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Abstract. We consider the subset R of Appell polynomials whose expo-
nential generating function is given in terms of the moment generating
function of a certain random variable Y . This subset contains the Her-
mite, Bernoulli, Apostol-Euler, and Cauchy type polynomials, as well as
various kinds of their generalizations, among others. We obtain closed
form expressions for higher-order convolutions of Appell polynomials
in the subset R. We give a unified approach mainly based on random
scale transformations of Appell polynomials, as well as on a probabilis-
tic generalization of the Stirling numbers of the second kind. Different
illustrative examples, including reformulations of convolution identities
already known in the literature, are discussed in detail. In such exam-
ples, the convolution identities involve the classical Stirling numbers.
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1. Introduction

In recent years, a lot of attention has been devoted to obtaining explicit
formulas for higher-order convolutions of the form∑

j1+···+jm=n

(
n

j1, . . . , jm

)
C(j1, . . . , jm)A

(1)
j1

(x1) · · ·A(m)
jm

(xm), (1.1)

where A(k)(x) = (A
(k)
n (x))n≥0 is a sequence of Appell polynomials, xk ∈ R,

k = 1, . . . ,m, and C(j1, . . . , jm) are properly chosen constants. One instance
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67006-P. .
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of these formulas is the expression of the second-order Bernoulli polynomials
B(x) = (Bn(x))n≥0 shown by Nörlund [1], i.e.,
n∑
k=0

(
n

k

)
Bk(x)Bn−k(y) = −n(x+y−1)Bn−1(x+y)−(n−1)Bn(x+y). (1.2)

Since the pioneering work by Dilcher [2], many authors have provided explicit
expressions for the sums in (1.1) using different methodologies. We mention
the papers by Gessel [3], Zhao [4],Wang [5], Agoh and Dilcher [6], He and
Araci [7], Wu and Pan [8], He [9], and Dilcher and Vignat [10], among many
others.

The aim of this paper is to give a unified approach to obtain closed form
expressions for higher-order convolutions of Appell polynomials in the set R
defined below. This approach can be summarized as follows (see Section 2 for
more precise definitions). Following Ta [11], we consider the set R of Appell
polynomials A(x) = (An(x))n≥0 whose exponential generating function is
given by

G(A(x), z) =
exz

EezY
,

for a certain random variable Y , where E stands for mathematical expecta-
tion. For any w ∈ R and A(x) ∈ R, we consider the scale transformation
TwA(x) = (TwAn(x))n≥0 defined by

TwAn(x) = wnAn(x/w) =

n∑
k=0

(
n

k

)
wkAk(0)xn−k, n = 0, 1, . . . .

In the first place, we give closed form expressions for∑
j1+···+jm=n

(
n

j1, . . . , jm

)
Tw1

A
(1)
j1

(w1x1) · · ·TwmA
(m)
jm

(wmxm)

=
∑

j1+···+jm=n

(
n

j1, . . . , jm

)
wj11 · · ·wjmm A

(1)
j1

(x1) · · ·A(m)
jm

(xm)

(1.3)

in terms of the moments of the random variables Yk associated to each
A(k)(x) ∈ R, k = 1, . . . ,m (see Theorem 3.4 in Section 3). In the second
place, we replace (w1, . . . , wm) by a random vector W = (W1, . . . ,Wm) in
(1.3) and then take expectations, so that we obtain closed form expressions
for ∑

j1+···+jm=n

(
n

j1, . . . , jm

)
E
(
W j1

1 · · ·W jm
m

)
A

(1)
j1

(x1) · · ·A(m)
jm

(xm). (1.4)

This is done in Theorem 3.5 in Section 3, which is the main result of this pa-
per. The comparison between (1.1) and (1.4) reveals the probabilistic meaning
of the constant C(j1, . . . , jm), that is,

C(j1, . . . , jm) = E
(
W j1

1 · · ·W jm
m

)
.

The approach outlined above is general enough for two reasons. First,
this is so because the Hermite, Bernoulli, Apostol-Euler, and Cauchy type
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polynomials, as well as various kinds of their generalizations belong to the set
R (c.f. [11] and [12]). Of course, there are Appell sequences that do not belong
to R (see the comments below following formula (3.1) in Section 3). Secondly,
this is a general approach because each choice of the random vector W in
(1.4) leads us to a different type of convolution identity. This is illustrated in
Section 4 in the particular case of the Bernoulli polynomials. Actually, it will
be shown there that if W is a deterministic vector, we obtain generalizations
of convolution identities already proved by Dilcher [2], Wang [5], and Chu
and Zhou [13]. If W has the multivariate Dirichlet distribution, we obtain a
generalization of Miki’s identity (see Miki [14], Gessel [3], and Dilcher and
Vignat [10]). If W has independent and identically distributed components,
each one having the exponential density, then we obtain a generalization of an
identity proposed by Matiyasevich (see Agoh [15] and Agoh and Dilcher [6]).
Finally, if W has the multivariate normal density, we obtain a new identity
involving the Hermite polynomials.

The main tool to give explicit expressions for the sums in (1.3) is a prob-
abilistic generalization of the Stirling numbers of the second kind recently
introduced in [16] (see also Theorems 3.1 and 3.3 in Section 3). Sections 4
and 5 are devoted to illustrate Theorem 3.5. To keep the paper to a moderate
size, we restrict our attention to the case in which every A(j)(x) in (1.4) is a
Bernoulli or a certain type of Cauchy polynomials, whereas other polynomi-
als in R, such as the generalized Bernoulli polynomials of order m and the
generalized Apostol-Euler polynomials of order m (cf. [12]) are not considered
here. As a counterpart, we consider different choices of the random vector W
and make a comparison with similar results already known in the literature.
It turns out that the identities obtained in Sections 4 and 5 are computable
in terms of the classical Stirling numbers.

2. Preliminaries

In this section, we collect some definitions and properties, already shown in
[12] and [16], which are necessary to state our main results.

Let N be the set of positive integers and N0 = N∪{0}. Unless otherwise
specified, we assume from now on that n ∈ N0, m ∈ N, x ∈ R, and z ∈ C
with |z| ≤ r, where r > 0 may change from line to line. Denote by G the set
of all real sequences u = (un)n≥0 such that u0 6= 0 and

∞∑
n=0

|un|
rn

n!
<∞,

for some radius r > 0. If u ∈ G, we denote its generating function by

G(u, z) =

∞∑
n=0

un
zn

n!
.
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If u,v ∈ G, the binomial convolution of u and v, denoted by u × v =
((u× v)n)n≥0, is defined as

(u× v)n =

n∑
k=0

(
n

k

)
ukvn−k.

It turns out that this definition is characterized in terms of generating func-
tions (c.f. [12, Proposition 2.1]) as

G(u× v, z) = G(u, z)G(v, z).

In addition (cf. [12, Corollary 2.2]), (G,×) is an abelian group with identity
element e = (en)n≥0, where e0 = 1 and en = 0, n ∈ N. Observe that if

u(j) = (u
(j)
n )n≥0 ∈ G, j = 1, . . . ,m, then

(u(1) × · · · × u(m))n =
∑

j1+···+jm=n

(
n

j1, . . . , jm

)
u
(1)
j1
· · ·u(m)

jm
, (2.1)

where(
n

j1, . . . , jm

)
=

n!

j1! · · · jm!
, j1, . . . , jm ∈ N0, j1 + · · ·+ jm = n

is the multinomial coefficient.

On the other hand, let A(x) = (An(x))n≥0 be a sequence of polynomials
such that A(0) ∈ G. Recall that A(x) is called an Appell sequence if one of
the following equivalent conditions is satisfied:

An(x) =

n∑
k=0

(
n

k

)
Ak(0)xn−k, (2.2)

or

G(A(x), z) = G(A(0), z)exz.

Denote by A the set of all Appell sequences. The binomial convolution of
A(x),C(x) ∈ A, denoted by (A ×C)(x) = ((A × C)n(x))n≥0, is defined as
(cf. [12, Section 3])

(A×C)(x) = A(0)×C(x) = A(x)×C(0) = A(0)×C(0)× I(x),

where I(x) = (xn)n≥0, or equivalently, by

(A× C)n(x) =
n∑
k=0

(
n

k

)
Ak(0)Cn−k(x) =

n∑
k=0

(
n

k

)
Ck(0)An−k(x)

=
∑

j1+j2+j3=n

(
n

j1, j2, j3

)
Aj1(0)Cj2(0)xj3 .

As shown in [12, Theorem 3.1], (A,×) is an abelian group with identity
element I(x). Also, (A×C)(x) is characterized by its generating function

G((A×C)(x), z) = G(A(0), z)G(C(0), z)exz. (2.3)
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For any A(j)(x) ∈ A and xj ∈ R, j = 1, . . . ,m, with x1 + · · ·+ xm = x,
formula (2.3) implies that

A(1)(x1)× · · · ×A(m)(xm) = (A(1) × · · · ×A(m))(x), (2.4)

because both sides in (2.4) have the same generating function.

On the other hand, let w ∈ R and A(x) ∈ A. We define the scale
transformation TwA(x) = (TwAn(x))n≥0 as

TwAn(x) = wnAn(x/w) =

n∑
k=0

(
n

k

)
wkAk(0)xn−k, w 6= 0, (2.5)

and

T0An(x) = A0(0)xn. (2.6)

As shown in [12, Proposition 4.1], TwA(x) is an Appell sequence characterized
by its generating function

G(TwA(x), z) = G(A(0), wz)exz. (2.7)

In addition, the map Tw : A → A is an isomorphism, whenever w 6= 0.

From now on, we will always consider random variables Y satisfying the
integrability condition

Eer|Y | <∞, (2.8)

for some r > 0. Also, let (Yj)j≥1 be a sequence of independent copies of Y
and denote by

Sk = Y1 + · · ·+ Yk, k ∈ N (S0 = 0). (2.9)

In [16], we have introduced the Stirling polynomials of the second kind asso-
ciated to Y as

SY (n, r;x) =
1

r!

r∑
k=0

(
r

k

)
(−1)r−kE(x+ Sk)n, r = 0, 1, . . . , n, (2.10)

as well as the Stirling numbers of the second kind associated to Y as

SY (n, r) = SY (n, r; 0), r = 0, 1, . . . , n. (2.11)

Equivalently (c.f. [16, Theorem 3.3]), the polynomials SY (n, r;x) are defined
via their generating function as

ezx

r!
(EezY − 1)r =

∞∑
n=r

SY (n, r;x)

n!
zn, r ∈ N0. (2.12)

Note that if Y = 1, we have from (2.11) or (2.12),

S1(n, r) = S(n, r), r = 0, 1, . . . , n,

S(n, r) being the classical Stirling numbers of the second kind. Explicit ex-
pressions for SY (n, r;x) for various choices of the random variable Y can be
found in [16, Section 4].
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3. Main results

We consider the subset R ⊆ A of Appell sequences A(x) whose generating
function is given by

G(A(x), z) =
exz

EezY
, (3.1)

for a certain random variable Y satisfying (2.8). Note that if X is another
random variable satisfying (3.1), then X and Y have the same law (see,
for instance, Billingsley [17, p. 346]). For this reason, we say that A(x) has
associated random variable Y .

In [12, Section 6], we showed the following properties: if A(x),C(x) ∈ R,
then (A×C)(x) ∈ R. However, (R,×) is not an abelian subgroup of (A,×).
More precisely, let A(x) ∈ R with nonconstant associated random variable
Y . Then the inverse of A(x) in the abelian group (A,×) does not belong to
R.

It turns out that any Appell sequence A(x) inR with associated random
variable Y can be written in terms of the Stirling polynomials of the second
kind associated to Y or in terms of the moments of the random variables Sk
defined in (2.9), as the following result shows.

Theorem 3.1. Let A(x) ∈ R with associated random variable Y . Then,

An(x) =

n∑
r=0

(−1)rr!SY (n, r;x) =

n∑
k=0

(
n+ 1

k + 1

)
(−1)kE(x+ Sk)n

=

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)kESrk.

(3.2)

Proof. It follows from assumption (2.8) and the dominated convergence the-
orem that

|EezY − 1| < 1, |z| ≤ s,
for some s > 0. Whenever |z| ≤ s, we have from (2.12) and (3.1),

G(A(x), z) =
exz

1 + (EezY − 1)
=

∞∑
r=0

(−1)rexz(EezY − 1)r

=

∞∑
r=0

(−1)rr!

∞∑
n=r

SY (n, r;x)

n!
zn =

∞∑
n=0

zn

n!

n∑
r=0

(−1)rr!SY (n, r;x),

thus showing the first equality in (3.2). The second one readily follows from
(2.10) and the elementary combinatorial identity

n∑
r=k

(
r

k

)
=

(
n+ 1

k + 1

)
.

Finally, using (2.2) and the second equality in (3.2), we obtain

An(x) =

n∑
r=0

(
n

r

)
xn−rAr(0) =

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)kESrk.
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This shows the third equality in (3.2) and completes the proof. �

Remark 3.2. Assume that A(x) ∈ R. By Theorem 3.1, we have A0(x) = 1.
This implies, by virtue of (2.6), that T0A(x) = I(x).

In the following result, we show that binomial convolutions of scale
transformations of Appell sequences in the subset R also belong to R.

Theorem 3.3. Let w = (w1, . . . , wm) ∈ Rm and let A(j)(x) ∈ R with asso-
ciated random variable Y (j), j = 1, . . . ,m. Suppose that the random vector
Y = (Y (1), . . . , Y (m)) has mutually independent components. Then, the Ap-
pell sequence (Tw1

A(1) × · · · × TwmA
(m))(x) belongs to R with associated

random variable w · Y = w1Y
(1) + · · ·+ wmY

(m).

Proof. By Remark 3.2, we can assume without loss of generality that wj 6= 0,
j = 1, . . . ,m. By assumption,

G(A(j)(x), z) =
exz

EezY (j)
, |z| ≤ rj , (3.3)

for some rj > 0, j = 1, . . . ,m. Denote

r = min

(
r1
|w1|

, . . . ,
rm
|wm|

)
> 0.

For |z| ≤ r, we see from (2.3), (2.7), and (3.3) that

G((Tw1A
(1) × · · · × TwmA(m))(x), z)

= G(Tw1
A(1)(0), z) · · ·G(TwmA

(m)(0), z)exz

= G(A(1)(0), zw1) · · ·G(A(m)(0), zwm)exz

=
exz

Eezw1Y (1) · · ·EezwmY (m)
=

exz

Eezw·Y
,

where the last equality holds because the random vector Y has mutually
independent components. Hence, the result follows from (3.1). �

In the setting of Theorem 3.3, we use from now on the following nota-
tions. Denote

w1x1 + · · ·+ wmxm = x, x1, . . . , xm ∈ R. (3.4)

Let (Y
(j)
l )l≥1 be a sequence of independent copies of Y (j) and assume that

the sequences (Y
(j)
l )l≥1, j = 1, . . . ,m, are mutually independent. Set

S
(j)
k = Y

(j)
1 + · · ·+ Y

(j)
k , k ∈ N, S

(j)
0 = 0. (3.5)

Observe that for any k ∈ N0 the sums S
(j)
k , j = 1, . . . ,m, are mutually

independent.

With these notations, we state our first main result on higher-order
convolution identities for scale transformations of Appell sequences in R.
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Theorem 3.4. In the setting of Theorem 3.3, we have∑
j1+···+jm=n

(
n

j1, . . . , jm

)
wj11 · · ·wjmm A

(1)
j1

(x1) · · ·A(m)
jm

(xm)

=

n∑
r=0

(−1)rr!Sw·Y (n, r;x)

=

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)kE

(
w1S

(1)
k + · · ·+ wmS

(m)
k

)r
.

Proof. By (2.4) and (3.4), we have the basic identity

Tw1
A(1)(w1x1)× · · · × TwmA(m)(wmxm)

= (Tw1A
(1) × · · · × TwmA(m))(x).

(3.6)

Again by Remark 3.2, we can assume without loss of generality that wj 6= 0,
j = 1, . . . ,m, in (3.6). From (2.1) and (2.5), we see that

(Tw1
A(1)(w1x1)× · · · × TwmA(m)(wmxm))n∑

j1+···+jm=n

(
n

j1, . . . , jm

)
Tw1

A
(1)
j1

(w1x1) · · ·TwmA
(m)
jm

(wmxm)

=
∑

j1+···+jm=n

(
n

j1, . . . , jm

)
wj11 · · ·wjmm A

(1)
j1

(x1) · · ·A(m)
jm

(xm).

(3.7)

By Theorem 3.3, the Appell sequence on the right-hand side of (3.6) belongs

to R with associated random variable w ·Y , and (w1Y
(1)
l + · · ·+wmY

(m)
l )l≥1

is a sequence of independent copies of w · Y . We therefore have from (3.5)
and Theorem 3.1,

(Tw1A
(1) × · · · × TwmA(m))n(x) =

n∑
r=0

(−1)rr!Sw·Y (n, r;x)

=

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)kE

(
w1S

(1)
k + · · ·+ wmS

(m)
k

)r
.

This, together with (3.6) and (3.7), completes the proof. �

Let W = (W1, . . . ,Wm) be a random vector whose components satisfy
(2.8). We denote

Cs(j1, . . . , jm;x) = E
(
W j1

1 · · ·W jm
m (x ·W )s

)
, s ∈ N0, (3.8)

where jν ∈ N0, xν ∈ R, ν = 1, . . . ,m, and x = (x1, . . . , xm). We simply set

C(j1, . . . , jm) = C0(j1, . . . , jm;0) = E(W j1
1 · · ·W jm

m ). (3.9)

The second main result, which generalizes Theorem 3.4, is the following.
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Theorem 3.5. Let W = (W1, . . . ,Wm) be a random vector whose components
satisfy (2.8). In the setting of Theorem 3.4, we have∑

j1+···+jm=n

(
n

j1, . . . , jm

)
C(j1, . . . , jm)A

(1)
j1

(x1) · · ·A(m)
jm

(xm)

=

n∑
r=0

(
n

r

) r∑
k=0

(
r + 1

k + 1

)
(−1)k

∑
i1+···+im=r

(
r

i1, . . . , im

)
×

× Cn−r(i1, . . . , im;x)E(S
(1)
k )i1 · · ·E(S

(m)
k )im .

Proof. By assumption (2.8),

Eerj |Wj | <∞, j = 1, . . . ,m,

for some rj > 0. This implies that each Wj has finite moments of any order,
j = 1, . . . ,m. Thus, by Hölder’s inequality, all the expectations involving the
random vector W in Theorem 3.5 are finite.

From (3.4) and Theorem 3.4, we have∑
j1+···+jm=n

(
n

j1, . . . , jm

)
wj11 · · ·wjmm A

(1)
j1

(x1) · · ·A(m)
jm

(xm)

=

n∑
r=0

(
n

r

) r∑
k=0

(
r + 1

k + 1

)
(−1)k

∑
i1+···+im=r

(
r

i1, . . . , im

)
×

× wi11 · · ·wimm (x1w1 + · · ·+ xmwm)n−rE(S
(1)
k )i1 · · ·E(S

(m)
k )im .

Recalling (3.8) and (3.9), the conclusion follows by replacing (w1, . . . , wm)
by the random vector W = (W1, . . . ,Wm) and then taking expectations. �

We emphasize that the random vector W in Theorem 3.5 does not neces-
sarily have independent components. In fact, we will consider in Corollary 4.3
in Section 4 a random vector W such that W1 + · · ·+Wm = 1.

4. Bernoulli polynomials

As said in the Introduction, Theorems 3.4 and 3.5 can be applied when
A(j)(x) are the Bernoulli, Apostol-Euler, and Cauchy type polynomials, among
many others. In this section, we will restrict our attention to the case in which
the A(j)(x) are the classical Bernoulli polynomials. As a counterpart, we will
consider different choices of the random vector W .

In this section, Y is a random variable having the uniform distribution
on [0, 1], (Yj)j≥1 is a sequence of independent copies of Y and

Sk = Y1 + · · ·+ Yk, k ∈ N, S0 = 0. (4.1)

Recall that the Bernoulli polynomials B(x) = (Bn(x))n≥0 are defined via
their generating function as

G(B(x), z) =
zexz

ez − 1
=

exz

EezY
, (4.2)
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where the last equality in (4.2) was already noticed by Ta [11]. On the other
hand, Sun [18] showed the following probabilistic representation for the clas-
sical Stirling numbers of the second kind S(n, k):

S(n, k) =

(
n

k

)
ESn−kk , k = 0, 1, . . . , n. (4.3)

Corollary 4.1. We have∑
j1+···+jm=n

(
n

j1, . . . , jm

)
C(j1, . . . , jm)

m∏
ν=1

Bjν (xν)

=

n∑
r=0

(
n

r

) r∑
k=0

(
r + 1

k + 1

)
(−1)k

∑
i1+···+im=r

(
r

i1, . . . , im

)
Cn−r(i1, . . . , im;x)×

×
m∏
ν=1

S(k + iν , k)(
k+iν
k

) .

Proof. It suffices to apply Theorem 3.5 to the case A(j)(x) = B(x), j =

1, . . . ,m. Note that, in such a case, the random sums S
(j)
k , j = 1, . . . ,m

defined in (3.5) have the same law as that of the random sum Sk defined in
(4.1), thus having from (4.3)

E(S
(j)
k )i =

S(k + i, k)(
k+i
k

) , j = 1, . . . ,m,

for any k, i ∈ N0. The proof is complete. �

We point out that the right-hand side in Corollary 4.1 only depends on
the random vector W and on the Stirling numbers S(n, k).

Different particular cases of Corollary 4.1 are obtained for each choice
of W . The first one is the following.

Corollary 4.2. Let wj , xj ∈ R, j = 1, . . . ,m, as in (3.4). Then,∑
j1+···+jm=n

(
n

j1, . . . , jm

) m∏
ν=1

wjνν Bjν (xν)

=

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)k

∑
i1+···+im=r

(
r

i1, . . . , im

)
×

×
m∏
ν=1

wiνν
S(k + iν , k)(

k+iν
k

) .

Proof. Choose in Corollary 4.1 the deterministic vector W = (w1, . . . , wm).
Recalling (3.8) and (3.9), it is enough to observe that

C(j1, . . . , jm) = wj11 · · ·wjmm ,

as well as
Cn−r(i1, . . . , im;x) = wi11 · · ·wimm xn−r.

�
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In his classical result, Dilcher [2] considered the case w1 = · · · = wm = 1
and obtained an identity involving the products s(m, k)Bj(x), where s(m.k)
are the Stirling numbers of the first kind. Wang [5] (see also Chu and Zhou
[13]) provided identities when at most two of the numbers wj , j = 1, . . . ,m
are different from 1 and the product of Bernoulli polynomials is replaced by
a product involving both the Bernoulli and Euler polynomials.

Denote by 〈x〉n the rising factorial, i.e.,

〈x〉n =
Γ(x+ n)

Γ(x)
,

Γ(·) being Euler’s gamma function. For any α > 0, denote by Xα a random
variable having the gamma density

ρα(θ) =
θα−1e−θ

Γ(α)
, θ > 0. (4.4)

Let m = 2, 3, . . . and αj > 0, j = 1, . . . ,m. Suppose that (Xαj , j = 1, . . . ,m)
are mutually independent random variables such that each Xαj has the
gamma density ραj (θ). We consider the random vector W = (W1, . . . ,Wm)
defined as

Wj =
Xαj

Xα1 + · · ·+Xαm

, j = 1, . . . ,m. (4.5)

Observe that W1 + · · · + Wm = 1. It is well known (cf. Kotz et al. [19] or
Dilcher and Vignat [10]) that W has the multivariate Dirichlet distribution
and

E
(
W j1

1 · · ·W jm
m

)
=

〈α1〉j1 · · · 〈αm〉jm
〈α1 + · · ·+ αm〉j1+···+jm

, jl, . . . , jm ∈ N0. (4.6)

With these ingredients, we enunciate the following result.

Corollary 4.3. Let m = 2, 3, . . ., αj > 0, j = 1, . . . ,m, and x ∈ R. Then,

1

〈α1 + · · ·+ αm〉n

∑
j1+···+jm=n

(
n

j1, . . . , jm

) m∏
ν=1

〈αν〉jνBjν (x)

=

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)k

〈α1 + · · ·+ αm〉r

∑
i1+···+im=r

(
r

i1, . . . , im

)
×

×
m∏
ν=1

〈αν〉iν
S(k + iν , k)(

k+iν
k

) .

Proof. Choose xj = x and Wj as in (4.5) in Corollary 4.1, j = 1, . . . ,m. Since
W1 + · · ·+Wm = 1, we have from (3.8)

Cn−r(i1, . . . , im;x) = xn−rE
(
W i1

1 · · ·W im
m

)
=
〈α1〉i1 · · · 〈αm〉im
〈α1 + · · ·+ αm〉r

xn−r,

because i1 + · · ·+ im = r. Similarly,

C(j1, . . . , jm) =
〈α1〉j1 · · · 〈αm〉jm
〈α1 + · · ·+ αm〉n

.
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Therefore, the conclusion follows from Corollary 4.1. �

Dilcher and Vignat [10] have recently given a similar result to Corol-
lary 4.3. This result generalizes Miki’s identity (see Miki [14]), as well as an
extension of it shown by Gessel [3].

To prove the next result, we will need the following reformulation of the
well known Chu-Vandermonde identity (see, for instance, Chang and Xu [20]
or Vignat and Moll [21] for a probabilistic proof of this identity).

Lemma 4.4. Let t1, . . . , tm ∈ R with t1 + · · ·+ tm = t. Then,∑
l1+···+lm=n

(
t1 + l1
l1

)
· · ·
(
tm + lm
lm

)
=

(
t+m+ n− 1

n

)
.

Proof. Use the formula(
−β
n

)
= (−1)n

(
β + n− 1

n

)
, β ∈ R,

and apply the classical Chu-Vandermonde identity. �

Corollary 4.5. Let x ∈ R. Then,∑
j1+···+jm=n

Bj1(x) · · ·Bjm(x) =

n∑
r=0

(
m+ n− 1

n− r

)
xn−r×

×
r∑

k=0

(
r + 1

k + 1

)
(−1)k

∑
ii+···+im=r

m∏
ν=1

S(k + iν , k)(
k+iν
k

) .

(4.7)

Proof. Choose in Corollary 4.1 a random vector W = (W1, . . . ,Wm) whose
components are independent and identically distributed random variables,
each one having the exponential density ρ1(θ) defined in (4.4). By (3.9),
(4.4), and the independence assumption, we see that

C(j1, . . . , jm) = EW j1
1 · · ·EW jm

m =

m∏
ν=1

jν !. (4.8)

Also, choose xj = x, j = 1, . . . ,m. We have from (3.8), (4.8), and Lemma 4.4,

Cn−r(i1, . . . , im;x)

= xn−r
∑

l1+···+lm=n−r

(
n− r

l1, . . . , lm

)
EW i1+l1

1 · · ·EW im+lm
m

= xn−r(n− r)!
m∏
ν=1

iν !
∑

l1+···+lm=n−r

(
i1 + l1
l1

)
· · ·
(
im + lm
lm

)

= xn−r(n− r)!
m∏
ν=1

iν !

(
m+ n− 1

n− r

)
,

(4.9)

because i1 + · · · + im = r. The result readily follows from (4.8), (4.9), and
Corollary 4.1. �
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Agoh and Dilcher [6] considered the left-hand side in (4.7) and showed
an identity in terms of products of the form Bl0(x)Bl1(0) · · ·Blk(0). This
result is a generalization of an identity proposed by Matiyasevich (see Agoh
[15] for a proof and further references on Matiyasevich identity).

Recall that the Hermite polynomials H(x) = (Hn(x))n≥0 are defined
via the generating function

G(H(x), z) = exz−z
2/2 =

exz

EezZ
=
∞∑
n=0

Hn(x)
zn

n!
, z ∈ C,

where Z is a random variable having the standard normal density. Clearly,
H(x) ∈ R. On the other hand, such polynomials can be represented in prob-
abilistic terms as (cf. Withers [22] or Ta [11])

Hn(x) = E(x+ iZ)n, (4.10)

where i is the imaginary unit. Representation (4.10) allows us to give the
following convolution identities.

Corollary 4.6. Let x ∈ R. Then,

∑
j1+···+jm=n

(
n

j1, . . . , jm

) m∏
ν=1

Hjν (0)Bjν (x)

=

n∑
r=0

(
n

r

)
xn−r

r∑
k=0

(
r + 1

k + 1

)
(−1)n−k×

×
∑

i1+···+im=r
l1+···+lm=n−r

(
r

i1, . . . , im

)(
n− r

l1, . . . , lm

) m∏
ν=1

S(k + iν , k)(
k+iν
k

) Hiν+lν (0).

Proof. Choose in Corollary 4.1 xj = x, j = 1, . . . ,m, and W = (W1, . . . ,Wm)
a random vector with independent and identically distributed components,
each one having the same law as Z. By (3.8) and (4.10), we have

Cn−r(i1, . . . , im;x) = xn−r
∑

l1+···+lm=n−r

(
n− r

l1, . . . , lm

)
EW i1+l1

1 · · ·EW im+lm
m

= (−i)nxn−r
∑

l1+···+lm=n−r

(
n− r

l1, . . . , lm

)
Hi1+l1(0) · · ·Him+lm(0),

because i1 + · · ·+ im = r. Similarly, by (3.9) we have

C(j1, . . . , jm) = inHj1(0) · · ·Hjm(0).

Hence, the conclusion follows from Corollary 4.1. �
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5. Cauchy type polynomials

The Cauchy polynomials of the first kind c(x) = (cn(x))n≥0 are defined by
the generating function

z

(1 + z)x log(1 + z)
=

∞∑
n=0

cn(x)
zn

n!
, |z| < 1,

cn(0) = cn, n ∈ N0, being the classical Cauchy numbers of the first kind (see,
for instance, Comtet [23, Ch. VII] or Merlini et al. [24]). Generalizations of
these polynomials can be found in Komatsu and Ramı́rez [25], Pyo et al. [26],
and the references therein.

Observe that the polynomials c(x) = (cn(x))n≥0 are no Appell se-
quences. For this reason, we consider here the Cauchy type polynomials
C(x) = (Cn(x))n≥0 defined by means of the generating function

G(C(x), z) =
zexz

log(1 + z)
=

∞∑
n=0

Cn(x)
zn

n!
, |z| < 1. (5.1)

Observe that

Cn(0) = cn(0) = cn. (5.2)

Let U and T be two independent random variables such that U is uniformly
distributed on [0, 1] and T has the exponential density ρ1(θ) defined in (4.4).
In this section, we set Y = −UT and denote by

Sk = Y1 + · · ·+ Yk, k ∈ N, S0 = 0, (5.3)

where (Yj)j≥1 is a sequence of independent copies of Y . In [27], we showed
that

EezY =
log(1 + z)

z
, |z| < 1, (5.4)

as well as

s(n, k) =

(
n

k

)
ESn−kk , k = 0, . . . , n, (5.5)

where s(n, k) are the Stirling numbers of the first kind. We therefore have
from (5.1) and (5.4)

G(C(x), z) =
exz

EezY
, |z| < 1,

thus showing that the Cauchy type polynomials C(x) belong to the set R.

Keeping the same notations as in (3.8) and (3.9), we state the following
result.
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Corollary 5.1. We have∑
j1+···+jm=n

(
n

j1, . . . , jm

)
C(j1, . . . , jm)

m∏
ν=1

Cjν (xν)

=

n∑
r=0

(
n

r

) r∑
k=0

(
r + 1

k + 1

)
(−1)k

∑
i1+...+im=r

(
r

i1, . . . , im

)
Cn−r(i1, . . . , im;x)×

×
m∏
ν=1

s(k + iν , k)(
k+iν
k

) .

Proof. The proof follows along the lines of that in Corollary 4.1, by using
formula (5.5) instead of formula (4.3). �

By considering different choices of the random vector W , we can give
analogous results to Corollaries 4.2–4.6 for the Cauchy type polynomials
C(x). Details are omitted.

To conclude the paper, we give a specific result for higher order convo-
lutions of the Cauchy numbers (cn)n≥0 defined in (5.2).

Corollary 5.2. We have∑
j1+···+jm=n

(
n

j1, . . . , jm

)
cj1 · · · cjm =

n∑
k=0

(
n+ 1

k + 1

)
(−1)k

s(n+ km, km)(
n+km
n

) .

Proof. In Theorem 3.4, choose xj = 0, wj = 1, A(j)(x) = C(x),j = 1, . . . ,m,
thus having from (3.4) and (5.2)∑

j1+···+jm=n

(
n

j1, . . . , jm

)
cj1 · · · cjm

=

n∑
k=0

(
n+ 1

k + 1

)
(−1)kE

(
S
(1)
k + . . .+ S

(m)
k

)n
,

(5.6)

where S
(j)
k , j = 1, . . . ,m are independent copies of Sk, as defined in (5.3).

Since the random variables S
(1)
k + · · ·+S

(m)
k and Skm have the same law, we

have from (5.5)

E
(
S
(1)
k + · · ·+ S

(m)
k

)n
= ESnkm =

s(n+ km, km)(
n+km
n

) .

This, together with (5.6), shows the result. �

We finally point out that a similar result to Corollary 5.2 in terms of
both Stirling numbers of first and second kinds was obtained by Zhao [4,
Corollary 3.1]
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