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In this paper, the GDOP-optimal Flower Constellations using evolutionary methods,

for a given number of satellites, or more generally, for a given set of Flower Constellation

parameters is obtained. As a measure of optimality we use the maximum value of the

GDOP over a large number of uniformly distributed points on the Earth during the time

needed for the constellation to return to its initial pattern. The search space constellations

includes eccentric orbits.

Nomenclature

No number of inertial orbits
Nso number of admissible locations per orbit
Ns total number of admissible locations
Nsat total number of satellites
Tp orbital period (sec.)
Td period of the rotating reference frame (sec.)
Np number of revolution to the inertial orbit
Nd number of revolution of the rotating reference frame
Nc configuration number

I. Introduction

The design of optimal satellite constellations is the key problem in all kind of applications such as global
navigation, global/regional coverage, telecommunications, Earth observation, radio-occultation, etc. As
Draim indicates,1 constellation design remains more an art than a science. To avoid proliferation of artistic
solutions, general framework design methodologies have been proposed, such as Walker constellations2 and
Flower Constellations3–5 (FCs). The key philosophical difference between Walker’s and FCs is that FCs use
rotating reference frames for constellation design, while Walker design is performed in the inertial frames.

The purpose of this paper is to determine the best FC for certain global coverage problems using evolu-
tionary algorithms. In particular, we are interested in the problem of Global Positioning, with a minimum
of four satellites in view from any point on the Earth at any time as a constraint. The geometry of these
four or more satellites with respect to a ground station should ideally minimize the Geometric Dilution of
Precision (GDOP), whose value quantifies the accuracy of the position estimation6–8 (the lower GDOP the
more accurate the estimation is). In this research the maximum value of GDOP obtained over the repetition
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time for 100 ground stations uniformly distributed on the Earth surface9 is the metric defining our optimal-
ity. The propagation time coincides with the repetition time, which is the time that the constellation needs
to return to its original position.

Evolutionary algorithms10, 11 are a powerful optimization tool. These algorithms start with an initial set of
solutions that are not necessarily optimal, and then, new generations of solutions are iteratively created from
the best fitted individuals (with respect to a given fitness function) of the previous generation. Methods
based on different philosophies converge with different accuracies and speeds to local or global (optimal)
minimum. In our problem, this kind of algorithms are used to carry out a search among all possible orbits,
to find the one that minimizes the maximum GDOP experienced in the repetition time. One of the original
parts of this work is that we extend the search space of the optimization problem to include eccentric orbits,
using the 2D theory of Lattice FCs.12–14

The Van Allen belts, whose existence was confirmed by Explorer I and Explorer II missions in early
1958, are two tori of energetic charged particles around the Earth equator with protons in the inner belt
and electrons in the outer belt. The inner belt is located at an altitude around 800 km and 6,000 km, with
maximum density at 3,000 km. The outer belt has maximum density at altitudes ranging between 15,000
km and 20,000 km.

The particles of the Van Allen belts may damage the electronic system of the satellites. Then, the long
and also the manned missions must avoid being exposed persistently to these belts. Our constellations
have satellites in orbit with semi-major axis a = 29, 655.3162 km. The eccentricity varies between 0 and
0.2. Then, the perigee radius is 23, 724.253 ≤ rp ≤ 29, 655.3163 km, or considering the radius of the Earth
r⊕ = 6, 378.137 km, the minimum altitude is 17, 346.116 ≤ rm ≤ 23, 277.1792 km. Meaning that, most of
the time the satellites aren’t in the maximum density region of the Van Allen belts.

This paper is organized as follows. The first section presents a background on Flower Constellations
and the main tools that are used to solve our optimization problem, which are the GDOP and Evolutive
Algorithms. The second section introduces the optimization problem in detail while the third section the
results obtained are discussed.

II. Background and tools

In this section we present a background on Flower Constellations, and the main tools used in this research:
Geometric Dilution of Precision and Evolutive Algorithms.

A. Flower Constellations

The original Flower Constellation theory is a set of Nsat satellites following the same closed trajectory
with respect to a rotating reference frame. This implies the use of compatible (also called resonant) orbits.
Every orbit has the same shape, inclination, and argument of perigee. According to Mortari,3–5 the phasing
of the Right Ascension of the Ascending Node (RAAN) and Mean Anomaly are defined using six integer
parameters.

However, subsequent theories, such as Harmonic Flower Constellation expanded in the 2D Lattice Flower
Constellation,12 substantially improved the original theory making it independent from any reference frame,
inertial or rotating, and with minimal parametrization.

The 2D Lattice Flower Constellation can be described by five integer parameters and three continuous
ones. The integer parameters can be broken in two sets, the first set (No, Nso, Nc) where No is the number
of orbital planes, Nso is the number of admissible position in each orbit, and Nc is the phasing parameter.
The second set is (Np, Nd), where Np is the number of orbit revolutions and Nd the number of revolutions
of the rotating reference frame, determines the orbital period and satisfy the compatibility equation:

NpTp = NdTd (1)

where Tp is the orbital period and Td is the period of the rotating reference frame.
The phasing parameters define the RAAN (Ω) and initial Mean Anomaly (M), which can be written in

matrix notation as
[

No 0

Nc Nso

]{

Ωij

Mij

}

= 2π

{

i

j

}

(2)
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where i = 0, · · · , No − 1, j = 0, · · · , Nso − 1, and Nc ∈ [0, No − 1]. The (i, j) satellite is the j-th satellite on
the i-th orbital plane.

The condition for all the satellites to have the same repeating ground track can be easily enforced,
requiring only that two coprime integers µ and λ exist such that

Nd = λNso and Np = µNo + λNc

where Np and Nd are coprime.
The remaining parameters to define the constellation are continuous parameters that are the same for

all orbits in the constellation: the inclination, the eccentricity, and the argument of periapsis.

B. Dilution of Precision

A particular Global Coverage problem is the Global Positioning problem that provides location and time
information anywhere on the Earth up to a given altitude. As an examples of Global Coverage Systems we
can mention the LOng RAnge Navigation (LORAN), Decca Navigator System, Global Positioning System
(GPS), and more recently GALILEO.

The three-dimensional position determination problem, consist of determining the user position (xu, yu, zu)
using the location of three satellites whose coordinates are well known. GPS determines the user position
using the concept Time-Of-Arrival (TOA), which consists of determining the user position measuring the
time-of-arrival for a signal transmitted by a satellite at a known location to reach the user location.6 Multi-
plying the TOA by the speed of the signal transmitted is possible determine the user’s position. Furthermore,
the time offset (tu), which represent the time offset between the receiver clock and the system time, will be
another unknown. Then, four visible satellites are needed to completely determine the four unknowns; the
user position and the time offset.

The pseudorange measurement is a range determined by multiplying the signal propagation velocity, c,
by the time difference between two non-synchronized clocks. Then, the pseudorange measurement doesn’t
represent exactly the geometric distance between the satellite and the receiver. This measurement contains:
(1) the geometric satellite-user range, (2) an offset attributed to the difference between system time and
the user clock, (3) an offset attributed to the difference between system time and satellite clock, (4) other
sources of error that corrupt a little bit more the measurements (atmospheric delay, ionospheric delay, etc).

The pseudorrange measurements ρj from the user position (xu, yu, zu) to the j-th satellite can be described
by

ρj =
√

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + ctu (3)

where the four unknowns are the position (xu, yu, zu) and the time offset tu.
Using an approximate user position (x̂u, ŷu, ẑu) and time estimate t̂u. Let an approximate pseudorange

be represented by

ρ̂j =
√

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 + ct̂u (4)

The vector of the offset between the pseudorange measurements can be view as a linear combination of
three terms:

∆ρ = ρ̂j − ρj = ρT − ρL + dρ (5)

where ρT is the vector of error-free pseudorange values, ρL is the vector of pseudorange values computed at
the linearization point (x̂u, ŷu, ẑu), and dρ represents the net error in the pseudorange values, i.e. only the
error part of the pseudorange measurements.

Also, the offset between the positions can be view as a linear combination of three terms,

∆x =











x̂u

ŷu

ẑu

t̂u











−











xu

yu

zu

tu











= xT − xL + dx (6)

where: xT is the error-free position and time. xL is the position and time defined as the linearization point
(x̂u, ŷu, ẑu) and, dx represents the error between the approximate position and time estimate with respect
the real position and time.
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Then, is possible arrive to the expression8

dx = (HTH)−1HTdρ (7)

The previous relation, give the functional relationship between the errors in the pseudorange values (dρ)
and the induced errors in the computed position and time (dx). Matrix (HTH)−1HT , is a 4 × n matrix
and depends only on the relative geometry of the user and the satellites. That’s why is so important the
geometry of the constellation.

The covariance of a vector is frequently of interest to asses how strongly two variables of the vector change
together. Then, considering the covariance of the vectors dx and dρ:

cov(dx) =











σ2
xu

σxuyu
σxuzu σxutu

σyuxu
σ2
yu

σyuzu σyutu

σzuxu
σzuyu

σ2
zu

σzutu

σtuxu
σtuyu

σtuzu σ2
tu











= (HTH)−1cov(dρ) = (HTH)−1σ2
UERE (8)

where UERE (User Equivalent Range Error) is considered to be the statistical sum of the contributions from
each of the error sources associated with the satellite.

Dilution of precision parameters in GPS are defined in terms of the ratio of combinations of the com-
ponents of the cov(dx) and σ2

UERE . It is implicitly assumed in the DOP definitions that the user/satellite
geometry is considered fixed. Also it is assumed that local user coordinates are being used in the specification
of cov(dx) and dx. The positive x-axis points east, the y-axis points north, and the z-axis points up. The
most general parameter is termed the geometric dilution of precision (GDOP) and is defined by the formula,

GDOP =

√

σ2
xu

+ σ2
yu

+ σ2
zu

+ σ2
tu

σUERE

(9)

A relationship for GDOP is obtained in terms of the components of (HTH)−1 by expressing (HTH)−1 in
component form:

(HTH)−1 =











D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44











(10)

Then, GDOP can be computed as the square root of the trace of the (HTH)−1 matrix

GDOP =
√

D11 +D22 +D33 +D44 (11)

The above clearly shows that the geometry of the constellations has a direct role on positioning accuracies.
Several tools are defined to describe the accuracy error, but Geometric Dilution of Precition (GDOP) used
by GPS it is a powerful accuracy indicator. The GDOP will show how well the constellation of satellites
is organized geometrically. It is a quantity varying between 1 and 99, while 1 means that the constellation
presents a perfect distribution of satellites, 99 means that presents a really poor geometrical distribution.
Then, the less GDOP value, the more accurate the positioning system is.

C. Evolutive Algorithms

An optimization problem consist of finding, among all possible solutions of the problem (search space), the
best one. The search space is n-dimensional and depending on the problem type, the different variables
can be discrete or continuous. In order to find the optimal solution, different search algorithms may be
used. For a search space with only a small number of possible solutions, all of them can be examined in a
reasonable amount of time. This brute-force search technique has an easy implementation, and it always
find the optimal solution if it exists. However, as the dimensions of the search space increase, the exhaustive
search become so expensive in running time and memory requirements, that is not practical anymore.

Instead of using the brute-force search algorithm, evolutionary algorithms has been developed.10 These
kind of algorithms abstract biological evolution or biological behaviors to search optimal solutions. Two
different algorithms will be considered: the Genetic Algorithm and the Particle Swarm Optimization.

4 of 18

American Institute of Aeronautics and Astronautics



Charles Darwin’s On the Origin of Species, in his Principles of Biology (1864) proposed the idea that
over several generation, biological organisms evolve based on the principle of natural selection “survival of
the fittest”. This idea works well in nature. An individual in a population competes with each other for
different resources like food, shelter, etc. Due to the selection, the most adapted to the environment and
the stronger ones have more chance to survive and reproduce, while the less adapted have less chance to
survive and reproduce. Continuously improving the individual characteristics of the species, since the new
generations take the good characteristics of their antecessors and will improve them at each generation. They
will become more and more adapted to their environment. Notice that, sometimes in nature occur a crazy
or random fact, it consists of taking random characteristics and create an individual completely new with
different characteristics that sometimes are better, sometimes worse than the existing individuals.

The idea of solving different optimization problems using evolutive techniques started in 1954 with the
work of Nils Aall Barricelli. However, Genetic Algorithms became popular through the work of John Holland
in 1975 in his book Adaptation in Natural and Artificial Systems. Genetic Algorithms mimic the process of
natural evolution described above. It is a search technique to find optimal solutions to a problem. Genetic
Algorithm has an initial population represented by a group of individuals, each of these individuals represents
a solution to the optimization problem and they are considered as the chromosomes. After evaluating all
the initial population with the fitness function, to know how good the solutions are, a number of individuals
are selected to create the next generation combining their genes. In the reproduction process, different
reproduction operators are used, such as, recombination and mutation. The first one, consist of recombining
different chromosomes of two different individuals (parents) to generate a new individual (child). The
second one, is a factor that randomly generates completely new genes for the new individual. When the new
generation is built, we evaluate the population with the fitness function and start again the process until the
stopping criteria is reached. It can be a finite number of generations, the convergence toward the optimal
solution, etc.

A flowchart of the Genetic Algorithm can be as follows

Step 1: Select randomly an initial population of n individuals from the search space, i.e. select randomly
n solutions of the optimization problem.

Step 2: Evaluate the individuals of the population with the fitness function.

Step 3: Create a new population following these steps:

Step 3.1: Select two individuals (parents), the better the fitness is, the bigger the chance to get
selected.

Step 3.2: Crossover the genes of the two parents to create a new individual (child).

Step 3.3: With a mutation probability, mutate randomly the genes of the new individual (child).

Step 3.4: Repeat the process until have a population of n new individuals.

Step 4: If the the stopping criteria is satisfied, evaluate the new generation and select the most suitable
individual. If not, go to Step 2.

Particle Swarm Optimization (PSO) is a population based stochastic optimization method, i.e. a method
that generate and use random variables to find the optimal solution. PSO was developed by Dr. Eberhart
and Dr. Kennedy in 1995, inspired by the social behavior of bird flocking or fish schooling. The basic idea
is to simulate these behaviors with an algorithm. In both cases, if a bird or a fish sees a good path to go
(because they find food, protection or good weather), the rest of the swarm will be able to follow that path
even if they were going in the opposite way. However, there is a “craziness factor” or random factor that
makes some of the particles move away from the flock in order to explore new paths.

It is possible to translate this behavior into an algorithm. Each different bird or fish is considered as an
initial particle in the search space. These particles are flying through the search space and have two essential
capabilities: remembering their own best position (individual factor) and knowing the best position of the
entire swarm (social factor). The basic idea is that individuals communicate good positions to each other
and adjust their own position and velocity depending on the social and individual factors.

During the simulation each particle has a position and velocity. Additionally, each particle keeps track of
the position of the best solution it has visited so far (pbest) and the position of the best solution visited by
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any other particle (gbest). At each step, the velocity is updated at each iteration taking into account pbest
and gbest.

Changing the position and velocity of each particle at each iteration works as follows. Assume that the
i-th particle has position vector xi(t) and velocity vector vi(t). Then, the updated velocity will be:

vi(t+ 1) = αvi(t) + c1 · rand · (pbest i − xi(t)) + c2 · rand · (gbest(t)− xi(t)) (12)

where α is the inertia weight that controls the exploration of the search space. The constants c1 and c2,
which in our simulation are taken between 0 and 1, determine how the individual and social factor affects
the velocity of the particle. Finally, rand is a random number chosen uniformly in [0,1]. Note that without
the second and third terms of the expression (12) the particle will keep in the same direction until it hits
the boundary.

The position is updated as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (13)

This process is repeated for each particle until the best optimal solution is obtained or the stopping criteria
is reached.

The PSO can be implemented as follows:

Step 1: Initialize randomly an initial swarm of n particles from the search space.

Step 1.1: Initialize randomly the initial positions, i.e. the solutions of the problem, xi(0).

Step 1.2: Initialize randomly the velocities of the initial particles, vi(0).

Step 1.3: Update the pbest and gbest values thought the fitness function.

Step 2: Update the new velocities for the particles, vi(t+ 1), according to Eq. (12).

Step 3: Calculate the new positions of the particles, xi(t+ 1) = xi(t) + vi(t+ 1)).

Step 4: Update the pbest and gbest values thought the fitness function.

Step 5: Go to step 2, and repeat until convergence or stopping criteria.

III. Problem Formulation

A. Optimization problem

Given the total number of satellites of a constellation (Nsat), it is possible to obtain all the different possible
phasing parameters (No, Nso, Nc). Therefore, we can compute the possible distribution of satellites in the
(Ω,M)-space. For example, given Nsat = 27 all the possible combinations for the phasing parameters are
shown in Table 1.

Nsat 27 27 27 27 27 27 27 . . . 27 27 27 . . . 27

No 1 3 3 3 9 9 9 . . . 9 27 27 . . . 27

Nso 27 9 9 9 3 3 3 . . . 3 1 1 . . . 1

Nc 0 0 1 2 0 1 2 . . . 8 0 1 . . . 26

Table 1. Possible phasing parameters.

Besides, given the semi-major axis, we can determine Tp, and select integers Np and Nd satisfying the
compatibility equation NpTp = NdTd.

For each possible configuration, Evolution Algorithms are used to carry out a search to find the best
orbital parameters (e, i, ω), which completely define the constellation, and minimize the fitness function.

In the case of the Genetic Algorithm, given an initial configuration for the satellites, an initial population
of n = 60 individuals is taken, i.e. 60 possible values for the orbital parameters (e, i, ω). Then, each possible
constellation is evaluated with the fitness function. After that, a new generation of 60 individuals is created.
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The new individuals are created with 10 fittest ones from the previous generation, and 50 others obtained by
crossover and mutation. The crossover consists of selecting a father (ef , if , ωf ) and a mother (em, im, ωm)
from the previous generation at random and creating a son

(efx1 + em(1− x1), ifx2 + im(1− x2), ωfx3 + ωm(1 − x3))

where x1, x2, x3 ∈ {0, 1} are chosen at random with 0.5 probability each. After the son is created, we decide
with probability 0.05 whether it mutates or not. Mutation consists of choosing all three coordinates e, i, ω
at random within their allowed ranges. The process is repeated 60 generations and, at that point, the best
individual found provides the solution to the optimization process.

In the case of the Particle Swarm Optimization an initial swarm of n = 60 particles is taken, i.e. 60
possible values for the orbital parameters (e, i, ω) which are the positions, and 60 possible velocities for
them. Both positions and velocities are chosen randomly within the search space. It should be noted that
neither position or velocity correspond with the actual motion of the satellites; these quantities are unitless.
Then, we evaluate each constellation with the fitness function and update the new velocities and positions
according to Eq. (12) and Eq. (13). We are using an inertia factor α = 0.95, individual factor c1 = 0.75, and
social factor c2 = 0.35. The process is repeated 60 iterations.

The fitness function in our problem is the maximum value of the GDOP experienced among the propa-
gation time T = TpNp, for 100 Ground Stations uniformly distributed on the Earth surface.9 Note that, the
propagation time T is the time that the constellation needs to return to its original configuration.

A formula to compute the maximum GDOP of our constellation can be implemented as:

Max GDOP = max
i,j

(dop(i, j)) i ∈ (1, 2, · · · , gr) and j ∈ (1, 2, · · · , nt) (14)

where gr indicates the number of Ground Stations, nt the number of iterations in the propagation process,
and dop(i, j) represents the GDOP computed from ground station i-th at time jδt, with δt = 60 seconds.

In order to compute the value of the GDOP, it is necessary to determine which satellites are visible from
a ground station. Then, the concept of grazing angle or spacecraft elevation angle is defined. This is the
angle between the horizon and the position vector of a satellite. Another way to refer to this angle is using
the angle of incidence which is the angle between the normal vector to the surface of the Earth at the ground
station and the position vector. Due to the existence of buildings, mountains, and other visibility obstacles
the grazing angle is considered in the formulation of all global positioning problems. Figure 1 shows the
grazing angle:

Figure 1. The grazing angle α and the angle of incidence β.

In our problem, we consider three different cases in which the grazing angle is α = 0◦, α = 5◦, and a more
realistic case α = 10◦. In other words, the considered angle of incidence is β = 90◦, β = 85◦ and β = 80◦

respectively.
The purpose of this research is to find the best parameters of a 2D LFC which minimize the maximum

value of the GDOP. Also, it is possible to introduce in our search elliptic orbits obtaining interesting results
proving that, in some cases, better results with eccentric orbits than with circular orbits are obtained.
Finally, we compare our results with an existing satellite constellation.

IV. Results

A. Method’s comparison

In this research three different algorithms have been used: a brute force search or exhaustive search to have
an approximate idea of the optimal solution and two evolutive algorithms. These last two are the Genetic
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Algorithm and Particle Swarm Optimization, which improve substantially the brute force search, as we show
below.

For a given a number of satellites Nsat, according to the 2D LFC theory, the number of different constel-
lations, is given by the following equation:

f(Nsat) =
∑

d|Nsat

d. (15)

Thus, the total number of constellations with 15 ≤ Nsat ≤ 40 is equal to:

40
∑

n=15

f(n) = 1177. (16)

Each of these 1177 cases has been analyzed to find the best parameters (e, i, ω) that minimize the GDOP
with the three different methods. Figure 2 shows the number of times in which one method is better than
the others, considering three different grazing angles. In all cases the PSO algorithm is the best method
followed by the Genetic Algorithm. In certain configurations, it is impossible to find a constellation with
GDOP better than 99. For instance, when No = 1 the satellites are always on the same orbit plane, hence the
maximum GDOP is 99. Those cases have been excluded from the comparison between methods, and they
are represented with a separate bar in Fig. 2. Note that, when the grazing angle is small, or equivalently,
when the incidence angle is big, the cases with GDOP equal to 99 are considerably less.

Figure 2. Comparison of methods with different angles of incidence.

Note that the comparison between the three methods is fair because they evaluate the cost function (i.e.
the maximum GDOP) the same number of times.

• Genetic Algorithm has 60 generations with 60 individuals. Each individual represents a 3-tuple (e, i, ω).
For each individual the maximum GDOP of the constellation is computed. In one generation the
maximum GDOP is computed 60 times. Thus, in 60 generations the maximum GDOP is calculated
3,600 times.

• Particle Swarm Optimization has 60 generations of 60 particles. As the Genetic Algorithm the maxi-
mum value of the GDOP is computed 3,600 times.

• Brute Force search algorithms has 20 different values for the eccentricity, that is e ∈ [0, 0.3] and with
steps of 0.015. The inclination has 36 different possibilities, that is i ∈ [0, 180◦] with steps of 5◦.
Finally, the argument of perigee ω ∈ [0, 360◦] with steps of 72◦, so it assumes only 5 different values.
Thus, the maximum value of the GDOP is calculated 20 · 36 · 5 = 3, 600 times.
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For a given set of phasing parameters (Nso, No, Nc), the time that PSO (60 generations of 60 particles)
takes to find the optimal constellation is approximately 80 seconds. For example, if we have Nsat = 27, there
are 40 possible configurations, so the total computational cost would be about 40 ·80 = 3, 200 seconds. When
the number of satellites is larger, not only we have more possible configurations, but also the computational
time per configuration increases, since there are more satellites to evaluate.

B. The optimal configurations

Consider first a constellation with Nsat = 27 satellites. As we can see in Table 1, there are 40 possible
configurations for the phasing parameters. For each of those configurations, the three Evolutive Algorithms
were used to determine the best parameters (e, i, and ω) that minimize the maximum value of the GDOP
along the propagation time. These optimal parameters are shown in tables 2, 3, and 4 for different grazing
angles.

Method Nsat No Nso Nc e i ω max GDOP

BF 27 3 9 1 0.0300 125.000 0.000 3.61589

GA 27 3 9 2 0.0041 53.945 237.334 3.56904

PSO 27 3 9 2 0.0000 55.014 219.111 3.58761

Table 2. Grazing angle α = 10◦

Method Nsat No Nso Nc e i ω max GDOP

BF 27 27 1 2 0.0150 130.000 144.000 2.995

GA 27 27 1 2 0.0455 129.472 182.705 2.914

PSO 27 27 1 2 0.0096 130.515 140.966 2.908

Table 3. Grazing angle α = 5◦

Method Nsat No Nso Nc e i ω max GDOP

BF 27 27 1 15 0.0000 125.000 0.000 2.182

GA 27 27 1 15 0.0009 124.470 40.024 2.191

PSO 27 27 1 15 0.0034 124.176 239.146 2.171

Table 4. Grazing angle α = 0◦

These tables show clearly that the best constellation found depends on the method, and specially on the
grazing angle. While in this paper, we keep track of the results with the three grazing angles, for practical
purposes, only the case α = 10◦ is relevant. Regarding the sensitivity to the method, we decided to continue
using the three methods, and use the best solution found by any of them. The solutions found by the other
two are used to provide some confidence on the optimality of the GDOP.

Now we do the same for any number of satellites 15 ≤ Nsat ≤ 40. The GDOP of the best configuration
found by each of the three methods is shown in the Figs. 3, 4, and 5, when the grazing angles are α = 10◦,
α = 5◦, and α = 0◦ respectively. In the case α = 10◦, we only show the configurations with more than
24 satellites, since the cases with Nsat ≤ 23 have GDOP above 5. For the same reason, when α = 5◦ and
α = 0◦, we only show constellations with Nsat ≥ 21 and Nsat ≥ 17 respectively.

Intuitively, the more satellites the constellation has, the better results for the GDOP value should be
obtained. However, this is not always true, because with 26 satellites we obtained better results than with
27, 28, or 29 satellites. Also, with 33 satellites, we obtained better GDOP than with 34 satellites.

The best configurations found for Nsat ∈ [15, 40] are summarized in Tables 5, 6, and 7, for grazing angles
α = 10◦, α = 5◦, and α = 0◦ respectively.
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Figure 3. Maximum GDOP with a grazing angle of 10◦.

Figure 4. Maximum GDOP with a grazing angle of 5◦.
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Figure 5. Maximum GDOP with a grazing angle of 0◦.

Table 5. Grazing angle with α = 10◦

Nsat No Nso Nc e i ω max GDOP

20 20 1 18 0.1884 302.957 177.961 8.828

21 21 1 2 0.0000 129.765 134.656 6.558

22 22 1 6 0.1138 125.804 187.001 5.574

23 23 1 2 0.0000 118.348 252.455 5.135

24 24 1 2 0.0062 126.236 293.370 4.892

25 25 1 19 0.1985 114.352 179.710 4.773

26 26 1 10 0.0016 58.929 305.336 3.408

27 3 9 2 0.0041 53.945 237.334 3.569

28 7 4 2 0.0000 129.598 59.658 3.674

29 29 1 11 0.0267 61.368 90.356 3.445

30 30 1 2 0.0000 129.502 207.473 3.362

31 31 1 27 0.0000 105.420 102.427 3.175

32 32 1 20 0.0062 123.059 90.918 2.910

33 3 11 0 0.0000 52.891 286.820 2.908

34 34 1 22 0.0000 60.000 216.000 2.966

35 35 1 29 0.2971 57.557 179.898 2.846

36 12 3 4 0.0728 62.842 357.765 2.679

37 37 1 11 0.0718 122.418 145.593 2.684

38 38 1 14 0.0115 60.536 85.848 2.459

39 39 1 15 0.0000 60.529 244.292 2.364

40 10 4 7 0.0000 60.725 66.539 2.322
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Table 6. Grazing angle with α = 5◦

Nsat No Nso Nc e i ω max GDOP

18 6 3 4 0.0413 59.639 169.143 6.440

19 19 1 3 0.0086 46.857 350.621 5.894

20 10 2 7 0.2196 112.996 185.550 5.417

21 21 1 2 0.0178 126.355 304.679 3.996

22 22 1 2 0.0000 124.234 314.356 3.992

23 23 1 2 0.0181 125.295 87.359 3.655

24 3 8 2 0.0000 58.309 206.622 2.992

25 25 1 14 0.0046 69.779 127.550 3.221

26 26 1 20 0.3000 113.260 180.182 3.145

27 27 1 2 0.0096 130.515 140.966 2.908

28 28 1 4 0.0007 74.962 300.987 2.596

29 29 1 27 0.0000 53.633 270.361 2.563

30 10 3 6 0.0736 123.719 359.414 2.588

31 31 1 14 0.0000 110.692 131.599 2.416

32 32 1 20 0.0100 120.872 159.225 2.313

33 33 1 29 0.1003 103.876 359.971 2.335

34 34 1 10 0.0047 118.012 294.027 2.152

35 35 1 13 0.0038 300.180 114.586 2.184

36 12 3 8 0.0041 123.967 334.521 2.048

37 37 1 11 0.0000 118.727 106.899 2.011

38 19 2 5 0.0000 68.668 275.952 1.971

39 3 13 2 0.0101 53.611 130.555 1.924

40 40 1 12 0.0000 117.188 123.586 1.906
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Table 7. Grazing angle with α = 0◦

Nsat No Nso Nc e i ω max GDOP

17 17 1 4 0.1500 74.939 0.043 6.647

18 18 1 16 0.0000 63.732 165.832 3.788

19 19 1 2 0.0000 129.198 323.969 3.461

20 20 1 2 0.0000 121.435 356.140 3.193

21 3 7 0 0.0000 51.640 323.739 3.080

22 22 1 6 0.0000 121.204 6.460 2.681

23 23 1 9 0.0000 58.709 129.965 2.671

24 24 1 20 0.2452 58.522 179.649 2.676

25 25 1 18 0.0000 58.647 190.444 2.398

26 13 2 10 0.0000 110.571 227.220 2.258

27 27 1 15 0.0034 124.176 239.146 2.171

28 28 1 8 0.0264 122.840 64.085 2.141

29 29 1 9 0.0000 51.279 219.439 2.099

30 30 1 26 0.0035 56.198 294.761 1.984

31 31 1 27 0.0000 53.009 92.531 1.955

32 32 1 14 0.0000 63.166 42.629 1.873

33 33 1 9 0.0000 118.704 327.201 1.827

34 34 1 10 0.0080 67.232 191.544 1.795

35 35 1 15 0.0000 63.319 311.235 1.759

36 36 1 31 0.0000 59.414 91.516 1.660

37 37 1 11 0.0000 56.425 187.868 1.608

38 38 1 33 0.0000 58.669 9.203 1.640

39 39 1 6 0.0000 56.679 300.869 1.551

40 8 5 2 0.0005 122.323 232.913 1.567
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C. Eccentric Orbits

One of the innovative results, thanks to the 2D LFC theory, is that eccentric orbits are considered in the
searching process. As we can see in Tables 5, 6, and 7, in many occasions the optimal configuration has
a highly eccentric orbit. For instance, when Nsat = 25 and the grazing angle is α = 10◦, the optimal
constellation has e = 0.1985. This case is shown in Fig. 6.

Figure 6. A (25, 1, 19, 17, 10, 0.1985, 114.352, 179.710) 2D LFC with α = 10◦.

D. Comparison with Galileo Constellation

Galileo Constellation is currently being built by the European Union to have an alternative navigation
system to the existing GPS System (US), the GLONASS (Russian), and the Chinese Compass System. This
constellation has 27 satellites moving in three circular orbits with an inclination of 56◦. This corresponds
to the 2D LFC with parameters No = 3, Nso = 9, Nc = 2, e = 0, and i = 56◦. The semimajor axis is
determined by the compatibility ratio Np/Nd = 17/10.

Using a grazing angle α = 10◦ and our algorithms, the original Galileo Constellation has a GDOP =
3.775. Table 2 shows that the three methods were able to find constellations with Nsat = 27 that are
marginally better than Galileo. The best of these three constellations, which was found by the Genetic
Algorithm, is also shown in Table 5 and it has GDOP = 3.569.

E. Time-evolution of the GDOP

While our algorithms compare constellations based on the worst GDOP value seen by any of the ground
stations at any instant of time, it would be interesting to see the evolution in time of the maximum GDOP,
average GDOP, and minimum GDOP experienced by the 100 ground stations. These three values of the
GDOP are shown in Fig. 7 for our optimal constellation with 27 satellites. For clarity, Fig. 8 shows only
the evolution of the maximum value of the GDOP over time.

In the first of these figures, we can see that the maximum GDOP experienced by the 100 stations is
around 3.5 at any time, meaning that there is always a ground station where the GDOP is about 3.5, and
that no ground station has a GDOP worse than that. Similarly, we can see that the minimum GDOP is
aproximately 1.6, so there is always a point on the Earth where the GDOP is as good as 1.6. Finally, the
average moves around 2.4, so we can expect half of the ground stations to have a GDOP between 1.6 and
2.4, and the other half in the interval [2.4, 3.5]. Intuitively, this means that about half of the surface of the
Earth would experience a GDOP better than 2.4.

In the next figure, we can see that the maximum GDOP oscillates between 3.52 ± 0.05. The deviation
from the center value is less than 2%. This indicates that the performance of the constellation remains
almost constant over time.
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Figure 7. Maximum, minimum and average GDOP value of our 27 satellite constellation.
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Figure 8. Maximum GDOP value of our 27 satellite constellation over time.
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The 26 satellite constellation has better GDOP value than the constellations with 27, 28, or 29 satellites.
Figure 9 shows a comparison between the maximum and average GDOP of our optimal 26 and 27 satellite
constellations. With respect to the maximum GDOP metric, the 26 satellite constellation has a better GDOP
than the 27 satellite at any instant of time. With respect to the average metric, again 26 satellites are better
than 27, except during some small intervals of time.
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Figure 9. Comparison of the maximum and average GDOP of the 26 and 27 satellite constellation.

Finally, we provide in Figs. 10 and 11 a comparison between Galileo and the 26 satellite optimal con-
stellation, which we already know has better maximum GDOP. The figures show that both maximum and
average GDOP are better at any time.
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Figure 10. Maximum GDOP of Galileo Constellation and our 26 satellite constellation.
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Figure 11. Average GDOP of Galileo Constellation and our 26 satellite constellation.

V. Conclusions and future work

From this study it is possible to conclude that any constellation with less than 20 satellites has a poor
GDOP, hence not useful for a global positioning system. A constellation with 26 satellites was found whose
GDOP value is lower than a constellation with 27, 28, and 29 satellites. Thanks to the 2D LFC theory it is
possible to include eccentric orbits in the search space. We found explicit examples where eccentric orbits
outperform circular ones. Finally, our results are compared with the existing Galileo Constellation. Both of
them have good qualities, but our 26 satellite constellation seems to be better in all our tests.

As a future work, the study of the GDOP of a constellation can be expanded with the Necklace Flower
Constellation theory,15 which decreases the cost of the mission by reducing the number of satellites in each
orbit while keeping the symmetries in the (Ω,M)-space,13, 14 that describes the distribution of the satellites
in the 2D Lattice FCs.

Acknowledgments

D. Casanova acknowledges financial support from the Spanish Ministry of Science through Project
#AYA2008-05572.

References

1Draim, J., “Satellite Constellation: The Breakwell Memorial Lecture,” Proceedings of the 55th International Astronautical
Congress,Vancuver, Canada, 2004.

2Walker, J., “Continuous Whole-Earth Coverage by Circular Orbit Satellite Patterns,” Royal Aircraft Establishment, Tech.
Rep. 77044 Vol. 44, March 1977.

3Mortari, D., Wilkins, M. P., and Bruccoleri, C., “The Flower Constellation,” The Journal of the Astronautical Sciences,
Vol. 52, January-June 2004, pp. 107-127.

4Mortari, D., and Wilkins, M. P., “The Flower Constellation Set Theory Part I: Compatibility and Phasing,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 44, July 2008, pp. 953-963.

5Wilkins, M. P., and Mortari, D., “The Flower Constellation Set Theory Part II: Secondary Paths and Equivalency,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, July 2008, pp. 964-976.

6Kaplan, Elliott D., and Hegarty, Christopher J., “Understanding GPS: principles and applications”
7Langley, R. B., “Dilution Of Precision,” GPS World, May 1999.
8Yarlagadda, R., Ali, I., Al-Dhahir, N., and Hershey, J., “GPS GDOP metric,” IEE Proc.-Radar, Sonar Navigation, Vol

147, No 5, Oct. 2000, DOI:10.1049/ip-rsn:20000554
9Mortari, D., Avendaño, M., and Davalos, P., “Uniform distribution of point on a sphere with application in aerospace

engineering,” The 21st AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 11-261, New Orleans, LA, February 2011.
10Sivanandam, S.N., and Deepa, S.N., “Introduction to Genetic Algorithms,”ISBN:978-3-540-73189-4, Springer.
11Abdelkhalik, O., and Mortari, D., “Orbit Design for Ground Surveillance Using Genetic Algorithms,” Journal of Guidance

Dynamics and Control, Vol. 29, No 3, Sep. 2006.

17 of 18

American Institute of Aeronautics and Astronautics



12Avendaño, M., Davis, J.J., and Mortari, D., “The Lattice Theory of Flower Constellations,” AAS/AIAA Space Flight
Mechanics Meeting, Paper AAS 10-172, San Diego, CA, February 2010.

13Avendaño, M., and Mortari, D., “Rotating Symmetries in Space: The Flower Constellations,” AAS/AIAA Space Flight
Mechanics Meeting Conference, Paper AAS 19-189, Savannah, GA, February 2009.

14Avendaño, M., and Mortari, D., “New Insights on Flower Constellation Theory,” Submitted for publication to the IEEE
Transactions on Aerospace and Electronic Systems, in print.

15Casanova, D., Avendaño, M., and Mortari, D., “Necklace Theory on Flower Constellations,” The 21st AAS/AIAA Space
Flight Mechanics Meeting, Paper AAS 11-226, New Orleans, LA, February 2011.

18 of 18

American Institute of Aeronautics and Astronautics


