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1. Introduction

Given a finitely generated group G, the set R(G) of its representations over SL(2,C)
can be endowed with the structure of an affine algebraic variety (see [15]), the same

holds for the set X(G) of characters of representations over SL(2,C) (see [3]). Since
different presentations of a group G give rise to isomorphic representation and

character varieties; the study of geometric invariants of R(G) and X(G), like the

dimension or the number of irreducible components is of interest in combinatorial

group theory (see [1,11,12,14] for instance). The varieties of representations and

characters have also many applications in 3-dimensional geometry and topology as

can be seen in [2,6,7,9,20] for instance.

Let us consider the group Gm,n = ⟨x, y | xm = yn⟩ with m and n nonzero in-

tegers. In [12] it was shown that dimR(Gm,n) = 4 and in [13] the number of four

dimensional irreducible components of R(Gm,n) was explicitly computed in terms

of m and n. In previous work by the authors, see [18], an explicit description of

X(Gm,2) was given and in [16,17] the character variety X(Gm,n) was studied giv-

ing an explicit decomposition into irreducible components, computing their number
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and dimension and completely describing their combinatorial structure. In this pa-

per we use the results in [16,17], together with some new techniques, to compute

the total number of irreducible components of R(Gm,n) and their dimensions; thus

extending the work in [13]. In passing we also study the set of metabelian represen-

tations of Gm,n, the behavior of the projection t : R(Gm,n) −→ X(Gm,n) and some

combinatorial aspects of the representation variety.

The paper is organized as follows. In Section 2, we recall the main definitions and

results that will be used throughout the paper. In Section 3, we give a decomposition

of R(Gm,n) into irreducible components, computing their number and dimension

and studying the behavior of the projection t : R(Gm,n) −→ X(Gm,n). Finally, the

set of metabelian representations is studied in detail in Section 4.

2. Preliminaries

2.1. Representation and character varieties of finitely presented

groups

Let G be a group, a representation ρ : G −→ SL(2,C) is just a group homo-

morphism. Two representations ρ and ρ′ are said to be equivalent if there exists

P ∈ SL(2,C) such that ρ′(g) = P−1ρ(g)P for every g ∈ G. A representation ρ is

reducible if the elements of ρ(G) all share a common eigenvector, otherwise we say

ρ is irreducible. The following proposition presents some useful characterizations of

reducibility.

Proposition 1. (see [3, Lemma 1.2.1. and Prop. 1.5.5.])

(1) Let ρ : G −→ SL(2,C) be a representation. The following conditions are equiv-

alent:

(a) ρ is reducible.

(b) ρ(G) is, up to conjugation, a subgroup of upper triangular matrices.

(c) tr ρ(g) = 2 for all g in the commutator G′ = [G,G].

(2) If G is generated by two elements g and h, then ρ : G −→ SL(2,C) is reducible
if and only if tr ρ([g, h]) = 2.

Now, let us consider a finitely presented group G = ⟨x1, . . . , xk | r1, . . . , rs⟩
and let ρ : G −→ SL(2,C) be a representation. It is clear that ρ is completely

determined by the k-tuple (ρ(x1), . . . , ρ(xk)) and thus we can identify

R(G) = {(ρ(x1), . . . , ρ(xk)) | ρ is a representation of G} ⊆ C4k

with the set of all representations of G into SL(2,C), which is therefore (see [3]) a

well-defined affine algebraic set, up to canonical isomorphism.

Recall that given a representation ρ : G −→ SL(2,C) its character χρ : G −→ C
is defined by χρ(g) = tr ρ(g). Note that two equivalent representations ρ and ρ′

have the same character, and the converse is also true if ρ or ρ′ is irreducible [3,

Prop. 1.5.2.]. Now choose any g ∈ G and define tg : R(G) −→ C by tg(ρ) = χρ(g).
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It can be seen that the ring T generated by {tg | g ∈ G} is a finitely generated ring

([3, Prop. 1.4.1.]) and, moreover, it can be shown using the well-known identities

trA = trA−1 , trAB = trBA , trAB = trA trB − trAB−1 , (1)

which hold in SL(2,C) (see [4, Cor. 4.1.2.]) that T is generated by the set:

{txi
, txixj

, txixjxh
| 1 ≤ i < j < h ≤ k}.

Now choose γ1, . . . , γν ∈ G such that T = ⟨tγi
| 1 ≤ i ≤ ν⟩ and define the

map t : R(G) −→ Cν by t(ρ) = (tγ1
(ρ), . . . , tγν

(ρ)). Observe that ν ≤ k(k2+5)
6 .

Put X(G) = t(R(G)), then X(G) is an algebraic variety which is well defined up

to canonical isomorphism [3, Cor. 1.4.5.] and is called the character variety of the

group G in SL(2,C). Note that X(G) can be identified with the set of all characters

χρ of representations ρ ∈ R(G).

2.2. A family of polynomials

In forthcoming sections, we will need a particular family of polynomials whose

definition is given below.

hk(T ) :


h0(T ) = 0,

h1(T ) = 1,

hk(T ) = Thk−1(T )− hk−2(T ), k ∈ Z \ {0, 1}.
Note that this family is closely related to the Chebyshev polynomials (see [19]), in

fact it can be shown that hk(2X) = Uk−1(X) for all k, where Uk is the Chebyshev

polynomial of the second kind. Although this family has many interesting properties,

we would like to emphasize one which will be used later, namely that hk(±2) ̸= 0.

2.3. Combinatorial Structure of X(Gm,n)

The decomposition ofX(Gm,n) into irreducible components as well as its combinato-

rial structure were previously studied in [16,17]. It was proved thatX(Gm,n) = L∪C
where L consists of disjoint straight lines (after an adequate change of coordinates)

and C consists of disjoint smooth curves. Moreover, the number of irreducible com-

ponents is given by the following result.

Theorem 2. Let d be the greatest common divisor of m and n. The number of

irreducible components of X(Gm,n) is:
(|m| − 1)(|n| − 1)

2
+
d+ 1

2
if d is odd,

(|m| − 1)(|n| − 1) + 1

2
+
d+ 2

2
if d is even,

where the first summand corresponds to the number of straight lines in L and the

second one corresponds to the number of irreducible components of C.



4 J. Mart́ın-Morales and A.M. Oller-Marcén

Example 3. The following figure shows the combinatorial structure of X(G42,30).
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Fig. 1. Combinatorial structure of X(G42,30).

3. The Decomposition of R(Gm,n) into Irreducible Components

The main goal of this section will be to compute the number of irreducible com-

ponents of R(Gm,n) and to study the behavior of the projection t : R(Gm,n) −→
X(Gm,n). In particular we will see that like in [5, Rem. 3.17.] (where the variety of

characters in PSL(2,C) is considered), the projection t always induces a bijection

between irreducible components.

Given the set R(Gm,n) we define the following subsets:

Irr = {ρ ∈ R(Gm,n) | ρ is irreducible},
Red = {ρ ∈ R(Gm,n) | ρ is reducible},
Ab = {ρ ∈ R(Gm,n) | ρ(Gm,n) is abelian},
MR = {ρ ∈ Red | ρ(Gm,n) is metabelian}. (2)

Clearly we have the partitions R(Gm,n) = Irr ∪ Red = Irr ∪ Ab ∪ MR. We

know that Ab is an algebraic set, while Irr and MR are not. We can obtain a

decomposition of R(Gm,n) into closed subsets just by taking closures, but the unions

will no longer be disjoint. Namely, we have R(Gm,n) = Irr ∪ Ab ∪MR. Moreover,

since it can be seen that MR ⊆ Irr we have that R(Gm,n) = Irr ∪ Ab and we will

study these two subsets separatedly in order to count the number of irreducible

components of R(Gm,n).

In the light of [16,17], it can be seen that t(Irr) = L, t(Ab) = C = t(Red) and

t(MR) = L∩C = t(Irr)∩ t(Ab). In particular this implies (t being continuous) that

the previous decomposition is not redundant.
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3.1. Irreducible components of Irr

The following result can be shown by elementary facts of general topology.

Lemma 4. Let φ : X −→ Y be a continuous surjective map between two topological

spaces. Then the number of irreducible components of Y is less than or equal to the

number of irreducible components of X. Moreover, if these numbers are different

then there exist X1 and X2 two different components of X such that φ(X1) ⊆ φ(X2).

Note that if X1 and X2 are two different components of R(Gm,n) which contain

irreducible representations, then t(X1) ∩ t(X2) = ∅ and thus t|Irr : Irr −→ t(Irr)

preserves the number of irreducible components.

Remark 5. Let G be an arbitrary finitely presented group. From Propositions

1.5.2 and 1.1.1 in [3], t(X1) ∩ t(X2) ⊆ t(Red) and hence t(X1) ⊈ t(X2). Therefore

t|Irr : Irr −→ t(Irr) always preserves the number of irreducible components.

As was proved in [16,17], t(Irr) has either (|m|−1)(|n|−1)
2 irreducible components

if d is odd or (|m|−1)(|n|−1)+1
2 if d is even. Thus we have found the number of irre-

ducible components of Irr. Note that that due to [3, Cor. 1.5.3.] all these irreducible

components are of dimension 4.

Since it is known that dimR(Gm,n) = 4 and we will see that dimAb = dimMR =

3, we have; in particular, the following result:

Theorem 6. The number or irreducible 4-dimensional components of R(Gm,n) is:

• (|m| − 1)(|n| − 1)

2
if d is odd.

• (|m| − 1)(|n| − 1) + 1

2
if d is even.

This result can be found in [13, Theorem A], where a more direct approach is

used. Note that we obtained it as a consequence of our study of X(Gm,n) in [16,17].

3.2. Irreducible components of Ab

This section is devoted to count the number of irreducible components of Ab. First

we note that Ab = R(Gab
m,n) where Gab = G/G′ denotes the abelianization of G.

In our case Gab
m,n = ⟨x, y | xm = yn, [x, y] = 1⟩. In the following lemma we give

another presentation of Gab
m,n which will be easier to work with.

Lemma 7. Gab
m,n

∼= Hd = ⟨a, b | ad = 1 = [a, b]⟩, where d = gcd(m,n).

Proof. Put m′ = m
d and n′ = n

d and consider Bezout’s identity αm − βn = d.

The claimed isomorphism is then given by ϕ : Gab −→ Hd with ϕ(x) = bn
′
aα,

ϕ(y) = bm
′
aβ and ψ : Hd −→ Gab with ψ(a) = xm

′
y−n′

, ψ(b) = x−βyα.
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Thus, Ab ∼= R(Hd) and we will count the irreducible components of the latter.

To do so we introduce some notation. If ξ ∈ {1, . . . , ζd−1} is a d-th root of unity we

put Aξ =
(

ξ 0

0 ξ−1

)
and we define the set Vξ = {P−1AξP | P ∈ SL(2,C)}. Note that

V1 = {I2}, V−1 = {−I2} and if ξ ̸= ±1 then Vξ is an irreducible affine algebraic

variety of dimension 2 (see [12, Cor. 1.5.]).

Lemma 8. If X ∈ SL(2,C) is such that Xd = I2, then X ∈ Vξ for some ξ d-th

root of unity.

Proof. Since C is algebraically closed there exists P ∈ SL(2,C) such that

PXP−1 = ( a α
0 a−1 ) = Y . Clearly I2 = Y d =

(
ad αhd(a+a−1)

0 a−d

)
so ad = 1 and

αhd(a+ a−1) = 0 and two cases arise.

1. If a = ±1, since hd(±2) ̸= 0 it must be α = 0 and X = Y = ±I2 ∈ V±1.

2. If a = ξ ̸= ±1 then a ̸= a−1 and X is diagonalizable so there exists P ∈ SL(2,C)
such that X = P−1AξP ∈ Vξ.

If we now define Mξ = {(A,B) ∈ SL(2,C) | A ∈ Vξ, [A,B] = I2}, then the

previous lemma shows that R(Hd) =
⋃d−1

i=0 Mζi . Clearly M1 = {I2}×SL(2,C) and
M−1 = {−I2} × SL(2,C) are irreducible affine algebraic varieties of dimension 3.

Now, we want to study the case Mξ with ξ ̸= ±1.

Proposition 9. Mξ is an affine irreducible algebraic variety of dimension 3 for all

ξ d-th root of unity.

Proof. We can assume ξ ̸= ±1. In this case we define Ψ : Mξ −→ Vξ × C∗ as

follows: given (A,B) ∈Mξ there exists P ∈ SL(2,C) such that PAP−1 = Aξ, now

since A and B commute, PBP−1 and Aξ must also commute and it follows that

PBP−1 =
(
b 0
0 b−1

)
must be diagonal. We define Ψ(A,B) = (A, b).

Let us see that Ψ is well defined: if PAP−1 = Aξ = QAQ−1, then

QP−1 commute with Aξ and it must be diagonal. Consequently QBQ−1 =

QP−1
(
b 0
0 b−1

)
(QP−1)−1 =

(
b 0
0 b−1

)
and Ψ(A,B) does not depend on the choice

of P .

Now, we claim that Ψ is bijective. Let us suppose that Ψ(A1, B1) = (A1, b1) =

(A2, b2) = Ψ(A2, B2), then A1 = A2 and b1 = b2. Since A1 = A2 and Ψ is well

defined there must exist P ∈ SL(2,C) such that PB1P
−1 =

(
b1 0

0 b−1
1

)
=

(
b2 0

0 b−1
2

)
=

PB2P
−1 so we have that (A1, B1) = (A2, B2) and Ψ is injective. Since surjectivity

of Ψ is obvious the claim follows.

To finish the proof it is enough to observe that Ψ induces a birational equivalence

between Mξ and Vξ × C.

Now, in order to be able to count the number of irreducible components, we

must remove the redundant components in the decomposition R(Hd) =
⋃d−1

i=0 Mζi .

This is done as follows.
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Proposition 10. Mξ = Mη if and only if ξ = η±1. Moreover, if Mξ ̸= Mη, then

they are disjoint.

Proof. Mξ =Mη ⇔ Vξ = Vη ⇔ Aξ ∈ Vη
[11, 1.4.]⇔ trAξ = trAη ⇔ ξ = η±1.

As a consequence of this proposition we have that Ab has d+1
2 irreducible com-

ponents if d is odd and d+2
2 if d is even.

3.3. Counting the irreducible components of R(Gm,n)

We can now combine the results obtained in the previous sections to explicitly

compute the number of irreducible components of R(Gm,n). Namely we have the

following.

Theorem 11. The number of irreducible components of R(Gm,n) is
(|m| − 1)(|n| − 1)

2
+
d+ 1

2
if d is odd,

(|m| − 1)(|n| − 1) + 1

2
+
d+ 2

2
if d is even,

where the first summand corresponds to the number of irreducible components in

Irr and the second one to the irreducible components of Ab.

Note that, in the light of Theorem 11 and recalling Theorem 2, the projection

t : R(Gm,n) −→ X(Gm,n) preserves the number of irreducible components. In

particular, if we consider the restrictions t|Irr : Irr −→ L and t|Ab : Ab −→ C, we
have that both of them induce bijections between irreducible components. As an

easy consequence we also obtain that the irreducible components of Irr are disjoint

and the same holds for those of Ab.

Also note that, due to [3, Cor. 1.5.3.], if Irr0 is an irreducible component of Irr,

then dim Irr0 = dim t(Irr0) + 3. In our case dim Irr0 = 4 and dim t(Irr0) = 1.

Nevertheless, it is known that the result is not true in general and, for instance, we

have that dimAb0 = 3 while dim t(Ab0) = 1 for every irreducible component of Ab.

4. Metabelian Representations

Although we have just computed the number of irreducible components of R(Gm,n)

it can be interesting to compute the number of components of MR and to see if

t|MR
preserves such number. Recall that MR is the set of reducible metabelian

representations of Gm,n and t(MR) = t(Irr) ∩ t(Ab). In the following lemma we

give some properties of such representations which will be useful in the sequel.

Lemma 12. Let ρ ∈MR. Then ρ(x)
m = ρ(y)n = ±I2 and tr ρ(x), tr ρ(y) ̸= 2.

Proof. We can assume that ρ(x) = X = ( a α
0 a−1 ) and ρ(y) = Y =

(
b β

0 b−1

)
. Let us

suppose that trX = 2. Then a = 1 and bn = 1 and two cases arise:
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1. If b = ±1 then ρ(G) is abelian, which contradicts the hypothesis p ∈MR.

2. If b ̸= ±1 then I2 = Y n = Xm = ( 1 mα
0 1 ) and mα = 0, thus α = 0 and X = I2

which implies again that ρ(G) is abelian.

Analogously it can be proved that trX ̸= −2 and trY ̸= ±2.

Now, suppose that Xm = Y n ̸= ±I2, in which case am, bn ̸= ±1 and hm(a +

a−1) ̸= 0 ̸= hn(b+b
−1). From Am = Bn it follows that αhm(a+a−1) = βhn(b+b

−1),

so α = 0 if and only if β = 0 and, since α = β = 0 implies that ρ(G) is abelian

we deduce that αβ ̸= 0. Finally am + a−m = bn + b−n ⇔ (a− a−1)hm(a+ a−1) =

(b+ b−1)hn(b+ b−1) ⇔ β(a− a−1) = α(b− b−1) ⇔ ρ(G) is abelian. This, again, is

a contradiction and the lemma follows.

We will now introduce some notation. Let us denote by Θ the set

Θ = {ξ | ξm = ±1, ξ ̸= ±1} =

= {ξ | ξm = 1, ξ ̸= ±1} ∪ {ξ | ξm = −1, ξ ̸= −1} = Θ+ ∪Θ−. (3)

Analogously, Υ = {η | ηn = ±1, η ̸= ±1} = Υ+ ∪ Υ−. Now, given ξ ∈ Θ and

η ∈ Υ we put Aξ =
(

ξ 0

0 ξ−1

)
and Bη =

(
η 1

0 η−1

)
. Finally, let us define Vξ,η =

{(P−1AξP, P
−1BηP ) | P ∈ SL(2,C)}.

Lemma 13. If ρ ∈MR, there exist ξ ∈ Θ and η ∈ Υ such that (ρ(x), ρ(y)) ∈ Vξ,η.

Proof. Put X = ρ(x) and Y = ρ(y). By Lemma 12 we have that there exists

P ∈ SL(2,C) such that PXP−1 =
(

ξ α

0 ξ−1

)
= X ′ and PY P−1 =

(
η β

0 η−1

)
= Y ′ for

some ξ ∈ Θ, η ∈ Υ and α, β ∈ C. By straightforward computations it is easy to see

that there exists an upper triangular matrix Q ∈ SL(2,C) such that Q−1X ′Q = Aξ

and Q−1Y ′Q = Bη. This completes the proof.

As a consequence of this lemma we obtain a decomposition

MR =
⋃

ξ∈Θ+

η∈Υ+

Vξ,η ∪
⋃

ξ∈Θ−

η∈Υ−

Vξ,η. (4)

Therefore, in order to find the dimension and the number of irreducible components

of MR we will study each Vξ,η separatedly.

Proposition 14. Given ξ ∈ Θ± and η ∈ Υ±, the set Vξ,η is an affine irreducible

algebraic variety of dimension 3.

Proof. Let us define Φ : Vξ,η −→ PSL(2,C) as follows: given (A,B) ∈ Vξ,η,

there exists P ∈ SL(2,C) such that PAP−1 = Aξ and PBP−1 = Bη; we define

Φ(A,B) = [P ].

Now we will see that Φ is well defined. If PAP−1 = Aζ = QAQ−1, and

PBP−1 = Bη = QBQ−1 it follows that PQ−1 commutes with Aξ, so it must
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be diagonal. Moreover as PQ−1 commutes with Bη and it is diagonal it must be

PQ−1 = ±I2 so P = ±Q and [P ] = [Q] in PSL(2,C).
Let us see the injectivity, since Φ is trivially surjective. If (A1, B1), (A2, B2) ∈

Vξ,η are such that Φ(A1, B1) = Φ(A2, B2) = [P ], then either PA1P
−1 = Aξ =

PA2P
−1 or PA1P

−1 = (−P )A2(−P )−1. But in any case A1 = A2 and analogously

B1 = B2.

Now, since Φ clearly induces a birational equivalence between Vξ,η and

PSL(2,C) ∼= SO3(C), the proof is complete.

Note that Vξi,ηj = Vξk,ηl
if and only if ξi = ξk and ηj = ηl. Moreover if Vξi,ηj ̸=

Vξk,ηl
then they are disjoint. Finally, as in the previous sections, we have to remove

the redundant components in our decomposition of MR.

Proposition 15. Vξi,ηj
= Vξk,ηl

if and only if ξi = ξk and ηj = ηl.

Proof. Let us suppose that Vξi,ηj
= Vξk,ηl

, then (ξi+ξ
−1
i , ηj+η

−1
j , ξiηj+(ξiηj)

−1) =

t
(
Vξi,ηj

)
= t

(
Vξk,ηl

)
= (ξk+ ξ

−1
k , ηl+η

−1
l , ξkηl+(ξkηl)

−1). This implies that either

ξi = ξk and ηj = ηl or ξi = ξ−1
k and ηj = η−1

l .

Now, if ξi = ξ−1
k and ηj = η−1

l we know that Vξi,ηj
∩ Vξk,ηl

= ∅. Consequently
Vξi,ηj ⊆ Vξk,ηl

−Vξk,ηl
. This is a contradiction since dim(Vξk,ηl

\Vξk,ηl
) < dimVξk,ηl

=

dimVξi,ηj
(see [10, §8.3.] for instance).

The converse is obvious.

Corollary 16. The number of irreducible components of MR is equal to
2(|m| − 1)(|n| − 1) if d is odd,

2[(|m| − 1)(|n| − 1) + 1] if d is even.

It can be seen that t|MR
maps every irreducible component of MR to a single

point which lies in L ∩ C. Moreover, there are 2 irreducible components of MR

mapping to the same point in L ∩ C, namely:

{Vξ,η, Vξ−1,η−1} t−→
(
ξ + ξ−1, η + η−1, ξη + (ξη)−1

)
, (5)

for all (ξ, η) ∈ (Θ+ ×Υ+) ∪ (Θ− ×Υ−).
This implies that Irr ∩Ab consists at least of 2(|m| − 1)(|n| − 1) (resp. 2[(|m| −

1)(|n| − 1) + 1]) if d is odd (resp. even) irreducible components of dimension less

than or equal to 2.

Also observe that although [3, Cor. 1.5.3.] cannot be applied in this situation,

if MR0
is an irreducible component of MR, then we still have that 3 = dimMR0

=

dim t(MR0
) + 3 = 0 + 3.
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Conclusion and Future Work

As far as the authors know, the techniques provided in this paper have never been

used before to study the representation variety of a group. On the other hand

they seem to be useful only for one-relator groups. The fundamental group of the

complement of two-bridge knots in the sphere S3 satisfy the previous condition.

In [8] an irreducible component of the character variety, called excellent curve, of

these kind of knots has been obtained. Therefore it would be very interesting to

compute an easy description of R(G) and see how much information is codified in

the representation variety in such a case. We think that metabelian representations

could play an important role.

Since the combinatorial structure of X(Gm,n) does not define a complete invari-

ant of the group (but nearly), another interesting question would be to improve our

understanding of the combinatorial structure of R(Gm,n), which seems to contain

more information, in order to see if it defines a complete invariant of the family of

groups Gm,n.
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[4] F. González-Acuña and José Maŕıa Montesinos-Amilibia. On the character variety of
group representations in SL(2,C) and PSL(2,C). Math. Z., 214(4):627–652, 1993.

[5] Michael Heusener and Joan Porti. The variety of characters in PSL2(C). Bol. Soc.
Mat. Mexicana (3), 10(Special Issue):221–237, 2004.
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