladv = σ2
f exp

(
− Epot

kBT

)
, (2)

through gradient-based optimization. T is set to 300K in
this work. Thereby local optima maximizing NN commit-
tee uncertainty while considering thermodynamic likeli-
hood are identified. Through this method, we added 100
new Janus bilayer configurations. Interatomic forces and
total energies are calculated for these new configurations
and integrated into the NN training, enhancing extrap-
olation abilities and enabling comprehensive exploration
of the configuration space. The final step of our active-
learning strategy consisted in adding 100 trilayer config-
urations with random strain and displacements.

Fig. 1(c) shows a breakdown of the composition of the
final data set, including details about the origin of each
subset of configurations. The successive improvements
in the quality of the force field as data was added are
clearly visible in Fig. 2, a parity plot of the forces over the

training and validation data sets as predicted at each of
the stages of training: the prediction of the step-0 neural-
network potential show a profusion of outliers pointing
to poor transferability, while those of step 3 are tightly
grouped around the perfect-prediction line.

On a quantitative level, the accuracy of the NNFF
is reflected in root mean square errors (RMSEs) of

0.0194 eV atom−1 and 0.0249 eV Å
−1

for the training en-
ergies and the training forces, respectively. For the val-
idation set, the corresponding RMSEs for energies and

atomic forces are 0.0196 eV atom−1 and 0.0250 eV Å
−1

,
respectively (see Fig. S1 in the Supplemental Material).
To further assess the model’s predictive capabilities, we
extended the comparison to include additional trilayer
and tetralayer vdWHS systems. As shown in Fig. S2 in
the Supplemental Material, the RMSEs values for atomic

forces and energies are approximately 0.031 eV Å
−1

and
0.023 eV atom−1, respectively.

C. First-principles calculations

Ab-initio computations of atomic forces and ener-
gies were performed in the framework of density func-
tional theory (DFT) using the Vienna Ab-initio Simula-
tion Package (VASP) [28], the Perdew-Burker-Ernzerhof
generalized-gradient approximation [29] to the exchange
and correlation components of the electronic Hamilto-
nian. In order to improve the description of the inter-
layer interactions, the DFT-D3 of Grimme’s empirical
dispersion interaction was included in the calculations
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FIG. 2. Comparison between the forces on atoms predicted by the NNFF model and ground-truth values from DFT calcu-
lations. The right panel contains a zoomed-in view of the area enclosed by the orange dashed box in left panel. The inset
summarizes the stepwise construction of the dataset.

[2, 30–32]. All electronic self-consistent-field calculations
were run with a convergence criterion of 1×10−8 eV and a
plane-wave energy cutoff of 550 eV. Our optimized struc-
tural parameters for the monolayer are listed in Tbl. I;
we re-optimized them for the multilayer structures but
found them to change very little. We also list the the
equilibrium interlayer distances for homogeneous stack-
ing sequences. For the heterogeneous stacks we obtained
a minimum of 2.39 Å and a maximum of 2.42 Å.

TABLE I. Lattice parameter (a), Pt-S and Pt-Te bond
lengths and interlayer distance (D) of monolayers and ho-
mogeneous multilayers, compared with literature values.

Materials a (Å) dPt−S (Å) dPt−Te (Å) D (Å)

PtS2 3.58 (3.57a) 2.40 (2.42b) − 2.25
PtSTe 3.80 (3.80c) 2.50 (2.49c) 2.63 (2.62c) 2.30
PtTe2 4.02 (4.01d) − 2.70 2.39
aFrom Ref. [33], bFrom Ref. [34].
cFrom Ref. [35].
dFrom Ref. [36].

D. Calculation of the thermal conductivity using
the BTE

We obtain κ in the framework of the linearized BTE
as

καβ =
kB

NqΩuc

∑
λ

(
ℏωλ

kBT

)2

n0λ(n
0
λ + 1)vαλF

β
λ , (3)

where λ runs over all phonon branches and over all Nq

points on a regular grid covering the Brillouin zone, each
phonon mode is characterized by its angular frequency
ωλ, its group velocity vλ and its equilibrium (Bose-
Einstein) occupancy nλ, and kB, Ωuc and T are the Boltz-
mann constant, the volume of unit cell and the temper-
ature, respectively. α and β denote Cartesian axes, and
Fλ is a the vector of coefficients that connects the devi-
ation from equilibrium of each mode’s occupancy to the
temperature gradient in this linear regime.

The details of the workflow are documented in detail
in Ref. 12. The essential ingredients are sets of second-
and third-order derivatives of the potential energy eval-
uated at the equilibrium positions, the so-called inter-
atomic force constants (IFCs). Second-order IFCs are
required to calculate harmonic quantities like ωλ and vλ,
while the third-order IFCs characterize the strength of
three-phonon scattering, the dominant influence deter-
mining Fλ. We obtain the second-order IFCs using a
finite-displacement method as implemented in Phonopy
[37], with either VASP or our NNFF as the backend to
calculate forces. We further use hiPhive [38] as a post-
processing step to enforce the rotational symmetry of free
space and obtain the proper quadratic behavior of the ZA
branches in these quasi-2D systems [39]. To calculate
the anharmonic third-order IFCs we employ Phono3py
[40, 41] with 4 × 4 × 1 supercells, a finite displacement
of 0.03 Å and a cutoff distance of 6.0 Å (up to 6th near-
est neighbors). We also use Phono3py to solve the BTE
and calculate κ, evaluating Eq. (3) on a q-point mesh of
30× 30× 1.
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E. Calculation of the thermal conductivity through
equilibrium MD

The thermal conductivity can be obtained using the
Green-Kubo formula for the time autocorrelation func-
tion of the heat flux J :

καβ =
Ωsim

kBT 2

∫ ∞

0

〈
Jα(t)Jβ(0)

〉
dt, (4)

where Ωsim is the volume of the simulation box. This
integral can also be extracted as the zero-frequency com-
ponent of the power spectrum of J . However, both
the time-domain and frequency-domain formulations face
convergence problems. Not only do those require costly
long MD trajectories, but they can also introduce arti-
facts in the results even in that case. Moreover, the defi-
nition of J for a general form of the interaction potential
is, a priori, ambiguous, and depends on how energy is
apportioned among atoms. Work by Baroni and cowork-
ers [20, 21] has helped overcome both classes of obsta-
cles. Firstly, it shows the existence of a gauge principle
guaranteeing that different partitioning strategies for the
potential energy lead to the same estimate of the thermal
conductivity. Secondly, it presents an efficient algorithm
to obtain that estimate, along with a measure of its un-
certainty, from short trajectories. Moreover, it puts the
whole formalism on a firm footing for periodic multicom-
ponent systems even in the presence of diffusion. The
central quantity in this formulation is the cepstrum of
J , i.e., the inverse Fourier transform of the logarithm
of its spectrum. Denoting the power spectrum of J at
linear frequency f by S(f), the thermal conductivity is
reconstructed from the cepstral components of S as

κ =
Ωsim

2kBT2
exp[logS(f = 0)]

≃ Ωsim

2kBT2
exp

[
Ĉ0 + 2

P∗−1∑
n=0

Ĉn −
〈
log ξ̂0

〉]
,

(5)

where the Cartesian indices have been dropped to avoid
cluttering the notation. Here, Ĉ0 . . . ĈP∗−1 are the afore-
mentioned cepstral components, and the cutoff P ∗ is cho-
sen objectively according to the Akaike information cri-

terion. ξ̂0 is one of the independent and identically dis-
tributed random variables connecting the sample power
spectrum with its expected value in this formulation,

and the ⟨log ξ̂0⟩ term is calculated as ψ(ℓ−M + 1) −
log(ℓ−M + 1), where ψ is the digamma function [42],
N is the number of time steps, M is the number of con-
served fluxes in the calculation, and ℓ is the number of
Cartesian components of the flux (e.g. two in our subpe-
riodic systems). The uncertainty in κ is estimated from
the expression

∆κ

κ
= σ0

√
4P ∗ − 2

N
, (6)

where σ2
0 = ψ′(ℓ−M + 1) and ψ′ is the trigamma func-

tion.
We perform our MD simulations using a time step of

1 fs and 5 × 5 × 1 supercells. For each system, we start
by running a canonical (NV T ) trajectory for 200 ps to
equilibrate the system at room temperature (300K). We
then run a 2500 ps-long microcanonical (NV E) trajec-
tory during which we calculate the heat flux as

J(t) = Jkin + Jpot

=
1

Ωsim

[∑
i

(
ϕi +

1

2
miv

2
i

)
vi−

∑
ij

(ri − rj)
∂ϕj
∂ri

· vi

 .
(7)

In this expression, i and j run over all atoms in the sys-
tem, whose masses, positions, velocities and contribu-
tions to the potential energy are denoted by mi, ri, vi

and ϕi, respectively. We take ϕi directly from the out-
put of the second stage of the NNFF, before the sum over
atoms. Just like the total forces, the detailed Jacobian
∂ϕj

∂ri
is calculated using algorithmic differentiation. The

velocity Verlet and thermostat routines from the atomic
simulation environment (ASE [43]) take care of the inte-
gration steps.
Figure 3 shows, in detail, a representative example

of our results, specifically for the PtSTe monolayer.
Panel (a) contains a plot of the sample power spectrum
as a function of the frequency. Following the prescrip-
tion by Baroni and coworkers [20], we choose a cutoff
frequency (f∗) for the cepstral analysis that leaves below
it the main prominent feature of the smoothed power
spectrum; that frequency is signaled by a vertical arrow.
As expected from this method, the values of κ and its
uncertainty converge quickly over the course of the sim-
ulation: this is illustrated by panel (b).

III. RESULTS AND DISCUSSION

As a first test of the applicability of our NNFF to the
vibrational dynamics of vdWHSs, we show a compari-
son between the NN- and DFT-backed phonon spectra
of PtSTe↿⇂ and the PtSTe monolayer in the top panels of
Fig. 4. PtSTe↿⇂ denotes a PtSTe bilayer where the second
layer is vertically flipped with respect to the first and its
structure is depicted in the inset of Fig. 4(d). The com-
parison reveals a remarkable level of agreement between
the two approaches, validating the accuracy and relia-
bility of the calculations based on the NNFF potential.
This agreement is observed both in the high-frequency
range and in the low-frequency regions of the branches
close to the Γ point. For the bilayer, both acoustic and
low-lying optical modes can be observed close to the Γ
point, reflecting that interlayer interactions are also cap-
tured. Despite the low strength of those interactions,
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(b)

(a)

FIG. 3. Average sample power spectrum of the heat flux
computed from MD trajectories for monolayer PtSTe (with a
length of 100 ps) (a) and convergence of the thermal conduc-
tivity of PtSTe calculated from an NNFF-backed MD simula-
tion (b). The orange line indicates the thermal conductivity
obtained from the DFT-backed BTE calculation.

they are enough to make phonon modes more extended.
The weaker average interactions depress the overall fre-
quencies, and the high-energy optical bands become more
dispersive as the more intense hybridation distributes
those vibrations over larger sets of atoms. Accordingly,
the gaps between bunches of phonon branches are re-
duced.

The bottom panels (c and d) of Fig. 4 show the other
main ingredient for the study of thermal transport in the
BTE framework outlined above, i.e. the three-phonon
scattering rates, for the same systems. Although some
deviations from DFT are observed in areas where the
results depend on the subtler features of the branches,
the NNFF also performs well in this test, especially tak-
ing into account the fact that these scattering rates span
many order of magnitude. The aggregate effect of those
deviations will be assessed when both sets of scattering
rates are used for the thermal conductivity calculation
below. While both limits are reproduced by the NNFF,
it is noticeable that the monolayer and the bilayer stand
in stark contrast in terms of their behavior in the ω −→ 0
limit. Only the rates for the monolayer diverge towards
infinity, which can be explained in terms of the out-of-
plane symmetry properties of each system, just like in
the case of monolayers [10, 44]. Specifically, the selection
rules protecting the ZA branch from scattering in the
PtS2 and PtTe2 monolayers are lifted in the asymmetric

Janus PtSTe monolayer [9]. These are restored due to
the symmetric arrangement of the PtSTe↿⇂ bilayer, which
shows the expected vanishing behavior in the ω −→ 0
limit.

After this detailed look at the ability of the NNFF to
reproduce the harmonic and anharmonic features of lat-
tice vibrations in our systems, in Fig. 5 we provide a more
global comparison of the three methods used here when
it comes to predicting our main quantity of interest, the
lattice thermal conductivity. Included in the figure are
results at T = 300K for all the homogeneous systems;
the thermal conductivity of the monolayers and bilayers
was calculated using the MD and BTE workflows, with
the latter backed by both direct DFT calculations and
by the ML potential, while for the trilayers we only ran
MD simulations. Additionally, we include experimental
results for PtS2 from Ref. 45. The level of agreement
between the NNFF and DFT results is very satisfactory,
again lending support to the use of our NNFF as a surro-
gate model for lattice thermal conductivity calculations.
Furthermore the agreement between MD and BTE based
calculations suggests a limited effect of higher-order an-
harmonicity at 300K despite the noncovalent bonding
between layers. For the two cases where experimental
data is available, its values are correctly predicted by our
workflow, with a slight overestimation consistent, for in-
stance, with some elastic phonon scattering coming from
the residual defects present in the samples.

The thermal conductivity of the monolayers follows the
sequence PtS2>PtTe2>PtSTe, as previously analyzed in
Ref. 9. This order emerges from the combination of
the higher mass of tellurium and the breakdown of the
symmetry-induced selection rules in the Janus mono-
layer. The thermal conductivity of the multilayers is
lower than that of the corresponding monolayer; this can
be attributed to an increase in scattering channels caused
by the breakdown of degeneracy of vibrational modes me-
diated by interlayer interactions. The decrease is more
noticeable from the monolayer to the bilayer, with the
trilayer already approaching the limit of this effect. De-
spite this general trend, there is a crucial dependence of
the thermal conductivity on the stacking pattern even
among homogenous multilayers, evident in the case of
PtS2 where we predict that an AA monolayer carries heat
almost twice as efficiently as the experimentally charac-
terized AB bilayer [details of AB stacking can be found
in Fig. S3 of Supplemental Material]. Further stacking
of layers is less effective at hindering phonons in Janus
PtSTe than in the symmetric parent structures. For in-
stance, in PtTe2 we find that κbilayer = 0.57κmonolayer

and κtrilayer = 0.90κbilayer, but in PtSTe the approxi-
mate ratios are κbilayer = 0.90κmonolayer and κtrilayer =
0.93κbilayer. This matches the general observation that
it is much harder to depress the thermal conductivity in
systems with already intense phonon scattering.

Analyzing the temperature dependence of the thermal
conductivity (Fig. 6) sheds more light both on the per-
formance of the different methods employed here and on
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(a) (b)
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FIG. 4. Phonon dispersions and anharmonic scattering rates of monolayer PtSTe (a,c) and PtSTe↿⇂ (b,d). The insets in panels
(c) and (d) contain side views of the corresponding structures.

PtS2 PtSTe PtTe2

FIG. 5. Room-temperature κ for homogeneous systems
obtained using three different methods: the BTE based on
DFT- (crosses) or NNFF-calculated (dots) IFCs and equilib-
rium MD (triangles). The experimental points (squares) come
from Ref. 45.

the physics of phonons in these materials. When anhar-
monicity is only included in the form of three-phonon
processes, κ decreases with temperature according to the
well known ∝ T−1 dependence. This is evident in both
panels of Fig. 6, which present the data for PtSTe (a)
and PtSTe↿⇂ (b). An almost perfect match between the
DFT- and NNFF-backed BTE calculations is found for

the monolayer, while for the bilayer the curves are still
parallel but offset with respect to each other. Although
the agreement is still fair, this points to some degree
of difficulty of the NN model when it comes to repro-
ducing the finer details of the weak interlayer interac-
tions. Perhaps more interestingly, the MD curves depart
from the ∝ T−1 trend and show a more accentuated de-
cay with temperature, with exponents around −1.15 and
−1.2 for the monolayer and bilayer, respectively. It is rea-
sonable to infer a nonnegligible importance of n-phonon
processes with n > 3 for T > 300K. The significance of
higher-order IFCs, including four-phonon scattering, on
the thermal conductivity at high temperatures has been
noted in previous research, such as the work by Yang et
al. [46]. Their findings suggest that four-phonon scat-
tering contributes to a deviation towards a T−2 trend,
resulting in a more substantial decrease in thermal con-
ductivity as temperature increases. Here the importance
of those processes may be enhanced by van-der-Waals
interactions; however, the overall quantitative change in
the predicted κ due to this departure is still less than 10%
in the temperature range studied, and hence the BTE re-
sults remain predictive. A feature of this disagreement
that may not be explained by resistive scattering alone
is the higher value of the MD conductivity at lower tem-
peratures in Fig. 6 (b) with respect to the BTE solution
using the same force field. A first hypothesis about its
possible origin is the use of Bose-Einstein occupations
in the BTE treatment, which affect both the mode spe-
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(a)

(b)

FIG. 6. Temperature-dependent thermal conductivity of
monolayer PtSTe (a) and PtSTe↿⇂ (b) obtained using the
three different methods discussed in the main text, along with
power-law fits to the temperature dependence (dashed lines).

cific heat and the scattering rates, versus the classical
(equipartition) occupations that would emerge from MD.
To test this possibility, we created a patch for Phono3py
to use equipartition occupations [47]. A plot illustrating
the change this introduces, as well as a modified version
of Fig. 6 (b), are provided as part the Supplemental Ma-
terials; see our data availability statement for details on
how to obtain the patch. Despite the increased mode spe-
cific heat, the net effect of equipartition occupations is to
decrease the thermal conductivity, and therefore this ef-
fect cannot be responsible for the differences between the
BTE and MD around room temperature in Fig. 6 (b). A
more plausible alternative is therefore the contribution
to thermal transport from diffusons [19–22], which has
been shown to be non-negligible even in ordered systems
.

At 300K, where the more prominent temperature de-
pendence plays an even smaller role, MD results can be
used interchangeably with BTE results as computational
estimates of κ for this family of systems. We therefore use
MD to complete our study of the family with more com-
plex structures. The complete set of room-temperature
results is displayed in Fig. 7. With respect to Fig. 5,
this now includes heterogeneous multilayer (bilayer and
trilayer) vdWHSs.

Bilayer Trilayer

FIG. 7. The thermal conductivity of multilayer vdWHs
calculated through a solution of the BTE based on DFT-
(crosses) or NNFF-calculated (dots) IFCs, and through MD
based on the NNFF (triangles). Empty symbols correspond
to homogeneous systems; solid symbols denote heterogeneous
structures. The bulk value for PtSTe was evaluated using the
DFT+BTE workflow and added for reference.

Among the observations that can be drawn from Fig. 7
is the fact that the subseries containing PtS2 tends to
have a higher thermal conductivity, just like the PtS2
monolayer itself. As can be seen in the details of the
phonon dispersion included in the Supplemental Mate-
rial, this can be traced directly to the phonon spec-
trum and ultimately to the lower atomic mass of sul-
phur. On the other hand, the values of κ for the PtTe2
and Janus-PtSTe series of bilayers are mostly around
20± 2 Wm−1 K−1. The PtSTe-PtTe2 combination ex-
hibits the lowest thermal conductivity, with a value of
14± 0.9 Wm−1 K−1. However, adding more layers to the
structure does not lead to an even lower thermal conduc-
tivity, which instead oscillates in a range of values close to
the bulk structure. This observation can be rationalized
based on the notion that, when interlayer interactions are
weak, layers quickly reach a bulk-like environment, but
with a residual confinement effect.

IV. CONCLUSIONS

In summary, we introduce a NNFF model, trained on
a relatively small dataset derived from DFT calculations.
This model accurately predicts the thermal-transport
properties of layered van der Waals heterostructures (vd-
WHSs) based on PtSTe, employing both the linearized
phonon BTE method and equilibrium Green-Kubo MD
simulations. Our results demonstrate that NNFF pre-
dictions effectively capture van der Waals interactions,
showing excellent agreement with DFT calculations and
experimental data at room temperature. Importantly,
NNFF offers a substantial computational speed advan-
tage over traditional ab initio calculations. For instance,
while one time step on 20 cores for a system with 75
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atoms takes approximately 3000 s for DFT to calculate
atomic forces, NNFF predicts those in just 0.31 s.
Furthermore, our study emphasizes the advantage of

MD simulations in capturing higher-order anharmonic
properties, particularly at high temperatures. The
temperature-dependent thermal conductivity curves of
monolayer PtSTe and bilayer PtSTe↿⇂ both deviate from

κ ∝ T−1, with decay ratios of −1.15 and −1.2, respec-
tively. This departure suggests that the method em-
ployed can capture behavior beyond third-order scatter-
ing. Notably, among the PtSTe-based vdWHSs, PtSTe-
PtTe2 stands out with its remarkably low thermal con-
ductivity. This behavior can be attributed to several
factors, including broken out-of-plane symmetries and
weak van der Waals interactions. However, it is impor-
tant to note that trilayer vdWHSs do not exhibit further
decreases in thermal conductivity. This is mainly due
to weak interlayer interactions, leading to oscillations in
thermal conductivity within the range of values observed
in the corresponding bulk materials.

V. DATA AVAILABILITY STATEMENT

The supporting software and data for this article are
openly available at https://doi.org/10.5281/zenodo.
10417653 under open licenses. The data package includes
the version of NeuralIL employed in our calculations, the
trained neural-network force field, a database of the DFT
data used for training and validation, and our patch for
Phono3py.
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